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Violation of local detailed balance upon lumping despite a clear timescale separation
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Integrating out fast degrees of freedom is known to yield, to a good approximation, memory-less, i.e.,
Markovian, dynamics. In the presence of such a timescale separation local detailed balance is believed to
inherently emerge and to guarantee thermodynamic consistency arbitrarily far from equilibrium. Here we present
a transparent example of a Markov model of a molecular motor where lumping leads to a violation of local
detailed balance despite a clear timescale separation and hence Markovian dynamics. Driving the system far
from equilibrium can lead to a violation of local detailed balance against the driving force. We further show that
local detailed balance can be restored, even in the presence of memory, if the coarse-graining is carried out as
Milestoning. Our work establishes Milestoning not only as a kinetically but as far as we know for the first time
also as a thermodynamically consistent coarse-graining method. Our results are relevant as soon as individual
transition paths are appreciable or can be resolved.
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Introduction. The formulation of thermodynamic observ-
ables, such as heat and work, along individual stochastic
trajectories unraveled fundamental fluctuation symmetries
which matured into the framework called “stochastic thermo-
dynamics” [1–3]. In the particular case of continuous-time
Markov-jump processes the local detailed balance paradigm
emerged, relating the kinetics to thermodynamic forces that
drive a system out of equilibrium [2–5]. Local detailed bal-
ance is compulsory for consistent thermodynamics on the
level of individual trajectories [2,5]. One inherent assump-
tion of this paradigm is a separation of timescales [5]: The
observed degrees of freedom are slow, ensuring that all
unobserved/hidden fast degrees of freedom equilibrate with
instantaneously connected (heat or particle) reservoirs [3,6,7].
Accordingly, the forward and corresponding backward tran-
sition rates between a pair of mesostates A and B, wA→B

and wB→A, respectively, are related to the entropy production
via [8]

kB ln
wA→B

wB→A
= entropy change A → B, (1)

where kB is the Boltzmann constant, and the entropy differ-
ence reflects the change of both the intrinsic entropy and the
entropy generated in the reservoirs [5] (for a perspective on
quantum systems see Refs. [9–12]). However, as soon as slow
hidden degrees of freedom emerge (within A or B) the exact
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connection between the observed kinetics and the dissipation
embodied in Eq. (1) disappears, which was explained theo-
retically [13–32] and corroborated experimentally [33]. The
equality (1) can nevertheless be restored under specific condi-
tions [17,34–36], using affinities [37], by stalling the system
[38,39] or introducing waiting time distributions [31,32,40–
42] that inter alia can further trigger anomalous diffusion [43].

When the underlying degrees of freedom can assume con-
tinuous values any coarse-graining that lumps states as shown
in Fig. 1(a) inherently leads to non-Markovian jump dynam-
ics in continuous time [44,45] due to fast recrossings in the
transition region between A and B. Notably, these can nowa-
days be experimentally resolved [46–51] and are therefore
important practically. Conversely, Milestoning [52,53] (see
Refs. [54–56] for a broader perspective) turned out to be a
coarse-graining scheme that allows for a kinetically consis-
tent mapping of high-dimensional dynamics onto a drastically
simplified Markov-jump process [45,57]. The state space is
dissected into hypersurfaces which may enclose subvolumes
that are called “cores” [45,57]. Figure 1(b) depicts two such
cores A and B, whereby the color of the trajectory encodes
the last visited core. Beyond a short transient, Markov-jump
dynamics emerges from the coarse-graining whenever the tra-
jectory on leaving any core either (i) quickly returns to it or
(ii) quickly transits to the next core [45]. Hereby, condition
(i) ensures a local equilibration prior to leaving a state that
is required for the emergence of local detailed balance [2–5].
Besides being kinetically consistent, Milestoning offers two
main advantages over lumping.

First, in experiments probing low-dimensional observables
one may be able to separate pairs of metastable states even
if their projections onto the observable overlap [58]. This
is illustrated in Fig. 1(c), where two seemingly overlap-
ping metastable states in the projected space x are resolved
by choosing the respective milestones outside the overlap-
ping region. Whenever a milestone is left, the trajectory
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FIG. 1. Variants of coarse-graining: The color of the full tra-
jectory evolving from the blue star represent the instantaneous
coarse-grained states A (blue) and B (yellow), respectively. (a) State
lumping: The full set of states � is decomposed into subsets A and B.
(b) Milestoning based on core sets: Two metastable states represent
the cores A and B, and the coarse-grained state corresponds to the last
visited core. (c) Top: Contour lines depicting potential isosurfaces
in the xy plane; milestones A and B resolve the metastable regions.
Bottom: Measured equilibrium probability density function (PDF)
with the PDFs of the the individual metastable states indicated in
blue and orange, respectively.

rapidly returns or quickly transits to the other milestone.
Thus, the last visited milestone to a good approximation re-
flects the currently visited metastable region in a possibly
higher-dimensional (here two dimensional) underlying space.
Second, we recently discovered that Milestoning naturally
ensures local detailed balance in the presence of a timescale
separation [36]. Surprisingly, this extends even to systems
without a clear timescale separation, which we investigate fur-
ther below. Notably, with “dynamical coring” [58,59] one can,
under certain conditions, convert a “lumped” process into a
“milestoned” process by manually discarding short recrossing
events as those shown in Fig. 1(a).

In contrast to continuous-space processes, the lumping
of dynamics that evolve on a discrete state space [2–
4,6–8,13,14,16–27,31,32,34,35,38–42] can in fact yield an
effectively Markovian jump process. According to pertur-
bation theory Eq. (1) is satisfied by lumped-state dynam-
ics in the limit of an infinite timescale separation [19],
which was corroborated in Refs. [22,23,25]. This general
belief was, however, never systematically scrutinized in
practice.

In this Letter we show, by means of a simple yet biophysi-
cally relevant example, that timescale separation surprisingly
and against common belief does not ensure the existence of
local detailed balance. The minimum timescale separation
required for Eq. (1) to hold may grow exponentially with
the thermodynamic driving force. In other words, timescale
separation may not suffice arbitrarily far from equilibrium.
Milestoning, in stark contrast to lumping (see Fig. 1), robustly
ensures local detailed balance in the limit of a timescale sepa-
ration. This result indicates that unlike lumping, Milestoning
generically yields a thermodynamically consistent coarse-
graining. Thus, whenever it applies in practice, local detailed
balance in Markov-jump dynamics should, fundamentally, be
understood as not emerging from a lumping of microstates
but rather as a result of a coarse-graining like Mileston-
ing. This is crucial in experiments with a high temporal
resolution [46–51].

FIG. 2. Model and coarse-graining. (a) Full six state model; the
dotted lines denote odd rotational states {1, 3, 5} (orange) separated
by 120◦. The even intermediate states (gray) separate each rotation
step into 90◦ and 30◦ substeps. (b) Two types of lumping; the
solid boxes “lumping 1 + 6” lump states {1, 6}, {2, 3}, and {5, 6},
respectively, whereas the dashed boxes “lumping 1 + 2” lump states
{1, 2}, {3, 4}, and {5, 6}. (c) Coarse-grained trajectory using “lump-
ing 1 + 2” and “lumping 1 + 6”; the orange segments represent visits
of odd states. The dotted line (“micro state”) indicates the rotational
state of the motor as function of time. (d) Coarse-grained trajectory
deduced from Milestoning; the milestones are placed at odd states.

F1-ATPase driven far from equilibrium. We consider the
molecular motor F1-ATPase driven by the hydrolysis of
adenosine triphosphate (ATP). The dynamics evolves as a
Markov processes on six rotational states [60] as shown in
Fig. 2(a): The binding of ATP occurs with a rate κ+ propor-
tional to the concentration of ATP and effetcs a 90◦ rotation.
The reverse unbinding occurs with the rate κ−. ATP hydrolisis
to ADP is assumed to be infinitely fast. The release of ADP
occurs with rate ω+ and triggers a 30◦ rotation, and the reverse
step occurs with rate ω−.

The free energy μ liberated by the hydrolysis of one
ATP → ADP at a given concentration relates to the entropy
change times the temperature T , and local detailed balance
(1) imposes

kBT ln
ω+κ+
ω−κ−

= μ. (2)

Heneceforth we measure energies, μ, in units of the thermal
energy kBT . The steady-state probability to find the ATPase in
even and odd states is given by [61]

Podd = ω+ + κ−
ω + κ

and Peven = ω− + κ+
ω + κ

, (3)
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respectively, where we defined κ ≡ κ+ + κ− and ω ≡ ω+ +
ω−. The entropy production rate can be expressed with the
rate of ATP consumption, J = Poddκ+ − Pevenκ−, via [61]

σ = Jμ. (4)

This completes the description of the “full” system.
Lumping. We now perform a coarse-graining to reduce

the six states to three. Two sensible ways to lump the states
are shown in Fig. 2(b). Assuming Markovian dynamics the
effective forward “+” and backward “−” rates on the lumped
space read [19]

W 1+6
± = Podd

even
κ± = (ω± + κ∓)κ±

κ + ω
,

W 1+2
± = Peven

odd
ω± = (ω∓ + κ±)ω±

κ + ω
, (5)

and satisfy J = W 1+6
+ − W 1+6

− = W 1+2
+ − W 1+2

− . In terms of
effective rates the coarse-grained entropy reads [19]

σ̃z = J ln
W z

+
W z

−
, (6)

with z = 1 + 6 or z = 1 + 2 and using Eqs. (4)–(6) yields
σ̃1+6

σ
= 1 − 1

μ
ln

1 + eμκ−/ω+
1 + κ−/ω+

, (7)

σ̃1+2

σ
= 1 − 1

μ
ln

1 + eμω−/κ+
1 + ω−/κ+

. (8)

Both ratios (7) and (8) are positive and bounded by 1 [19], i.e.,
σ̃z � σ (see also Ref. [62]).

Timescale separation. In agreement with Ref. [19] (see
also Refs. [22,23,25]) in the limit κ− � e−μω+ (i.e., κ → 0)
we obtain σ̃1+6 ≈ σ , whereas the limit ω− � e−μκ+ (i.e.,
ω → 0) yields σ̃1+2 ≈ σ . In other words, when hidden jumps
are much faster than those between lumped states, the coarse-
grained dynamics are approximately Markovian and preserve
the entropy production.

A timescale separation is manifested as a gap in the spec-
trum of the Markov generator, which separates fast from slow
modes (see Part II in Ref. [63]). In our model κ � ω and
κ � ω are the only kinds of timescale separation, and in
principle require two different types of lumping (for details
see Ref. [64]). At high ATP concentration (κ � ω) “lumping
1 + 2” [see dashed boxes in Fig. 2(b)] hides the fast de-
grees freedom ∼κ . Conversely, at low ATP concentration one
should rather lump 1 + 6 [see solid boxes in Fig. 2(b)]. Note
that whenever the entropy production rate is deduced from
a master equation [2–4,6–8,13,14,16–27,31,32,34,35,38–42]
one explicitly (or implicitly) assumes the observed degrees
of freedom to be formally infinitely slower than any possibly
hidden ones.

Violation of local detailed balance. In practice an infinite
timescale does not exist and the driving μ becomes important
if it substantially exceeds the thermal energy (μ � 1), which
in turn implies eμ ≫ 1. To see this set ω± and κ− to be
constant while varying the ATP concentration as κ+ ∝ eμ as
in Ref. [60] (the parameters are given in Fig. 3). For μ < 10
we find ω � κ and as expected σ̃1+6 ≈ σ (see Fig. 3). For
μ > 15 we have ω � κ; however, to our surprise σ̃1+2 �≈ σ

(because ω− �� e−μκ+). Inspecting Eq. (7) we actually find

FIG. 3. Entropy production and waiting time statistics with Mile-
stoning. (a) Entropy production, σ̃1+6 and σ̃1+2 deduced from the
lumpings “1 + 6” and “1 + 2,” respectively. The thick line depicting
1 − 10/μ approaches σ̃1+2/σ in the limit μ → ∞. The dash-dotted
yellow line denotes the steady-state probability Podd. (b) Probability
density of waiting time t [see Fig. 2(d)] for μ values indicated in
(a). The thick black line depicts an exponential density ∝ e−t/〈t〉.
Parameters: ω+ = 1, ω− = e−5, κ+ = eμ−15, and κ− = e−10.

σ̃1+2 ≈ 1 − 10/μ [see Fig. 3(a)]. Thus one obtains σ̃1+2/σ →
1 in the limit μ → ∞, which is approached algebraically
slowly. For example, in the already-unphysical situation μ =
40 kBT [77] only 75 % of the entropy production are recovered
in Eq. (6). Moreover, at physiological conditions μ = 20 we
find a clear timescale separation, κ/ω ≈ 140 � 1 [see λ1 and
λ2 in Eq. (9) for the precise timescales], yet the entropy pro-
duction is not even remotely restored. This surprising finding
is the first main result of this Letter.

How can we reconcile this? For convenience we focus
on μ = 20 and the lumping “1 + 2,” which in fact repre-
sents a semi-Markov process of second order [40] (see also
Refs. [31,41,42]). That is, the waiting time density ψ±|±(t )
depends on both the previous and next visited state with
the normalization

∫ ∞
0 [ψ+|i(t ) + ψ−|i(t )]dt = 1 and i = ±. In

particular, for the given parameters we find
⎛
⎝ψ+|+(t ) ψ+|−(t )

ψ−|+(t ) ψ−|−(t )

⎞
⎠ ≈

⎛
⎝ 1.007 1.000

2.089 × 10−9 2.075 × 10−9

⎞
⎠e−λ1t

+
⎛
⎝ −1.007 3.100 · 10−7

6.738 × 10−3 −2.075 × 10−9

⎞
⎠e−λ2t ,

(9)

where λ1 ≈ 1.0 ≈ ω and λ2 ≈ 148.4 ≈ κ . The analytical ex-
pression for the waiting time density is immaterial for the
present discussion but straightforward to determine. For times
t � 0.15 the jumps are essentially Markovian—the waiting
time density is to a good approximation exponential and in-
dependent of the previous step, ψ±|+ ≈ ψ±|−, and the fast
decaying mode is negligible, e−λ2t ≈ 0. Remarkably, using
Eq. (9) one finds ln[ψ+|i(t )/ψ−|i(t )] ≈ μ = 20 for for all
t � 0.15 and i = ±. Hence, only short times t � 0.15 en-
code a violation of Markovianity and broken local detailed
balance. At strong driving most of the jumps occur in positive
direction “+” and on average take equally long ≈1/λ1 ≈ 1.
In fact, only the backward jump “−” can be faster on average,
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however, if and only if the preceding jump occurred in the
forward “+” direction, i.e., a forward transition is followed
immediately by a backward transition. In this case one finds∫ ∞

0 tψ−|+(t )dt/
∫ ∞

0 ψ−|+(t )dt ≈ 0.0067 ≈ 1/λ2. These rare
events lead to an “overestimation” of the effective backward
transition rate W 1+2

− � ω−κ+/κ . Note that a locally equi-
librated backward rate would need to satisfy ln(W 1+2

− ) ≈
ln(ω−κ+/κ ), which is satisfied if in addition to the timescale
separation the individual rates satisfy κ± � ω± (see, e.g.,
Ref. [19]).

By evaluating exactly the waiting time distribution to in-
clude the short-time behavior one is able to restore the entropy
production from the two-step affinity via [40]

σ 1+2
aff = J ln

∫ ∞
0 ψ+|+(t )dt∫ ∞
0 ψ−|−(t )dt

= Jμ, (10)

where the last equality follows from Eqs. (2) and (9) (here
μ = 20). Thus, by taking into account the tiny non-Markovian
features in Eq. (9) one can in principle recover the entropy
production. This, however, poses a serious practical problem
at strong driving μ � 1. Namely, to deduce Eq. (10) from an
experiment we formally require a trajectory with statistically
sufficiently many incidents of finding two consecutive back-
ward steps not interrupted by a forward step. It thus seems
that one is required to reliably observe rare events with a
probability ∝ (e−μ)2, which may not be feasible.

In the following we illustrate how an alternative coarse-
graining (Milestoning) effectively restores Markovian dy-
namics in a thermodynamically consistent manner while it
concurrently effectively squares the sample size by relying
only on the evaluation of single rare backward jumps that
occur with probability ≈e−μ.

Thermodynamic consistency of Milestoning. We define
three milestones (or cores) at locations highlighted by dotted
black lines in Fig. 2(a). These represent the three odd rota-
tional states. We measure the passages across the milestones
[see thick yellow lines in Fig. 2(c)]. If the angle were mea-
sured continuously, then the passages through the milestones
would correspond to instantaneous events [36]. The coarse-
grained process at any time reflects the last visited Milestone
(see blue line). As in Ref. [36] we dissect waiting times into
the dwell and transition time periods. The dwell time repre-
sents all loops returning to the original milestone, while the
transition-path time reflects the time of commuting between
milestones. The waiting time can be shown to be the sum of
the statistically independent dwell and transition-path times
(see second main result in Ref. [36]). The main advantage
of this decomposition is that the statistics of transition-path
time encode information about potentially hidden multidi-
mensional pathways [78] (see also Refs. [36,79,80]).

If the gaps between revisitations of the same milestone
[see vertical arrow in Fig. 2(d)] and transition-path times
are negligibly short compared to the waiting time in a state,
then the resulting “Milestoned process” becomes, to a good
approximation, Markovian [45]. Note that milestones may
represent closed [see Ref. [45] and Fig. 1(b)] or open [see
Refs. [52,53] and Fig. 1(c)] hypersurfaces.

Let φ± denote the splitting probability that the next mile-
stone will be visited in the forward “+” and backward “−”

direction, respectively. One can confirm (cf. first main result
in Ref. [36]) that

ln
φ+
φ−

= ln
κ+ω−
κ−ω−

= μ (11)

holds. That is, Milestoning transition probabilities exactly en-
code the entropy production per hydrolyzed ATP.

Since transition-path times obey a reflection symmetry [81]
and because the dwell time statistics do not depend on the exit
direction [36] the waiting time densities in the + and − direc-
tion coincide, i.e., ψ±(t ) = ψ (t ). In the presence of hidden
dissipative mechanisms the symmetry may be lifted counter-
intuitively [82,83]. Denoting the mean waiting time by 〈t〉 =∫ ∞

0 tψ (t )dt , the steady-state current becomes JM = φ+/〈t〉 −
φ−/〈t〉 = J . Defining the Milestoning rates as W M

± = φ+/〈t〉
and inserting them into Eq. (6) yields, using Eqs. (4) and (11),
σ̃M = σ . Thus, Milestoning in contrast to lumping preserves
the entropy production in the limit of a timescale separation
and beyond. Beyond our example, Milestoning may be used
to unravel hidden cycles via the emergence of broken time-
reversal symmetry of transition-path times, as realized in the
inspiring experiments in Ref. [82].

On inspecting the waiting time density we find that it is
to a good approximation memory-less for μ � 10 as well
as for μ � 20, while the nonexponential behavior is most
pronounced in the regime 10 � μ � 20 [see Fig. 3(b)]. Thus,
in the limit of either of the two timescale separations, μ � 10
and μ � 20, the Milestoned dynamics is to a good approxima-
tion Markovian. In contrast to lumping, Milestoning restores
local detailed balance (1) in both directions, parallel and an-
tiparallel to the driving, even at large asymmetries, which is
the second main result of this Letter.

Notably, the regime μ � 10 clearly fulfills both criteria (i)
and (ii) for the emergence of Markovian dynamics [45] if the
probability to reside within a core satisfies Podd ≈ 1. Con-
versely, the opposite limit μ � 20 does not obviously imply
Markovian kinetics. To understand why it does so neverthe-
less, we point out that in this limit (a) Peven = 1 − Podd ≈ 1.
If we were to choose the even (gray) states as cores instead
of the odd (yellow) ones [see Fig. 2(a)], then we would ob-
viously restore the criteria for the emergence of Markovian
dynamics [45]. It turns out further that (b) the waiting time
density remains unaffected by the exchange of ω± and κ±,
i.e., it does not depend on whether we choose the odd or
even states as milestones. This explains why an exponential
distribution emerges to a good approximation also in the
limit μ � 20. We also note that the kinetic hysteresis discov-
ered in [36] almost vanishes as soon as Markovian dynamics
emerge and the aforementioned criteria [45] are satisfied,
which here follows from (a) by choosing the even states as
milestones.

Conclusion. We have shown that a clear timescale sepa-
ration, in contrast to the common belief, is only a necessary
but not a sufficient condition for the validity of local detailed
balance. By lumping states in a detailed Markov model of
a strongly driven molecular motor we demonstrated a clear
timescale separation between the observed and hidden degrees
of freedom and hence Markovian dynamics of the observ-
able, and concurrently the nonexistence of a local equilibrium
against the driving. Our work demonstrates, for the first time,
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as far as we know, that Milestoning restores thermodynamic
consistency in the steady state in the presence of strong
driving even if the dynamics displays memory. A coarse-
graining based on lumping may yield effectively Markovian
dynamics that nevertheless violates local detailed balance. In
conjunction with Ref. [36], a coarse-grained observable that
is accurately represented by Markov-jump dynamics under
local detailed balance should, as a rule, be understood as
not emerging from lumping, but instead from a reduction
like Milestoning. This is meanwhile an established paradigm
in the construction of Markov models [56] (realized already
by Kramers [84]) that seemingly did not yet proliferate to
thermodynamics. It will be interesting to revisit recent works
on the thermodynamics of systems with slow hidden degrees

of freedom that employed lumping [31,40–42] to inspect if
and how these change under the thermodynamically consis-
tent Milestoning which will lead to correlated transitions [85]
and/or dwell times [36]. Beyond the examples shown here
and in Sec. II of Ref. [64] it will be interesting to investi-
gate whether the two conditions for Markovianity together
with Milestoning [45] generally guarantee the validity of
local detailed balance. Finally, it will be intriguing to use
Milestoning as a tool to unravel hidden cycles via broken
time-reversal symmetry of transition-path times [36] analo-
gously to Ref. [82].
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