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North Atlantic subpolar gyre provides downstream ocean
predictability
Hongdou Fan 1,2✉, Leonard F. Borchert 1, Sebastian Brune1, Vimal Koul 1,3 and Johanna Baehr1

Slowly varying large-scale ocean circulation can provide climate predictability on decadal time scales. It has been hypothesized that
the North Atlantic subpolar gyre (SPG) exerts substantial influence on climate predictability. However, a clear identification of the
downstream impact of SPG variations is still lacking. Using the MPI-ESM-LR1.2 decadal prediction system, we show that along the
Atlantic water pathway, a dynamical link to the SPG causes salinity to be considerably better predicted than temperature. By
modulating the slow northward ocean propagation, the subsurface memory of SPG variations enables salinity to be skillfully
predicted up to 8 years ahead. In contrast, the SPG loses influence on temperature before Atlantic water penetrates into the Nordic
Seas, and in turn, limits temperature to be predicted only 2 years ahead. This study identifies the key role of SPG signals in
downstream prediction and highlights how SPG signals determine prediction time scales for different quantities, opening the door
for investigating potentially associated predictions in the subarctic for the earth system, marine ecosystems in particular.
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INTRODUCTION
The poleward propagation of thermohaline anomalies in the
North Atlantic Ocean provides oceanic and continental climate
predictability on decadal time scale1–3. However, previous studies
have not identified whether the variations of the Subpolar Gyre of
the North Atlantic (SPG) exert influence on the downstream ocean
prediction4. In this study, we investigate the role of the SPG in
decadal prediction along the Atlantic water pathway with
emphasis on subsurface temperature and salinity, demonstrating
a robust connection for the latter.
It has been documented that the high predictability of the

SPG resides in the initialization and persistence of the Atlantic
meridional overturning circulation (AMOC), and ocean
dynamics over the subpolar North Atlantic5,6. Understanding
the downstream impact of the SPG is crucial for earth system
prediction in the subarctic2. Several studies showed that the
SPG dominates properties of the Atlantic Inflow into the Nordic
Seas by modulating the proportion of subpolar and subtropical
waters in the Atlantic Inflow on interannual to decadal time
scales7–10. A strong SPG feeds cold and fresh subpolar water to
the Atlantic Inflow, while a weak SPG allows the northward
extension of warm and saline subtropical water. Downstream
of the SPG, via the North Atlantic Current, the Norwegian
Atlantic Current advects across the Faroe-Iceland Ridge and the
Faroe-Shetland Channel and circulates in a counterclockwise
direction in the Nordic Seas11,12. It takes 3–7 years for the
upper ocean anomalies to progress from the eastern SPG to the
Fram Strait and Barents Sea13,14. The well-identified high
predictability of the SPG5,6 together with its prominent
influence on the slow northward propagation of thermohaline
anomalies hints at potentially high decadal predictability in the
downstream ocean.
Efforts have been taken to explore the impact of the SPG on

the predictability of downstream sea surface temperature (SST)
in dynamical prediction systems4, but the manifestation of SPG

signals in the downstream upper ocean prediction has not
been clearly identified. Significant SST skill along the Atlantic
water pathway is limited to 1–2 lead years in dynamical
prediction systems2, rather than a decade as demonstrated in
an observation-based study15. Research from a forced ocean
model indicated that SST along the Atlantic water pathway is
more dominated by the overlaying atmospheric interannual
variability than subsurface variability16, implying that the
impact of the SPG may manifest in the prediction of subsurface
ocean. Recent studies revealed a close linkage between the
SPG and the subsurface salinity in the Barents Sea14, and
showed that the SPG signals can lead to skillful statistical
prediction of fish stocks in the Barents Sea a decade in
advance6. The evident impact of the SPG on the downstream
salinity prediction, but unclear impact on the SST prediction,
agrees well with notions that salinity anomalies along the
Atlantic water pathway mostly remain unchanged, while
temperature anomalies are modified by the atmosphere
through surface heat fluxes6,17,18.
To disentangle the connection of SPG variations with

temperature and salinity prediction along the Atlantic water
pathway, we carry out a comparison of prediction between
salinity and temperature along the Atlantic water pathway with
emphasis on forecast lead years 3–5, for the period 1970–2019.
Then, we examine the propagation of SPG signals based on lag
correlation and composite results, and investigate the impact of
SPG signals on prediction skill at individual forecast lead years.
Here, the retrospective initialized decadal predictions (hind-
casts) are based on the Max-Planck-Institute Earth System
Model version 1.2, low-resolution set up (MPI-ESM-LR1.2). The
corresponding assimilation experiment (ASSIM) is employed as
observational reference. We use anomaly correlation coefficient
(ACC) metrics to evaluate the agreement between hindcasts
and ASSIM (see Methods).
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RESULTS
Salinity is better predicted than temperature along the
Atlantic water pathway
We first assess the prediction skill of sea surface salinity (SSS) and
sea surface temperature (SST) at lead years 3–5 in the northern
North Atlantic (Fig. 1a, b). The SSS is skillfully predicted in the
eastern SPG region. SST is slightly better predicted than SSS, which
agrees with Borchert et al.5 that models generally show high SST
skill in the SPG region. However, the skill of SSS is higher than the
skill of SST along the Atlantic water pathway, especially in the
Nordic Seas (Fig. 1a, b). This difference in skill (Fig. 1c) is significant
over the eastern and western Nordic Seas, where the Atlantic
water anomalies move northward and southward, respectively.
The ACC difference between salinity and temperature along the
Atlantic water pathway is robust with EN419 and Atlas20 as
observational references (Supplementary Fig. 1).
To further understand the ACC difference between salinity and

temperature along the Atlantic water pathway, we choose the
Nordic Seas (box in Fig. 1a) as representative and compare the
ACC from hindcasts with ACC from persistence at different depth
layers in the Nordic Seas (Fig. 1d). Here, we use a statistical
persistence forecast as a reference when evaluating hindcasts
prediction skill arising from model dynamics (see Methods). The
ACC in both hindcasts and persistence generally increases with
depth (Fig. 1d). This is expected because of the decreasing
influence from the atmosphere. One notable exception is that ACC
of temperature in hindcasts first decreases with depth until about
100m, and then increases. Dynamical predictions for salinity and
temperature perform sharply differently: the ACC of salinity,
especially in the subsurface, is significantly higher than that of
temperature, and this is also the case for their counterparts in
persistence forecast. Moreover, the ACC of salinity from hindcasts
is higher than the ACC from persistence in all depth layers above
500 meters (Fig. 1d). In contrast, the ACC of subsurface
temperature from hindcasts is even lower than ACC from
persistence. Salinity and temperature both show general high
ACC in the SPG region (Fig. 1a, b), but they have discrepancy along
the Atlantic water pathway. We conjecture from these findings
that the SPG may play a stronger role in salinity prediction than
that in temperature prediction along the Atlantic water pathway.
To investigate a possible dynamical mechanism, we use a density-

based SPG index (Fig. 2a; see Methods), which captures the
connection between SPG variability and water properties in the
eastern subpolar North Atlantic21, and we use the depth-averaged
anomalies over 150–310 meter as representative of subsurface
properties in the remaining part of this study.

Poleward propagation of SPG signal and its impact on
prediction skill
We investigate the co-variability of the SPG variations and salinity
and temperature changes in the northern North Atlantic using
lagged correlation analysis. Subsurface salinity in the Nordic and
Barents Seas is significantly correlated with SPG variability
(Fig. 2b). The prominent salinity anomalies induced by the SPG
propagate into the Nordic Seas after 3–5 years. In comparison,
downstream temperature is less correlated with SPG variability
(Fig. 2c), and the lag correlation is only significant in the
northwestern Nordic Seas and western Barents Sea (Fig. 2c).
To study the influence of the SPG on salinity and temperature

along the Atlantic water pathway, we define strong and weak SPG
phases with above and below 0.5 standard deviation, respectively.
Composite results (Fig. 3a–e) from hindcasts constructed from the
difference between weak SPG phases and strong SPG phases
further support the pronounced SPG influence on salinity along
the Atlantic water pathway, especially in the Nordic Seas. After a
weak SPG phase, positive salinity anomalies develop and persist in
the SPG region and saline subtropical water dominates the
Atlantic Inflow, penetrating into the Nordic and Barents Seas in
the following 4 years. The saline water in the eastern SPG region
flows across the Faroe-Iceland Ridge and the Faroe-Shetland
Channel after 1 year (Fig. 3b), and moves along with the
Norwegian Atlantic Current (Fig. 3c) into the Nordic Seas. The
salinity anomalies arrive at the Fram Strait and Barents Sea after 3
years (Fig. 3d), reaching the western Nordic Seas along with the
East Greenland Current (Fig. 3e).
Similar to positive salinity anomalies, positive temperature

anomalies caused by a weak SPG persist in the SPG region and
progress northward into the Nordic Seas. However, the regions in
the Nordic Seas that show significant temperature anomalies are
smaller, and temperature anomalies persist for a shorter period,
when comparing counterparts from salinity anomalies (compare
Fig. 3a–e, f–j). Positive temperature anomalies are only significant

Fig. 1 The anomaly correlation coefficient (ACC) and ACC difference for detrended annual mean salinity and temperature at lead years
3–5. ACC between hindcast and ASSIM for (a) sea surface salinity (SSS), b sea surface temperature (SST) for the period 1970–2019. c ACC
difference between SSS and SST in hindcast. d ACC in hindcast (solid line) and persistence (dash line) for salinity (red) and temperature (blue)
at different depths in the Nordic Seas for the period 1975–2019. Stippling in (a)-(c) denotes the ACC or ACC difference is significant at 95%
confidence level based on block bootstrapping. Yellow shading in (d) denotes the ACC difference between salinity and temperature in
hindcast is significant at 95% confidence level based on block bootstrapping. The box outlined in black in (a)–(c) shows the area used to
calculate the ACC in the Nordic Seas.
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in the eastern Nordic Seas for 1–3 years (Fig. 3i, j) and are
significant in the Barents Sea after 3 years (Fig. 3i, j). After 4 years,
there are significant saline anomalies while less prominent warm
anomalies in the Nordic Seas (Fig. 2e, j). For a strong SPG phase,
similar results appear for the propagation of less saline and cold
anomalies, respectively. The results suggest that the SPG exerts a
weak influence on temperature along the Atlantic water pathway,
while poleward ocean currents may play a role in connecting
salinity in the Nordic Seas with the SPG strength.
We investigate the role of poleward propagation of salinity and

temperature signals by following their propagation along the
North Atlantic Current, 9 boxes (Fig. 4a) with size of 5° × 5° are
selected along the North Atlantic Current-Norwegian Atlantic
Current pathway, and centers of the boxes are consistent with
Årthun et al.15. Hovmöller diagrams (Fig. 4b, d) show a clear tilt of
anomalies in ASSIM, especially for salinity. When there are strong
anomalies in the SPG (box 3 in Fig. 4a), salinity and temperature
anomalies progress from the SPG to the Fram Strait (box 9 in
Fig. 4a). For instance, induced by a weak SPG phase in 1970 and a
strong SPG phase in 1990, both salinity and temperature
anomalies propagate into the Nordic Seas after around 3–7 years,
but less prominent for temperature. For a strong SPG phase in
1974 and a weak SPG phase in 1980, temperature anomalies show
no clear propagation of signal into the Nordic Seas and are
relatively constrained to the subpolar region or southern Nordic
Seas (Fig. 4d). In contrast, salinity anomalies propagate all the way
through to the Fram Strait and persist for several years (Fig. 4b).
The propagation of the subsurface salinity and temperature
signals is similar with the propagation of the SST signals found in a
previous study15. Notice that low-pass filtering and a complex
principal component analysis make the leading mode of SST
propagation smooth (Fig. 5a in Årthun et al.15), still there are slight
discontinuities at the Greenland-Scotland Ridge (compare Fig. 5a
in Årthun et al.15 and Fig. 4b–e). Inspection of the Hovmöller

diagrams from EN4 data indicates consistent results (compare
Figs. 4b, d and 4c, e), suggesting that the salinity and temperature
signals may be carried by poleward ocean currents modulated by
the SPG variations.
To further understand the mechanism driving the poleward

transport of signals, we decompose salt and heat transport
anomalies at the Faroe-Shetland Channel into changes due to
velocity anomalies, changes due to salinity or temperature
anomalies, and changes due to eddy activity (Supplementary
Fig. 2). Both the salt and heat transport anomalies are dominated
by the velocity component, confirming the key role of ocean
advection in volume transport anomalies2,22. However, the
impacts of the salinity component and the temperature compo-
nent terms, respectively, on the total transport anomalies are
different. The amplitude of the salinity component is as small as
that of the eddy component, and both are negligibly small
compared to total transport anomalies. While the contribution of
temperature component to total transport anomalies is compar-
able with that of velocity component in some years, even with
negative contribution. These results indicate that ocean dynamics
almost completely govern salt transport anomalies, and dominate
heat transport anomalies. Temperature variability plays a sub-
dominant role in heat transport anomalies, which explains why
the link of the SPG to downstream salinity is stronger than that to
downstream temperature. Downstream temperature exhibits
pronounced interannual variability and has low signal-to-noise
ratio. In addition, temperature anomalies tend to be modified by
the negative feedback of air-sea flux23, therefore the SPG signals
are damped more in temperature than in salinity.
A lead-lag correlation analysis between the salinity anomalies

along the Atlantic water pathway (boxes in Fig. 4a) and the SPG
index further supports the different downstream influence of the
SPG. The significant negative correlation stays in the subpolar
North Atlantic when salinity leads the SPG index (Fig. 5a),

Fig. 2 Time series of the SPG index and its lag correlation with subsurface salinity and temperature anomalies for the period 1970–2019.
a Standardized time series of SPG index. Lag correlation between the SPG index and subsurface, b salinity and c temperature at lag years 3–5
(salinity and temperature lag SPG index) in ASSIM. The SPG index is defined as density anomaly at 310m depth over 55–35°W, 50–62°N [area
outlined in black in (b)]. The positive (negative) SPG index indicates strong (weak) SPG circulation and strong (red dots) and weak SPG (blue
dots) phases are identified with above 0.5 and below −0.5, respectively. Stippling in (b) and (c) denotes 95% confidence level based on
Student’s t test.

H. Fan et al.

3

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2023)   145 



indicating the origin of the signal is the subpolar North Atlantic
rather than further south in the subtropics. The salinity signal
propagates from the subpolar region (box 3 in Fig. 4a) to the
Nordic Seas with increasing time lag in ASSIM. The salinity at the
Fram Strait (box 9 in Fig. 4a) is significantly correlated with the SPG
index from lag year 2 to lag year 6, indicating the persistent
downstream influence of the SPG. The hindcasts reproduce the
progression of the SPG signal to the Nordic Seas (Fig. 5b), with a
slight discontinuity where the anomalies pass across the Faroe-
Iceland Ridge and the Faroe-Shetland Channel (between box 5
and box 6 in Fig. 4a). This discontinuity is consistent with previous
studies6,16. As a result, the prominent correlation between salinity
and the SPG is persistent in different hindcast lead years, therefore
we conclude that the model skillfully predicts the propagation of
salinity signals from the SPG into the Nordic Seas. Benefiting from
the poleward propagation and persistence of SPG signals, after
lead year 3, the salinity in the eastern Nordic Seas is better
predicted (Fig. 5c) than upstream for the same forecast lead year.
The salinity in the northernmost Nordic Seas (box 9 in Fig. 4a) is
skillfully predicted at lead year 8 when the ACC in subpolar
regions becomes negative.
Temperature shows a similar pattern for cross-correlation as

salinity (compare Fig. 5a and d). When temperature leads the
SPG index, the significant correlation stays in the subpolar
North Atlantic. When the SPG index leads temperature, the
correlation is less prominent comparing to salinity. There is no
clear poleward propagation of the temperature signal in ASSIM,
which is also the case for the hindcasts (Fig. 5e). This may be

due to that temperature signals are damped due to negative
feedback of air-sea flux23 along the Atlantic water pathway.
Consequently, the ACC of temperature along the ocean currents
is generally lower than ACC of salinity (compare Fig. 5c and f),
except in the eastern subpolar North Atlantic (box 4 in Fig. 4a).
The shallow Greenland-Scotland ridge (box 6 in Fig. 4a) has a
large negative influence on temperature prediction, where
temperature ACC drops to zero after lead year 1. The ACC of
temperature in the Nordic Seas becomes negative after 2 or 3
lead years. Unlike salinity, the influence of the SPG on
temperature prediction skill is constrained to the subpolar
region. The different influence from the SPG manifests itself,
especially after lead year 4, when high ACC of salinity moves
northward to the Nordic Seas while ACC of temperature
becomes negative and shows no further poleward propagation.
The findings are robust when we use a SPG index based on sea
surface height (SSH) anomalies for cross-correlation with
salinity and temperature, and when we use EN4 as reference
to evaluate the ACC along the North Atlantic pathway
(Supplementary Figs. 3 and 4). As discussed earlier, temperature
variability also plays a role in heat transport anomalies and is
largely influenced by the atmospheric variability16. This
difference between salinity and temperature lead to the
stronger link of the SPG to downstream salinity than that to
downstream temperature. These results further manifest that
downstream salinity is better predicted than temperature due
to this stronger dynamical links to the SPG.

Fig. 3 Composite anomalies according to the SPG phases (weak phase minus strong phase). a–e Composite salinity anomalies from year 0
to year 4 according to the SPG phases in hindcast. f–j As in (a)–(e), but for temperature. Stippling denotes 95% confidence level based on
bootstrap test. Strong and weak SPG phases are identified with above 0.5 and below −0.5 standard deviation of the SPG index, respectively.
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Fig. 5 Cross-correlation coefficients and ACC along the Atlantic water pathway. Cross-correlation between the SPG index and subsurface
salinity along the Atlantic water pathway (green boxes in Fig. 3a) from (a) ASSIM and (b) hindcast. The x-axis in (b) denotes the lag years for
cross-correlation (salinity lags the SPG) and the hindcast lead years for salinity. c ACC for salinity at different hindcast lead years. d–f As in
(a)–(c), but for temperature. Stippling in (a), (b), (d) and (e) denotes 90% confidence level based on Student’s t test. Stippling in (c) and (f)
denotes 95% confidence level based on block bootstrapping. The black arrows in (b), (c), (e), (f) highlight the lag (lead) years 4.

Fig. 4 Poleward propagation of subsurface salinity and temperature anomalies along the Atlantic water pathway. a 9 green boxes as
representative along the Atlantic water pathway15. Hovmöller diagrams of subsurface salinity anomalies along the Atlantic water pathway
from (b) ASSIM and (c) EN4. d, e As in (b), (c), but for temperature. The dashed line in (b)–(e) approximates the Greenland-Scotland Ridge. Time
series for 9 boxes are 3–30-yr band-pass filtered for illustrative purposes.
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DISCUSSION
Based on the MPI-ESM-LR1.2 decadal prediction system, we show
that the SPG contributes to the high performance of downstream
salinity prediction by modulating salt transport anomalies. Our
results support that the poleward propagation of thermohaline
anomalies is essential for subarctic decadal prediction2,15,16, and
the hindcasts capture this physical process for salinity along the
Atlantic water pathway properly. We confirm that the SPG plays a
key role in modulating water properties in the Atlantic Inflow into
the Nordic Seas6,7. We further demonstrate that SPG signals
contribute to salinity prediction, which in turn may benefit earth
system prediction in the subarctic, including fishery predictions as
well as predictions of habitat of vulnerable species24. In contrast to
salinity, models show low predictive skill for temperature along
the Atlantic water pathway2,4 and temperature anomalies
propagate downstream only to a limited degree2. In general,
decadal prediction systems and their underlying models may
differently represent the ocean dynamics behind the propagation
of salinity and temperature signals and the air-sea interaction,
either due to model bias or due to the initialization procedure.
One can expect some impact on the prediction skill. Nevertheless,
in terms of the prediction skill of SST in the SPG, for example, MPI-
ESM is not significantly different from other models25.
It is interesting to notice the different link of the SPG to

downstream salinity and temperature, and the discrepancy of
their predictive skill. Velocity anomalies of ocean currents drive
both salt and heat transport anomalies as previous studies
concluded2,22. Nevertheless, downstream temperature shows
pronounced interannual variability and has low signal-to-noise
ratio, and temperature anomalies are more impacted by air-sea
interaction11,23 than salinity anomalies. This may explain why the
dynamical link of the SPG to downstream salinity is stronger than
that to downstream temperature. Consequently, the SPG signals
benefit salinity but not temperature prediction. Further investiga-
tion into the low-temperature prediction skill along the Atlantic
water pathway2,4 is beyond the scope of this study. Given that the
prediction skill of temperature in the Nordic Seas is even lower
than persistence, we speculate that MPI-ESM-LR1.2 may have
model issues that may degrade temperature prediction, for
example, ocean models may have difficulties in simulating
mesoscale activity at narrow channels2, which would impact the
signal transition through the Faroe-Shetland Channel. How the
representation of air-sea interaction11,23 in models plays a role in
low predictability of temperature is also worth further
investigation.
On the other hand, temperature anomalies do propagate from

the SPG to the downstream in some years. The difference
between salinity and temperature anomaly propagation is that
temperature signals tend to break at the Greenland-Scotland
ridge. We notice that both salinity and temperature anomalies
have some disconnects (dashed line in Fig. 4b–e) around Faroe
Ridge and the Faroe-Shetland Channel. This discontinuity of
anomaly propagation for both salinity and temperature indicates
that the shallow Greenland-Scotland Ridge is a challenge for
prediction due to the complex shelf-sea dynamics6. The poor
correlation of temperature between south of the Greenland-
Scotland Ridge and downstream is common for ocean models2,
and also can be seen in EN4 in our study. To the north of the
Greenland-Scotland Ridge, temperature shows high lead-lag
correlation with temperature at the Fram Strait, anomalies
propagating from Faroe-Iceland Ridge to the Fram Strait in ASSIM
(Supplementary Fig. 5a, c). Similar results (Supplementary Fig. 5b,
d) from the historical runs support that MPI-ESM-LR is capable of
simulating mechanism of anomaly propagation. Besides, different
observational datasets show uncertainty at the Greenland-
Scotland ridge1. Fully addressing the discontinuity of anomaly

propagation with currently available observational data is hardly
possible.
We conclude that the SPG provides downstream ocean

predictability by modulating volume transport anomalies along
the Atlantic water pathway. We further highlight that the SPG
signal can manifest itself differently in downstream salinity and
temperature, which leads to different prediction skill for tempera-
ture and salinity in the same model. The link of the SPG to
downstream salinity is stronger than that to downstream
temperature, and therefore salinity is better predicted than
temperature. The significant SPG-induced temperature anomalies
persist up to the eastern Nordic Seas for 2–3 years, and are
skillfully predicted up to 2 years ahead. In contrast, SPG-induced
salinity anomalies persist into the Nordic Seas significantly for 6
years, and are skillfully predicted up to 8 years ahead. Our results
reveal that the manifestation and persistence of SPG signals
determine the prediction time scales of downstream ocean
climate. This study firmly establishes the prominent role of ocean
circulation in downstream ocean predictability, illuminating the
imprint of ocean dynamics in the subarctic climate prediction and
opening the door for investigating potentially associated down-
stream predictability for the earth system, marine ecosystems in
particular.

METHODS
Decadal prediction system
In this study, we use retrospective forecasts (Hindcasts) from our
decadal prediction system based on MPI-ESM-LR1.226,27. The 16-
member hindcast ensemble is initialized from a 16-member
weakly coupled assimilation experiment (ASSIM) each November
1st from 1960–201928–30 and run for 10 years. We thus analyze the
hindcasts for their common time frame 1970–2019. The assimila-
tion covers the time period 1958–2020 and consists of a 16-
member oceanic Ensemble Kalman filter31 that assimilates
monthly temperature and salinity profiles from EN419 using the
Parallel Data Assimilation Framework32 (PDAF). There is no
assimilation of satellite derived SST. The availability of in-situ
observations of North Atlantic temperature is slightly better than
that of salinity, therefore the nominal observational coverage of
temperature over the whole time period 1958–2020 is larger than
that of salinity. However, in practical terms of monthly averaged
profiles available to the assimilation, there is no big difference
between temperature and salinity, with the largest differences in
the 1960s, and almost no difference with the Argo floats33 in place
from 2004 onward. In each assimilation member, atmospheric
temperature, vorticity, and divergence at all atmospheric levels
above 900 hPa, as well as surface pressure are nudged to ERA40/
ERA-Interim/ERA5 reanalysis34–36. There is no direct assimilation of
atmospheric surface temperature. Both assimilation and hindcasts
use external forcing according to CMIP637, with historical forcing
until 2014 and SSP245 assumed after 2014. More details on the
decadal prediction system can be found in Polkova et al.30 and
Brune and Baehr28.

Observational references
We utilize ASSIM and two other observation-based datasets, EN4
analysis19, and Atlas20 as observational reference to investigate
the skill of decadal prediction. Please note that all three references
are not independent, because Atlas profiles are contained in EN4
profiles, and ASSIM is ingesting EN4 profiles. However, results from
EN4 analysis and Atlas are consistent with results from ASSIM
(Supplementary Figs. 1 and 4). Atlas data doesn’t cover the period
of 2013–2019, which we would like to include in our analysis. Both
ASSIM and EN4 analysis ingest the same sub-surface temperature
and salinity profiles (from EN4), with different algorithms. There-
fore, we decided to present our findings with the dynamically
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consistent ASSIM rather than the statistically interpolating EN4
analysis as a reference in this paper.

Data processing
All hindcasts and ASSIM are linearly detrended and remapped to
1° × 1° horizontal resolution prior to analysis. Monthly model
output is averaged into yearly means, and yearly anomalies are
formed against its climatology, which is defined as the 50-yr
(1970–2019) mean of 16-member ensemble mean in hindcasts
and ASSIM. No data filtering is applied in our study, except for
Hovmöller diagrams where time series are 3–30-yr band-pass
filtered for illustrative purposes. The persistence forecast is
predicting future condition statistically based on past data, which
is commonly used as a reference when evaluating dynamical
prediction skill. In this study, the persistence forecast is
constructed from ASSIM with the first order autoregression model.
For fair comparison with hindcasts at lead years 3–5, we use a 3-yr
average and predict next 3–5 years in autoregression model. The
weight in space is considered when we calculate the area
average38. In this study, we use water salinity at 6 m depth as SSS,
and the depth-averaged anomalies over 150–310m to represent
subsurface properties of salinity and temperature.

Significant test
We use the anomaly correlation coefficient (ACC) to evaluate
prediction skill. The confidence level of the ACC and the ACC
difference is estimated with a block bootstrapping methodol-
ogy39. The 95% confidence interval is the 2.5th and 97.5th
percentile range of 1000 random resampling with replacement,
and we use block bootstrapping to account for the autocorrelation
in the time series. The block length is decided based on the
e-folding decorrelation scales in the Nordic Seas, which is 2 years
for sea surface salinity (SST) and sea surface salinity (SSS), 3 years
for subsurface temperature, and 4 years for subsurface salinity.
The two-tailed Student’s t test is used to assess the significance of
lag correlation and cross-correlation, and the autocorrelation of
time series is taken into consideration by calculating the effective
degrees of freedom40.

Index definition
The SPG index in this study is defined as the area-averaged
(55–35°W, 50–62°N) density anomaly at 310m41, which well
captures the connection between the SPG variability and water
properties in the eastern subpolar North Atlantic21. The SPG
strength is positively correlated with the size of the SPG (e.g., Figs.
2d and 4d in Koul et al.21) in EN4, also in the MPI-ESM-LR
preindustrial control simulation, but less prominent. On average, a
strong SPG expands to the eastern SPG region in MPI-ESM-LR.
Therefore, the density-based SPG index is well suited to our study.
Our findings are robust when we compare against an SPG index
defined as the principal component of the second Empirical
Orthogonal Function (EOF) of annual mean SSH anomalies21. The
two SPG indices agree well with each other (Supplementary Fig. 6)
and show similar patterns for cross-correlation (Supplementary
Fig. 3).

DATA AVAILABILITY
The prediction from the MPI-ESM-LR1.2 decadal prediction system can be accessed via
http://hdl.handle.net/hdl:21.14106/098c6104e3d89943248aa61ff69db972adb3baf642.

CODE AVAILABILITY
The source codes are available from the corresponding author upon reasonable
request.

Received: 30 March 2023; Accepted: 25 August 2023;

REFERENCES
1. Borchert, L. F., Müller, W. A. & Baehr, J. Atlantic ocean heat transport influences

interannual-to-decadal surface temperature predictability in the North Atlantic
region. J. Clim. 31, 6763–6782 (2018).

2. Langehaug, H. R. et al. Propagation of thermohaline anomalies and their
predictive potential along the Atlantic water pathway. J. Clim. 35, 2111–2131
(2022).

3. Yeager, S. G. & Robson, J. I. Recent progress in understanding and predicting
Atlantic decadal climate variability. Curr. Clim. Change Rep. 3, 112–127 (2017).

4. Langehaug, H. R., Matei, D., Eldevik, T., Lohmann, K. & Gao, Y. On model differ-
ences and skill in predicting sea surface temperature in the Nordic and Barents
Seas. Clim. Dyn. 48, 913–933 (2017).

5. Borchert, L. F. et al. Improved decadal predictions of North Atlantic subpolar gyre
SST in CMIP6. Geophys. Res. Lett. 48, e2020GL091307 (2021).

6. Koul, V. et al. Skilful prediction of cod stocks in the North and Barents Sea a
decade in advance. Commun. Earth Environ. 2, 140 (2021).

7. Asbjørnsen, H., Johnson, H. L. & Årthun, M. Variable Nordic Seas inflow linked to
shifts in North Atlantic circulation. J. Clim. 34, 7057–7071 (2021).

8. Hátún, H., Sandø, A. B., Drange, H., Hansen, B. & Valdimarsson, H. Influence of the
Atlantic subpolar gyre on the thermohaline circulation. Science 309, 1841–1844
(2005).

9. Koul, V., Schrum, C., Düsterhus, A. & Baehr, J. Atlantic inflow to the North Sea
modulated by the subpolar gyre in a historical simulation with MPI‐ESM. J.
Geophys. Res. Oceans 124, 1807–1826 (2019).

10. Sarafanov, A., Falina, A., Sokov, A. & Demidov, A. Intense warming and salinifi-
cation of intermediate waters of southern origin in the eastern subpolar North
Atlantic in the 1990s to mid-2000s. J. Geophys. Res. Oceans 113, C12022 (2008).

11. Årthun, M. & Eldevik, T. On anomalous ocean heat transport toward the Arctic
and associated climate predictability. J. Clim. 29, 689–704 (2016).

12. Chepurin, G. A. & Carton, J. A. Subarctic and Arctic sea surface temperature and
its relation to ocean heat content 1982-2010. J. Geophys. Res. Oceans 117, C06019
(2012).

13. Holliday, N. P. et al. Reversal of the 1960s to 1990s freshening trend in the
northeast North Atlantic and Nordic Seas. Geophys. Res. Lett. 35, L03614 (2008).

14. Koul, V., Brune, S., Baehr, J. & Schrum, C. Impact of decadal trends in the surface
climate of the North Atlantic subpolar gyre on the marine environment of the
Barents Sea. Front. Mar. Sci. 8, 778335 (2022).

15. Årthun, M. et al. Skillful prediction of northern climate provided by the ocean.
Nat. Commun. 8, 15875 (2017).

16. Langehaug, H. R., Sandø, A. B., Årthun, M. & Ilıcak, M. Variability along the Atlantic
water pathway in the forced Norwegian Earth System Model. Clim. Dyn. 52,
1211–1230 (2019).

17. Asbjørnsen, H., Årthun, M., Skagseth, Ø. & Eldevik, T. Mechanisms of ocean heat
anomalies in the Norwegian Sea. J. Geophys. Res. Oceans 124, 2908–2923 (2019).

18. Mork, K. A. et al. Advective and atmospheric forced changes in heat and fresh
water content in the Norwegian Sea, 1951–2010. Geophys. Res. Lett. 41,
6221–6228 (2014).

19. Good, S. A., Martin, M. J. & Rayner, N. A. EN4: Quality controlled ocean tem-
perature and salinity profiles and monthly objective analyses with uncertainty
estimates: THE EN4 DATA SET. J. Geophys. Res. Oceans 118, 6704–6716 (2013).

20. Korablev, A., Smirnov, A., Baranova, O. K., Seidov, D. & Parsons, A. R. Climatological
Atlas of the Nordic Seas and northern North Atlantic (NCEI Accession 0118478).
https://doi.org/10.7289/V54B2Z78 (2014).

21. Koul, V. et al. Unraveling the choice of the north Atlantic subpolar gyre index. Sci.
Rep. 10, 1005 (2020).

22. Arthun, M., Wills, R., Johnson, H., Chafik, L. & Langehaug, H. Mechanisms of
decadal North Atlantic climate variability and implications for the recent cold
anomaly. J. Clim. 34, 3421–3439 (2021).

23. Frankignoul, C. & Hasselmann, K. Stochastic climate models, Part II Application to
sea-surface temperature anomalies and thermocline variability. Tellus 29,
289–305 (1977).

24. Burgos, J. M. et al. Predicting the distribution of indicator taxa of vulnerable
marine ecosystems in the Arctic and sub-arctic waters of the Nordic Seas. Front.
Mar. Sci. 7, 131 (2020).

25. Hegerl, G. C. et al. Toward consistent observational constraints in climate pre-
dictions and projections. Front. Clim. 3, 678109 (2021).

26. Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in
MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5:
Climate Changes in MPI-ESM. J. Adv. Model. Earth Syst. 5, 572–597 (2013).

H. Fan et al.

7

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2023)   145 

http://hdl.handle.net/hdl:21.14106/098c6104e3d89943248aa61ff69db972adb3baf6
https://doi.org/10.7289/V54B2Z78


27. Mauritsen, T. et al. Developments in the MPI-M Earth System Model Version 1.2
(MPI- ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11,
998–1038 (2019).

28. Brune, S. & Baehr, J. Preserving the coupled atmosphere–ocean feedback in
initializations of decadal climate predictions. WIREs Clim. Change. 11, e637 (2020).

29. Hövel, L., Brune, S. & Baehr, J. Decadal prediction of marine heatwaves in MPI‐
ESM. Geophys. Res. Lett. 49, e2022GL099347 (2022).

30. Polkova, I. et al. Initialization and ensemble generation for decadal climate pre-
dictions: a comparison of different methods. J. Adv. Model. Earth Syst. 11, 149–172
(2019).

31. Brune, S., Nerger, L. & Baehr, J. Assimilation of oceanic observations in a global
coupled Earth system model with the SEIK filter. Ocean Model 96, 264–264 (2015).

32. Nerger, L. & Hiller, W. Software for ensemble-based data assimilation systems—
Implementation strategies and scalability. Comput. Geosci. 55, 110–118 (2013).

33. Wong, A. P. S. et al. Argo Data 1999–2019: two million temperature-salinity
profiles and subsurface velocity observations from a global array of profiling
floats. Front. Mar. Sci. 7, 00700 (2020).

34. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the
data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

35. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146,
1999–2049 (2020).

36. Uppala, S. M. et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012
(2005).

37. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6
(CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958
(2016).

38. North, G. R., Bell, T. L., Cahalan, R. F. & Moeng, F. J. Sampling errors in the
estimation of empirical orthogonal functions. Mon. Wea. Rev. 110, 699–706
(1982).

39. Hans, R. Kunsch. The Jackknife and the bootstrap for general stationary obser-
vations. Ann. Stat. 17, 1217–1241 (1989).

40. Bartlett, M. S. Some aspects of the time-correlation problem in regard to tests of
significance. J. R. Stat. Soc. 98, 536 (1935).

41. Tesdal, J.-E., Abernathey, R. P., Goes, J. I., Gordon, A. L. & Haine, T. W. N. Salinity
trends within the upper layers of the subpolar North Atlantic. J. Clim. 31,
2675–2698 (2018).

42. Brune, S. et al. MPI-ESM-LR_1.2.01p5 decadal predictions localEnKF: monthly
mean values. DOKU at DKRZ. http://hdl.handle.net/21.14106/
098c6104e3d89943248aa61ff69db972adb3baf6 (2021).

ACKNOWLEDGEMENTS
This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy—EXC 2037 ’CLICCS—
Climate, Climatic Change, and Society’—Project Number: 390683824, contribution to
the Center for Earth System Research and Sustainability (CEN) of Universität Hamburg
(J.B. and L.F.B.). J.B. and S.B. were supported by Copernicus Climate Change Service,
funded by the EU, under contracts C3S-330, C3S2–370. We acknowledge financial

support from the Open Access Publication Fund of Universität Hamburg. We thank
Björn Mayer and Dr. Julianna Carvalho Oliveira for supporting for coding, and thank
Goratz Beobide-Arsuaga and Dr. Xiuhua Zhu for feedback on draft.

AUTHOR CONTRIBUTIONS
Conception of the work: H.F., L.F.B., and J.B. Acquisition of data: S.B. Analysis and
interpretation of data: H.F., L.F.B., S.B., V.K., and J.B. Writing - original draft: H.F. Writing
- review & editing: H.F., L.F.B., S.B., V.K., and J.B.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41612-023-00469-1.

Correspondence and requests for materials should be addressed to Hongdou Fan.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

H. Fan et al.

8

npj Climate and Atmospheric Science (2023)   145 Published in partnership with CECCR at King Abdulaziz University

http://hdl.handle.net/21.14106/098c6104e3d89943248aa61ff69db972adb3baf6
http://hdl.handle.net/21.14106/098c6104e3d89943248aa61ff69db972adb3baf6
https://doi.org/10.1038/s41612-023-00469-1
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	North Atlantic subpolar gyre provides downstream ocean predictability
	Introduction
	Results
	Salinity is better predicted than temperature along the Atlantic water pathway
	Poleward propagation of SPG signal and its impact on prediction skill

	Discussion
	Methods
	Decadal prediction system
	Observational references
	Data processing
	Significant test
	Index definition

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




