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ABSTRACT: Gaps in the measurement series of atmospheric
pollutants can impede the reliable assessment of their impacts and
trends. We propose a new method for missing data imputation of
the air pollutant tropospheric ozone by using the graph machine
learning algorithm “correct and smooth”. This algorithm uses
auxiliary data that characterize the measurement location and, in
addition, ozone observations at neighboring sites to improve the
imputations of simple statistical and machine learning models. We
apply our method to data from 278 stations of the year 2011 of the
German Environment Agency (Umweltbundesamt − UBA) mon-
itoring network. The preliminary version of these data exhibits
three gap patterns: shorter gaps in the range of hours, longer gaps
of up to several months in length, and gaps occurring at multiple
stations at once. For short gaps of up to 5 h, linear interpolation is most accurate. Longer gaps at single stations are most effectively
imputed by a random forest in connection with the correct and smooth. For longer gaps at multiple stations, the correct and smooth
algorithm improved the random forest despite a lack of data in the neighborhood of the missing values. We therefore suggest a
hybrid of linear interpolation and graph machine learning for the imputation of tropospheric ozone time series.
KEYWORDS: graph signal processing, graph machine learning, missing data imputation, air quality, tropospheric ozone

■ INTRODUCTION
Tropospheric ozone is a toxic air pollutant and a short-lived
climate forcer.1,2 While stratospheric ozone protects life on
earth from harmful ultraviolet radiation, tropospheric ozone is
a health hazard3−5 and a substantial threat to global food
security through the destruction of crops.6−8 Its surplus
radiative forcing is estimated to be 0.39 W m−2, which is about
a quarter of the radiative forcing of carbon dioxide.9,10 As a
secondary air pollutant, ozone is formed by a cascade of
(photo-)chemical processes in the atmosphere, which include
precursors such as nitrogen oxides (NOx) and volatile organic
compounds (VOCs).11,12 The interplay of chemistry, trans-
port, and deposition induces daily and seasonal cycles in the
distribution of ozone concentrations, which are superimposed
with variances from all spatiotemporal scales.1,12,13 As such,
ozone concentrations can change substantially in a matter of
hours and on spatial scales of kilometers. It is therefore difficult
to quantify the regional distribution of tropospheric ozone, and
a fine-resolution monitoring network is required to obtain
reasonably precise estimates of this distribution.14,15 The
measurements, which are typically reported as hourly averages,
are used to determine whether thresholds of ozone statistics
(or ozone “metrics”) are exceeded13,14,16 and hence to assess
the impacts of ozone at various times and locations.

Like any air quality monitoring time series, ozone measure-
ments suffer from missing data. These can occur due to sensor
malfunctioning, calibration procedures, issues with data
transfer, or the stations going out of operation. Missing data
reduces the robustness of statistical analyses.13,17 For example,
if an ozone metric counts concentration threshold exceedances
on a yearly basis and a sensor fails on a day with an
exceedance, then a yearly statistic can be corrupted. Missing
data also impede the usefulness of such data in other contexts.
For example, machine learning models to forecast ozone
concentrations18−21 require a gap-free time series as input to
make predictions. It is therefore necessary to impute the gaps
in the ozone concentrations.
Ozone metrics for air quality assessments are usually

aggregated hourly measurements of longer time periods, e.g.,
one year. Often, missing data within the aggregation period are
compensated by imputing the average concentration over this
period for each missing value.13,22 This approach is often
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applied implicitly when an ozone metric is calculated on the
basis of the available fraction of the data set. In order to ensure
a certain level of robustness of the metric, this simple
imputation method is generally only applied to time series
with a maximum fraction of missing values of 25% or less.14,22

More advanced missing data imputation techniques for missing
air pollutant data were developed during the past years.23,24

Univariate interpolation methods, e.g., linear interpolation and
spline interpolation, depend on the available data at time steps
before and after a gap and are therefore suitable for shorter
gaps in the range of hours. In contrast, multivariate methods,
which include linear regression and machine learning
algorithms such as neural network and random forest, make
use of auxiliary data or covariates such as meteorological data
and are therefore suitable for longer gaps. The imputation
performance depends not only on the amount of missing data
but also on the manner in which data are missing, i.e., the
“missingness”. Missing data patterns can be classified into three
types according to the dependency of the missingness on the
variable of interest and the auxiliary data:25−27 (1) missing
completely at random (MCAR), where the data missingness is
independent of the variable of interest and any other external
influences; (2) missing at random (MAR), where the data
missingness is independent of the variable of interest but the
missing data pattern can be related to auxiliary data; and (3)
not missing at random (NMAR), where the data missingness
depends on the variable of interest. The missing data patterns
in air quality monitoring are generally MCAR or MAR.23,25,28

In that case, the reasons why the data are missing can be
ignored in the analysis of the data, and hence the methods used
for missing data imputation can be simplified.27

Univariate and multivariate methods, or combinations of
them, were successfully applied for missing air quality data
imputation.23,25,29,30 However, even sophisticated machine
learning methods fail to efficiently utilize available data at
monitoring stations in the neighborhood of a missing
measurement. Challenges in using these data arise because
stations are irregularly placed and neighboring measurements
may not be available for all time steps. One simple approach to
include neighboring data to predict or impute air quality data is
to consider spatial distances or correlations between the
stations.31−33 A more advanced solution to this is graph
machine learning,34,35 a subfield of graph signal processing36,37

which allows machine learning on irregularly structured data
such as a monitoring network. Graph-based methods have
been adopted for air quality-related tasks, such as outlier
detection, postprocessing of low-cost sensor data, or high-
resolution forecasting.38−44 Graph machine learning was
shown to be suitable for the imputation of different data
sets,45−47 yet, to the best of our knowledge, they have not yet
been used to impute missing air quality data.
In this study, we develop a strategy to use graph machine

learning to improve the imputations achieved by other existing
methods. As a case study, we use a data set of hourly
observations from 278 stations of the German Environment
Agency (Umweltbundesamt − UBA) air quality monitoring
network in the year 2011. Figure 1 shows the station locations
and their relations in the graph that is built according to the
procedures described in the next section. We combine the
available observations with geospatial metadata, meteorolog-
ical, and reanalysis data to allow the different regression and
machine learning approaches to exploit relationships between
these data and the measured ozone time series. For the analysis

of the performance of these approaches, we identify three types
of gaps that frequently occur: (1) shorter isolated gaps in the
range of hours, e.g., when an instrument is offline for 1 h
during calibration; (2) longer gaps in the range of months
including multiple daily cycles and even changes in seasons;
(3) gaps occurring at all stations of the network at the same
time. The assessment of the three types of gaps suggests
optimal imputation strategies for each gap type. We compare
the performance of our method with published baseline
statistical, numerical, and machine learning methods. Besides
the code and input data, we also provide the final imputed
version of the data set.

■ DATA AND METHODS
Ozone Data. Ozone data used in this study are from the

German Environment Agency (Umweltbundesamt − UBA).
The UBA collects and provides air quality data for Germany.
We extracted the data from the Tropospheric Ozone
Assessment Report (TOAR) database13 at the Jülich Super-
computing Centre. The TOAR database receives a copy of all
German ozone data from the UBA in near-real time. We
selected hourly data from 278 stations across Germany in 2011
because there was an exceptionally large number of missing
values in these data. It should be noted that UBA itself
provides a final validated data set of ozone concentrations in
the following year, which has fewer gaps than the data we have
worked with. However, to develop our method and
demonstrate its potential, we have chosen the preliminary
data set with more frequent and larger gaps, and we use the
final validated data set to crosscheck our results.
The selected data set contains over 2.4 million data points

for training, testing, and evaluating the different imputation
methods. The location of the stations and their mean ozone
concentrations are shown in Figure 1. Compared to the
theoretically available maximum number of hourly values, 15%
of the data are missing. The missing data are generally

Figure 1. Illustration of the graph structure defined on the stations of
the UBA monitoring network. The stations are nodes in the graph.
Nodes of 50 km distance or less are connected by edges, which allow a
graph machine learning algorithm to pass messages between them. In
this figure, the nodes are labeled with the average ozone concentration
over 2011, omitting temporal variances for clarity.
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completely random (MCAR), except for a few cases where
sensors are offline during the night and thus missing randomly
(MAR). Seventeen % of data gaps occur at single stations
during short periods of up to 5 h length. 57% occur as longer
periods at single stations, and 26% of the data gaps occur at all
stations simultaneously. This last category contains several
short gaps of 3−4 h and three longer gaps with 18−43 h length
starting from August 19, October 8, and December 20, 2011,
respectively. The latter gaps could be traced back to data
transmission gaps between the UBA and the TOAR database
and are not part of the original UBA data set. Figure 2 shows
an excerpt of these data, including examples of the three
missing data patterns. Section S1 of the Supporting
Information contains the summary statistics of the data. A
detailed overview of gap lengths is given in section S2.
Auxiliary Data. We selected the following auxiliary data as

features for multivariate imputation because they have been
shown suitable to predict ozone in previous machine learning
studies:18,20,48

• Datetime features: hour of the day, day of the week, and
day of the year;

• Meteorological data: temperature, relative humidity,
cloud cover, planetary boundary layer height, and wind
components u and v;

• Atmospheric composition reanalysis data: concentra-
tions of ozone (O3), nitrogen monoxide (NO), and
nitrogen dioxide (NO2);

• Emission data: nitrogen oxides (NOx); and
• Static station metadata: altitude, relative altitude,

population density, nightlight intensity, station type,
and type of area.

Meteorological data were extracted from the 6 km hourly
resolution COSMO reanalysis49 (COSMO-REA6). Atmos-
pheric composition reanalysis data were extracted from the
surface level of the ECMWF Atmospheric Composition
Reanalysis 4 (EAC4) data set,50 which combines observations
with model data from a global chemical transport model
(CTM). The emission data were extracted from the CAMS
Global anthropogenic emissions (version 5.3)51 with monthly
resolution. Station metadata are taken from the TOAR
database.13 Here the relative altitude is the difference in
elevation to the lowest point 5 km around the station.

Missing Data Imputation with Mean Values. As a
statistical baseline method (B), we impute the spatiotemporal
mean (stm) over all available data to all gaps:

= =y y y
N

y x twith
1

( , )B stm
x t

i j,
,i j (1)

ŷ denotes an imputed value, y is a measurement, N is the total
number of available measurements, xi is a station with index i,
and tj is a time step with index j. As a variant of this method,
we impute the time-dependent spatial mean (sm), which is the
mean over all available measurements at a specific time step:

= =y t y t y t
N t

y x t( ) ( ) with ( )
1
( )

( , )B sm j j j
j x

i j,
i

(2)

If no data are available for a given time step (which is the
case for 352 of 8760 time steps), we impute the mean ozone
concentration from EAC4 of that time step. This method
captures daily, weekly, and seasonal cycles inherent in the
available data without regard for extra station information or
meteorology.
Missing Data Imputation with the Nearest-Neighbor

Hybrid Method. A second statistical baseline method is the
hybrid of linear interpolation (lin) for short gaps and
multivariate nearest-neighbor (nn) interpolation for longer
gaps. This method has been shown to be effective for missing
data imputation of air pollution data.23 The authors called it
the nearest-neighbor hybrid (nnh), and we adopt their naming
convention. According to this method, shorter gaps with a
length L shorter than a threshold length Lt are imputed by
fitting a straight line between the two end points t1 and t2 of
the gap and calculating the missing values for any time t1 < tj <
t2 from this line equation. Lt is a tunable hyperparameter and
varies according to the air pollutant in question. Longer gaps
are imputed by multivariate nearest-neighbor interpolation as
follows: The auxiliary data (features) of a data point are
considered to be points f ⃗ in the multidimensional feature
space. In this study, we use 19 features, so this space has 19
dimensions. For every missing ozone value with index k, the
nearest-neighbor sample with index k′ with an available ozone
measurement is searched in the feature space. Thereby, all
features are standardized to zero mean and unit variance, so
features covering different scales are treated with equal

Figure 2. Measured ozone concentrations of August 1−26, 2011, at the selected UBA stations. Examples of three cases are marked: (a) short
isolated gaps, (b) longer isolated gaps, and (c) gaps occurring at all stations simultaneously.
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importance. The distance measure is the Euclidean distance.
Thus, in effect, the imputed ozone value of a missing data
point is calculated according to eqs 3−5:

= +y x t y x t
t t

t t
y x t y x t( , ) ( , ) ( ( , ) ( , ))B lin i j i

j
i i, 1

1

2 1
2 1

(3)

= | = | |=y f y f d f f( ) ( ) with ( )B nn k k d d k k k k, ,k k, min

(4)

=
<l

m
oooo
n
oooo

y x t f
y x t L L

y f L L
( , , )

( , ) if

( ) if
i j k B nnh

i j B lin t

k B nn t
,

,

, (5)

An arrow ·( ) above a variable denotes a vector in this and all
following equations.
Missing Data Imputation with Atmospheric Rean-

alysis. Imputation with ozone values from atmospheric
reanalyses (here EAC4) is another baseline method against
which machine learning models can be compared. To obtain
the EAC4 reanalysis, observations from multiple satellites were
assimilated with ECMWF’s Integrated Forecasting System50

(IFS). The model’s prior estimates are optimized through
minimizing the cost function, which measures the difference
between modeled and observed fields to produce an improved
estimate over the reanalysis period. Without the time
constraint of issuing timely forecasts, the quality of reanalysis
products benefits from the improvement of the quality and
availability of observations. The EAC4 data are available in
gridded format with 80 km spatial resolution and 3 h temporal
resolution. We impute the ozone concentration from the
EAC4 data set of the nearest-neighbor grid cell to all gaps:

=y x t y x t( , ) ( , )B EAC i j i j EAC, 4 4 (6)

We point out that the imputation of measurements with
gridded data is not ideal due to the representation mismatch of
points and grid boxes. Furthermore, this method is prone to
model biases that cannot be completely removed with
statistical bias correction methods.
Random Forest for Missing Data Imputation. Random

forest is a tree-based machine learning algorithm developed by
Breiman in 2001.52 Tree-based models were proven to excel in
particular on tabular style data like the auxiliary data of this
study.53 A random forest is an ensemble of decision trees for
classification or (in our case) regression. Decision trees
iteratively partition the training data by finding logical rules
associated with the input features to minimize a cost function
such as squared loss. Individual decision trees have a low bias
but are prone to overfitting. A random forest improves this
problem through the resampling of the available training data.
It is obtained by fitting many, usually several hundred, decision
trees on bootstrapped training data sets. We chose random
forest because in preliminary experiments it outperformed
other machine learning models. In particular, gradient boosted
trees54 performed slightly worse than random forest on our
data set, presumably because they are more prone to
overfitting on noisy data with many variables such as ours.
We rejected linear models because they failed to capture the
ozone cycles and nonlinear relationships with the input
features in our preliminary experiments.
In this study, a random forest (rf) is fitted on the features as

inputs and the available measurements as output. The features

are the auxiliary data introduced earlier. This random forest
predicts an estimate of ozone concentration for every missing
ozone measurement, based on the features of that data point:

=y f rf f( ) ( )B rf k k, (7)

Defining a Graph Structure on an Air Quality
Monitoring Network. Graphs are a “general language for
describing and analyzing entities with relations or inter-
actions”.55 Machine learning on graphs has gained success in
the past years because it can solve complex tasks on data of
irregular structure, such as protein folding, traffic prediction, or
action recognition in computer vision.56−58 From a graph
theoretical perspective, the task in this study is to provide
labels for unlabeled nodes (in our case, data points with
missing ozone values).
We define the graph structure of our data in the following

way: Each data point at station x and time step t is a node;
therefore, there are ca. 2.4 million nodes in total. If there is a
measurement y available for that data point, then the node is
labeled with that measurement. If not, it is unlabeled. So in our
case, 15% of the nodes are unlabeled. Every node has features f,⃗
namely, the 19 auxiliary data values described above. An edge
exists between the nodes k and k′ if two conditions are
fulfilled: first, they are 50 km or closer in spatial distance, and
second, the time difference between them is 6 h or less. We
chose these thresholds because the areas of influence of two
measuring stations overlap at a distance of 50 km or less14 and
because ozone varies on hourly scales. The edge allows node k′
to receive information from node k. The total number of edges
obtained in this way is about 240 million, so each node
receives information from about 100 nodes on average. The
edges are weighted according to the spatial and temporal
distances Δx, Δt:

=
| |

·
| |

w
x t50 km

50 km

6 h

6 hk k
i i j j, ,

(8)

Figure 1 illustrates the graph, omitting the time component
and self-loops for clarity. An isolated node in this figure has
neighbors only in the temporal domain, so message passing
will only be possible along the temporal axis. For more
information on graph theory, the reader is referred, for
example, to the book by Hamilton.34

Graph Machine Learning To Improve Missing Data
Imputation. Graphs are routinely used in semisupervised
missing data imputation, where information from both labeled
and unlabeled data are used.59−61 In particular, the correct and
smooth algorithm by Huang et al. has proven effective in such
tasks.60 Correct and smooth is a graph machine learning
method, since there is an iterative improvement of predictions
based on message passing within the graph. It is about 100
times faster to fit than a graph neural network.58,60

We apply this algorithm to improve the baseline imputation
methods described above. As the algorithm was originally
designed to output class probabilities in semisupervised
classification tasks, we had to make minor adjustments to
apply it to the imputation of ozone concentrations, which is a
regression task. The original method predicts a label score for
every class and then converts all label scores to class
probabilities by applying a softmax function. We modified
the method to have only one output as we impute only one
variable (ozone). We also removed the softmax function,
which is unnecessary for regression problems. To the best of
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our knowledge, this is the first study in which the correct and
smooth algorithm is used for a regression task rather than a
classification task.
The correct and smooth algorithm is applied in three steps.

In the first step (“estimate”), a base model B estimates the
node labels ŷ based on the node features without making use of
the graph structure. In this study, the base model is any of the
statistical or machine learning methods described above:

=y B x t f( , , )estimate i j k (9)

In the second step (“correct”), the errors ek
0 of this base

model are calculated by comparing the predicted labels to the
true labels wherever possible. These errors are then propagated
iteratively L1 times to the unlabeled nodes, and the resulting
error correction is added to the base prediction. This step, also
called “residual propagation”, assumes that if nodes k and k′
are connected by an edge, their errors ek and ek′ of the base
model are correlated.

=
l
moo
noo

e
y y kif is a training node

0 else
k

k B k0 ,

(10)

= +e e eD AD (1 )l l l
1

1/2 1/2 1
1

1 (11)

= +y y ecorrect estimate
L1 (12)

Here, A with Ak,k′ = wk→k′ is the adjacency matrix of the
graph that contains the scaled edge weights as entries. D is the
degree matrix of the graph that contains the node degrees as
diagonal entries; therefore, D−1/2AD−1/2 is the normalized
adjacency matrix. The index l denotes an iteration step
between 0 and L1. L1, α1 and γ are tunable hyperparameters.
The third step (“smooth”) is similar to the second step, but

here the labels y and ycorrect are propagated because it is
assumed that neighboring nodes have similar labels. This
assumption is valid because ozone concentrations are
correlated in space and time.62

=
l
m
ooo
n
oooy

y k

y

if is a training node

elsek

i

i correct

0

, (13)

= +y y yD AD (1 )
l l l

2
1/2 1/2 1

2
1

(14)

=y ysmooth
L2 (15)

The smoothing step therefore resembles a graph filter.63 L2
and α2 are tunable hyperparameters.
Evaluation. To evaluate the different imputation methods,

we must artificially mask a share of the labeled data points as
missing and compare the imputed ozone concentrations to the
originally reported values. In machine learning, it is common
to reserve a large share of labeled data for fitting the models
(“training set”) and smaller shares to tune hyperparameters
(“validation set”) and to test the final model performance
(“test set”). Therefore, we split the data as follows: 70% of the
data are used as is for training. Fifteen % of the data are
masked (i.e., labels are removed), and of these, half are
assigned to the validation set and half to the test set. The
remaining 15% of the data are unlabeled samples. These are
the missing data samples described above. To realistically test
the predictive performance of the different algorithms, we

maintained the gap characteristics of the missing data in the
masking of the validation and test sets. For every gap length
found at single stations, we mask counterparts of equal length
randomly in the validation and test sets. Similarly, we mask
counterparts of the gaps occurring at multiple stations. See
section S2 for a detailed list of gaps masked for validation and
test purposes.
We used three evaluation metrics that are commonly used

for missing data imputation. The coefficient of determination
R2 is unitless and measures the proportion of variance in the
true values that is explained by the model. A larger R2 denotes
a better model, and the largest possible value is 1.

= ==

= =
R

y y

y y
y

N
y1

( )

( )
with

1k
N

k k

k
N

k k

N

k
2 1

2

1
2

1

(16)

We also evaluate the root-mean-square error (RMSE) in
ppb:

=
=

y y

N
RMSE

( )

k

N
k k

1

2

(17)

Obviously, perfect agreement would yield an RMSE of zero.
The third evaluation metric is Willmott’s index of agreement,64

which measures the degree to which a model’s predictions are
error-free. It can point out the total discrepancies between the
imputations and the observations that are not captured by the
index of agreement. It is unitless, and its largest possible value
is 1.
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In eqs 16−18, k denotes a sample index, N is the total number
of samples, yk is an imputed ozone value, and yk is a measured
ozone value.
To ensure robustness of the imputation methods and

hyperparameters, we iteratively generate ten versions of the
aforementioned data splits and compare their evaluation
results. We also produce an imputed data set with the best
method and hyperparameters and crosscheck this imputation
with the final validated data set UBA provides.

■ RESULTS
This section is organized as follows: First, we describe
hyperparameter tuning and model fitting. Then follows the
evaluations of three distinct missing data cases: short gaps of
up to 5 h length, longer gaps, and gaps at multiple stations. We
then consolidate the findings for the three cases into a
combined imputation. Lastly, we describe the production of
the final imputed data set.
Hyperparameter Tuning and Model Fitting. To tune

the hyperparameters for the nearest-neighbor hybrid (nnh), the
random forest (rf), and the correct and smooth postprocessing,
the models were fit on the training set and evaluated on the
validation set. The nnh model (eqs 3−5) has only the
parameter Lt. We tuned this parameter by starting with a
threshold length of 1 h and increasing it in steps of 1 h. The
best evaluation metrics were found for a threshold length of Lt
= 6 h. For the random forest (rf, eq 7), 500 trees were initially
trained with unlimited depths. To avoid overfitting, the
maximum depth was then diminished, until the training and
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validation errors were the same. This resulted in a depth of 15.
Features for the random forest were selected by forward
feature selection.65 As a result, all features were selected except
the reanalyzed NO concentration. The parameters α1,2, L1,2,
and γ of correct and smooth (eqs 9−15) were tuned by grid
search. Details and results of the hyperparameter tuning can be
found in section S3.
To fit the final models, which are analyzed in the following,

the optimal hyperparameters were used and models were fitted
on both the training and validation sets. The models were then
evaluated on the test set.
Imputation of Short Gaps. Table 1 shows the evaluation

metrics of the imputation results of short gaps up to a length of

5 h. The nearest-neighbor hybrid (nnh), which carries out a
linear interpolation (lin) for these gaps, performs best. Its R2

values are between 0.91−0.97, RMSEs are between 2.43−4.44
ppb, and d is ≥0.98. This agrees with the results of Junninen et
al.,23 who found linear interpolation to be most effective for
short gaps. As expected, the performance of the linear
interpolation drops with the length of the gap as this method
does not consider auxiliary variables or the daily cycle of ozone
concentrations.
Imputation of Longer Gaps. Table 2 shows the

evaluation metrics of the imputation of gaps that are 6 h or
longer. The random forest in connection with correct and
smooth performs best for these gaps, with R2 values of 0.86−

Table 1. Evaluation Results for Short Gaps

gap
length model R2

RMSE
[ppb] d

1 h spatiotemporal
mean

0.00 15.82 0.02

+ correct and
smooth

0.70 8.67 0.91

spatial mean 0.63 9.60 0.88
+ correct and
smooth

0.82 6.62 0.95

nearest-neighbor
hybrid

0.97 2.43 0.99

+ correct and
smooth

0.96 3.07 0.99

EAC4 reanalyses 0.53 10.84 0.86
+ correct and
smooth

0.81 6.91 0.94

random forest 0.85 6.15 0.96
+ correct and
smooth

0.90 4.94 0.97

2 h spatiotemporal
mean

0.00 15.82 0.02

+ correct and
smooth

0.65 9.36 0.89

spatial mean 0.61 9.92 0.87
+ correct and
smooth

0.79 7.17 0.94

nearest-neighbor
hybrid

0.96 3.33 0.99

+ correct and
smooth

0.94 3.91 0.98

EAC4 reanalyses 0.50 11.22 0.85
+ correct and
smooth

0.78 7.50 0.93

random forest 0.84 6.26 0.95
+ correct and
smooth

0.89 5.34 0.97

3−5 h spatiotemporal
mean

0.00 15.12 0.02

+ correct and
smooth

0.60 9.54 0.87

spatial mean 0.64 9.55 0.87
+ correct and
smooth

0.76 7.27 0.93

nearest-neighbor
hybrid

0.91 4.44 0.98

+ correct and
smooth

0.90 4.82 0.97

EAC4 reanalyses 0.49 10.84 0.85
+ correct and
smooth

0.74 7.72 0.92

random forest 0.81 6.64 0.94
+ correct and
smooth

0.86 5.68 0.96

Table 2. Evaluation Results for Long Gaps

gap length model R2
RMSE
[ppb] d

6−23 h spatiotemporal
mean

0.00 15.78 0.00

+ correct and
smooth

0.55 10.54 0.84

spatial mean 0.64 9.38 0.88
+ correct and
smooth

0.75 7.88 0.92

nearest-neighbor
hybrid

0.75 7.85 0.93

+ correct and
smooth

0.79 7.13 0.94

EAC4 reanalyses 0.56 10.47 0.87
+ correct and
smooth

0.73 8.22 0.92

random forest 0.84 6.34 0.95
+ correct and
smooth

0.87 5.65 0.96

1−6 days spatiotemporal
mean

0.00 14.93 0.03

+ correct and
smooth

0.52 10.32 0.82

spatial mean 0.59 9.56 0.87
+ correct and
smooth

0.71 8.00 0.91

nearest-neighbor
hybrid

0.72 7.85 0.93

+ correct and
smooth

0.78 7.07 0.94

EAC4 reanalyses 0.47 10.84 0.85
+ correct and
smooth

0.70 8.22 0.91

random forest 0.81 6.40 0.95
+ correct and
smooth

0.86 5.64 0.96

≥7 days spatiotemporal
mean

0.00 16.25 0.01

+ correct and
smooth

0.57 10.62 0.84

spatial mean 0.67 9.27 0.89
+ correct and
smooth

0.77 7.76 0.93

nearest-neighbor
hybrid

0.69 9.00 0.92

+ correct and
smooth

0.75 8.12 0.93

EAC4 reanalyses 0.56 10.81 0.87
+ correct and
smooth

0.75 8.17 0.92

random forest 0.83 6.75 0.95
+ correct and
smooth

0.86 6.18 0.96
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0.87, RMSEs of 5.64−6.18 ppb, and d = 0.96. Correct and
smooth postprocessing decreased the RMSE of the random
forest by 0.57−0.76 ppb. With R2 values of 0.69−0.75, the
nearest-neighbor interpolation is a suitable statistical method
for missing data imputation but is consistently outperformed
by the random forest.
Table 2 also shows how correct and smooth, which relies on

available data at neighboring stations for long gaps, improves
the base models. Its effectiveness shows best with base models
of low complexity. One example is the spatiotemporal mean
which imputes the same constant to all gaps. The R2 value of
this method alone is zero, because there is no variance in the
imputations. Correct and smooth postprocessing increased the
R2 values of the spatiotemporal mean by 0.52−0.57. This
improvement is achieved only by passing information from
neighboring stations across the graph edges defined in the
given monitoring network. Although the correct and smooth
algorithm is iterative, information on the same station from
distant time steps is not propagated into longer gaps because
the autoscale option of the algorithm reduces the influence of
training nodes on unlabeled nodes with the number of “hops”.
We therefore neglect autocorrelation of ozone values for times
longer than the diurnal cycle.
Figure 3 shows the imputed concentrations of the different

methods using a 24 h gap at an urban background station in
the city of Darmstadt (UBA id ‘DEHE001’, TOAR id 3443) as
an example. There are 18 stations in the radius of 50 km
around this station with distances of 11.8−49.9 km, and it can
receive information from these stations across the defined
graph edges. In the case of spatiotemporal mean, correct and
smooth postprocessing could introduce a daily cycle. It also
improved the other base models, even though they already

predicted the daily cycle. The random forest has low errors but
is improved slightly by being correct and smooth.
Imputation of Gaps at Multiple Stations. Table 3

shows evaluation metrics of gaps occurring at all stations
simultaneously. Similar to the gaps occurring at single stations,
the nearest-neighbor hybrid (which carries out a linear
interpolation for short gaps) reaches the best evaluation
metrics for gaps of up to 5 h length. The longer gaps are still
imputed best by the random forest in combination with correct
and smooth, yet correct and smooth improved the RMSE by
only 0.07 ppb in this situation. This can be explained by the
fact that no neighboring data are available. Hence, the
imputation has to rely on the features alone, which generally
results in lower evaluation metrics.48,66

Combined Imputation. According to the results pre-
sented in Tables 1−3, we created a combined imputation to
evaluate our developed method. We imputed all short gaps
with a length of up to 5 h with linear interpolation and all
longer gaps with random forest and correct and smooth. We
did not differentiate between gaps at a single station or at
multiple stations since these methods are shown to be most
effective, regardless of whether a gap occurs at one station or at
multiple stations. The evaluation metrics of the complete test
set and the iteratively generated data splits are shown in Table
4. They indicate the robustness of the imputation method.
Figure 4 shows heatmaps of true and imputed concentrations,
with differentiation between short and long gaps.
Figure 5 shows a summary of how gap characteristics affect

the evaluation metric R2 for the different base models in
combination with correct and smooth. The R2 value generally
decreases with an increasing gap length. Furthermore, there is a
weak trend in improved R2 when more neighboring stations are
available. Both trends are more apparent for the simple base

Figure 3. Example imputations of an isolated 24 h gap at station ‘DEHE001’ in the city of Darmstadt. The dashed lines are the imputations from
the base models. The solid lines are the correct and smooth imputation postprocessed base models.
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models, such as the spatial mean and the spatiotemporal mean.
The random forest in connection with correct and smooth,
which has the best evaluation metrics, is also least affected by
variations of the gap characteristics.
Imputed Data Set. The imputed data set, which was

produced within the scope of this study, is available under the
DOI 10.23728/b2share.04821864a81f40af89c7633889f147cb.
To produce this data set, we imputed all missing ozone data
using the combined imputation and the trained random forest
model. Note that data points that were masked for validation
and testing were unmasked again in this final output data set;
i.e., for these samples, the original measured ozone values are
reported. About 180,000 samples that are missing in the
preliminary UBA data set which we used to develop our
method are present in the final data set which UBA provided in
the following year. This is approximately 7.3% of the
theoretically available samples. Cross-checking these with our
imputations yields an R2 of 0.83, an RMSE of 5.63 ppb, and an
index of agreement of 0.95. The evaluation metrics are slightly
inferior to those reported in Table 4.
As mentioned in the Introduction, the number of exceed-

ances of ozone concentration thresholds is an important
indicator of the assessment of air quality. One example is the
number of exceedances of daily maximum 8 h values greater
than 70 ppb during the summer (nvgt70 summer).22 As a
proof of concept, we count the number of additional threshold
exceedances that the imputed data set contains (Figure 6). Of
the total number of about 3.6 × 105 imputed values, about 104
samples yield ozone values above 50 ppb. Regarding the
nvgt70 metric, 512 samples were imputed to the data set which
exceed the threshold of 70 ppb. This shows that data
imputation with our method can improve the robustness of
air quality assessments.
As a second proof of concept, we imputed ozone data at

station locations where no data were reported at all (Figure 7).
We expect the evaluation metrics of these longer modeled
ozone time series to be similar to longer gaps at single stations
(Table 2), even though validation is impossible. The modeled
time series is less variable than those measured at neighboring
stations. This is because any (ozone) model, machine learning
or otherwise, has problems predicting extremes.67 Dips and
peaks in the measured time series can sometimes be attributed
to noise due to short-term or small-scale effects on ozone that
are not resolved in the auxiliary data and therefore are not

Table 3. Results for the Gaps at Multiple Stationsa

gap length model R2
RMSE
[ppb] d

3−5 h spatiotemporal
mean

−0.01 15.39 0.11

+ correct and
smooth

0.63 9.32 0.89

spatial mean 0.42 11.67 0.77
+ correct and
smooth

0.67 8.75 0.89

nearest-neighbor
hybrid

0.92 4.45 0.98

+ correct and
smooth

0.90 4.64 0.97

EAC4 reanalyses 0.46 11.32 0.81
+ correct and
smooth

0.72 8.06 0.91

random forest 0.78 7.06 0.93
+ correct and
smooth

0.84 5.95 0.96

1−6 days spatiotemporal
mean

−0.04 13.07 0.24

+ correct and
smooth

−0.13 13.64 0.31

spatial mean 0.37 10.19 0.80
+ correct and
smooth

0.43 9.60 0.82

nearest-neighbor
hybrid

0.51 8.94 0.87

+ correct and
smooth

0.59 8.18 0.88

EAC4 reanalyses 0.42 9.77 0.85
+ correct and
smooth

0.55 8.57 0.87

random forest 0.78 5.95 0.93
+ correct and
smooth

0.79 5.88 0.94

aThe nearest-neighbor hybrid method is a linear interpolation for 3−
5 h gaps and a nearest-neighbor interpolation for longer gaps.

Table 4. Evaluation Metrics of the Test Set and Spread in
Iterative Data Splits

evaluation metric test set ten iterative data splits

R2 0.89 0.89 ≤ R2 ≤ 0.90
RMSE [ppb] 5.13 5.52 ≥ RMSE ≥ 5.12
d 0.97 0.97 ≤ d ≤ 0.97

Figure 4. Heatmap of true versus imputed concentrations. (a) Short gaps of up to 5 h length, imputed by linear interpolation, and (b) random
forest + correct and smooth for long gaps. This figure does not differentiate between isolated gaps and gaps at all stations.
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represented in the model. Some of this is improved by correct
and smooth: If all neighboring stations have a peak where the
base model does not, then it is well corrected. An example can
be seen in panel (c) of Figure 7 at time step 26.

■ DISCUSSION
Imputing Missing Data in the UBA Data Set. The goal

of this work was to impute missing ozone data at 278 stations
of the UBA network in the year 2011. By fusing a variety of
auxiliary data and available measurements using (graph)
machine learning, high-accuracy imputations can be achieved.
We applied other published methods as baseline methods to
the UBA data set to compare our method with them. A direct
comparison with the evaluation metrics reported in other
studies may be misleading because they use different data sets,
gap characteristics, and evaluation metrics than we do. We
have chosen common baseline methods, namely, (1)
imputation with mean values as is often implicitly done in

Figure 5. R2 evaluation metric vs gap characteristics. (a) Different gap lengths up to 30 h. The dashed line marks the gap length 5 h. This is when
the final imputation model changes from linear interpolation to random forest + correct and smooth. (b) Number of neighbors in a radius of 50 km
around the station. This plot only contains data from isolated gaps longer than 5 h.

Figure 6. Number of additional exceedances of ozone thresholds
contained in the data set after imputation of the data.

Figure 7. One-month-long excerpt of simulated ozone time series at three locations in Germany. They were modeled using our random forest and
were correct and smooth. For comparison, the available measurements at stations within a radius of 50 km around the modeled locations are given.
(a) Urban traffic location in the city of Borna, Sachsen, with 10 neighboring stations. (b) Urban traffic location in the city of Magdeburg with 4
neighboring stations. (c) Modeled time series in a rural background area west of Kassel with 5 neighboring stations.
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the calculation of ozone metrics,13,22 (2) nearest-neighbor
hybrid which is the best statistical method found by Junninen
et al.,23 (3) EAC4 atmospheric reanalysis,50 and (4) random
forest, which is a state-of-the-art machine learning method for
structured data. Our method achieves equal or higher
imputation accuracy than these other methods, depending on
the gap characteristics. Also, our method is robust, with
reasonable variations in the evaluation metrics given different
numbers of neighbors, the iterative data splitting, and the
length of the gaps.
Unlike approaches such as physics-guided machine learn-

ing,68 our method relies on the geospatial and statistical
properties of the ozone data and auxiliary data without
considering the physical or chemical processes mentioned in
the Introduction. A strength of the correct and smooth method
is that the correction step accounts for influences that the base
models cannot predict without specifying those influences.
Instead, it corrects the prediction by assuming that neighboring
data points are subject to the same unknown influences; i.e.,
their base model errors are correlated. Smoothing ozone values
across the graph structure defined on the monitoring network,
as performed in the third step of correct and smooth, is a
strongly simplified implementation of the ozone transport and
diffusion processes. It does not consider wind speed or
direction. Even though this works reasonably well, it should be
improved in future models. Considering the spatiotemporal
inhomogeneity of ozone and of air pollution in general, we
have considered the local to regional differences in ozone levels
by including both precursor emissions and meteorological
parameters in our base models. We have furthermore used
measurements of monitoring stations in the radius of 50 km
around a missing value wherever available to better account for
local to regional variances in the pollution.
The described method is suitable for near-real-time

operational settings such as an imputation application for the
TOAR data analysis services. Such a service is useful
considering that the final validated UBA data set will not be
available until the following year. Linear interpolation, random
forest, and correct and smooth are comparably cheap
algorithms that only take seconds to minutes to execute.
Therefore, a near-real-time imputation of data can be
potentially achieved by using these algorithms.
Prospects for Graph Machine Learning in Air Quality

Research. We showed that graph machine learning is suitable
to be used with ozone data of the UBA monitoring network
due to the irregular structure of the available data. We expect
our findings to apply to other air quality data as well, although
further studies would be needed to assess the imputation
results for variables with different statistical properties, such as
nitrogen oxide or particulate matter concentrations. One
advantage of correct and smooth is that it can be used with any
other feature-based method and for bias correction of
numerical models.
With the definition of one data point as one node and the

basing of the edge definition on the spatiotemporal distance
between the nodes, the graph definition we used is relatively
simple. More sophisticated approaches that should be explored
in the future include time-resolved graphs69 for spatiotemporal
machine learning or transformer architectures,70 which can
learn to attend to the most helpful features in unstructured
data. These architectures could be trained to take transport
and advection of air pollutants into account by incorporating
wind directions.19 One promising approach is also to infer the

graph from the underlying data set.47,71 To further explore how
the graph structure affects the results and what parameters are
most crucial, sensitivity studies are necessary.
Many studies impute missing concentrations of multiple

pollutants simultaneously and with varying input data
available.23,24 From a graph perspective, this would require
an algorithm that could handle different kinds of nodes with
different kinds of labels. An algorithm like this would be
especially interesting when real measurements of auxiliary data
are used instead of reanalyses, because air quality measure-
ments and measurements of meteorological parameters are
often not reported from the same stations or they may have
gaps themselves.
Further Applications. The study presented here works on

a spatially (Germany) and temporally (year 2011) limited
domain. The only prerequisites to using this method in a
different domain would be a similar spatial coverage of
measurement stations and the availability of similar auxiliary
data. Reasonably dense station networks exist in large parts of
Europe, the United States, and East Asia but not in other world
regions such as South America and Africa.13 Besides the lack of
neighboring air quality stations, there may also be larger biases
in the auxiliary data as documented, for example, with respect
to the CAMS emissions and reanalyses.50,51

Besides missing data imputation, the method developed here
could also be adapted for other questions posed in air quality
research. One example is quality control�a common problem
of graph theory is to flag untrustworthy nodes, such as
untrustworthy Web sites or untrustworthy transactions.72

Similarly, untrustworthy measurements could be flagged with
our method. This study showed that the method could predict
meaningful ozone concentrations at places or time steps
without measurements (Figure 7). Technically it would also be
possible to predict the ozone time series at all grid points of a
regular grid and therefore provide gridded ozone fields. This
would be a logical extension of the mapping study by
Betancourt et al.48
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