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Fusion mechanism for quasiparticles and topological quantum order in the lowest Landau level
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Starting from Halperin multilayer systems we develop a hierarchical scheme, dubbed symmetrized multicluster
construction, that generates bosonic and fermionic single-layer quantum Hall states (or vacua) of arbitrary filling
factor. Our scheme allows for the insertion of quasiparticle excitations with either Abelian or non-Abelian
statistics and quantum numbers that depend on the nature of the original vacuum. Most importantly, it reveals a
fusion mechanism for quasielectrons and magnetoexcitons that generalizes ideas about particle fractionalization
introduced in A. Bochniak, Z. Nussinov, A. Seidel, and G. Ortiz, Commun. Phys. 5, 171 (2022) for the case
of Laughlin fluids. In addition, in the second quantization representation, we uncover the inherent topological
quantum order (or the off-diagonal long-range order) characterizing these vacua. In particular, we illustrate the
methodology by constructing generalized composite (generalized Read) operators for the non-Abelian Pfaffian
and Hafnian quantum fluid states.
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I. INTRODUCTION

Fractional quantum Hall (FQH) fluids have been intensely
studied for decades [1]. These topological fluids portray quan-
tum phases of interacting electronic matter, in the presence
of strong magnetic fields, with emergent Abelian and non-
Abelian excitations, anomalous electromagnetic response,
and exquisitely quantized transport properties. At a funda-
mental mathematical level these fluid states are described
by multivariate homogeneous polynomials of complex par-
ticle coordinates with zeros, when particles coalesce, that
effectively encode the topological characteristics of their exci-
tations. These polynomials are, generically, nonholomorphic
if they are constructed from higher Landau level orbitals, and
may display different types of zeros, i.e., different clustering
properties. These, on the other hand, may relate to the type
of particle interaction of some local parent Hamiltonian sta-
bilizing such a fluid state as its ground state. For instance,
parton states, the Laughlin sequence being a representative,
satisfy a uniform clustering condition and are stabilized by
two-body interactions [2]. In contrast, states such as Pfaffians
and Hafnians do not satisfy a uniform clustering condition and
are stabilized by k-body interactions with k > 2.
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In this paper, we show how to systematically generate
translationally and rotationally (i.e., homogeneous) invariant
multivariate polynomials, of arbitrary filling factors (frac-
tions), representing fermionic and bosonic FQH fluid states.
For the sake of simplicity, we focus on the case of holomor-
phic polynomials on a disk geometry, that is, states defined
within the lowest-Landau-level (LLL) subspace which in-
cludes the Pfaffian and Hafnian states among its members
(Gaussian factors are absorbed in the measure [3]). Our
symmetrized multicluster construction (SMC) starts from a
Halperin bilayer (two clusters) system which, through an ap-
propriate antisymmetrization (or symmetrization) procedure,
turns this system into a single-layer fermionic (or bosonic)
FQH state. Most importantly, we show how to generate quasi-
hole, quasielectron, and magnetoexcitonic excitations in a
natural and straightforward manner without invoking confor-
mal field theory constructions. The basic idea for quasiholes
is simple and consists of a complete antisymmetrization (sym-
metrization) procedure over the Halperin bilayer coordinate
systems with (or without) magnetic fluxes attached in distinct
layers, thus explicitly breaking translational invariance. This
methodology, by construction, takes advantage of the diver-
sity of possible clustering conditions among particle layer
species. Exploiting the fusion mechanism for quasielectrons
advanced for Laughlin’s fluids in Ref. [3] we present quasi-
particle excitations with proper particle fractionalization and
quantum numbers, in arbitrary filling factor LLL FQH fluids.
Our construction extends naturally to multilayer (multicluster)
systems, thus providing a hierarchical scheme in search of
incompressible FQH fluids and their quasiparticle excitations.
In a related vein, we would also like to unveil the intricate
many-body correlations present in non-Abelian topological
fluids at the most fundamental level. In particular, we want
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to establish the topological (nonlocal) quantum order char-
acterizing FQH fluid ground states. Working in a second
quantization representation we express those ground states in
a manner that easily helps establish their corresponding gen-
eralized composite (generalized Read) operators. We illustrate
our many-body technique in the Pfaffian and Hafnian state
cases.

We start Sec. II presenting the main idea behind our sym-
metrized multicluster construction. The simplest example of a
LLL FQH state beyond Laughlin’s sequence is the fermionic
(respectively bosonic) Pfaffian state �

q
Pf corresponding to the

filling factor ν = 1/q with q ∈ 2N (respectively q ∈ 2N + 1).
This generic Pfaffian state is closely related to Halperin bi-
layer system [4], with the correspondence mimicking the
construction of the Moore-Read (MR) state (corresponding
to the choice q = 2) out of Halperin 331 bilayer system [5].
More precisely, the Pfaffian state �

q
Pf with parameter q can be

thought of as the total antisymmetrization (respectively sym-
metrization) of the fermionic (respectively bosonic) Halperin
�q+1 q+1 q−1 state. In the fermionic case, the proof can be
found in [1], Section 13.2 and references therein. For com-
pleteness, here we present a combinatorial proof for fermions
that we extend to the bosonic case. In addition, we construct
the family of Hafnian states, both bosonic and fermionic, from
the bilayer system �q+2 q+2 q−2 (the proof is in Appendix A),
generalizing previous observations for �551 and �440 [6].
Based on number theoretic results in [7], our scheme can
generate states within the LLL with arbitrary filling factors.
We remark that a related idea of total antisymmetrization of a
bilayer system was also discussed in the context of composite
fermions [8–12], Halperin homogeneous multilayer systems
[13,14], and shares some common features with models based
on conformal field theories [15–18]. We close Sec. II with
a brief description of multilayer and hierarchical generaliza-
tions that we plan to expand on in a future publication. Here,
we only present a derivation of a candidate ν = 3/5 incom-
pressible fluid state.

Remarkably, our hierarchical construction scheme allows
for the study of quasiparticle excitations in a quite natu-
ral way. In Sec. III, we explain the methodology to insert
(or remove) magnetic fluxes to generate quasiparticles with
Abelian and non-Abelian exchange statistics. In this way,
we generate quasihole excitations in arbitrary Pfaffian states
and compare the resulting wave functions with the previous
proposal [19,20]. It was observed in [13] that the procedure
of placing quasiholes on particular layers and subsequent
antisymmetrization leads to a wave function identical to that
proposed by Moore and Read (and, more generally, in the
case of multilayered systems this leads to quasiholes in Read-
Rezayi states [21]). We present explicit mathematical proof of
this fact in Appendix B. Armed with our quasihole construc-
tion we apply it to the family of Hafnian states and present a
combinatorial proof in Appendix C.

Quasihole excitations are physically linked to magnetic
flux insertion. On the other hand, their quasiparticle (quasi-
electron) excitations, physically associated with flux removal,
were until recently [3] a matter of debate. Advancing a
second-quantization formalism we established a particle frac-
tionalization principle that allowed derivation of quasielectron
wave functions in Laughlin fluids [3]. Furthermore, the ob-

tained quasielectron turned out to be a composite object, made
out of a certain number of quasiholes and a bare electron,
satisfying a fusion rule leading to consistent quasiparticle
quantum numbers. Here, we show that the same fusion mech-
anism [3] is operative in non-Abelian FQH fluids allowing
us to study quasielectrons and magnetoexcitons in arbitrary
FQH fluids. In particular, we have checked numerically (by
quantum Monte Carlo simulations) that the fusion mechanism
works seamlessly in the case of Pfaffian fluids. In Appendix D
we explain how to efficiently simulate the Pfaffian of a skew-
symmetric matrix.

In the present paper, we are extensively using both first
and second quantization representations. It turns out that each
representation manifestly uncovers different aspects of the
intricate many-body correlations present in those FQH states.
For instance, while the nodal structure and root pattern of
FQH states are revealed in the first quantization, fermionic
pairing and Bose-Einstein condensation of bosons become
manifest in the second quantization representation. In Sec. IV,
we advance a derivation of the Pfaffian and Hafnian classes
of states in second-quantization that manifestly uncovers their
intrinsic topological order, or a special type of off-diagonal
long-range order (ODLRO) [22]. It shows, in particular, the
reasons behind the lack of local particle condensation and,
most critically, reveals the corresponding composite (gen-
eralized Read) operators whose expectation values signal
the ODLRO present in those non-Abelian topological fluids.
Proofs by recursion are presented in Appendix E.

Finally, in Sec. V, we summarize our main findings and
reflect on remaining open questions and current directions we
are pursuing to rigorously prove conjectures formulated in the
current manuscript.

II. FROM HALPERIN MULTILAYER TO SINGLE-LAYER
QUANTUM HALL STATES

We start considering systems of two independent layers
each comprising n1 and n2 particles. The positions of particles
from the first layer are described by a tuple of complex num-
bers Zn1 = (z1, . . . , zn1 ), while for the second layer, we use
Zn2 = (zn1+1, . . . , zn1+n2 ). The ordered union (z1, . . . , zn1+n2 )
of these two tuples is indicated by ZN with N = n1 + n2. We
will also use the notation ẑi to express that the variable zi =
xi + iyi is not present in the set ZN , while (ZN )î ĵ stands for the
set (z1, . . . , ẑi, . . . , ẑ j, . . . , zN ), for i < j. The Vandermonde
determinant in Zn variables is denoted by

�L(Zn) =
n∏

i< j

(zi − z j ). (1)

The most general Halperin inhomogeneous bilayer state [4]
is of the form

�a1a2b(ZN ) = �L(Zn1 )a1 �L( Zn2 )a2 Pb(ZN ), (2)

with pairing between layers,

Pb(ZN ) =
∏

i∈Zn1

j∈ Zn2

(zi − z j )
b, (3)
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and has (degree equal to the) total angular momentum

J = n1

[(
a1 + a2

2
+ bμ

)
n1 −

(
a1 + μa2

2

)]
h̄, (4)

with μ = n2
n1

, h̄ the reduced Planck constant, and filling factor

ν = N − 1

max{n1a1 + n2b, n2a2 + n1b} . (5)

In the original Halperin’s construction [4], it was assumed that
the two components covered the same area, thus, leading to
an effective constraint where the two components’ maximal
Landau orbital angular momenta become equal, n1a1 + n2b =
n2a2 + n1b, or equivalently, μ = a1−b

a2−b , which leads to a total
angular momentum

J = N

2

[
N

2

(
a1 + a2

2
+ b

)
−
(

a1 + a2

2

)]
h̄ (6)

and filling factor [23]

ν = a1 + a2 − 2b

a1a2 − b2
. (7)

We refer to this assumption as Halperin’s constraint. Such
states can produce any filling factor ν ∈ Q+ with a1, a2 > 0,
b � 0, and a1a2 > b2 [7]. Despite being physically motivated
this condition may be ignored if one is only interested in the
ring of polynomials with different patterns of zeros. However,
had we imposed that constraint it implies n1 = n2 if and only
if a1 = a2.

One of the most broadly studied examples is Halperin
331 (n1 = n2 = n) state [4], introduced as a generalization
of Laughlin’s proposal for bilayer or spinful systems. Such
systems allow for a FQH fluid with ν = 1/2. It is known that
the antisymmetrization among all 2n variables in the Halperin
331 state produces the MR state [5,24,25], and more generally,
starting from Halperin bilayer states of the form �q+1 q+1 q−1

with q even one gets the Pfaffian state �
q
Pf . (We will later

prove that this is true also for q odd.) The (polynomial part
of the) Pfaffian wave function is given by

�
q
Pf (Z2n) = Pf2n

(
1

zi − z j

)
�L(Z2n)q, (8)

where q ∈ N is fixed, and the Pfaffian of an 2n × 2n skew-
symmetric matrix A is defined as

Pf2n(A) = 1

2nn!

∑
σ∈S2n

sgn(σ )
n∏

i=1

Aσ (2i−1),σ (2i), (9)

where sgn(σ ) = ±1 is the signature of the permutation σ

of 2n variables. Here S2n stands for the group of all such
permutations. For q even, we have a fermionic wave func-
tion, while q odd corresponds to a bosonic one. The filling
factor of this state is ν = 1/q. The special case q = 2, the
MR state, was advanced [19] as a possible incompressible
wave function describing the observed ν = 5/2 FQH fluid
(considered effectively in the LLL it is associated to ν = 1/2).
It was shown that this state is a ground (zero energy) state
of a three-body Hamiltonian [26,27] with the smallest total
angular momentum, J = N (2N−3)

2 h̄ [27].
Here we generalize this idea, expand it to multilayer sys-

tems, and propose a hierarchical scheme, the SMC. For the

sake of clarity, we next describe the construction for bi-
layer systems. The symmetric group has several irreducible
representations; the totally symmetric or antisymmetric ones
define the fully polarized fluids considered in our SMC, while
others may require a more involved procedure. In the situa-
tion where n1 = n2 = n, not necessarily satisfying Halperin’s
constraint, we will refer to as fermionic (bosonic) Halperin
state whenever both a1, a2, as well as the pairing term b, are
odd (even) integers. Fermionic (bosonic) Halperin states are
obtained after the application of a total antisymmetrization
A2n (symmetrization S2n), with respect to all Z2n coordinates,
to Halperin bilayer systems

A2n�a1a2b(Z2n) = 1

N!

∑
σ∈S2n

sgn(σ )�a1a2b(σ (Z2n)),

S2n�a1a2b(Z2n) = 1

N!

∑
σ∈S2n

�a1a2b(σ (Z2n)), (10)

where σ (Z2n) = (zσ (1), . . . , zσ (2n) ). Note that the total anti-
symmetrization or symmetrization procedures preserve the
value of the original Halperin state filling factor. For n1 = n2

and a1 = a2, the nonzero states are obtained from antisym-
metrization (respectively symmetrization) if and only if b is
odd (respectively even). For a1 �= a2 (and also for n1 �= n2),
there is no such parity constraint on b, and we can in certain
cases still produce nonzero states in the LLL by applying the
above procedure.

Since in the bosonic case, a1 = 2k1, a2 = 2k2, and b =
2l , the filling factor (under the condition that a1n1 + bn2 =
a2n2 + bn1) is ν = k1+k2−2l

2(k1k2−l2 ) , the symmetrization procedure
allows generation of bosonic fluids of arbitrary ν ∈ Q+ ∩
(0, 1) due to the number-theoretical results from [7]. The
fermionic case is, however, more subtle and requires some
analysis beyond [7]. We leave the general question for future
research, however, we mention an illustrative example. Relax-
ing Halperin’s constraint, it is possible to obtain a fermionic
state with ν = 3/4 by taking any odd a1 > a2 > 0 and b = 1
such that μ = 3a1 − 4 > 1. (There exists also an analogous
family with μ < 1.) In this case, the total angular momen-
tum reads J = n1( 7a1+a2−8

2 n1 − a1+a2
2 ) h̄, which is minimized

if one chooses a1 = 3, a2 = 1, and μ = 5, in which case
J = n1(7n1 − 2) h̄. We remark that after relaxing Halperin’s
constraint, it is not in principle guaranteed that the result-
ing state corresponds to a liquid. However, in the present
work, we will be mostly interested in the situation where
a1 = a2 = a and n1 = n2 = n, the homogeneous bilayer case,
with corresponding filling factor ν = 2

a+b . We parametrize
these (bosonic or fermionic) states as �q+s q+s q−s with q � s.
There are essentially two subclasses here. For s odd, q even
corresponds to fermionic Halperin’s states, while q odd to
bosonic ones. For s even, however, we have the opposite:
q even leads to bosonic states, while q odd corresponds to
fermionic ones.

We conclude this brief description of the general idea with
the following remarks. As mentioned in the Introduction,
the zeros and clustering properties of FQH states (without
and with translational-symmetry-breaking magnetic fluxes)
encode their topological characteristics. The class of poly-
nomials obtained from Halperin bilayer systems display a

245123-3



ARKADIUSZ BOCHNIAK AND GERARDO ORTIZ PHYSICAL REVIEW B 108, 245123 (2023)

M-clustering property with M = min{a1, a2, b}. Moreover,
using the fact that the ring of multivariate polynomials
over the complex field is a unique factorization domain
(UFD), or factorial, it was shown in Ref. [2] that the set of
partonlike states spans the ring of (anti)symmetric holomor-
phic polynomials with the M-clustering property. This means
that except for the case a1 = a2 = b, which represents a sin-
gle parton state, all other single-layer states derived from
Halperin bilayer systems can be efficiently expanded in terms
of parton-like states with identical M-clustering properties
[2]. In addition, the root pattern of the FQH fluid uniquely
characterizes it, leading to a root state or DNA that en-
codes all topological properties of the fluid [2]. In the LLL,
the root pattern (or state) is represented as a string of pos-
itive integers defining the occupation numbers of Landau
angular momenta orbitals in the nonexpandable Slater de-
terminant (or permanent) component of the fluid state [28].
For instance, if particles occupy the orbital angular momenta
( j1, j2) = (0, 1) mod(4), the (bulk) string becomes {1100} =
11001100110011001100 . . . Root patterns for fermionic sys-
tems can only include 1s and 0s, because of Pauli exclusion,
while bosonic systems may in principle include arbitrary
positive integers. For the class of holomorphic polynomials
considered in this work, the corresponding (bulk) root pat-
tern can be determined by using the algorithm proposed in
Ref. [29] for Halperin bilayer states, which amounts to maxi-
mization of the quantity

�J =
N∑

i=1

j2
i . (11)

We would also like to emphasize that establishing which of
the multiple FQH homogeneous fluid states of a given filling
factor ν corresponds to an incompressible one is a nontrivial
mathematical task. Later on, we will formulate a conjecture.

We next present a few paradigmatic examples resulting
from our construction, including derivations of Pfaffian and
Hafnian families of states, and conclude the section with a
generalization to multilayer systems and a proposal for hier-
archical construction.

A. The case (q + 1, q + 1, q − 1)

Let us consider first the case with s = 1. We reproduce here
the (adjusted version of the) argument from [1] used for the
fermionic case (q even), extending it then to bosonic systems
(q odd).

First, using the Cauchy determinant formula [30],

detn

(
1

zi − zn+k

)
=

n∏
i<k

(zk − zi )(zn+i − zn+k )

n∏
i,k=1

(zi − zn+k )
, (12)

it follows that

�q+1 q+1 q−1(Z2n) = εn

[
detn

(
1

zi − zn+k

)]
�L(Z2n)q, (13)

where

εn = (−1)
n(n−1)

2 . (14)

For q even (i.e., in the fermionic case), we have

A2n

(
detn

(
1

zi − zn+k

)
�L(Z2n)q

)
= A2n

(
detn

(
1

zi − zn+k

))
�L(Z2n)q, (15)

and also

A2ndetn

(
1

zi − zn+ j

)

=
∑
σ∈Sn

sgn(σ )A2n

n∏
j=1

1

z j − zn+σ ( j)

= n!A2n

n∏
j=1

1

z j − zn+ j
= −2n(n!)2

(2n)!
Pf2n

(
1

zi − z j

)
,

(16)

where in the last step we have used the fact that (1, n +
1, 2, n + 2, . . . , n, 2n) is an odd permutation of (1, . . . , 2n),
which produces an additional minus sign. This leads to the
conclusion that total antisymmetrization (i.e., with respect to
all coordinates) of Halperin bilayer state �q+1 q+1 q−1(Z2n)
leads to the fermionic Pfaffian state �

q
Pf , up to an overall

constant.
We show next how the above proof can be modified to

cover also the bosonic case, i.e., situations with q odd. First,
we notice that

�q+1 q+1 q−1(Z2n)

= εn

[
detn

(
1

zi − zn+k

)
�L(Z2n)

]
�L(Z2n)q−1. (17)

In contrast to the antisymmetrization performed for fermions,
in the case of bosonic systems, we symmetrize the Halperin
bilayer state with respect to all variables. Since q − 1 is
even, the problem reduces to the total symmetrization of
detn( 1

zi−zn+k
)�L(Z2n). Notice that

S2n

(
detn

(
1

zi − zn+k

)
�L(Z2n)

)
= A2n

(
detn

(
1

zi − zn+k

))
�L(Z2n). (18)

Indeed, this claim is equivalent to∑
σ∈S2n

detn

(
1

zσ (i) − zσ (n+k)

)
�L(σ (Z2n))

=
∑
σ∈S2n

sgn(σ )detn

(
1

zσ (i) − zσ (n+k)

)
�L(Z2n). (19)

It is sufficient to show that for any σ ∈ S2n, we have

detn

(
1

zσ (i) − zσ (n+k)

)
�L(σ (Z2n))

= sgn(σ )detn

(
1

zσ (i) − zσ (n+k)

)
�L(Z2n), (20)
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but this simply follows from the total antisymmetry of Laugh-
lin’s factor. This shows that in the bosonic case, the total
symmetrization also leads to the bosonic Pfaffian state �

q
Pf ,

up to an overall constant.
We can establish the bulk root patterns corresponding to

this family of Pfaffian states. For example, the bulk root
pattern originating from the state �220 (describing a ν = 1
bosonic state) is simply {20}, while the one for �331 (describ-
ing fermions with ν = 1/2) is {1100}. Yet another example
is the state describing ν = 1/3 bosons and obtained from
�442. In this case, the corresponding pattern is {101000}.
Similarly to homogeneous vacuum fluids, one may consider
quasihole states of the form (

∏n
i=1 zi ) �q+1 q+1 q−1(Z2n), prop-

erly (anti)symmetrized, and study the corresponding bulk root
patterns. For the aforementioned examples they are {1}, {10},
and {100100}, respectively.

B. The case (q + 2, q + 2, q − 2)

Let us now consider the case with s = 2. It is known
(see [6] and references therein) that the so-called Hafnian
state, det2n( 1

zi−z j
)�L(Z2n)3, can be obtained from the antisym-

metrization of the fermionic Halperin bilayer state �551. A
similar statement can be shown to be true for its bosonic coun-
terpart - symmetrization of �440 leads to det2n( 1

zi−z j
)�L(Z2n)2.

Notice that these states correspond to q = 3 and 2, respec-
tively. However, what is known in the literature [6] as a
“Hafnian state” can be really understood as a special case of
the whole family of Hafnians in the same way as the MR state
is a special case, that with q = 2, of the Pfaffian family.

The family of Hafnian states parameterized by q ∈ N is
defined as

�
q
Hf (Z2n) = Hf2n

(
1

(zi − z j )2

)
�L(Z2n)q

= det2n

(
1

zi − z j

)
�L(Z2n)q,

(21)

where the Hafnian of an 2n × 2n symmetric matrix B is ex-
pressed as

Hf2n(B) = 1

2nn!

∑
σ∈S2n

n∏
i=1

Bσ (2i−1),σ (2i). (22)

Notice that now the case with q odd corresponds to fermions,
while q even to bosons.

Below we show that the Hafnian state �
q
Hf is associated

with an antisymmetrization (respectively symmetrization) of
the Halperin bilayer state �q+2 q+2 q−2 for q odd (respectively
even), with q � 2. We start with the fermionic case and notice
that for any odd q � 3, we have

A2n�q+2 q+2 q−2(Z2n)

= S2n

⎛⎝ n∏
i< j

(zi − z j )
4(zn+i − zn+ j )

4

⎞⎠�L(Z2n)q−2. (23)

In Appendix A, we prove that

S2n

⎛⎝ n∏
i< j

(zi − z j )
4(zn+i − zn+ j )

4

⎞⎠
= 2n(n!)2

(2n)!
Hf2n

(
1

(zi − z j )2

)
�L(Z2n)2, (24)

and this leads to the conclusion that

A2n�q+2 q+2 q−2(Z2n)

= 2n(n!)2

(2n)!
Hf2n

(
1

(zi − z j )2

)
�L(Z2n)q. (25)

Notice that from the above relation, we also obtain the identity

A2n

([
detn

(
1

zi − zn+k

)]2)
= 2n(n!)2

(2n)!
Hf2n

(
1

(zi − z j )2

)
.

(26)

For the bosonic case (q � 2 even), we immediately get

S2n�q+2 q+2 q−2(Z2n)

= S2n

⎛⎝ n∏
i< j

(zi − z j )
4(zn+i − zn+ j )

4

⎞⎠�L(Z2n)q−2

= 2n(n!)2

(2n)!
Hf2n

(
1

(zi − z j )2

)
�L(Z2n)q. (27)

This finishes the proof of our claim.
We close the discussion of Hafnian states by presenting

explicit bulk root patterns for the states originating from �440

(bosonic ν = 1/2) and �551 (fermionic ν = 1/3) for both ho-
mogeneous fluids (vacua) as well as the ones with quasiholes
(
∏n

i=1 zi) �q+2 q+2 q−2(Z2n). For �440, we obtain {2000} for the
vacuum and {1100} for the state with quasiholes, while the
corresponding bulk root patterns originating from the �551

state are {110000} and {101000}, respectively.

C. The case (q + s, q + s, q − s)

For the general odd s and even q > s case, the resulting
fermionic state is of the form

�
q;s
Pf (Z2n) = εs

nA2n

([
detn

(
1

zi − zn+k

)]s)
�L(Z2n)q, (28)

with εn defined in Eq. (14). We refer to this class of states as
fermionic Pfaffian-like states. We remark that, for s � 3,

�
q;s
Pf (Z2n) �=

[
Pf2n

(
1

zi − z j

)]s

�L(Z2n)q, (29)

because in the antisymmetrization A2n there is no totally
symmetric function involved. In contrast, the total symmetry
of Laughlin’s factor in Eq. (15) allowed for factorization.
Moreover, notice that[

detn

(
1

zi − zn+k

)]s

�= detn

(
1

(zi − zn+k )s

)
, (30)

since on the left-hand side we have a determinant of the
sth power of a matrix with entries Aik = 1

zi−zn+k
but, in
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particular, (A2)ik = ∑
j

1
(zi−zn+ j )(z j−zn+k ) �= 1

(zi−zn+k )2 . We use
the notion of bosonic Pfaffian-like states for those generated
by a symmetrization process applied to Halperin bilayer states
�q+s q+s q−s with q odd.

Similarly, for s even, we will call Hafnian-like states to
those obtained from Halperin bilayer states �q+s q+s q−s after
application of a total antisymmetrization or symmetrization
process. We also remark that the special case with s = 0
corresponds to states from Laughlin’s sequence.

D. Generalization to multilayer systems

The above construction can be generalized in a straight-
forward manner to multilayer systems. In particular, the most
general Halperin inhomogeneous trilayer system is of the
form

�a1a2a3b1b2b3 (ZN ) = �L(Zn1 )a1 �L( Zn2 )a2 �L( Z̃n3 )a3

× Pb1 (Z1,2)Pb2 (Z1,3)Pb3 (Z2,3), (31)

where the third cluster of particle coordinates is indicated as
Z̃n3 = (zn1+n2+1, . . . , zN ) with N = n1 + n2 + n3, and, to sim-
plify the notation, we denote Z1,2 = Zn1 � Zn2 , Z1,3 = Zn1 �
Z̃n3 and Z2,3 = Zn2 � Z̃n3 . The generalized angular momentum
condition (i.e., the trilayer analog of Halperin’s constraint)
takes the form

n1a1 + n2b1 + n3b2 = n2a2 + n2b1 + n3b2

= n3a3 + n1b2 + n2b3, (32)

where all ai and bi, i = 1, 2, and 3, share the same parity.
The case a1 = a2 = a3 = a and b1 = b2 = b3 = b (with n1 =
n2 = n3 = n, the homogeneous case) leads to a filling factor
ν = 3

a+2b . The generalization of the latter homogeneous case
for nl layers gives ν = nl

a+(nl −1)b .
In this way, for instance, one can generate from

�333111(ZN ) (after antisymmetrization) a ν = 3/5 fermionic
fluid state with bulk root pattern {11100}. The resulting wave
function �3/5(ZN ) is then of the form

A3n

{
�L(Zn1 )�L(Zn2 )�L(Z̃n3 )

P1(Z1,2)P1(Z1,3)P1(Z2,3)

}
�L(ZN )2. (33)

The most general (homogeneous, trilayer) case is associated
to

O3n

{(
�L(Zn1 )�L(Zn2 )�L(Z̃n3 )

)s

Ps(Z1,2)Ps(Z1,3)Ps(Z2,3)

}
�L(ZN )q, (34)

with parametrization a = q + s, b = q − s, whose filling fac-
tor is ν = 3

3q−s .
Our SMC can be represented schematically in terms of

(undirected) graphs with vertices corresponding to particle
labels i, j = 1, . . . , N , and edges 〈i j〉 which are associated
to the polynomial zi − z j . Figure 1 illustrates the correspon-
dence for a trilayer system. Laughlin factor �

al
L in layer l =

1, 2, and 3 is represented by a complete multigraph Kal
nl

on
nl vertices with all edges of multiplicities al . Pairing among
layers is pictured as edges connecting those three complete
multigraphs, with multiplicities identified with pairing ex-
ponents. The resulting Halperin multilayer state is mapped
onto a complete multigraph. In particular, for a1 = a2 = a3 =

FIG. 1. Complete multigraph representing the Halperin trilayer
state �a1a2a3b1b2b3 . Kal

nl
stands for a complete multigraph on nl vertices

with edges of multiplicities al , l = 1, 2, and 3.

b1 = b2 = b3 = a, we obtain a complete multigraph of N =
n1 + n2 + n3 vertices with all edges of multiplicity a which
realizes a Laughlin state. In general, every distinct complete
multigraph of N vertices represents a pattern of zeros of the
corresponding polynomial.

E. Hierarchical construction

Starting with a family of Halperin multilayer systems we
obtained single-layer LLL states with particular filling factors
ν. Let us now generalize this construction and propose a new
hierarchical scheme.

We begin writing a Halperin bilayer state (n1 = n2 = n) in
the following manner, where notation will become clear in a
moment,

�
(0)
a(0)

1 a(0)
2 b(1)

(Z2n) = �L(Zn)a(0)
1 �L( Zn)a(0)

2 Pb(1) (Z2n), (35)

where �L(Zn)a(0)
1 = �

(0)
a(0)

1 00
(Zn) and �L( Zn)a(0)

2 = �
(0)
0a(0)

2 0
( Zn)

are the (polynomial parts of) Laughlin’s wave functions with
powers a(0)

1 and a(0)
2 , respectively. The pairing between layers

is indicated by Pb(1) (Z2n) = ∏
i,k (zi − zn+k )b(1)

. We stress that

all parameters, a(0)
1 , a(0)

2 , and b(1), used in this construction
are chosen with the same parity. Let O ∈ {A,S} be either an
antisymmetrization or a symmetrization operation, depending
on the nature of the state. Defining

�
(1)
a(0)

1 a(0)
2 b(1)

(Z2n) = O2n�
(0)
a(0)

1 a(0)
2 b(1)

(Z2n) (36)

corresponds to the families of wave functions described in
previous sections.

Assume now that two sets of numbers, {a(0)
1,1, a(0)

1,2, b(1)
1 } and

{a(0)
2,1, a(0)

2,2, b(1)
2 }, are given. Following the above prescription

we can generate two new wave functions

�
(1)
a(0)

1,1a(0)
1,2b(1)

1

(Z2n) and �
(1)
a(0)

2,1a(0)
2,2b(1)

2

(Z2n). (37)

Imagine a situation where we put these two new states on two
layers and introduce pairing between them,

�
(1)
a(1)

1 a(1)
2 b(2)

(Z4n) = �
(1)
a(0)

1,1a(0)
1,2b(1)

1

(Z2n)� (1)
a(0)

2,1a(0)
2,2b(1)

2

(Z2n)

× Pb(2) (Z4n), (38)

where a(1)
1 = {a(0)

j,1}2
j=1, a(1)

2 = {a(0)
j,2}2

j=1 and b(2) = {b(1)
j }2

j=1.
Again, only wave functions being of the same bosonic (re-
spectively fermionic) nature can be paired together, and the
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pairing term has to have an even (respectively odd) exponent.
This new Halperin-like state can be then used to produce a
new state within the LLL:

�
(2)
a(1)

1 a(1)
2 b(2)

(Z4n) = O4n�
(1)
a(1)

1 a(1)
2 b(2)

(Z4n). (39)

This hierarchical procedure can be continued. Starting from a
set {{a(0)

j,1, a(0)
j,2, b(1)

j }}2�

j=1, we can construct the �th level hierar-
chy wave function recursively:

�
(�)
a(�−1)

1 a(�−1)
2 b(�)

(Z2�n) = O2�n�
(�−1)
a(�−1)

1 a(�−1)
2 b(�)

(Z2�n) (40)

with parameters a(�−1)
i = {a(0)

j,i }2�

j=1 for i = 1, 2, and

b(�) = {b(1)
j }2�

j=1.
There is a series of natural questions that arises. First

of all, suppose that in the SMC, we produce a state of the
filling factor ν. By the discussion in the previous sections, we
already know that any such a filling factor can be obtained
already after one step of the hierarchy scheme, possibly with
different Laughlin’s powers a1, a2 and the pairing parameter
b. Therefore, from this perspective, one can then think that a
one-step hierarchy is enough to generate any possible states.
Is it indeed the case? In other words, what is the complete set
of characteristics that fully distinguishes states with the same
filling factor but differing in the level in the hierarchy?

Secondly, the above hierarchical scheme is not the only
possible one that one can deduce from generalizing the con-
struction performed on the first level. For a reason that will
be clear in a moment, we refer to this specific hierarchical
construction as a symmetric scheme. Starting from 2�-layered
system we can choose any order of interlayer antisymmetriza-
tions or symmetrizations. More generally, let us have p layers
of Laughlin’s states characterized by a1, . . . , ap, respectively.
We can perform O′s operations in several orders and for
different subsets of layers. For example, for a trilayer system,
we can choose, e.g., the following:

�a1�a2�a3

O12−−→ O12(�a1�a2 )�a3

O12,3−−→
O12,3−−→ O12,3(O12(�a1�a2 )�a3 )

(41)

or

�a1�a2�a3

O23−−→ �a1O23(�a2�a3 )
O12,3−−→

O12,3−−→ O1,23(�a1O23(�a2�a3 )),
(42)

etc. The natural question of equivalence between different
schemes arises. One would like to rigorously classify all such
schemes and group them into suitable equivalence classes.
Last but not least, one can ask about potential generalizations
of the above hierarchical construction beyond the n1 = n2 = n
case. We leave these problems for future research.

The hierarchical scheme includes, as a particular case,
the multilayer construction of the last section. Consider the
ν = 3/5 fluid state discussed in Sec. II D. We next show
that this state can also be obtained from our hierarchical
construction, e.g., by using the scheme from Eq. (41) with
a1 = a2 = a3 = 3 and the interlayer pairing given by P1 for
all pairs of layers. If b1 = b2 = b3 = b, the wave function
�L(Z̃n3 )a3Pb2 (Z1,3)Pb3 (Z2,3) is symmetric with respect to the
Z1,2 variables. Since A3n = A3n ◦ A2n, this means that the

total antisymmetrization of the wave function �a1a2a3bbb of
Eq. (31) can be written as

A3n
[
A2n

(
�L
(
Zn1

)a1
�L
(
Zn2

)a2Pb(Z1,2)
)

× �L
(
Z̃n3

)a3Pb(Z1,3)Pb(Z2,3)
]
. (43)

Notice that Pb(Z1,3)Pb(Z2,3) represents the pairing between
Z1,2 and Z̃n3 . For a1 = a2 = a3 = q + 1 and b = q − 1, this
can be further rewritten as

A3n
(
�

q
Pf (Z1,2)�L

(
Z̃n3

)q+1Pq−1(Z1,3)Pq−1(Z2,3)
)
. (44)

In particular, for the 333111 state, we have q = 2 and the
resulting wave function is

A3n
(
�MR(Z1,2)�L

(
Z̃n3

)3P1(Z1,3)P1(Z2,3)
)
. (45)

A natural question arises: which state among the ones with
the same filling fraction corresponds to an incompressible
fluid? Motivated by the analysis of Pfaffian and Hafnian fam-
ilies and other multilayer families of states we postulate the
following conjecture.

Conjecture. (K-incompressibility.) Given the filling fac-
tor ν, the bulk root pattern corresponding to an infinite-size
(translationally and rotationally invariant) interacting particle
Hall system having the smallest Kolmogorov complexity and
minimal total angular momentum J is associated with an
incompressible FQH fluid.

According to this conjecture, the aforementioned ν = 3/5
state qualifies as a possible candidate for an incompressible
FQHE fluid state.

III. QUASIPARTICLE EXCITATIONS

A. Quasiholes

Our next goal is to determine the quasihole and quasipar-
ticle excitations of the states (vacua) obtained by the SMC
presented in the previous section. For the MR state, the funda-
mental quasihole excitations were proposed to consist of two
quasiholes [19,20] located at different positions η1, η2 in the
plane, with corresponding wave functions

�
2qh
MR;η1,η2

(Z2n) ≡ �
q=2,2qh
Pf;η1,η2

(Z2n)

= Pf2n

(
(zi − η1)(z j − η2) + (i ↔ j)

zi − z j

)
× �L(Z2n)2. (46)

This object can be interpreted as a charge-|e|/2 vortex, and
every single quasihole possesses a charge −e/4 (e is the ele-
mentary charge of the fluid’s particle, typically, the electron)
[31]. The generalization of the above wave function to a sys-
tem of arbitrary even number of quasiholes was also studied
[32], and the braiding properties of quasiholes in the MR state
led to the concept of non-Abelian statistics.

Since Halperin’s construction is a straightforward general-
ization of Laughlin’s fluid to bilayer systems, it is natural to
insert two Laughlin’s quasiholes in the Halperin �331 state,
one per layer, and conjecture that after antisymmetrization
with respect to all particle coordinates, one ends up with a
system of two quasiholes in the MR fluid. This was observed
in Ref. [13]. Here we present explicit proof of this fact and
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generalize the procedure for multilayer systems. In particu-
lar, we consider both fermionic and bosonic Halperin bilayer
states �q+1 q+1 q−1 on an equal footing.

The general quasihole construction proceeds as follows.
We start with Halperin bilayer state �a1a2b and obtain its
(anti)symmetrized version O�a1a2b. Quasiholes for this vac-
uum can be generated as

O
{
�

a1,m1
L,η1

(Zn)�a2,m2
L,η2

( Zn)Pb(Z2n)
}
, (47)

where

�
al ,ml
L,η (Zn) =

n∏
i=1

(zi − η)ml �L(Zn)al (48)

represents a cluster of ml quasiholes at η in the ν = 1
al

Laugh-
lin’s fluid in layer l = 1, 2. We now demonstrate that this
construction indeed reproduces the MR quasiholes from (46)
(m1 = m2 = 1).

Let us start motivating the proof with the simplest case
of N = 2 particles, one per layer and m1 = m2 = 1. Then,
�331(Z2) = z1 − z2, and �

2qh
331;η1,η2

= (z1 − η1)(z2 − η2)(z1 −
z2). Its antisymmetrization leads to

A2n�
2qh
331;η1,η2

(Z2) = 1
2 [(z1 − η1)(z2 − η2)

+ (z1 − η2)(z2 − η1)](z1 − z2). (49)

On the other hand, the wave function for the two-quasihole
system in the MR state, as proposed in Ref. [19], is given by
(46) with n = 1. Since Z2 has only two elements, the Pfaf-
fian reduces to (z1−η1 )(z2−η2 )+(z2−η1 )(z1−η2 )

z1−z2
, while the Laughlin’s

factor is simply (z1 − z2)2. Therefore the resulting wave func-
tion for two quasiholes in the MR state coincides (up to an
irrelevant constant factor) with the one obtained from the
construction above.

Consider now the Pfaffian state with any even number of
particles N = 2n. For m1 + m2 = m Laughlin quasiholes in
Halperin bilayer state �q+1 q+1 q−1, with ml quasiholes in-
serted in layer l = 1, 2, the wave function is given by

�
(m1,m2 )
q+1 q+1 q−1; η1,η2

(Z2n) = εn

n∏
i=1

(zi − η1)m1

n∏
k=1

(zn+k − η2)m2

× detn

(
1

zi − zn+k

)
�L(Z2n)q, (50)

Its antisymmetrization leads to the Pfaffian state,

A2n

[
n∏

i=1

(zi − η1)m1

n∏
k=1

(zn+k − η2)m2 detn

(
1

zi − zn+k

)]

= − (n!)2

(2n)!
Pf2n

(
(zi − η1)m1 (z j − η2)m2 + (i ↔ j)

zi − z j

)
.

(51)

For details of the proof see Appendix B. This means that the
addition of m1 = m2 = 1 Laughlin quasiholes in layers of the
Halperin bilayer state �q+1 q+1 q−1 leads to quasiholes in the
Pfaffian state consistent with the proposal for the MR fluid.

We performed variational Monte Carlo simulations to vi-
sualize a Pfaffian fluid with quasiholes. In order to implement
this efficiently, we used the algorithm discussed in detail in

Appendix D. For a system with 50 particles per layer, we
study three situations that differ by the positions of the two
quasiholes. Lengths are measured in units of the magnetic

length � =
√

h̄c
|e|B , where B is the magnetic field strength,

c the speed of light, and |e| the magnitude of the elemen-
tary charge. In each case, we place them symmetrically,
at positions (η1, η2) = (0, 0), (η1, η2) = (−2.5�, 2.5�) and
(η1, η2) = (−10�, 10�), respectively. We will use units s.t.
� = 1. The resulting three-dimensional density plots for these
systems are shown in Figs. 2(a)–2(c). To improve visual-
ization of the characteristic features of these systems, we
reduce the opacity and present these data in panels (d)–(f),
respectively, as well as we provide in panels (g)–(i) the two-
dimensional projection of the corresponding density plots.
Panels (j)–(l) show the corresponding radial densities. We
remark that in those cases where the quasiholes are not lo-
cated at the origin [cases (k) and (l)], the lack of cylindrical
symmetry influences the depth of the valleys present in these
plots.

To determine the value of the charge of such excitations,
we performed Monte Carlo simulations for a system with 100
particles per layer, located two quasiholes at the origin (to take
advantage of the circular symmetry), see Fig. 3, and made use
of the expression

δρ = 2π

∫ rcutoff

0
[ρ(r) − ρPf (r)]rdr, (52)

where ρ(r) stands for the radial density with quasiholes and
ρPf (r) is the radial density of the homogeneous Pfaffian fluid.
The cutoff radius rcutoff has to be chosen such that the entire
quasihole is contained within a disk of this radius and, simul-
taneously, its value must be sufficiently smaller than the size
of the droplet to avoid influence from the boundary of the
droplet [33]. Here we choose 0 � rcutoff � 20�, and observe
the saturation of δρ at |e|/2, as expected for the MR state
with two quasiholes at the same position. (The mean value
computed in the range 10� � rcutoff � 20� is 0.496(1)|e|.)
Since the two dips in the density profile present in the state
�

2qh
MR;η1,η2

(Z2n) (with positions η1 and η2 well separated) are
identical, each of them possesses the elementary charge |e|/4.

It has been postulated [27] that a single quasihole excita-
tion in the MR fluid can be effectively described by the wave
function

�
1qh
MR;η = Pf2n

(
zi + z j − 2η

zi − z j

)
�L(Z2n)2. (53)

We have performed a Monte Carlo simulation for this sys-
tem with 2n = 100 particles and η = 0. The resulting density
profiles as well as the computation of the quasihole charge
are shown in Fig. 4. The latter saturates at δρ = |e|/4.
(The mean value computed in the range 7� � rcutoff � 14�

is 0.251(1)|e|.) We also notice that the size of this single
quasihole agrees with the size of each of the two quasiholes
that form the paired state �

2qh
MR;η1,η2

when they are well-
separated (e.g., in the case with η1 = −η2 = 10�), as well as
with the size of the excitation formed when η1 = η2 = 0. To
quantitatively check this fact, we performed Monte Carlo sim-
ulations with 2n = 100 particles for �

1qh
MR;η1

+ �
1qh
MR;η2

− �MR,
when (η1, η2) = (−2.5�, 2.5�) and (η1, η2) = (−10�, 10�),
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 2. [(a)–(c)] Density profiles ρ(z) (in units of the uniform density ρ0 = ν

2π
) for the MR system with two paired quasiholes located

at (η1, η2) = (0, 0), (−2.5�, 2.5�) and (−10�, 10�), respectively. [(d)–(f)] Density profiles from (a)–(c), respectively, with reduced opacity.
[(g)–(i)] Contour plots for density profiles from (a)–(c), respectively. The size of the corresponding excitations is marked by arrows. [(j)–(l)]
Normalized radial densities ρ(r) from the panels above.

and analyzed the difference from the density corresponding
to �

2qh
MR;η1,η2

. The results are shown in Fig. 5.

FIG. 3. Normalized radial density for the MR system with 2n =
200 particles (green) and for the two paired quasiholes located at
η1 = η2 = 0 (blue). (Inset) Computation of the charge δρ as a func-
tion of rcutoff , according to (52).

We notice that when (η1, η2) = (−2.5�, 2.5�) we clearly
see a substantial discrepancy near the origin. However,
when the two paired quasiholes are well-separated (i.e., for

(a) (c)

(b)

FIG. 4. Single quasihole (53) located at η = 0 for the MR fluid
with 2n = 100 particles. (a) The three-dimensional normalized den-
sity profile (as a function of z = x + iy), with reduced opacity in the
figure. (b) The charge δρ as a function of rcutoff , computed according
to Eq. (52). (c) Contour plot with the size of the excitation indicated.
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(a) (b)

FIG. 5. Difference in densities (as a function of z = x + iy) be-
tween the state of two isolated quasiholes, each of them defined
by (53), and the one with paired quasiholes obtained according
to the (anti)symmetrization procedure for (a) quasiholes located at
(η1, η2) = (−2.5�, 2.5�) and (b) quasiholes located at (η1, η2) =
(−10�, 10�).

(η1, η2) = (−10�, 10�)), the difference is below 3%, which is
within statistical uncertainty. In other words, from a charge
density perspective, the MR state with well-separated quasi-
holes in the paired state behaves like the one with two
independent single quasiholes, each of them described by
(53). This seemingly surprising observation can be under-
stood from the perspective of Halperin bilayer systems. In the
original MR construction quasiholes in Pfaffian fluids were
always appearing in pairs. However, allowing for arbitrary
combinations of quasiholes in the two layers, we see that
the wave function given by (53) is nothing else than the
(anti)symmetrization of the system with a single Laughlin’s
quasihole placed in only one of the two layers (arbitrarily
chosen). In other words, the system of two paired but well-
separated quasiholes is densitywise equivalent to the one with
two single quasiholes, both systems obtained from the bilayer
construction. Indeed, our quasihole construction is flexible
enough to accommodate all possible combinations of Laugh-
lin’s quasiholes per layer.

For different distributions of quasiholes per layer in the MR
fluid, we performed Monte Carlo simulations with 2n = 100
particles and η1 = η2 = 0, obtaining density profiles and their
corresponding charges. In Fig. 6, we show that the case of
three quasiholes in a single layer differs significantly from
the one with two of the quasiholes in the first layer and the
remaining one inserted in the second layer. However, both of
them lead to a charge 3|e|/4, as expected for a system of three
quasiholes at the same position, each of charge |e|/4—see
Fig. 7. We observe the following additive property for the
charges of quasiholes: the total charge of an excitation at η

consisting of a given number of quasiholes (regardless of its
distribution between layers) is the multiplicity of the charge
of a single excitation. Furthermore, for quasiholes obtained
from the (anti)symmetrization of a Halperin bilayer system
with one quasihole in the first layer and two quasiholes in
the second one, if the positions of the quasiholes in particular
layers are different (and they are well-separated), then the
quasihole charge located at η is proportional to the exponent
associated to that position. We illustrate this point on the
MR state with 2n = 100 particles and the aforementioned

FIG. 6. Normalized radial density for the MR state with 50 par-
ticles per layer and with different distribution of 3 quasiholes: all
of them in one layer only vs one of them in the first layer and the
remaining two in the second one.

distribution of quasiholes at η1 = −10� and η2 = 10�—see
the resulting density plot in Fig. 8.

However, agreement in density profiles does not necessar-
ily mean that the system of well-separated paired quasiholes
and the ones obtained as a superposition of two single ones
are indeed fully equivalent. For that to be true, one has to
also examine the Berry connection and compute the braiding
statistics, which is beyond the scope of the current paper. In a
rigorous proof, one should demonstrate that for |η1 − η2| 
 1
the Pfaffian factor in �

2qh
MR;η1,η2

splits into two pieces, each
of them corresponding to a single quasihole. The subleading
term for the computation of the charge might become crucial
for examining the statistics. We postpone rigorous study of
these aspects for future research. Here we concentrate only on
the charge density aspects.

The above quasihole construction can be applied to any
member of the Pfaffian and Hafnian families of states as
well as any states obtained from Halperin bilayer systems. In
particular, notice that

S2n

[
n∏

i=1

(zi − η1)(zn+i − η2)
n∏

i< j

(zi − z j )
4(zn+i − zn+ j )

4

]

= (n!)2

(2n)!
Hf2n

[
(zi − η1)(z j − η2) + (i ↔ j)

(zi − z j )2

]
�L(Z2n)2,

(54)

and, therefore, the symmetrization or antisymmetrization of
the Halperin’s state �q+2 q+2 q−2 with quasiholes inserted one
per layer leads to the system of two quasiholes in the Hafnian
state:

�
q
Hf;η1,η2

= Hf2n

[
(zi − η1)(z j − η2) + (i ↔ j)

(zi − z j )2

]
�L(Z2n)q.

(55)
In order to prove the above claim (54) we follow exactly the
same steps as for the Hafnian state without quasiholes—see
Appendix C where we consider the more general case of m1 +
m2 = m quasiholes.
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(a) (b)

(c) (d)

FIG. 7. Computation of the charge of quasiholes δρ as a function of rcutoff , according to (52), for the MR system with 2n = 100 particles.
(a) One quasihole in the first layer and two of them in the second one, (b) three quasiholes in a single layer and no quasiholes in the other,
(c) two quasiholes per layer, and (d) three quasiholes per layer. All quasiholes are located at the origin of the disk.

B. Fusion mechanism for quasielectrons

In this section, we show how to generate quasiparticle
(quasielectron) excitations in topological fluids derived from
our SMC. The idea behind the generation of these quasi-
particles is rooted in the fusion mechanism discovered in
Ref. [3], which is based on the algebraic concept of particle
fractionalization [3]. For a Laughlin fluid with filling factor
ν = 1/a the analytical form of the quasielectron wave func-
tion was rigorously derived in Ref. [3] from the requirement
that placing a of them at the same position is equivalent to
localizing a single electron. The resulting quasielectron is
effectively a composite object, made out of a − 1 quasiholes
and 1 electron, possessing the right quantum numbers (charge
and exchange statistics). Furthermore, it can be shown that it
also has the correct value of the topological spin introduced in
Ref. [34] and satisfies the spin-statistics relation in the sense
of Ref. [35].

FIG. 8. Two quasiholes in the MR fluid with 2n = 100 particles,
obtained from a Halperin bilayer system with one quasihole in the
first layer placed at η1 = −10� and two in the second one at η2 =
10�. The two dips corresponding to different number of quasiholes
at a given position differ in size.

Here we make use of the latter fusion mechanism and con-
struct quasiparticle excitations in properly (anti)symmetrized
Halperin multilayer systems. In other words, a quasielectron
is defined by placing a localized bare electron on top of m el-
ementary quasiholes with the constraint that the quasielectron
density satisfies the fusion rule: ρqp(z) = mρqh(z) + ρe(z),
where ρe(z) is the density of a bare electron. This leads to
an “effective plasma analogy” [3]: Since the quasielectron
emerges out of the fusion of a bare electron with a cluster
of quasiholes, and for the latter there exists a (local) plasma
analogy, we can infer its universal characteristics.

Based on the properties of quasiholes observed in
Sec. III A, we consider next a single isolated quasiparticle ex-
citation. To determine the number m of elementary quasiholes
required to generate a quasiparticle of a given charge eqp, we
notice that the elementary charge of a single quasihole in a
topological fluid with ν = 2

a+b is e∗ = − e
a+b . This implies the

following relation:

me∗ + e = eqp. (56)

For quasiparticles having charges eqp = −d e∗ with some pos-
itive integer d , this condition leads to m = a + b − d > 0.
Since m quasiholes can be distributed among the various
layers in many different ways, there are several potentially
inequivalent choices leading to the same total charge. Let ml

denote the number of quasiholes placed in the lth layer. For
the sake of clarity, we next focus on the case of two layers.

In order to compactly represent our construction, we de-
note by [Q1

Q2
]
b

the bilayer system with quasihole excitation
of type Q1 in the first layer, and of type Q2 in the second
one. For Laughlin’s fluids with filling factor 1/a, we denote
by QHa(η) its corresponding quasihole (located at η) wave
function. In particular, we have observed before that in the
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limit |η1 − η2| 
 1 the following holds:

O
[

m1QHa(η1)

m2QHa(η2)

]
b

= m1QH (η1) � m2QH (η2), (57)

with O representing either a symmetrization or antisym-
metrization operation depending on the parity of a, and
QH (η) defining a single quasihole (located at η) wave func-
tion of the fluid obtained from the bilayer system following
our construction. Here, the disjoint union symbol � stresses
the fact that the two quasiholes are well-separated. Note that,
in general, for m1 + m2 = m′

1 + m′
2

O
[

m1QHa(η)

m2QHa(η)

]
b

�= O
[

m′
1QHa(η)

m′
2QHa(η)

]
b

. (58)

Furthermore, the fusion mechanism from Ref. [3] can be
symbolically written as

QEa(η) = (a − 1)QHa(η) ⊕ e(η), (59)

with ⊕ representing the operation of fusion of the correspond-
ing objects.

We now postulate the following fusion mechanism for a
single quasiparticle (quasielectron) of charge eqp = me∗ + e
in arbitrary fluids obtained from bilayer systems

QE (η) = O
[

m1QHa(η)

m2QHa(η)

]
b

⊕ e(η), (60)

where m1 + m2 = m. Using the parametrization a = q + s,
for s = 1, the corresponding wave function is

�
q;(m1,m2 )
Pf;η (Z2n+1)

= O2n+1

{
e

z2n+1η∗
2 Pf2n

[
(zi − η)m1 (z j − η)m2 + (i ↔ j)

zi − z j

]
× �L(Z2n)q

}
, (61)

while for s = 2, we have

�
q;(m1,m2 )
Hf;η (Z2n+1)

= O2n+1

{
e

z2n+1η∗
2 Hf2n

[
(zi − η)m1 (z j − η)m2 + (i ↔ j)

(zi − z j )2

]
× �L(Z2n)q

}
. (62)

The choice of m1 and m2 whose sum is m is obviously not
unique. We illustrate the above construction considering the
MR state. Since this state is realized by the antisymmetriza-
tion of Halperin’s �331 state (q = 2), the elementary charge
is e/4, and for d = 1 we have m = 3. Hence there are two
potential distributions of quasiholes: (a) two of them in the
first layer and the remaining one in the second one, or (b) all
three quasiholes in a single layer. It turns out that only case (a)
leads to the correct fusion of charge densities. To numerically
prove this statement, we performed Monte Carlo simulations
for a small number of particles, a stringent test.

In Fig. 9, we present the corresponding (normalized) den-
sity profiles for a system with n = 5 particles per layer and
(m1, m2) = (1, 2) quasiholes located at η = 0 (a single quasi-
particle requires, by construction, one additional particle, i.e.,

●

■
▼

FIG. 9. Test of the fusion mechanism for the MR state with n = 5
particles per layer. The (normalized) radial density of the composite
charge-e/4 quasielectron satisfies the required fusion rule: it agrees
with the sum of the density of a state obtained from the bilayer
system with two quasiholes in one layer and the remaining one in
the second layer, and the density of a single electron. All quasiholes
as well as the electron are placed at the origin of the disk.

a system with 11 particles in total). Figure 9 clearly shows
the fusion mechanism at work, i.e., the QE and (1 + 2)QHs+
electron are indistinguishable.

Similar computations show also a violation of the fusion
rule for case (b), i.e., (m1, m2) = (3, 0)—see Fig. 10. The
significant discrepancy originates from the fact that, in this
case, the system of quasiholes has a high density at the origin
(see also Fig. 6 for results obtained for a larger system with
no impact from the boundary and a density at the origin of
∼0.8). Adding a Gaussian distribution representing the (prop-
erly normalized) radial density of a single electron, ρe(r) =
2e−r2/2, to the cluster density of quasiholes (three quasiholes
in the same layer), does not match the density of this type,
(m1, m2) = (3, 0), of quasielectron excitation.

The charge-e/4 quasielectron in the MR state is then con-
structed in a nontrivial way. We have to first realize, in a

●

■
▼

FIG. 10. Test of the fusion mechanism for the MR state with n =
5 particles per layer. The potential quasielectron is constructed on top
of a Halperin bilayer system with three quasiholes in a single layer.
All quasiholes as well as the electron are placed at the origin of the
disk. The fusion rule is clearly violated in this case.
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● 
■
▼

FIG. 11. Test of the fusion mechanism for the MR state with
n = 5 particles per layer. The (normalized) radial density of the
composite charge-e/2 quasielectron satisfies the required fusion rule:
it agrees with the sum of the density for a state obtained from the
bilayer system with one quasihole per layer and the density of a
single electron. All quasiholes as well as the electron are placed at
the origin of the disk.

very specific way [(m1, m2) = (1, 2)], a cluster of quasiholes
located at η and then add a single electron at the same posi-
tion η. Only particular values of (m1, m2) satisfy the fusion
mechanism. We claim that these are the proper quasiparticle
excitations. Can one anticipate what are those proper (m1, m2)
values? Are all possible quasiparticle excitations in one-to-
one correspondence with those (m1, m2) satisfying the fusion
mechanism? Consider again the case of the MR fluid. We may
wonder whether a charge-e/2 quasielectron excitation for the
MR state does comply with our fusion mechanism. To satisfy
the latter we need in principle two quasiholes. Remarkably,
it turns out that the choice (m1, m2) = (1, 1) does the job.
In Fig. 11, we demonstrate (for a small number of particles)
that the resulting quasielectron indeed satisfies the fusion rule.
Density profiles for both charge-e/4 and charge-e/2 quasi-
electrons, located at the origin, are displayed in Fig. 12.1

1One could naively think that quasielectrons should be obtained
by (anti)symmetrizing Halperin bilayer systems with quasielectrons
placed in each Laughlin layer. In the case of the fermionic Halperin’s
�q+1 q+1 q−1 states (i.e., with q even) the corresponding wave function
would then be given (up to global normalization and a Gaussian
factor) by the total antisymmetrization of

An

⎡⎣e
znη∗

1
2

n−1∏
k=1

(zk − η1)q
∏

1�i< j�n−1

(zi − z j )
q+1

⎤⎦
× An

⎡⎣e
z2nη∗

2
2

n−1∏
k=1

(zn+k − η2)q
∏

1�i< j�n−1

(zn+i − zn+ j )
q+1

⎤⎦
×

n∏
i,k=1

(zi − zn+k )q−1. (63)

This construction, however, is not satisfactory. In particular, it is
impossible to generate a single charge-e/2 quasielectron satisfying
the fusion rule since, because of the Pauli exclusion principle, we

(a) (b)

FIG. 12. Density profiles ρ(z) for (a) a charge-e/4 quasielectron
and (b) a charge-e/2 quasielectron. Monte Carlo simulations were
performed for a system with n = 5 particles per layer. The two types
of excitations have identical amplitudes at the origin and, therefore,
the charge-e/2 quasielectron exhibits a broader density profile.

C. Fusion mechanism for magnetoexcitons

Having established both quasiholes and quasielectrons in
arbitrary LLL topological fluids, we now postulate a particular
form of magnetoexciton: objects composed of these two types
of excitations. We first generate, within our bilayer construc-
tion, clusters of quasiholes necessary to realize a quasielectron
at η1, and an additional quasihole at η2. We then put an
extra electron at η1. In other words, this construction reads
symbolically

ME(η1, η2) = O
[

m1QHa(η1) ⊕ QHa(η2)

m2QHa(η1)

]
b

⊕ e(η1). (64)

The mathematical structure of this object allows also for ef-
ficient Monte Carlo simulations since the first summand is
easily implementable due to the Cayley formula [36]. The
above equality can be understood as an effective plasma anal-
ogy for magnetoexcitons. In particular, our findings provide a
concrete proposal to resolve the issue anticipated in Ref. [37]:
“Unfortunately, accurate and well-tested wave functions of the
quasiparticle-quasihole excitations at 5/2 are still lacking.”

We now determine the magnetoexcitons that can exist in
a fluid obtained from the SMC. Since for |η1 − η2| 
 1 we
expect this system to reduce to QE (η1) � QH (η2), the allowed
values (m1, m2) should be the ones for the quasielectrons
satisfying the fusion mechanism. On the other hand, for η :=
η1 = η2, the system reduces to

ME(η) = O
[

(m1 + 1)QHa(η)

m2QHa(η)

]
b

⊕ e(η), (65)

therefore an additional constraint on m1 arises: 0 � m1 + 1 <

a. Moreover, the counting of total charge introduces yet an-
other constraint,

m1 + m2 = a + b − 1. (66)

For example, for the MR state (a = 3, b = 1) the latter
implies that charge-e/2 quasielectrons cannot form magne-
toexcitons since they originate from (m1, m2) = (1, 1). The
only possibilities are (m1, m2) = (2, 1), (1, 2), but the former

cannot put two electrons at the same position. In contrast, our above
construction provides both charge-e/4 and charge-e/2 quasielectrons
satisfying the fusion rule.
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fails to satisfy m1 + 1 < 3. Therefore, for the MR state, the
magnetoexcitions result from charge-e/4 quasielectrons with
(m1, m2) = (1, 2).2 The wave function of this magnetoexciton
(located at the origin) is therefore of the form

�me
MR;0 ∝ A2n+1

{
Pf2n

(
2z2

i z2
j

zi − z j

)
�L(Z2n)2

}
. (67)

We remark that it is a generic situation that only quasielectrons
of the most elementary charge can merge with a quasihole into
a single magnetoexciton due to charge counting.

D. Comparison with local exclusion conditions

In Ref. [38], an alternative characterization of QH states
was introduced, leading to the so-called local exclusion con-
ditions (LEC). In the LEC formalism, concrete predictions
for the excitations in FQH fluids were made [39]. Here,
we briefly compare our quasiparticles’ root states with the
ones resulting from the LEC. We analyze first the case of a
Laughlin fluid for which the quasielectron wave function was
derived in Ref. [3]. The root pattern for the ν = 1/3 Laugh-
lin fluid (N = 3 particles) reads 100100100, and adding two
quasiholes at the origin modifies the pattern into 001001001.
According to our fusion mechanism, Eq. (59), the quasielec-
tron is generated in this case by adding a bare electron on
top of the cluster of two quasiholes. The resulting root pat-
tern, computed by maximizing the quantity �J [cf. (11)], is
10100100100. Comparing this with the pattern for the N = 4
Laughlin state, 100100100100, we notice that the quasielec-
tron can be obtained by first adding two zeros from the left
(adding two quasiholes), and then flipping the leftmost one
into 1 (adding one electron). This is consistent with our fusion
mechanism [3]. However, it is different from the excitation
proposed in [39], where the order of these two operations is
opposite, resulting in 11000100100 (the so-called Type (5,3)
LEC-quasielectron [39]).

Let us extend this analysis to the MR state and its excita-
tions. The root pattern for the N = 4 MR fluid, determined
by the maximization of �J reads 11001100, while for the
systems with (2 + 1) and (1 + 1) quasiholes in the two layers
the root patterns are 01010101 and 01100110, respectively.
For the charge-e/4 quasielectron, the corresponding root pat-
tern reads 11010101 (N = 5), while for charge-e/2 we have
11100110. We immediately see, by comparing the above pat-
terns to those with quasiholes, that this procedure is again
consistent with the fusion mechanism. In other words, first
produce a cluster of quasiholes and then add one electron,
where the latter corresponds to flipping the leftmost 0 into
1. By comparing root patterns, we notice that our charge-e/2
quasielectron is identical to the Type (5,3) LEC-QE studied
in Ref. [39]. For a system with two quasiholes per layer in

2We remark that quasielectrons resulting from taking (m1, m2) or
(m2, m1) quasiholes in the two layers are identical. What really mat-
ters for the construction of magnetoexcitons is where the additional
quasihole is placed. This determines which combination out of these
two should be taken in this construction. One can equally define the
magnetoexciton by reverting the two layers. This will lead to the
same final state.

the MR state, the root pattern is 00110011 (N = 4), while for
the magnetoexciton given by (67) it reads 10110011, again,
consistent with our fusion mechanism. On the other hand, this
excitation is different from the neutral one studied in Ref. [39].

Finally, we remark that for the (bosonic) Hafnian state �2
Hf

of Eq. (21), we expect the quasiparticles and magnetoexcitons
to be characterized by the same parameters as in the case of
the MR state �2

Pf . This is motivated by the observation that
a + b = 4 + 0 = 3 + 1. We did not perform MC simulations
to verify these statements; however, under this assumption,
one can determine root patterns for all the excitations corre-
sponding to the state �2

Hf . In this case, for the bare Hafnian
with N = 4 the root pattern is 2000200, while for its charge-
e/4, charge-e/2 quasiparticles and magnetoexciton they read
1200002, 1200020, and 1020002, respectively.

IV. TOPOLOGICAL QUANTUM ORDER: GENERALIZED
COMPOSITE OPERATORS

Unveiling the intrinsic topological quantum order inherent
in FQH fluids is fundamental for their classification. In this
section, we make use of a second quantization representation
to derive the composite (generalized Read) operators whose
vacuum expectation signals the ODLRO of the fluid’s corre-
lations. In Ref. [40], the second-quantized version of Read’s
nonlocal (string) order parameter for the Laughlin sequence
was explicitly derived, and in [3] we expressed the sequence
of (bosonic and fermionic) Laughlin second-quantized states
in closed form. Here we extend these ideas to non-Abelian
fluids. For simplicity, next we focus on the Pfaffian and Haf-
nian families of states, but we stress that similar ideas can be
implemented in principle for other topological fluids.

A. Pfaffian state in second quantization

We start investigating Pfaffian states in second quantization
for both q even and odd, i.e., we consider fermionic and
bosonic fluids on an equal footing. We start with a simple fact
known from linear algebra: the Pfaffian of a (2n + 2) × (2n +
2)-matrix A satisfies the recurrence relation,

Pf2n+2(A) =
2n+2∑
j=2

(−1) jA1 jPf2n(A1̂ ĵ ), (68)

where A1 j is the entry (1, j) of A, and A1̂ ĵ denotes the matrix
obtained from A by removing both first and jth row and
column.

As an immediate consequence (for details see
Appendix E), we get

�
q
Pf (Z2n+2) =

2n+2∑
j=2

(−1) j(1+q)(z1 − z j )
q−1

×
2n+2∏
l �=1, j

((z1 − zl )(z j − zl ))
q�

q
Pf ((Z2n+2)1̂ ĵ ).

(69)

We remark that for q even the first summation corresponds to
the antisymmetrization procedure, while for q odd we have
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symmetrization. The operation
∏

l �=1, j ((z1 − zl )(z j − zl ))q on
top of �

q
Pf ((Z2n+2)1̂ ĵ ) is an insertion of 2q quasiholes, q of

them at position z1 and the other q at position z j , into a state
�

q
Pf ((Z2n+2)1̂ ĵ ) of 2n particles, indexed by 2, . . . , ĵ, . . . , 2n +

2. We would like to express this flux insertion operation in the
second quantization language.

In this language, we define the LLL single-particle orbitals
in the disk geometry as φr (z) = zr

Nr
, r � 0, with normaliza-

tion Nr = √
2π2rr!, so that the integration measure D[z] =

d2ze− 1
2 |z|2 satisfies

∫
D[z](z∗)r′

zr = Nrδr,r′ . We denote cre-
ation (respectively annihilation) operators by a†

r (respectively
ar) whenever the formalism is applicable for both fermions
and bosons. Otherwise, we use instead c†

r (respectively b†
r )

when we refer exclusively to fermions (respectively bosons).
In second quantization, the field operator is defined as 
(z) =∑
r�0

φr (z)ar with adjoint 
†(z).

To establish the algebraic mechanism of fractionalization,
in Ref. [3], we used a compact representation of powers of the
quasihole operator ÛN (z) in an N-particle system in terms of

the operators (j ∈ Z)

Ŝ�

j =
{

(−1)j ∑
n1+...+na=j

en1 . . . ena , j � 0

0, otherwise
, (70)

introduced in Refs. [41,42] to establish a recurrence relation
between Laughlin’s states (ν = 1

a ) with different numbers of
particles. Here, en stands for the elementary symmetric poly-
nomial of degree n � 0, represented in second quantization
as [40]

en = 1

n!

∑
r1,...,rn

ā†
r1+1 . . . ā†

rn+1ārn . . . ār1 . (71)

Since the number of particles for Pfaffian fluids is even, N =
2n, the following follows from [3], Lemma 1 in Supplemen-
tary Notes

Û2n(z1)q =
∑
r�0

zr
1Ŝ�

2nq−r . (72)

Using these operators in a mixed (first-and-second quanti-
zation) representation we can write Eq. (69) as

�
q
Pf (Z2n+2) = (−1)q

2n+2∑
j=2

(−1) j(1+q)

[ ∑
r1,r2�0

q−1∑
l=0

(−1)l+1

(
q − 1

l

)
zr1+l

1 zq−1+r2−l
j Ŝ�

2nq−r1
Ŝ�

2nq−r2
�

q
Pf ((Z2n+2)1̂ ĵ )

]
, (73)

where we have used the binomial expansion

(z1 − z j )
q−1 =

q−1∑
l=0

(
q − 1

l

)
(−1)q−1−l zl

1zq−1−l
j . (74)

Consequently, in a pure second quantization representation, Eq. (73) reads

∣∣�q
Pf,2n+2

〉 = Nn,q

∑
r1,r2�0

q−1∑
l=0

[
(−1)l+1

(
q − 1

l

)
ā†

r1+l ā
†
q−1+r2−l Ŝ

�
2nq−r1

Ŝ�
2nq−r2

]∣∣�q
Pf,2n

〉
, (75)

where the normalization factor Nn,q = (−1)q

2(n+1) originates from the (anti)symmetrization procedure. Indeed, for fermions (q even)
the variables z j with j = 2, . . . , 2n + 2 are already properly antisymmetrized and it remains to choose z1 out of the set of 2n + 2
variables, hence the factor 1

2n+2 . On the other hand, for the bosonic case (q odd), we have Nn,q = − 1
2n+2 .

Let us illustrate the above relation with a concrete example, the MR state, i.e., the fermionic Pfaffian state with q = 2. The
four-particle state in second quantization is∣∣�q=2

Pf,4

〉 = (c̄†
5c̄†

4c̄†
1c̄†

0 − 2c̄†
5c̄†

3c̄†
2c̄†

0 + 10c̄†
4c̄†

3c̄†
2c̄†

1)|0〉, (76)

while the one with six particles can be decomposed as∣∣�q=2
Pf,6

〉 = (c̄†
9c̄†

8c̄†
5c̄†

4c̄†
1c̄†

0 − 2c̄†
9c̄†

8c̄†
5c̄†

3c̄†
2c̄†

0 + 10c̄†
9c̄†

8c̄†
4c̄†

3c̄†
2c̄†

1 − 2c̄†
9c̄†

7c̄†
6c̄†

4c̄†
1c̄†

0 + 4c̄†
9c̄†

7c̄†
6c̄†

3c̄†
2c̄†

0 + 2c̄†
9c̄†

7c̄†
5c̄†

4c̄†
2c̄†

0

− 16c̄†
9c̄†

7c̄†
5c̄†

3c̄†
2c̄†

1 − 14c̄†
9c̄†

6c̄†
5c̄†

4c̄†
3c̄†

0 + 28c̄†
9c̄†

6c̄†
5c̄†

4c̄†
2c̄†

1 + 10c̄†
8c̄†

7c̄†
6c̄†

5c̄†
1c̄†

0 − 16c̄†
8c̄†

7c̄†
6c̄†

4c̄†
2c̄†

0 + 28c̄†
8c̄†

7c̄†
6c̄†

3c̄†
2c̄†

1

+ 28c̄†
8c̄†

7c̄†
5c̄†

4c̄†
3c̄†

0 − 6c̄†
8c̄†

7c̄†
5c̄†

4c̄†
2c̄†

1 − 70c̄†
8c̄†

6c̄†
5c̄†

4c̄†
3c̄†

1 + 280c̄†
7c̄†

6c̄†
5c̄†

4c̄†
3c̄†

2)|0〉. (77)

The right-hand side of the recurrence relation reduces to

N2,2

∑
r1,r2�0

(− c̄†
r1

c̄†
r2+1 + c̄†

r1+1c̄†
r2

)
Ŝ�

8−r1
Ŝ�

8−r2

∣∣�q=2
Pf,4

〉
. (78)

The Ŝ�

j operators having a nontrivial action on four-particle states are

Ŝ�
8 = e2

4, Ŝ�
7 = −2e3e4, Ŝ�

6 = e2
3 + 2e2e4,

Ŝ�

5 = −2(e1e4 + e2e3), Ŝ�
4 = e2

2 + 2e4 + 2e1e3,

Ŝ�
2 = 2e2 + e2

1, Ŝ�
1 = −2e1, Ŝ�

0 = 1.

(79)
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By a straightforward computation, one can then easily verify
that (78) reduces to |�q=2

Pf,6 〉, in complete agreement with (75).
Equation (75) gives us the recurrence relation between

Pfaffian states with different numbers of particles, from which
we immediately infer that∣∣�q

Pf,2n

〉 = Kq,n−1Kq,n−2 . . . Kq,0|0〉, (80)

where

Kq,n = Nn,q

∑
r1,r2�0

q−1∑
l=0

[
(−1)l+1

(
q − 1

l

)

× ā†
r1+l ā

†
q−1+r2−l Ŝ

�
2nq−r1

Ŝ�
2nq−r2

]
. (81)

Let us now introduce the following operator:

K̂q,n(η1, η2) = Nn,q(η1 − η2)q−1
†(η1)
†(η2)

× Û2n(η1)qÛ2n(η2)q, (82)

for which we can show (see Appendix E) that∫
D[η1]D[η2]K̂q,n(η1, η2) = Kq,n. (83)

In Ref. [31], it was proposed to study correlations in
the MR fluid by computation of the correlation function
〈�MR|
†(z′

1)
†(z′
2)
(z1)
(z2)|�MR〉, written in terms of the

bare field operators.3 The authors used a spherical geometry
and placed the primed positions near the north pole of the
sphere, and the unprimed ones near the south pole. Their
numerical results suggest the vanishing of this parameter for
the MR state. We claim (as originally claimed in the context
of Laughlin fluids by Read [43]) that the proper correlation
function signaling the ODLRO present in these topological
fluids should consider the dressed field operators K̂q,n instead
of the bare ones, i.e., those responsible for the topological or-
der present in the fluid, when the system is gapped. Since bare
field operators do not commute with the quasihole operators,
this leads to the conclusion that the relative order of operators
in the definition of K̂q,n is important. Indeed, Eq. (82) defines
a dressed pair rather than a pair of dressed operators.

By close analogy to Ref. [3], we consider the flux-number
nonconserving quasihole operator for the Pfaffian fluids

Ûq,q(z,w) =
∑
n�0

Û2n(z)qÛ2n(w)q
∣∣�q

Pf,2n

〉〈
�

q
Pf,2n

∣∣ (84)

and define the operator

Kq =
∫

D[η1]D[η2] K̂q(η1, η2), where (85)

K̂q(η1, η2) = Nn,q(η1 − η2)q−1
†(η1)
†(η2) Ûq,q(η1, η2),

(86)

and satisfies (see Appendix E)

Kq

∣∣�q
Pf,2n

〉 = ∣∣�q
Pf,2n+2

〉
. (87)

3We adjust the notation to be consistent with the conventions we
have chosen in the present paper.

In this way, we can express the Pfaffian state in second
quantization ∣∣�q

Pf,2n

〉 = Kn
q |0〉 (88)

as a nonlocal condensation, where |0〉 is the state with no
particles.

B. Hafnian state in second quantization

Given a (2n + 2) × (2n + 2) symmetric matrix B, the
Laplace expansion for its Hafnian leads to the following re-
currence formula

Hf2n+2(B) =
2n+2∑
j=2

B1 jHf2n(B1̂ ĵ ). (89)

Following steps analogous to those considered for the Pfaffian
case, we end up with

�
q
Hf (Z2n+2) =

2n+2∑
j=1

[
(−1) jq(z1 − z j )

q−1

×
2n+2∏
k �=1, j

((z1 − zk )(z j − zk ))q�
q
Hf ((Z2n)1̂ ĵ )

]
.

(90)

In contrast to Pfaffian states, q odd corresponds now to
fermions, while q even to bosons. This is in complete agree-
ment with our previous discussion about generating Pfaffian-
and Hafnian-like states from Halperin bilayer systems.

Therefore, in the second quantization formalism, we have

∣∣�q
Hf,2n+2

〉 = Nn,q

∑
r1,r2�0

q−1∑
l=0

[
(−1)l+1

(
q − 1

l

)

× ā†
r1+l ā

†
q−1+r2−l Ŝ

�
2nq−r1

Ŝ�
2nq−r2

]∣∣�q
Hf,2n

〉
, (91)

with the normalization factor Nn,q = (−1)q

2(n+1) resulting from
the (anti)symmetrization procedure. As an immediate conse-
quence, we deduce that∣∣�q

Hf,2n

〉 = Kq,n−1Kq,n−2 . . . Kq,0|0〉, (92)

with exactly the same composite (generalized Read) operator
Kq,n defined in Eq. (81). Note that K1,0 is the zero operator
in the fermionic case ā†

r = c̄†
r . At first sight, the fact that

Eqs. (80) and (92) look identical might seem puzzling but
note that the choice of ā†

r operators is now opposite to the one
for Pfaffians. Indeed, in the Hafnian case, for q odd we take
ā†

r to be a fermionic operator c̄†
r , while for q even we have

ā†
r = b̄†

r . This is yet another manifestation of the fact that both
Pfaffian and Hafnian families of states are of the same nature.
They are the result of symmetrization or antisymmetrization
of Halperin bilayer systems �q+s q+s q−s and they differ essen-
tially only by the parity of the parameter s.

Consequently, also for the Hafnian state the operator
K̂q,n(η1, η2) is given by Eq. (82), satisfying (83), and the
Hafnian state ∣∣�q

Hf,2n

〉 = Kn
q|0〉 (93)
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can be expressed as a nonlocal condensation. Notice that a
simple change of representation can uncover a deep physical
result. In particular, the nature of correlations in Pfaffian and
Hafnian families is manifest from the dressed paired form
of the composite operator, which is quite different from the
Laughlin fluid case [40,43].

V. CONCLUSIONS AND OUTLOOK

In this work, we developed a scheme, the symmetrized
multicluster construction (SMC), to generate, LLL bosonic
and fermionic, FQH fluids of arbitrary filling factor. The
main idea of the construction relies on separating the set of
particle coordinates into clusters (that we call layers because
it was Halperin who first proposed a bilayer extension of
Laughlin fluids) that correlate among themselves by means
of specific pairing or higher-order correlation terms. A sym-
metrization or antisymmetrization procedure is applied next to
all coordinate labels, depending on the character of the fluid.
This process can be implemented in a hierarchical fashion. It
turns out that this simple construction generates translation-
ally and rotationally invariant topological fluid states which
host Abelian and non-Abelian excitations. Remarkably, the
same construction extends seamlessly to quasiholes, quasi-
particles (quasielectrons) and magnetoexcitons. In particular,
we extended previous work [3] to non-Abelian fluids and
showed that a similar, albeit more subtle, fusion mechanism
emerges for quasiparticles (quasielectrons) that display the
correct quantum numbers. This is a relevant achievement con-
sidering that it may help establish the correct fusion category
associated with a given topological fluid. We argue that the
non-Abelian character of the fluid state that results from our
SMC is congruous with the multiclustering and nonuniform
nature of the multilayer system. For instance, the Ising anyon
excitations of the Pfaffian family can be read off from the
elementary quasiholes and their quasielectrons, while the ex-
citations in the ν = 3/5 state discussed in Sec. II D are related
to Fibonacci anyons [44].

The idea of implementing a symmetrization process over
Halperin multilayer systems goes back to the work by Cap-
pelli et al. [13], where only the multilayer analog of Halperin
331 state was considered [and referred to as generalized
(331) Abelian theory] (as well as the possibility of placing
m quasiholes homogeneously among the layers, under the
assumption that m is a multiplicity of the number of layers
nl . These additional conditions were motivated by conformal
field theory). Reference [14] generalized this idea to arbitrary
homogeneous Halperin multilayer systems. The latter scheme
is equivalent to our SMC under the additional homogeneity
assumption. Our hierarchical construction is more general
than the multilayer scheme, and includes, as particular exam-
ples, the constructions above. The most significant difference
with other proposals is the way quasiparticles (quasielectrons)
are constructed. In contrast to approaches based on confor-
mal field theory [15] or composite fermions [8–12] that use
the idea of (anti)symmetrization of Halperin multilayer sys-
tems, in our scheme quasiparticles satisfy a remarkable fusion
mechanism.

First and second quantization representations of these sys-
tems highlight different aspects of the quantum correlations

present in those fluids. For example, while the fusion mecha-
nism is evident in first quantization the dressed paired nature
of a Pfaffian fluid, for instance, is manifest in second quanti-
zation. Composite (generalized Read) operators, which signal
the intrinsic topological order (or ODLRO) of the fluid, is
another case where second quantization is king. We illustrated
the methodology by deriving generalized composite operators
for the non-Abelian Pfaffian and Hafnian families of states.

A few outstanding open problems remain. We envisage
the resolution of some of these in future publications. One
of these problems is a proof of completeness (or overcom-
pletness) of the set of (anti)symmetric, translationally and
rotationally (i.e., homogeneous) invariant, holomorphic poly-
nomials generated by our hierarchical multicluster scheme.
Another is the topological classification of that same set.
Can one associate a knot invariant to an arbitrary ele-
ment in that set? In the current paper, we conjectured a
K-complexity criterium for incompressibility. What are the
constraints in the construction of translationally and rotation-
ally invariant parent Hamiltonians [2,45–47], stabilizing those
K-incompressible fluids, leading to gap-incompressibility?
Since by construction parent Hamiltonians for FQH fluids
are typically positive-semidefinite [2], their highest density
zero modes are K-incompressible because of the ground state
monotonicity theorem [2]. An interesting question is if for an
arbitrary K-incompressible state one can always find a parent
Hamiltonian for which it is its highest density zero mode
and is gap-incompressible. Yet another problem we intend
to study in the future is the braiding and topological spin
structure of the quasiparticles introduced in the present paper.
Finally, new numerical algorithms for efficient simulation of
SMC states are desirable. One potential bypass is to apply
ideas from Ref. [48], where total antisymmetrization also led
to inefficient simulations, and replace the original state by
a parton-like state suitably tuned to reproduce its universal
properties.

Note added. Recently, we became aware of a work by F.
Zhang, M. Schossler, A. Seidel, and L. Chen [49] which also
contains a second-quantized presentation of the MR states
equivalent to ours.
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APPENDIX A: PROOF OF EQ. (24)

We will prove this statement by induction. First, notice
that it holds for n = 1. For the inductive step, we use the
recurrence formula for Hafnian,

Hf2n+2(A) =
2n+2∑
j=2

A1 j Hf2n(A1̂ ĵ ), (A1)
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where A1̂ ĵ is the matrix obtained from a (2n + 2) × (2n + 2)
matrix A by crossing out the first and jth columns and rows.
Using this relation, the right-hand side RHSn+1 of Eq. (24) for
2(n + 1) particles takes the form

RHSn+1 = 2(n + 1)2

2(n + 1)(2n + 1)

�L(Z2n+2)2

�L(Z2n+2)2
1̂ ĵ

(z1 − z j )2

×
2n+2∑
j=2

{
2n(n!)2

(2n)!
Hf2n

[(
1

(zk − zl )2

)
1̂ ĵ

]

× �L(Z2n+2)2
1̂ ĵ

}
. (A2)

Since

�L(Z2n+2)2

�L(Z2n+2)2
1̂ ĵ

(z1 − z j )2
=

2n+2∏
l �=1, j

((z1 − zl )(zl − z j ))
2, (A3)

and using the inductive hypothesis, we can rewrite the above
equation as

RHSn+1 = n + 1

2n + 1

2n+2∑
j=2

[
S 1̂ ĵ

2n

] 2n+2∏
l �=1, j

((z1 − zl )(zl − z j ))
2,

(A4)
where [S 1̂ ĵ

2n ] denotes the left-hand side of Eq. (24) but applied
to the set Z2n+2 \ {z1, z j}. Using basic properties of the sym-
metrization, we therefore get

RHSn+1

n + 1
= S2n+2

{(
n∏

i< j

(zi − z j )
4(zn+1+i − zn+1+ j )

4

)

×
2n+2∏

l �=n+1,2n+2

((zl − zn+1)(zl − z2n+2))2

}
. (A5)

The goal is to show that RHSn+1 is the same as

S2n+2

⎛⎝n+1∏
i< j

(zi − z j )
4(zn+1+i − zn+1+ j )

4

⎞⎠. (A6)

We will achieve this using (adjusted to our situation) tech-
niques from Ref. [6], Appendix C. First, notice that the above
claim is true for n = 1. To simplify the notation, we de-
note in this Appendix [2n + 2] = Z2n+2 and [2n] = Z2n+2 \
{zn+1, z2n+2} and consider two polynomials:

Pn([2n]) = S2n

⎛⎝ n∏
i< j

(zi − z j )
4(zn+i − zn+ j )

4

⎞⎠, (A7)

Qn([2n]) = nS2n

{(
n−1∏
i< j

(zi − z j )
4(zn+i − zn+ j )

4

)

×
2n∏

l �=n,2n

((zl − zn)(zl − z2n))2

}
. (A8)

We show that Pn = Qn. This trivially holds for n = 1. Next,
denoting by [Ẑ] the set {(z1, . . . , z2n+2) ∈ Z2n+2 : zn+1 =

z2n+2 = z}, we demonstrate that

Pn+1([2n + 2])|[Ẑ] = cn

∏
zk∈[2n]

(zk − z)4Pn([2n]) (A9)

and

Qn+1([2n + 2])|[Ẑ] = dn

∏
zk∈[2n]

(zk − z)4Pn([2n]) (A10)

with some combinatorial factors cn and dn.
We start with the proof of (A9). First, notice that for every

permutation σ ∈ S2n+2, after applying the condition zn+1 =
z2n+2 = z, the corresponding term in the definition of P [see
Eq. (A7)] gives either zero or produces the S2n-symmetric fac-

tor
∏

zk∈[2n]
(zk − z)4 times τ (

n∏
i< j

(zi − z j )4(zn+i − zn+ j )4), with

certain τ ∈ S2n. Moreover, in this way, we are getting all the
permutations from S2n an equal number of times. Therefore
(A9) indeed holds and cn = �n

(2n+2)! , where �n is the number
of permutations from S2n+2 that lead to nonzero contribu-
tions. The only permutations that gives zero after putting
zn+1 = z2n+2 = z are of the following form:

(1) σ (zn+1) = zn+1+i and σ (z2n+2) = z2n+2 with i � n,
(2) σ (zn+1) = zn+1 and σ (z2n+2) = zi with i � n,
(3) σ (z2n+2) = zn+1 and σ (zn+1) = zi with i � n,
(4) σ (zn+1) = z2n+2 and σ (z2n+2) = zn+1+i with i � n,
(5) σ (zn+1) = zi and z2n+2 = z j with i, j � n,
(6) σ (zn+1) = zn+1+i and σ (z2n+2) = zn+1+ j with i, j � n.
The first four of them are essentially of the same type and

each of them appears n(2n)! times, while the last two have
multiplicities n(n − 1)(2n)!. As a result,

�n = (2n + 2)! − [4n(2n)! + 2n(n − 1)(2n)!], (A11)

and therefore cn = n+1
2n+1 .

For the proof of (A10) we observe that the terms following
from applying the symmetrization S2n+2 in the definition of
Qn+1, after imposing the condition zn+1 = z2n+2 = z, are ei-
ther zero, or produce the factor

∏
zk∈[2n]

(zk − z)4 times either Pn

or Qn. Taking into account all the permutations from the group
S2n+2 leads to

Qn+1([2n + 2])|[Ẑ] = n + 1

(2n + 2)!

(
αnPn([2n]) + γn

n
Qn([2n])

)
×

∏
zk∈[2n]

(zk − z)4. (A12)

Here αn and γn are the numbers of permutations from S2n+2

that produces Pn and Qn, respectively. The only permutations
that lead to Pn are those acting as S2 on {zn+1, z2n+2}. There-
fore αn = 2(2n)!. On the other hand, the ones that produce
terms Qn are of either of the following two types:

(1) σ (zn+1) = zi with i � n and σ (z2n+2) = zn+1+ j with
j � n,

(2) σ (zn+1) = zn+1+i with i � n and σ (z2n+2) = z j with
j � n.
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Therefore γn = 2n2(2n)!. By inductive hypothesis, we
know that Pn = Qn. Therefore

Qn+1([2n + 2])|[Ẑ] = n + 1

(2n + 2)!

[
2(2n)! + 2n2(2n)!

n

]
Pn([2n])

×
∏

zk∈[2n]

(zk − z)4, (A13)

so that dn = n+1
2n+1 = cn. Therefore, comparing (A9) and

(A10), we get Pn+1([2n + 2])|[Ẑ] = Qn+1([2n + 2])|[Ẑ], so that

Pn+1([2n + 2]) − Qn+1([2n + 2])

= (zn+1 − z2n+2)sR([2n + 2]), (A14)

with s � 1 and a polynomial R such that it does not van-
ish on [Ẑ]. Since

∂Pn+1([2n+2])|[Ẑ]

∂z = ∂Qn+1([2n+2])|[Ẑ]

∂z , we have

s(zn+1 − z2n+2)s−1R|[Ẑ] = 0, and, as a result, s � 2. Therefore
there exists a polynomial T1 such that

Pn+1([2n + 2]) − Qn+1([2n + 2])

=
2n+2∏
i< j

(zi − z j )
2T1([2n + 2]). (A15)

Expanding the right-hand side of the above equation in the
powers of z1, the leading term is an expression of the form
zμ1

1 T2(z2, . . . , z2n+2) with some polynomial T2. Notice that by

the presence of
2n∏

i< j
(zi − z j )2 the exponent μ1 has to be at least

2(n + 1)(2n + 1). On the other hand, the monomial zν1
1 in the

expansion of the difference Pn+1([2n + 2]) − Qn+1([2n + 2])
has ν1 � 4n(n + 1). Therefore the polynomial T1 has to be
identically zero. This finishes the proof.

APPENDIX B: PROOF OF EQ.(51)

Similarly to the case of the ground state, for q even, we have (m1, m2 are non-negative integers)

A2n�
2qh
q+1 q+1 q−1; η1,η2

(Z2n) = εnA2n

[
n∏

i=1

(zi − η1)m1

n∏
k=1

(zn+k − η2)m2 detn

(
1

zi − zn+k

)]
�L(Z2n)q, (B1)

while for q odd the following is true

S2n�
2qh
q+1 q+1 q−1; η1,η2

(Z2n) = εnS2n

[
n∏

i=1

(zi − η1)m1

n∏
k=1

(zn+k − η2)m2 detn

(
1

zi − zn+k

)
�L(Z2n)

]
�L(Z2n)q−1

= εnA2n

[
n∏

i=1

(zi − η1)m1

n∏
k=1

(zn+k − η2)m2 detn

(
1

zi − zn+k

)]
�L(Z2n)�L(Z2n)q−1

= εnA2n

[
n∏

i=1

(zi − η1)m1

n∏
k=1

(zn+k − η2)m2 detn

(
1

zi − zn+k

)]
�L(Z2n)q.

(B2)

To finish the proof notice that

A2n

[
n∏

i=1

(zi − η1)m1

n∏
k=1

(zn+k − η2)m2 detn

(
1

zi − zn+ j

)]
=
∑
σ∈Sn

sgn(σ )A2n

(
n∏

i=1

(zi − η1)m1

n∏
k=1

(zn+k − η2)m2

n∏
j=1

1

z j − zn+σ ( j)

)

= n!A2n

(
n∏

i=1

(zi − η1)m1

n∏
k=1

(zn+k − η2)m2

n∏
j=1

1

z j − zn+ j

)

= n!A2n

n∏
j=1

(z j − η1)m1 (zn+ j − η2)m2

z j − zn+ j

= − (n!)2

(2n)!
Pf2n

(
(zi − η1)m1 (z j − η2)m2 + (i ↔ j)

zi − z j

)
. (B3)
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APPENDIX C: PROOF OF EQ. (54)

In order to prove the claim (54), we follow exactly the same steps as for the Hafnian state without quasiholes. For n = 1, the
formula is true. Next, the right-hand side RHSn+1 for 2(n + 1) particles takes a form

RHSn+1 = (n + 1)2

(2n + 2)(2n + 1)

2n+2∑
j=2

{
(n!)2

(2n)!
Hf2n

[(
(zk − η1)m1 (zl − η2)m2 + (k ↔ l )

(zk − zl )2

)
1̂ ĵ

]
�L(Z2n+2)2

1̂ ĵ

}

× �L(Z2n+2)2[(z1 − η1)m1 (z j − η2)m2 + (1 ↔ j)]

�L(Z2n+2)2
1̂ ĵ

(z1 − z j )2

= n + 1

2(2n + 1)

2n+2∑
j=2

[
S 1̂ ĵ

2n

]⎛⎝2n+2∏
l �=1, j

(zl − z1)2(zl − z j )
2

⎞⎠[(z1 − η1)m1 (z j − η2)m2 + (1 ↔ j)
]

= n + 1

2
S2n+2

{
n∏

i< j

(zi − η1)m1 (zn+1+i − η2)m2

n∏
i< j

(zi − z j )
4(zn+1+i − zn+1+ j )

4

× [(zn+1 − η1)m1 (z2n+2 − η2)m2 + (z2n+2 − η1)m1 (zn+1 − η2)m2 ]
2n+2∏

l �=n+1,2n+2

(zl − zn+1)2(zl − z2n+2)2

}
, (C1)

where in the first line the inductive hypothesis was used, and

[S 1̂ ĵ
2n ] denotes the left-hand side of Eq. (54) but applied to the

set Z2n+2 \ {z1, z j}.
Using the notation introduced in the previous Appendix, let

us denote the polynomial from the last line by Qη

n+1([2n + 2]).
Our goal is to show that it is equal to

Pη

n+1([2n + 2]) = S2n

[
n∏

i=1

(zi − η1)m1 (zn+i − η2)m2

×
n∏

i< j

(zi − z j )
4(zn+i − zn+ j )

4

]
. (C2)

Following the same steps as for the Hafnian fluid we show that

Qη

n+1([2n + 2])|[Ẑ] = cn

∏
zk∈[2n]

(zk − z)4(z − η1)m1

× (z − η2)m2 Pη
n ([2n]) (C3)

and

Pη

n+1([2n + 2])|[Ẑ] = cn

∏
zk∈[2n]

(zk − z)4(z − η1)m1

× (z − η2)m2 Pη
n ([2n]). (C4)

Therefore

Pη

n+1([2n + 2]) − Qη

n+1([2n + 2])

= (zn+1 − z2n+2)2Rη([2n + 2]) (C5)

with some polynomial Rη that does not vanish on [Ẑ]. Since
the derivatives of the polynomials Qη

n+1([2n + 2])|[Ẑ] and

Pη

n+1([2n + 2])|[Ẑ] are equal, we deduce the existence of a
polynomial Sη such that

Pη

n+1([2n + 2]) − Qη

n+1([2n + 2])

=
2n+2∏
i< j

(zi − z j )
2Sη([2n + 2]).

(C6)

By power counting, we infer that the last polynomial has to be
identically zero, and this finishes the proof.

APPENDIX D: EFFICIENT SIMULATION
OF PFAFFIAN STATES

In our Monte Carlo simulations, we need to update Pfaf-
fians as well as quasiholes in Pfaffian-like states. We next
briefly describe an efficient procedure. For a 2n × 2n anti-
symmetric matrix A with entries Ai j = 1

zi−z j
, let B denote this

matrix after a one-particle update, say at position zi0 . From
Cayley’s formula [36,50], we obtain

Pf2n(B)

Pf2n(A)
=

2n∑
j=1

Bi0 j (A
−1) ji0 . (D1)

This requires O(2n) operations in addition to the computation
of the inverse A−1. This can be implemented, e.g., by using
Gauss’s method with a pivoting strategy involved (to avoid
numerical instabilities).

To effectively simulate systems of quasiholes with one
additional electron we make use of the following identity

NAN (e
zN η∗

2 f (ZN−1)) = f (ZN−1)e
zN η∗

2 −
N−1∑
i=1

e
ziη

∗
2 f
(
ZN

[i]

)
,

(D2)
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where ZN
[i] = (z1, . . . ,

i
zN , . . . , zN−1), N is odd, and f is

either

f (ZN−1) = PfN−1

(
zi + z j

zi − z j

)
�L(ZN−1)q (D3)

or

f (ZN−1) = PfN−1

(
2ziz j

zi − z j

)
�L(ZN−1)q, (D4)

with q even. In this case, for the computation of the Pfaffian,
we use the method presented in Ref. [51] based on complex
Householder transformations.

APPENDIX E: PFAFFIAN STATES IN SECOND QUANTIZATION - PROOFS

First, we show that Eq. (69) is indeed true. We have the following series of equalities:

�
q
Pf (Z2n+2) =

2n+2∑
j=2

(−1) j

z1 − z j

[
Pf2n

(
1

za − zb

)
1̂ ĵ

2n+2∏
k<l

k �=1, j
l �= j

(zk − zl )
q

]
(z1 − z j )

q
2n+2∏
l=2
l �= j

(z1 − zl )
q

j−1∏
k=2

(zk − z j )
q

2n+2∏
l= j+1

(z j − zl )
q

=
2n+2∑
j=2

(−1) j (z1 − z j )
q−1

2n+2∏
l=2
l �= j

(z1 − zl )
q

2n+2∏
l= j+1

(z j − zl )
q

j−1∏
l=2

((−1)q(z j − zl )
q)�q

Pf ((Z2n+2)1̂ ĵ )

=
2n+2∑
j=2

(−1) j(1+q)(z1 − z j )
q−1

2n+2∏
l=2
l �= j

(z1 − zl )
q

2n+2∏
l=2
l �= j

(z j − zl )
q�

q
Pf ((Z2n+2)1̂ ĵ )

=
2n+2∑
j=2

(−1) j(1+q)(z1 − z j )
q−1

2n+2∏
l �=1, j

((z1 − zl )(z j − zl ))
q�

q
Pf ((Z2n+2)1̂ ĵ ).

(E1)

Next, we present the proof of Eq. (83). We have∫
D[η1]D[η2]K̂q,n(η1, η2) = Nn,q

∫
D[η1]D[η2](η1 − η2)q−1

∑
r1,r2�0

φ∗
r1

(η1)φ∗
r2

(η2)a†
r1

a†
r2

∑
r′

1,r
′
2�0

η
r′

1
1 η

r′
2

2 Ŝ�

2nq−r′
1
Ŝ�

2nq−r′
2

= Nn,q

∑
r1,r2
r′

1,r
′
2

∫
D[η1]D[η2](η1 − η2)q−1 (η∗

1 )r1 (η∗
2 )r2η

r′
1

1 η
r′

2
2

Nr1Nr2

a†
r1

a†
r2

Ŝ�

2nq−r′
1
Ŝ�

2nq−r′
2

= Nn,q

∑
r1,r2
r′

1,r
′
2

∫
D[η1]D[η2]

q−1∑
l=0

(
q − 1

l

)
(−1)q−1−lηl

1η
q−1−l
2

(η∗
1 )r1 (η∗

2 )r2η
r′

1
1 η

r′
2

2

Nr1Nr2

a†
r1

a†
r2

Ŝ�

2nq−r′
1
Ŝ�

2nq−r′
2

= Nn,q

∑
r1,r2
r′

1,r
′
2

q−1∑
l=0

Nr1Nr2δr1,r′
1+lδr2,r′

2+q−1−l

(
q − 1

l

)
(−1)q−1−l a†

r1
a†

r2
Ŝ�

2nq−r′
1
Ŝ�

2nq−r′
2

= Nn,q

∑
r1,r2�0

q−1∑
l=0

(
q − 1

l

)
(−1)l+1ā†

r1+l ā
†
r2+q−1−l Ŝ

�
2nq−r1

Ŝ�
2nq−r2

= Kq,n.

(E2)

Finally, we verify (87). It is a result of the following series of equalities:

Kq

∣∣�q
Pf,2n

〉 = ∫
D[η1]D[η2]K̂q(η1, η2)

∣∣�q
Pf,2n

〉
=
∫

D[η1]D[η2]Nn,q(η1 − η2)q−1
†(η1)
†(η2)Ûq,q(η1, η2)
∣∣�q

Pf,2n

〉
=
∫

D[η1]D[η2]Nn,q(η1 − η2)q−1
†(η1)
†(η2)Û2n(η1)qÛ2n(η2)q
∣∣�q

Pf,2n

〉
=
∫

D[η1]D[η2]K̂q,n(η1, η2)
∣∣�q

Pf,2n

〉 = Kq,n|�q
Pf,2n〉 = ∣∣�q

Pf,2n+2

〉
.

(E3)
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