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Improving air quality assessment using physics-inspired deep
graph learning
Lianfa Li1,2✉, Jinfeng Wang1✉, Meredith Franklin 2,3, Qian Yin1, Jiajie Wu1, Gustau Camps-Valls4, Zhiping Zhu1, Chengyi Wang5,
Yong Ge1 and Markus Reichstein 6

Existing methods for fine-scale air quality assessment have significant gaps in their reliability. Purely data-driven methods lack any
physically-based mechanisms to simulate the interactive process of air pollution, potentially leading to physically inconsistent or
implausible results. Here, we report a hybrid multilevel graph neural network that encodes fluid physics to capture spatial and
temporal dynamic characteristics of air pollutants. On a multi-air pollutant test in China, our method consistently improved
extrapolation accuracy by an average of 11–22% compared to several baseline machine learning methods, and generated
physically consistent spatiotemporal trends of air pollutants at fine spatial and temporal scales.
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INTRODUCTION
Air pollution has major adverse effects on health and climate.
Recent research1 shows that in 2018 more than 8 million people
died from acute and chronic respiratory diseases, lung cancer,
stroke and heart disease related to fossil fuel pollution, indicating
a much greater burden than suggested in previous studies2.
Globally, air pollution plays a crucial but complex role in Earth’s
climate and ecosystems3. Similar to the demand for high-
resolution climate model estimates, reliable and finely-resolved
air pollution estimates are needed to accurately evaluate its
effects on humans and ecosystems at regional and local scales,
and to inform effective control strategies4. Air pollutant concen-
trations can vary sharply over short spatial distances due to
unevenly distributed emissions sources, meteorological transport
dynamics and complex secondary chemical processes5, particu-
larly in extreme air quality events6.
Despite advances in mechanistic and statistical modeling,

predicting fine-scale concentration gradients remains a challenge
due to sparsely distributed measurement data, difficulty in
characterizing complex atmospheric physiochemical processes,
and modeling limitations7. For mechanism-based methods
including dispersion, photochemical and plume models, issues
such as missing and noisy input data (e.g., insufficient or outdated
emission inventories), ill-posed boundary conditions, and complex
accumulative parameterizations may lead to high uncertainties for
many fine-scale local applications5,8. Statistics-based machine
learning methods solely rely on the empirical statistical associa-
tions between air pollutant concentrations and explanatory
factors to make predictions. However, the formation and
transformation of air pollutants involves varying emission sources,
atmospheric transport and physiochemical reactions within the
planetary boundary layer, which are also affected by altitude,
surrounding land characteristics and local geography4,9. These
features cannot be well captured by classical statistical or machine
learning techniques. Furthermore, while statistical methods have
reported improved predictive performance, they may produce

physically inconsistent or implausible results10 due to sampling
bias, lack of physical constraints, and/or confounding effects
arising from spatially stratified heterogeneous processes11. These
issues may be amplified given that models are often tested by
taking random samples across space and time for validation,
which does not provide accurate generalizable performance
statistics when applying the model to make predictions at
unobserved spatial locations. To improve upon these limitations,
machine learning has been combined with climate or atmospheric
chemistry models to speed up computation or improve prediction
accuracy, by replacing time-consuming mechanism components
(e.g., chemical integrator)12,13, memorizing the input-output
relationship in mechanism models14, correcting the bias15 or
representing subgrid process16. Furthermore, there has been a
growing trend of integrating physical knowledge into deep
learning techniques to model fluid fields, incorporating constraints
such as partial differential equations (PDE)17,18, yet apart from few
limited applications19,20 there continue to be gaps in effective
strategies for embedding physics in deep learning to improve
finely-resolved air quality assessments.
Here, we report a flexible deep graph hybrid modeling (DGM)

approach (Fig. 1) incorporating fluid physics21 in deep learning to
capture spatiotemporal interactions of air pollutants, encoding
their dynamic characteristics and transport at fine scales to
improve spatiotemporal predictions. We are motivated by the
applicability of deep graph learning to encode neighborhood
information that represents the dynamics of air pollutants9, and
physical invariance to guide optimization17. For irregular non-
Euclidean data with limited measurements, such as monitoring
data of air pollutants, graph neural networks that are rooted on
solid mathematical grounds of spectral graph theory22 and
locality23, can be used to encode complex geometric structures
and model their interactions. With graph operations such as
Laplacian smoothing24, graph convolution network (GCN) can
message and aggregate neighborhood information to represent
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interactions between nodes, with similar applications in protein-
protein25 and disease-gene26 interactions and drug discovery27.
Our modeling architecture utilizes graph convolutions (GC) to

simulate the dynamics of air pollutants. Additionally, by incorpor-
ating PDE residuals, the predictions are guided to conform to the
principles of mass conservation and continuity in atmospheric
fluid physics28: the former assumes that the total mass of the air
pollutant of interest in the atmosphere is nearly constant in
balance during the study period; the latter assumes that the air
pollutant fluid of interest is continuous (it contains no gaps). Given
the absence of vertical measurements of air pollutant concentra-
tions in the atmosphere (only ground measurements were
available), our approach focuses on simulating the horizontal
ground advection and diffusion of air pollutants. This pertains to
local or fine-scale dynamics along the north-south and east-west
directions on the ground surface. We do not explicitly account for
vertical convection in our methodology. Thus, our architecture is
built upon a 2-D Eulerian system (Fig.1a), rather than a 3-D
system21. In this system, the evolution of air pollutant concentra-
tions at a target location of ground is modeled using partial
differential equations for advection, diffusion, chemical transfor-
mation, emission and deposition. Our modeling architecture is
meshfree, making it different from traditional numerical methods
like finite element or finite difference methods. Unlike these

methods, which rely on a predefined mesh or grid structure to
discretize the problem domain, our approach offers greater
flexibility and adaptability, particularly when dealing with complex
geometries or irregularly distributed samples. By employing a
meshfree approach, our architecture allows the neural network to
directly approximate the dynamics or PDEs at irregularly
distributed sampling points within the domain. This eliminates
the constraints imposed by a predefined mesh, enabling more
effective learning of the underlying physics29.

Emissions
As an essential input, emission inventories are developed as a
database listing the amount of air pollutants emitted over a
specific time period (e.g., a year) by source. However, accurately
quantifying emissions, especially in urban settings, poses sig-
nificant challenges30; inventories tend to have a high degree of
uncertainty and are often available at coarse spatiotemporal
scales. In place of raw emission inventories, we used proxy
variables including satellite-derived data (Moderate Resolution
Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD)
for particulate matter, Ozone Monitoring Instrument (OMI) for
nitrogen dioxide (NO2), The Modern-Era Retrospective analysis for
Research and Applications, version 2 - Global Modeling Initiative

Fig. 1 Architecture of the deep graph network for air quality assessment. a The input data included atmospheric and surface grids,
emissions or their proxies, meteorology, dry deposition, landuse and vertical profile. b The graph convolutions are constructed in multiple
layers to simulate spatiotemporal dynamics of air pollutants, encoding their local spreading characteristics. c The GC multiscale outputs are
concatenated with the input to enter full residual encoder-decoder to account for transformation and deposition. d The loss function
included e1 (mean square error (MSE) between observed and predicted values), e2 (residual to encode PDE) and e3 (normalization).
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(MERRA2-GMI), and traffic variables from OpenStreetMap). The
satellite data have daily retrievals with global coverage. MERRA-2
GMI is driven by MERRA-2 meteorology to the Global Modeling
Initiative’s (GMI) stratosphere-troposphere chemical mechanism
run at ~50 km horizontal resolution and output onto the native
MERRA-2 grid. Compared with the emission inventories, the
MERRA2-GMI provides background levels of air pollution at global
to regional scales.
Driven by wind, air pollutants are transported across locations,

cities, states, regions or even globally. Mechanical models like GMI
and CMAQ are effective in simulating pollutant movement on a
regional to global scale. However, they struggle to capture local
and fine-scale variations in air pollutant gradients. This limitation
may arise from inadequate fine-scale bottom-up emissions data,
complex local terrain, the presence of transboundary pollutants
under certain micro environments, high uncertainty in parameter-
izations, and challenging physical assumptions. Additionally,
reanalysis methods like MERRA2-GMI operate at a coarse
resolution due to limitations in data storage and the time required
for long-term simulations. To overcome these challenges, we
propose the integration of deep graph learning with prior,
mechanism and/or empirical knowledge. This approach allows
for the simulation of fine-scale air pollutant transport in a more
time-efficient manner, while also improving generalization in
prediction. By adopting physics-inspired deep graph learning, we
can reduce the limitations of mechanical models and gain a more
comprehensive understanding of the complex dynamics of air
pollution at local and fine scales.

Graph convolutions for fine-scale dynamics of air pollutants
While our architecture is designed based on a 2-D Eulerian system
due to the absence of vertical concentration measurements, it is
important to note that atmospheric vertical processes, such as
boundary layer venting, play a crucial role in controlling pollutant
concentrations. This is particularly significant during winter when
the planetary boundary layer height (PBLH) is very close to the
ground31. Therefore, the input data in our horizontal transport
model included PBLH and vertical meteorological variables (e.g.,
wind speed, specific humidity, and temperature), as well as other
variables to account for the influence of vertical processes on
ground-level pollutant concentrations, in a simplified way.
According to the fundamental assumptions underlying atmo-
spheric motions, the continuity equation21 is used to simulate
conservation of the air pollutant mass of interest on the ground.
For a spatial location of interest, the continuity equation simulates
the temporal evolution of the concentration of air pollutants,
taking into account the pollutant sources, transport, sinks as well
as meteorological, topological and geographical effects. Using
Reynolds decomposition32,33, advection and diffusion processes
were summarized based on direction velocities, the advection
partial derivatives, diffusion coefficients and the eddy diffusion
terms (Eq. 2). Therefore, the air pollutant concentration changes
over time (Supplementary Fig. 1) were decomposed into three
balanced components, advection, diffusion, and the others.
For diffusion, the GCN provides an essential solution to simulate

the second-order derivative on the discrete graph space22,23,
represented by the Laplacian convolution operator shown in
Supplementary Fig. 2. Advection (Supplementary Fig. 1) can be
decomposed along the directions of the connected nodes based
on the differential formula.
A single fixed graph network is inappropriate for spatiotemporal

estimation since such a network is inherently transductive and
cannot naturally generalize to unseen data34. Here, we developed
a hybrid semi-supervised deep graph model (Fig. 1), which uses
local GC (Fig. 1b) to extract local spread characteristics of air
pollutants from the multiscale nearest neighbors (cells in the
regular grid system) of nodes, regardless of whether measured

concentrations were available in neighboring nodes. To simulate
the spatial spread of air pollutants at a local scale in the graph
space, we employed a Eulerian regular 2-D grid system with a
spatial resolution of 1 km and daily temporal resolution. The
retrieval of cell neighbors was based on this grid system where the
proximity of cell samples to a target spatial location played a
significant role, and cells closer to the target were given higher
weights (inversely proportional to their distance) during the
aggregation of graph convolutions. Additionally, we considered
the lag influence of samples on the target spatiotemporal point.
To enhance computational convenience, we simplified the
construction of a local graph. We performed a search for the k
nearest spatiotemporal cell samples to the target point and linked
them to create the local topology graph, as depicted in Fig. 1a, b.
This local graph aimed to simulate the spatiotemporal dynamics of
air pollutants for the target location. By leveraging local graph
networks, we obtained a flexible graph-level solution for
spatiotemporal simulation. To model pollutant transport, we
employed deep graph learning due to its flexibility in graph
convolutions. This approach was also suitable for handling non-
Euclidean and irregular spatiotemporal samples, which are
common characteristics of air pollution measurement data.
Therefore, with neighboring grids, the dynamic spread of

pollutants was able to be modeled using embedded learning
techniques based on graph convolutions. The inputs to the model
represented emissions or their proxies, meteorological driving
factors, land-use data, spatially-varying covariates, and temporal
indices at multiple scales (Supplementary Table 1 for the complete
list). With neighboring grid cells, we constructed multiple
interconnected local graph convolutions (as shown in Fig. 1b) to
simulate the local spread of air pollutants (Fig. 1b). Mapped
relationships between the continuity equation and the simulation
of air pollution advection/diffusion on the graph space and
feature space are presented in Supplementary Fig. 1. We defined
the convolutional operators in multilevel GC layers to simulate the
transport of air pollutants.

Coupling with residual learning for transformation and
deposition
Air pollutants from a wide range of emission sources are
transported by winds and deposited by gravitational sedimenta-
tion or precipitation. In the DGM architecture, we introduced
MERRA2-GMI as inputs to represent background pollution levels
and used GC to simulate local and fine scale transport. To account
for vertical variation, chemical transformation and deposition, we
coupled the GC with a full residual deep network by concatenat-
ing the GC output with the aforementioned inputs (Fig. 1c) in a
hybrid systematic framework. In addition, the attention layers
were added to weigh the influence of different parts of the input
on the model’s predictions35. In the hybrid systematic architecture,
error information can be systematically back-propagated to the
residual and GC layers during learning. Full residual deep learning
has proved to be powerful for spatiotemporal regression of air
pollutants36 and imputation of missing satellite data37. The
necessary covariates were also introduced: vertical meteorological
factors (e.g., relative humidity, temperature, wind speed and PBLH)
for vertical influence on ground pollutant concentration, OMI-NO2

for O3, NDVI for dry deposition, and precipitation for wet
deposition.
In addition, to support the governing mass conservation, we

encoded physical invariance in the total loss through the soft
residual constraint of the continuity partial differential equation
(PDE, Fig. 1d). Recent physics-informed neural networks
(PINNs)17,38 used the PDE residuals to improve physical relevant
results. The deep learning process by gradient descent is also a
simulation of the transport of the air pollutant of interest at a fine
scale in the graph and feature space. Through this semi-supervised
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learning, the goal of minimizing the target loss function was
achieved, and the optimal solution was obtained, which ensured
robust predictions while maintaining continuity of the PDE17. We
classified our method as “hybrid” based on two aspects: model
structure and learning loss function. In terms of model structure,
we coupled two types of architectures, namely graph convolu-
tional network (GCN) and full residual deep network (FRDN), to
leverage their respective strengths and enhance overall learning
efficiency. The GCN was employed to capture dynamic information
from the neighborhood, while the FRDN was used to improve the
efficiency of regression learning for local variables. Furthermore,
we have incorporated a combination of traditional data loss terms
and physics-based regularization loss terms into our loss function
(Supplementary Note 1). The purpose of incorporating these
physics-based regularization loss terms into the model is to make
the predictions of the model as consistent as possible with the
principles of physics. By doing so, we reduced inherent bias and
significantly improved the model’s generalization capabilities when
making predictions in new scenarios.

RESULTS
Mainland China, a large region with heterogeneous topography,
diverse meteorology and multiple emission sources, was selected
as the testbed for the DGM method (Supplementary Note 2). We
trained seven national hybrid models for six air pollutants
including daily average carbon monoxide (CO), nitrogen dioxide
(NO2), fine particulate matter (PM2.5), coarse particulate matter
(PM10) and sulfur dioxide (SO2), as well as hourly maximum daily
ozone (abbreviated as O3M24) and 8 h average ozone (abbre-
viated as O3A8). Daily gridded surfaces with a spatial resolution of
1 × 1 km2 were also generated from 2015 to 2018. To assess the
true generalization of the DGM method, three validations were

performed, including site-based independent testing, comparison
with MERRA2-GMI pollutant variables and sensitivity analysis
without MERRA2-GMI input of pollutants.
Trained air quality models are typically used to make

predictions at new/unobserved geographic locations. Model
validation based on test sets that are constructed by randomly
sampling across space and time can result in inflated confidence
in the model’s out-of-sample prediction performance because it
does not provide a genuine measure of the model’s ability to
generalize to new spatial locations. Instead, we used site-based
independent testing, which uses complete time series data at
untrained locations for testing. In addition, in order to have a
thorough validation of the DGM, we reported the sensitivity
analysis results without the MERRA2-GMI pollutant input.
Our site-based independent tests included 288 sites (about

18%) that were randomly selected from 1604 monitoring sites; all
the data from these sites were used only for testing but not for
training. From the remaining samples, we randomly selected 78%
for training and 22% for regular testing across space and time
(stratified by spatiotemporal factors, i.e., province and month). We
chose the sample so that the proportion of the total samples for
regular and site-based tests was similar to the proportion ( ~ 0.37)
of the unique test samples in the bootstrap 0.632 rule39 and 56
variables were used in training. In order to avoid the influence of
random noise, we trained 100 models and summarized their
average performance for each air pollutant, and then compared
them with seven baseline machine learning or statistical regres-
sion models (for these methods and optimization of their
hyperparameters, see Supplementary Table 2 and Materials and
Methods). Sensitivity analysis was conducted to retrieve optimal
weights (0.5 for α and 0.2 for β) for the regularizers. The results
(Supplementary Tables 3, 4; Supplementary Fig. 3 for the boxplots
of testing root mean square error (RMSE)) show that our hybrid

Fig. 2 Improvement in generalization in comparison with baseline machine learning methods and MERRA2-GMI data. a, b The increase in
R2 (a) and the decrease in RMSE (b) by the physics-aware deep learning method for site-based testing and regular testing. c Mean time series
of observed and predicted values for all sites in the site-based testing dataset (black dots: observed values). d The boxplots between daily grid
mean estimates and daily MERRA2-GMI variables (Grid: 1 × 1 km2 grid mean estimates; BOT Bottom layer diagnostics, AD Aerosol diagnostics,
SOF Daily satellite overpass fields, SLD Single-level diagnostics). In (d), the whiskers (solid horizontal lines) indicate the minimum and
maximum correlations, excluding outliers; the box bounds the interquartile range from the 25th to 75th percentiles, with the 50s percentile
(median) marked (bold horizontal lines); the whiskers (dashed vertical lines) extend 1.5 times the interquartile range from the box, defining
the range of typical correlations; data points (small circles) beyond the whiskers are outliers.
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method consistently performed better than all seven other
machine learning and statistical regression models. For PM2.5

and PM10, our method had the highest site-based test mean R2
(0.85–0.87), an improvement of 13–85% over the other methods.
Compared to PM2.5, we found a lower site-based test mean R2 for
NO2 and O3A8 (0.66–0.78), but overall our hybrid method showed
an improvement of 6–61% over the other methods. For SO2,

random forest had a slightly better testing R2 (0.74 vs. 0.73) than
our method but had lower site-based test R2 (0.58 vs. 0.63) and
higher RMSE (13.11 vs. 12.37 μg/m3). Although the training R2 and
RMSE of the full residual network36 were similar to our hybrid
DGM (0.84–0.93 vs. 0.83–0.93), the test R2 and RMSE, especially
independent test R2 and RMSE, showed poorer performance.
Compared with the regular network, the hybrid method improved

Fig. 3 Four representative events of air pollution presented by the predicted surface grids. a–c The predicted PM10 surfaces on a
sandstorm event in North China (c) of April 15, 2015 and the day (a) before it, and the difference (b) between the two. d–f The predicted PM2.5
surfaces on a haze event in East China (f) of December 23, 2016 and the day (d) before it, and the difference (e) between the two. g–i The
predicted O3A8 surfaces on a severe ozone event in Beijing (i) of July 1, 2017 and the day (g) before it, and the difference (h) between the two.
j–l The predicted NO2 surfaces on a haze event in Shanghai (l) of December 19, 2018 and the day (j) before it, and the difference (k) between
the two. The blue arrow is mean ground wind vector (m/s) and the black isolines present GPH in meter at 500 hPa. The dash lines in (b, e, h, k)
show the HYSPLIT clusters of backward air trajectories at 500m with the percentage.
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test R2 by 6–11%, and site-based independent test R2 by 7–21%
(Fig. 2a), and it decreased test RMSE of the monthly mean by
4–18% and site-based test R2 by 5–21% (Fig. 2b). Our sensitivity
analysis showed that GCN made a considerable contribution to
the improvement in prediction (by 6–19% for testing and sited-
based testing R2) and the PDE residual made additional 1–4%
improvement in test and sited-based test R2. Furthermore, we
evaluated the extent of mass conservation by estimating the e2
component of the total RMSE, based on the ratio of e2 to the
overall loss. As shown in Supplementary Table 5, the converged
small values of the e2 RMSE (ranging from 1.62E-5 to 0.134,
approaching 0) indicate a high level of mass conservation with
minimal bias. The models with GCN simulation and constrained by
the PDE residual performed the best, with a steady learning
process, and better generalization and extrapolation. In site-based
independent tests, the samples from selected sites also exhibit
fairly consistent distributions between observed and predicted
values (Supplementary Fig. 4). In the site-based tests, on average,
our DGM method consistently improved explained variance (R2)
by 11–22%, and reduced RMSE by 12–35% compared to baseline
statistical learning methods (Fig. 2a; Supplementary Table 6).
We also conducted a comparison between our method and the

baseline machine learning methods by analyzing observed and
predicted time series. For each independent test site, we
calculated the root mean square error (RMSE) for each machine
learning method. The results indicate that our method effectively
captures temporal trends, as evidenced by the violin plots of the
site-based RMSE in Supplementary Fig. 5. Additionally, when
comparing the total monthly means of predicted and observed
values (Fig. 2c) and the total RMSE (Supplementary Table 7) for all
these sites, our method considerably outperforms other machine
learning methods. It produced more stable time series with
significantly smaller deviations (much less RMSE) from the
observed values.
Correlations of our DGM point and 1 × 1 km2 grid estimates with

ground measurements were considerably stronger than those of
MERRA2 GMI reanalysis data (Supplementary Table 8 and Fig. 2d:
0.76–0.92/0.66–0.83 vs. 0.005–0.53). For example, the MERRA2-GMI
PM2.5 and NO2 had a correlation of about 0.41–0.53 and the other
MERRA2-GMI pollutant variables had a poor correlation
(0.005–0.36). This comparison suggests that the coarse-scale
reanalysis MERRA2-GMI data could be quite biased against ground
measurements. With finer spatial resolution, our estimates
improved correlation coefficients significantly. We also reported
the seasonal and yearly performance metrics for the site-based
independent test (Supplementary Tables 9, 10). In comparison to a
recent study that utilized the Weather Research and Forecasting
model with Chemistry (WRF-Chem) at high spatial resolution for
the same region and year (2015)40, our results demonstrate
significantly stronger Pearson’s correlation and lower mean bias
(as shown in Supplementary Table 10). Specifically, our method
exhibited correlations ranging from 0.77 to 0.92 for PM2.5, PM10,
O3, and NO2, whereas the previous study showed correlations of
only 0.29 to 0.51 for the same pollutants. Additionally, when
considering the correlation computed from the mean temporal
evolution averaged across all monitoring stations, our method
achieved an impressive correlation of 0.99, surpassing the range of
0.71 to 0.90 reported in the previous study. It is worth noting that
our approach demonstrated comparable or superior performance
to several other investigations41–43 employing WRF-Chem for O3,
NO2, and/or PM10 in different regions, although making direct
comparisons may not be entirely appropriate due to potential
variations in methodology and data sources.
On the other hand, using MERRA2-GMI or other reanalysis

pollutant data in our DGM provided the information on regional
and global scale emissions and transport of air pollutants. For
example, through the SHAP (SHapley Additive exPlanations), we
summarize the contributions of the emission-related components

to the PM2.5 predictions in mainland China and its four
representative regions (Supplementary Note 3; Supplementary
Fig. 6). Nevertheless, sensitivity analyses (Supplementary Tables 3,
4) showed a small (0–4%) contribution to the independent test R2
by the MERRA2-GMI pollutant data, illustrating the robust
performance of our approach for fine-scale air quality assessment
even without the MERRA2-GMI pollutant input.

Interpretation of improved air quality assessment
Compared to purely data-driven machine learning methods, our
approach offers a simulation-based solution for capturing the
advection and diffusion of air pollutants. We achieve this by
constructing local graphs to simulate spatiotemporal dynamics
and incorporating the continuity equation into the training cost
function. As a result, our method effectively captured the fine-
scale transport of pollutants and significantly reduced estimation
bias. For PM10, we generated nationwide concentration grids with
similar or finer spatial resolution (1 km vs. 1–10 km) and higher
generalization accuracy (site-based R2: 0.85 vs. CV or out-of-station
R2: 0.82–0.83) compared to44–47. For the recent studies of PM2.5 in
China47–51, we had higher generalization (site-based R2: 0.87 vs. CV
or out-of-station R2: 0.64–0.85) at the finer spatial scale (1 km vs.
1–50 km). For O3A8 and NO2, our method had similar general-
ization (site-based R2: 0.72–0.78 vs. out-of-station or out-of-city R2

0.71–0.80) at 1 km spatial resolution compared to recent
studies52,53. Although direct comparison is inappropriate, com-
pared to the existing studies, our physics-inspired approach
demonstrates improved accuracy in capturing the temporal
evolution of fine-scale air pollutants. By incorporating fluid physics
principles and encouraging mass conservation, our model yields
predictions that more effectively reflect the dynamics of these
pollutants. Additionally, our model produces daily spatial surfaces
of air pollutants that exhibit continuous variations without abrupt
changes or discontinuities, in contrast to the outputs of tree-based
machine learning algorithms. This demonstrates our model’s
ability to accurately simulate air continuity. Based on the 1 × 1 km2

grid estimates of air pollutants, we investigate the evolutions of
their spatial variability and interpret them in terms of regional/
global scale transport and fine-scale dynamics of air pollutants
and meteorological characteristics. For a daily grid of 1 × 1 km2, we
extracted a heatmap of neighborhood features from the output of
the final graph convolution layer, representing the spatial
agglomeration, and visualized them using the contours.
For inert air pollutants including PM2.5 and PM10, multiscale

pollutant transport has important influence upon their spatio-
temporal variability. On April 15, 2015, Beijing experienced the
biggest sandstorm with the highest PM10 levels seen since 200254

(Fig. 3a–c). Meteorologically, the Rossby waves and intense frontal
activities in the spring resulted in strong wind gusts that injected
large amounts of material into the lower and middle troposphere.
Dust uplifted from the arid and semi-arid regions was transported
to the downwind regions of North China55. Backward trajectories
(http://ready.arl.noaa.gov/HYSPLIT.php) of the winds showed two
main sources of dust, i.e. Northwest China and Southern Mongolia
for the sandstorm incidence in the Beijing city (Fig. 3b). The
spatiotemporal evolution of PM10 (Supplementary Fig. 7) shows
that the dust transport pattern was well captured by the extracted
graphical convolution heatmap, and the estimated PM10 exactly
matched the trends in the surface wind and geopotential height
(GPH) fields. The spatiotemporal evolution of PM2.5 (Supplemen-
tary Fig. 8) during this sandstorm was different from that of PM10,
because the latter was mainly from the long-distance transport of
dust and aerosols, while the former was more from local transport
and sources, including power plants, industries, and automobiles,
etc. At the local or fine spatial scale, our estimated PM2.5 and PM10,
respectively, matched well with the ground measurements on the
sandstorm day, as shown in the enlarged local maps and indicated
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by the high correlations in the independent point estimates and
the grid estimates (0.80–0.87), that were much higher than the
reanalysis estimates. In addition, compared to the measured data,
our estimated concentrations had similar normal distributions, and
the 2D histogram of PM2.5 vs. PM10 of the measurement data was
consistent with that of the finely resolved estimated data
(Supplementary Fig. 9).
Similar to PM10, interregional transport may play an important

role in PM2.5 pollution, although the latter is partially from local
emission sources. For the haze incident in East China in late
December 2016 (Fig. 3d–f), the updraft in front of the 500 hPa
high-altitude trough was conducive to the regional transport of
pollutants, and in the northwest wind field before high air
pressure, the majority of PM2.5 in the haze incidence was
composed of upstream pollutants being transported to the
downwind areas of East China such as Jiangsu Province and
Shanghai. The backward trajectory analysis showed two main
sources of haze in Shandong Province and the Beijing-Tianjin-
Hebei region (Fig. 3e). In the spatiotemporal evolution of PM2.5

(Supplementary Fig. 10), the graph convolution features were
shown to capture regional and local meteorological transport of
PM2.5 well.
As a reactive pollutant, O3 is mainly formed by photochemical

reactions of volatile organic compounds (VOCs), CO and nitrogen
oxides under sunlight, especially the UV spectrum. An intensive
and persistent regional ozone pollution episode occurred in
eastern China from 25 June to 5 July 2017, mostly located in the
Beijing-Tianjin-Hebei and the surrounding area (BTHS) (Fig. 3g–i).
A study56 showed that the prevailing northwesterly winds in the
mid-high troposphere hindered the northward movement of the

Western Pacific Subtropical High, thereby inhibiting the transport
of water vapor from low latitudes and providing favorable
meteorological conditions (low relative humidity, less cloud cover,
strong solar radiation and temperature inversion) for local
formation of O3; in addition, warm advection due to southerly
winds prevailing in the lower troposphere also brought pollutants
to BTHS, as shown in the spatiotemporal evolution of ozone
during this period (Supplementary Fig. 11). Backward trajectory
analysis showed considerable contributions from southern
regions. Compared with other reactive pollutants such as CO
and NO2, O3 had much higher spatial autocorrelation56 as seen in
the grid estimates, which showed a more gradual spatial gradient
pattern at fine spatial scales and the estimates were in high
agreement with the ground measurements (correlation:
0.81–0.92).
As a highly reactive gas and precursor of surface and

tropospheric O3, NO2 has a relatively short atmospheric lifetime
compared to PM. In winter, when solar radiation, relative humidity
and precipitation are low, the cool and dry conditions of the
troposphere slow down photochemical reactions, allowing
pollutants to accumulate, and the lifetime of NO2 is longer than
in spring and autumn. For the 2018 winter haze in Shanghai
(Fig. 3j–l), in addition to local emission sources (power plants,
biomass burning, and fossil fuel combustion etc.), the analysis also
revealed partial contributions from regional transport of pollution
in nearby cities in North, Central, and East China. The dominant
NO2 source regions usually correspond to areas with high
population, heavy traffic and large industry scale. Given high
traffic leading to high NO2, local hot spots in urban areas show up
around heavy traffic routes, traffic intersections and transportation

Fig. 4 National population-weighted AQI changes. a Monthly trend for total AQI and each air pollutant AQI with the shade of 95%
confidence intervals. b, c Total air quality index (AQI) changes in winter between 2015 and 2018 (b), and in summer between 2015 and 2018 (c)
in mainland China (mean AQI change by latitude, below in b, c; mean AOI change by longitude on the right in b, c).
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hubs57,58. The spatiotemporal evolution (Supplementary Fig. 12) of
NO2 during this episode presented such hot spot patterns on fine
scales, with high correlation (0.81–0.88) with measurements.
Further investigation of other days and pollutants (SO2 and CO)

also revealed the critical role of graph convolutions and PDEs in
simulating advection and dispersion. For inert background air
pollutants (PM2.5 and PM10), their concentration profiles are
dominated by advection and diffusion, with regional and local
transport contributing much more to their spatiotemporal
variability than other pollutants. The results showed that graph
convolutions for simulating local pollutant transport achieved the
largest improvement (14–15% in R2) for PM2.5 and PM10, which
was not seen using pure deep learning. Furthermore, MERRA2-GMI
inputs had little effect on the PM2.5 and PM10 estimates as they
involved fewer chemical transformations compared with reactive
pollutants. On the other hand, for reactive air pollutants involving
complex physiochemical reactions that are subject to meteor-
ological conditions, although the contribution of global and
regional pollutant transport may be limited, by simulating fine-
scale pollutant transport, graph convolutions still achieved
significant improvements (R2: 7–13% for NO2 and O3; 4–6% for
CO and SO2). The MERRA2-GMI input provided the relevant
background-level data on precursor chemicals and vertical
meteorology for reactive air pollutants, that helped improve their
estimates, albeit limited.

DISCUSSION
By simulating spatiotemporal dynamics of air mass, our deep
graph learning method achieved better generalization with
physical interpretability than purely mechanistic or machine
learning methods. The fine-scale (1 × 1 km2) gridded estimates
accurately represented the spatiotemporal distribution of all air
pollutants and enabled more reliable and finer statistics of
national air pollutant trends than previously reported. A literature
review shows that to date few studies have reported high-
resolution predicted surfaces for all criteria pollutants and total air
quality index (AQI, for the quantification definition, refer to
Supplementary Note 4). This study fills this gap and provides a
fine-scale grid of AQI for China, providing important information
over a large geographic area that does not have monitoring
stations. Nationwide, the population-weighted means (Supple-
mentary Fig. 13) were much higher than the raw means for NO2

(by about 9 μg/m3) and PM2.5 (by about 13.5 μg/m3), indicating
that they were mainly distributed in densely populated areas. The
yearly summary (Supplementary Fig. 14 and Supplementary Table
11) shows the there was a national decline from 2015 to 2018 for
the population-weighted PM2.5 (by 11 μg/m3), PM10 (by 11 μg/m3),
SO2 (by 6 μg/m3) and CO (by 0.12 mg/m3) but a national rise in O3

(7 μg/m3 for the 8 h daytime average). The national trends of air
pollutants were generally consistent with ground measurements
and reanalysis data, but since most monitoring sites were located
in urban areas, the limited measurement data mostly over-
estimated the national averages by about 6–52%, and the
reanalysis data also substantially underestimate the national
averages due to coarse spatial scales. In addition, the daily
national air quality index (AQI) results (Supplementary Figs. 15, 16)
provided a fine representation of the spatiotemporal distribution
of each air pollutant, and the aggregated trend was consistent
with measurement-based AQI59 (Pearson’s correlation: 0.76–0.92).
The highest concentrations in summer were PM10 for the Xinjiang
desert area and O3 for most of the other areas; while in winter it
was PM2.5 for most of the eastern areas of China and PM10 for the
other areas (Supplementary Figs. 17, 18).
Compared with the national point-based AQI (https://

www.iqair.cn/cn/china), the statistics of the predicted grids more
accurately show the spatiotemporal distribution patterns of air
pollutants. From 2015 to 2018, the population-weighted daily AQI

(defined in60) declined by about 6 (by about 3 for the naïve AQI
mean; Fig. 4a for monthly mean; Supplementary Table 11 and
Supplementary Fig. 19). Compared with other air pollutants, PM2.5

and SO2 decreased by about 18–30%, and PM10 and CO decreased
by about 12–13%. The mean value of NO2 dropped slightly by
about 4% (by about 3% for its population-weighted mean). The
national daily population-weighted 8 h average O3 rose by about
8%. The results show that there were higher PM2.5 concentrations
partially in the eastern areas of China in winter, and the
northwestern region of Xinjiang had higher PM10 concentrations
than the other regions. For mainland China, the air quality in
summer is much better than in winter (AQI: 35–41 vs. 47–58). The
grids (Fig. 4b) of AQI change show that from January 2015 to
December 2018, the monthly AQI in winter declined by about 11
in AQI and the PM2.5 and SO2 had the maximum decline (by about
13–15 in AQI); from July 2015 to July 2018, the monthly AQI in
summer declined by about 5 and PM2.5 and SO2 had the
maximum decline (by about 10) (Fig. 4c). In China, the primary
pollutants in winter included PM2.5 and PM10, while the primary
pollutant in summer was O3. Spatially, concentrations of PM2.5,
PM10 and CO were higher in the Beijing-Tianjin-Tangshan and
Xinjiang areas than in the Yangtze River Delta and the Pearl River
Delta. From 2015 to 2018, the Beijing-Tianjin-Tangshan area, Jilin
Province and Sichuan Basin experienced the largest declines in
AQI.
Our results show that from 2015 to 2018, air pollution in

mainland China dropped significantly, which is consistent with the
clean air action in China61. However, as one criteria air pollutant,
O3 has presented a national upward trend (by about 8%) from
2015 to 2018, which is consistent with reports62. Climate change
can result in the increase of tropospheric O3 since increased air
temperature results in O3 formation. Data on daily air temperature
statistics (Supplementary Fig. 20) support this finding. As a
greenhouse gas, O3 can raise the global temperature and has
adverse effects on health. For China, while maintaining lower
emissions policies for other criteria air pollutants, it is time to take
a cooperative strategy to efficiently control emissions of volatile
organic compounds and other pollutants that contribute to the
formation of O3.
Our extensive evaluation effectively reveals the power of a

physics-inspired deep graph learning approach for finely resolved
air quality assessments. First, multilevel graph convolutions can be
constructed to simulate the spatiotemporal dynamics of air
pollutants to capture pollutant transport on a fine scale. Graph
convolution is a tool to model local interactions and movements
by its Laplace differential operator as the gradient divergence22.
Graph-theoretical methods have brought about a paradigm shift
in the exploration of complex systems63, including atmospheric
chemical mechanisms. In their study, Silva et al. 64. utilized species-
reaction graphs to uncover similarities among different chemical
reaction systems, unveiling novel characteristics that transcend
existing domain knowledge and thereby advance our under-
standing of atmospheric chemical mechanisms within intricate
geosystems. Diverging from the species-reaction graph approach,
this research introduced a pioneering methodology by utilizing
local graphs as a roadmap to precisely simulate the transport of air
pollutants originating from immediate and geographically intri-
cate surroundings at a fine scale. Through efficient embedding
learning, our approach significantly enhanced the prediction of
product outcomes resulting from the advection and diffusion of
air masses, as well as atmospheric chemical reactions. These
intricate processes are profoundly influenced by a multitude of
factors, including the surrounding atmosphere, surface character-
istics, and geographical environment. Here, local graph convolu-
tions are used to overcome the limitation of convolution and
recurrent neural networks to handle the ubiquitous irregularity
and sparsity of air quality monitoring data. They facilitate the
utilization of substantial quantities of unlabeled or unmeasured
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data in a semi-supervised approach. Whether inert or reactive
pollutants, pollutant transport plays an important role in finely
resolved air quality assessment, although we found that it may
contribute more to inert regional air pollutants such as PM2.5 and
PM10. Second, in order to make the final predictions tractable, we
encoded the constraint of the continuity partial differential
equation as a loss residual so as to strengthen physical invariance.
Different from the simulation in the graph space and hard
constraint of mass conservation in ref. 20, the PDE residual
constraint acted as a soft constraint that encouraged the final
predictions to conform to the mass conservation for the ground
air pollutants along the timeline. Both ways of encoding physical
concepts resulted in parameters that were optimized to better
represent physical processes than the model without any physical
constraints. Third, using a smaller spatial resolution, we were able
to simulate spatiotemporal dynamics on a finer spatial scale,
which may be useful for reactive air pollutants with rapid distance
decay gradients from the emission sources, such as NO2, SO2 and
CO. Using more graph convolutional layers, we could extend the
simulation to a longer range of pollutant transport, which favors
regional pollutants with slower decay gradients such as PM2.5,
PM10, and O3. To account for the transformation and deposition of
air pollutants, the full residual and attention layers were system-
atically concatenated with the graph convolution layers to reduce
potential over-smoothing in GCs and strengthen the contribution
of local and non-traffic factors to the final prediction65.
Essentially, the physics-inspired hybrid deep graph network is

built on a flexible and unified architecture of air pollutant
emissions, pollutant transport, and deposition, and is designed
for spatiotemporal prediction. Machine learning has played a
crucial role in improving air quality assessments over the past few
decades. Its effectiveness and computational efficiency have made
it a popular choice for enhancing accuracy and scalability in this
field66,67. In previous efforts, Keller12 and Kelp13 used machine
learning to replace time-consuming components in the physical
models to accelerate emulating of the chemistry components;
Sturm14 designed the mass- and energy-conserving framework for
using machine learning; Ivatt15 used gradient-boosted regression
trees to reduce the bias in physical model outputs. However, the
lack of physical mechanisms in most machine learning methods
may lead to solutions that seriously violate physical principles
such as conservation laws, with potential bias and low interpret-
ability68. For example, tree-based machine learners (e.g., random
forest, XGBoost and extremely randomized trees) have been
widely used alone46,50,69 or in physical models12,15 with reported
high accuracy, but the binary discretization in these algorithms
inherently violate the continuity law of air pollutants, which can
lead to discontinuity bias36. In contrast to these existing
methods70,71, based on deep neural networks as a general
nonlinear approximator of any continuous functions72, the DGM
directly simulated dynamics of air mass by graph convolution and
encoded the fluid physical laws of mass conservation and
continuity by PDE residuals, which is a creative combinational
strategy for computing efficiency and generalization. Our
approach outperformed simulations conducted using mechanism
models like MERRA2-GMI or high-resolution WRF-Chem, high-
lighting the significance of integrating mechanism models with
advanced deep learning techniques for substantial improvements
in spatiotemporal predictions of air pollutants. This underscores
the importance of leveraging the strengths of both methodologies
to achieve more accurate and reliable results in predicting air
quality dynamics.
In physical models, the advection velocity and diffusion

coefficients are affected by meteorological factors, gravitational
settling, viscosity of specific air pollutant, terrain, soil and land
cover, which are hard to obtain due to missing or ill-posed
boundary data and complicated atmospheric process8,21, and
require to be specified manually. The proxy coefficients in the

DGM overcame this as they were adaptively learned through end-
to-end automatic differential learning. When the concentration
measurements alone do not provide sufficient information to
guarantee a single solution for these coefficients, we could
provide additional data on them to enforce model training.
However, it is impossible to acquire these coefficient measure-
ments in practice and solving inverse problems with hidden
physics is prohibitively expensive due to high uncertainty in
simulation formulas17. Similar to the simulation by hidden fluid
mechanics18, we achieved a high quantitative agreement between
observed and predicted proxy coefficients by relying solely on the
information contained in the observed concentration data.
By simulating spatiotemporal dynamics of air mass and

encouraging the adherence to the physical laws of mass
conservation and continuity for all samples, including prediction
points and those beyond the observation dataset, the trained
model exhibits robust accuracy in spatiotemporal extrapolation
(low generalization error), less affected by the values outside the
training samples in predictions. Further, in this flexible architec-
ture, satellite variables and reanalysis data of air pollutants
provided clues for pollution background; alternatively, with
reanalysis or inversed meteorology, the data from historical and
future emission inventories can be used to predict future
concentrations of criteria pollutants under certain carbon emis-
sions and climate change scenarios. The MERRA2-GMI or other
reanalysis data provide vertical background pollution levels that
can be used to model regional-scale pollutant transport, or as
precursor proxies for reactive air pollutants, but these coarse-scale
data, if missing, have limited effect on generalization of DGM.

METHODS
Dataset
The observed data consisted of concentrations of six air pollutants
(daily average of CO, NO2, PM2.5, PM10, and SO2; hourly maximum
of daily O3 and 8 h average of O3) collected from monitoring
stations of the China Environmental Monitoring Station. From
January 1, 2015 to December 31, 2018. A total of 1,913,012 samples
were obtained from 1604 monitoring stations covering mainland
China. We had 56 spatial and temporal input variables including
2 spatial coordinates, elevation, day of year, ground aerosol
coefficient, Aura Ozone Monitoring Instrument (OMI) NO2,
planetary boundary layer height (PBLH), 4 high-resolution
meteorological variables, normalized difference vegetation index
(NDVI), an indicator variable of workday, roadway length within a
10 km buffer around each monitoring site, 26 component
pollutant variables and 10 reanalysis vertical meteorological
variables. For more details, please see Supplementary Note 1
and Supplementary Table 1.

Modeling architecture
The architecture is constructed based on a Eulerian system where
the change of air pollutant concentration at a specific spatial
location of interest (Fig. 1a) is modeled using the following
simplified partial differential equations (PDE):

∂C
∂t

¼ �∇ðVCÞ þ p∇2C þ Rþ E � F (1)

where C is air pollutant concentration, ∂t represents the time
derivative, ∂C=∂t represents concentration change in each target
location over time, ∇ðVCÞ represents advection, V represents
velocity, p is the coefficient for the diffusion term (∇2C), R
represents chemical transformation, E stands for emission, and F
represents deposition.
To model over a surface, Eq. 1 uses horizontal advection and

diffusion (lx and ly directions); vertical convection (lz direction) is
not explicitly considered, but proxy variables are used to account
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for variation of vertical convection. Advection and diffusion can be
simplified32,33:

∂C
∂t

¼ �vlx
∂C
∂lx

� vly
∂C
∂ly

þ plx
∂2C

∂2lx
þ ply

∂2C

∂2ly
þ Rþ E � F (2)

where vlx (vly ss) is the Reynolds velocity of the air pollutant of the
lx (ly ) direction of the spatial location of interest, ∂C=∂lx (∂C=∂ly )
denotes the advection partial derivative, and plx (ply ) is the
diffusion coefficient (simplified as the sum of eddy and molecular
diffusion coefficients), ∂2C=∂2lx and ∂2C=∂2ly represent the eddy
diffusion terms. The air pollutant concentration changes over time
(Supplementary Fig. 1) are decomposed into three components,
advection, diffusion and the others.
For the diffusion process, the GCN provides an essential solution

to simulate the second-order derivative on the discrete graph
space22,23, represented by the Laplacian convolution operator
shown in Supplementary Fig. 2. Advection can be decomposed
along the directions of the connected nodes based on the
differential formula and the conservation of mass. We obtain the
total convolutional operation to simulate the pollutant traffic on
the graph space (Supplementary Fig. 1d):

∂C
∂t

¼ �VLC � pLC þ ρC ¼ �ðVLþ pD�1
2AD�1

2ÞC þ ρC (3)

where D is the degree matrix, L is the Laplacian matrix, A is the
adjacency matrix to quantify spatial relationship, p is the diffusion
coefficient, V is the learnable velocity matrix based on the
Laplacian matrix, A, and ρ represents a proportion factor to
account for the concentration changes from chemical transforma-
tion, emissions and deposition.
We constructed the semi-supervised multilevel local graph

modeling architecture (Fig. 1). For each spatiotemporal node of
interest, multilevel local graph convolutions were constructed in
sequence based on the k nearest neighbors73 to capture
neighborhood information to encode multilevel dynamic pro-
cesses of air mass. We characterized the space and time
dimensions using a discrete data model to simulate the variation
of spatiotemporal fields. Specifically, we used k-NN to find the
nearest spatiotemporal samples based on the spatiotemporal
distance to construct graph convolutions for each target node.
The temporal and spatial dimensions had different units
(coordinate space: meter; time: day) and needed to be fused to
construct the deep graph network using k-NN. To fuse them, the
standard deviation was used to normalize the coordinates (x and
y) and time (day) to make them unitless. The reciprocal of the
distance was also used as a weight in aggregating neighborhood
information. The multilevel neighbors were retrieved based on the
search depths to capture distance-varying neighborhood influ-
ence on a target node. For each graph convolution, we trained a
set of functions that learned to aggregate a spread feature from a
node’s local neighborhood. Our GCN is an inductive framework34,
different from the transductive fixed graph, and it can be easily
generalized to the same form of features or invisible nodes. In our
application we used four graph convolutions where each node
had k (k= 12 was an optimal solution of grid search) neighbors.
For graph convolutions, the vector size was (in order) 128, 64,
32, and 1.
The output of each graph convolution was merged with the

original input features as the input to the downstream compo-
nents, a full residual deep network with the attention layers (Fig.
1a–c). The full residual encoder-decoder36 was fused with the
neighborhood features to account for local sources and sinks, and
transformation. In order to reduce or avoid gradient vanishing in
training, residual connections were introduced from each encoding
layer to its corresponding decoding layer. This fusion also
alleviated the potential over-smoothing issue in GC74. The
attention layers were added with the residual layers after the

input layer to allow the model to focus and place more “attention”
(weights) on the important parts of the input features35,75. For the
residual network topology, the number of nodes in each encoding
or coding layer was 512→ 320→ 256→ 128→ 96→ 64→ 32→ 16;
the number of nodes in each decoding layer was symmetric with
its corresponding encoding layer. The final output was inversely
normalized and exponentially transformed to represent the air
pollutant concentrations in their original units. Graph convolutions
extracted the spread feature from the input data of the multilevel
neighbors for a node of interest. Irregularly distributed sparse or
limited measured data at sample locations was used as the
dependent variable to drive training of the entire model.
In addition, in order to make the final concentration predictions

to maintain the continuity partial differential equation (Eq. 1), we
introduce a residual term, e2 to encode such physical invariance of
PDE in the loss function:

LðθW;bÞ ¼ e1 þ αe2 þ βe3 (4)

where e1 is the mean square error (MSE) function for the observed
values and the predicted values, e2 is the residual errors for the
continuity equation (defined according to Eq. 1), e3 is the
normalization for the parameters, and a and β are the scaled
weights for e2 and e3, respectively. The weight (a or β) can vary
from 0 to 1, where a larger weight indicates under-fitting, while a
smaller weight implies over-fitting. In order to determine the
optimal weights, a sensitivity analysis was performed by testing a
range of values between 0 and 1, with an interval of 0.1 for a and
β. See Fig. 1d.
For each of the seven air pollutants considered, the system

model was constructed and trained, using the logarithmic and
normalized transformation of the pollutant concentrations as the
dependent variable. In training, the minibatch size was 2048, and
the initial training rate was 0.001 and adjusted in optimization,
and the Adam optimizer76 was used. The number of epochs was
set at 200. In total, we sampled the dataset and trained the model
100 times and the final test performance was summarized.

Graph convolutions
As the core component in our method, multilevel graph
convolutions were used to encode and represent local spread of
air pollutants. Based on Eqs. 1–3 and Supplementary Fig. 1, the
convolutional operator in the kth convolution layer is defined to
simulate the spatiotemporal dynamics of air pollutant concentra-
tion:

∂x
∂t

¼ x0i � xi
Δt

¼ �vk
X
j2NðiÞ

A
k
ijðxj � xiÞ þ pk

X
j2NðiÞ

ðxj � xiÞ þ ρkxi

(5)

where xi (or hi) are the features (or the output) of the kth layer,
representing the concentration of a specific air pollutant, Ci in the
target location, i, x0i (or h0i) is the updated status after an evolution
timestep of mini-batch gradient descent, Δt, vk is the velocity

matrix, pk can be interpreted as the proxy diffusion matrix, A
k
ij is

the neighborhood weight matrix, and N(i) is the set of spatial or
spatiotemporal neighbors for i.
In order to strengthen representation learning, A

k
ij is simplified

as the product of a learnable velocity (vk) and the weight, wk
dij
(the

reciprocal distance from a neighbor to the target node), and two
additional learnable matrixes, Wk

c and Wk
u are introduced for the

current input and the gradient-derived change, respectively.
Empirical thresholds can be set up for the learning parameters
such as vk, pk and ρk. Thus, we define the update of the kth graph
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convolution after an evolution timestep (Δt) as:

x0 i ¼ Wk
cxi �Wk

u �vk
X
j2NðiÞ

wdkij
ðxj � xiÞ þ pk

X
j2NðiÞ

ðxj � xiÞ þ ρkxi

0
@

1
A

(6)

The learning process involved the process of graph convolu-
tions to simulate the spatiotemporal dynamics of air pollutants, as
shown in Supplementary Fig. 1. Through the evolutional training
driven by the measured concentration and covariate data, the
model learned optimal parameters to inverse the target estimates.
Accordingly, the minibatch forward propagation algorithm of
Multilevel local Graph convolutions for Air pollutant spread was
developed and shown as follows (Supplementary Algorithm 1).
Although GCs can efficiently extract spread features of air

pollution, multiple graph convolutions may result in over-
smoothing due to Laplacian smoothing. Thus, the full residual
deep layers with multiple optimal attention layers was used as the
downstream components for the output of neighborhood
features to enhance the influence of non-traffic factors from
emission, transformation and deposition on the final predictions.
Here, the original input features and the aggregate feature were
concatenated as the input for the full residual deep network. The
residual error of continuity equation (e2) was introduced to the
loss function. For details, please see Supplementary Note 2 and
Supplementary Algorithm 2.

Training, testing and sensitivity analysis
In total, approximately 18% (288) of monitoring sites were
randomly selected for site-based testing, and all samples from
these sites were used for independent testing only and not for
training. Then, from the remaining samples, we randomly selected
78% for training and 22% for regular testing stratified by
spatiotemporal factors (province and month). We chose the
samples so that the proportion of the total samples for regular and
site-based tests was similar to the proportion ( ~ 0.37) of the
unique test samples in the bootstrap 0.632 rule39. In semi-
supervised training, all 56 variables were used for model learning;
all the training, regular testing and predicting samples were used
to construct the graph convolutions to simulate fluid dynamics,
and encouraged to satisfy the continuity equations in PDE
residuals; only the training samples were used to minimize the
MSE loss between observations and predictions. Theoretically, it is
possible to utilize site-based testing samples in model training,
encouraging them to satisfy the continuity equations. However, in
practice, we opted not to include these site-based samples in our
model training to avoid testing bias and ensure a fair comparison.
To fairly compare our method with other machine learning
methods, the same training, regular testing, and site-based testing
samples were used for each method, and the hyperparameters of
each model were optimally set. In addition, in order to avoid the
influence of random noise, we trained 100 models and
summarized their average performance for each air pollutant
and each method.
We undertook a rigorous comparison of our method against

several machine learning techniques commonly employed in
similar domains. The methods included GraphSAGE (local
graph)34, full residual deep network36, random forest77, XGBoost78,
non-linear generalized additive model (GAM)79, and spatial
statistical models such as ordinary kriging and regression
kriging80. To ensure a fair comparison, we used the same set of
covariates for all the machine learning and statistical regression
methods, with the exception of ordinary kriging. For ordinary
kriging, it relies solely on constructing the variogram of spatial
dependency from neighbors and does not utilize any covariates
for predictions. In order to identify the most suitable

hyperparameters, we conducted a grid search for each method.
The hyperparameter search was based on suggested value ranges
specific to each method. Supplementary Table 2 provides a
succinct overview of each method, including its default value or
value range for the hyperparameters, as well as the search step.
After obtaining the optimal hyperparameter values for each
method, we proceeded to compare their performance using
appropriate evaluation metrics including total and time series
metrics. This approach allowed us to gain insights into the
strengths and weaknesses of each technique and assess how our
method measures up against these established alternatives.
For the sensitivity analysis of missing MERRA2-GMI pollutants,

we also used the same training, regular testing and site-based
testing samples. But we removed 28 variables of MERRA2-GMI
pollutants (shown in the gray background in Supplementary Table
1) and kept the vertical meteorological variables and other
variables. We developed our hybrid deep graph learning frame-
work using PyTorch Geometric (Version 2.0), a specialized software
tool known for its efficiency81. Model training, testing, and
prediction were carried out in a server environment equipped
with 128GB memory, 16 Intel(R) Xeon(R) E5–2620 CPUs, and three
NVIDIA 1080Ti GPUs (12GB memory). On average, training and
testing a national model of an air pollutant took approximately
3–4 days (72–96 h) with the support of a GPU. To expedite the
process, we utilized parallel computing, allowing us to complete
the training and testing of three national models simultaneously.
For daily national predictions of each air pollutant spanning from
2015 to 2018, it took approximately 10 days. Again, parallel
computing was employed to accelerate the national predictions of
air pollutants.

DATA AVAILABILITY
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