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In the out-of-equilibrium evolution induced by a quench, fast degrees of freedom generate long-
range entanglement that is hard to encode with standard tensor networks. However, local observables
only sense such long-range correlations through their contribution to the reduced local state as a
mixture. We present a tensor network method that identifies such long-range entanglement and
efficiently transforms it into mixture, much easier to represent. In this way, we obtain an effective
description of the time-evolved state as a density matrix that captures the long-time behavior of
local operators with finite computational resources.

Reconciling the time-reversal invariant unitary evo-
lution of closed quantum many-body systems with the
emergence of statistical mechanics and its well defined
arrow of time is still an open question, hindered by the
exponential complexity of simulating this problem in the
generic case.

In contrast to the dynamical scenario, the equilibrium
wave functions of a large class of physically relevant sys-
tems live in a small corner of the exponentially large
Hilbert space. Such corner is characterized by a bounded
amount of entanglement [1] and states therein admit an
efficient approximation as a tensor network (TN) [2].
This property implies we can perform very precise nu-
merical simulations with only polynomial resources [3–
9]. The most notable example of successful TN simula-
tions are those in one-dimension performed with matrix
product states (MPS) [4, 10–13].

Out of equilibrium, instead, initially localized correla-
tions can propagate over arbitrarily large distances. As a
result, the entanglement in the system increases rapidly
with time [14–19] and simple TN ansatzes such as MPS
have limited applicability. The exponential complexity of
the full quantum state evolution originates from an ex-
tremely non-local pattern of correlations, and might be
circumvented by focusing instead on a local description of
the state. Significant simplifications using this approach
have already been observed [20–30].

Here we develop this idea and propose a new algorithm
that explicitly identifies long-range entanglement in the
system and trades it for mixture (see also [26]). In par-
ticular, our method focuses on separating fast and slow
propagating degrees of freedom. Already from an early
time we here observe that the fast degrees of freedom
mediate non-local correlations whose effect on local ob-
servables is similar to that of a statistical mixture.

By trading such correlations for the corresponding
mixture we devise a TN algorithm that allows to simulate
the evolution of local observables for considerably longer
times than what was achievable before, with finite com-
putational resources. In fact, our algorithm provides an

FIG. 1. (a) A correlated QP pair initially located inside region
S creates long-distance (pure LR) entanglement when both
QPs propagate outside of S. (b) At that time, slower QPs
(blue) can still contribute to entanglement between S and its
surroundings.

effective description of the time-evolved state as a den-
sity matrix, represented by a matrix product operator
(MPO) with bounded bond dimension, that accurately
captures the long-time behavior of local operators.
We support these claims by providing benchmark nu-

merical results for quenches in the transverse field Ising
model and its non-integrable generalization. We find that
our algorithm predicts accurately the long-time values of
local observables as dictated by, respectively, the analyt-
ical solutions and the prediction of the diagonal ensem-
ble [31–33].
Quenches and quasiparticles. We focus on the out-

of-equilibrium dynamics induced by quantum quenches
[14, 35], in which a one-dimensional system in the ther-
modynamic limit is prepared at t = 0 in a product state
|ψ0⟩, and later evolved with an entangling Hamiltonian
H. Our aim is to compute the time-dependent expecta-
tion value of a local observable O.
The initial state has a finite energy density above the

ground state, and thus a large occupation of excited
states, often described as quasiparticles states (QP). The
subsequent dynamics can be described as the radiation
of entangled pairs of QPs [14]. In translational invari-
ant systems indeed QPs possess a well-defined energy-
momentum dispersion relation ϵ(k), and a QP wave-
packet centered at k0 propagates with group velocity
vk0 = ∂kϵ(k)|k0

, while momentum conservation enforces
equal occupation of k and −k states that propagate in
opposite directions.
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FIG. 2. First iteration in the transformation of long-range entanglement into mixture in TN. (I.a) Decomposition (3) for a block
S, represented by a single tensor; (I.b) The density matrix of the full state (left) can be written in terms of the new tensors
(middle) when we apply the decomposition to each block [black circles represent the inverse Schmidt values matrix, inserted to
compensate the central gauge in (I.a)]. We then substitute each long-range component by the product of its marginals, giving
rise to a mixed description (right). (II.a) The heuristic algorithm directly searches for tensors that (approximately) preserve
the reduced density matrices for LS and SR. (II.b) The density matrix for the full state is replaced by a purification defined
by the solution. The structure is analogous to that in (I.b) (in each case we have indicated the relevant dimensions).

Identifying long-distance entanglement. In order to
identify the long-distance contributions to the entangle-
ment we need to focus on a subsystem S of ℓ neighboring
spins, and label L and R the remaining left and right
regions of the system (see Fig. 1). Entanglement across
a bipartition (e.g. L vs SR) is created by correlated
pairs of QPs with support on both sides of the cut. We
define as long-distance entanglement the contribution to
the entanglement generated by any QP pair supported
on L and R, but not on S.

We can visualize this in the cartoon of Fig. 1(a), where
we consider a quench that excites a single pair of entan-
gled QPs, initially located inside S, that later travel with
opposite velocities ±v. [36]. In this simple example, S
becomes entangled with the rest when one member of
the pair leaves the region, but when both QPs have left,
after t ∼ ℓ/v, S is again in a product state with respect
to LR. At this stage we can factorize the total state into
the product of an entangled state of LR and a state of
S.

In a more general scenario such complete factoriza-
tion is not possible, since S and LR might contain other
sources of entanglement. The simplest generalization de-
picted in Fig. 1(b) involves two pairs of QPs, one fast
(orange) and one slow (blue). When the former has left
S the latter is still partially in S. At that stage, it is still
possible to disentangle a part of L and R from S. We
can indeed identify a factorization of the Hilbert spaces,
L ≡ Ls ⊗Lf and R ≡ Rs ⊗Rf , such that the subsystem
Lf ⊗Rf is not entangled with S. In the simple scenario
presented above, Lf ⊗ Rf is defined by the degrees of
freedom that describe the fast pair, and we can factorize

the state as |ψ(slow)
LsSRs

⟩ ⊗ |ϕ(fast)LfRf
⟩, where the second factor

captures the pair of fast modes.

Trading long-distance entanglement for mixture. In a
translationally invariant system, we can repeat the car-
toon picture above for each block of ℓ sites. When com-
puting the expectation value of a local observable, we
need to trace out all the degrees of freedom but the ones
where the observable is defined. Given that fast con-
stituents of entangled pairs of QP are separated by at
least ℓ sites, one of the two partners will always be traced
out in this procedure leaving the other in a mixed state.
Thus, when focusing on local observables, we can de-

scribe the system as a mixed state, originated by hav-
ing discarded the coherence between each pair of fast
QP. Their joint pure entangled state is substituted by a
mixed state built as the product of the two mixed states
obtained by tracing out the partner in the pair,

ρ
(fast)
LfRf

=|ϕ(fast)LfRf
⟩⟨ϕ(fast)LfRf

| → ρ
(fast)
Lf

⊗ ρ
(fast)
Rf

, (1)

where ρ
(fast)
L(R) ≡ trR(L)

(
ρ
(fast)
LR

)
are the reduced density

matrices of each QP. This provides a more efficient local
description in terms of entanglement, as the long-distance
components have been removed.
From the QP intuition to a TN algorithm. We can

use the above observation in an actual TN algorithm.
Standard MPS algorithms for this setup attempt to rep-
resent the time-evolved state as a MPS, parametrized by
one or few tensors Am of small size d×D×D, where d is
the physical dimension of the chain sites and D the bond
dimension [37–39]. Since the half-chain entropy of the
MPS is upper-bounded by logD [4, 40, 41], the typical
linear growth in time of entropy after a quench [14, 16] re-
quires an exponential increase of the tensors dimensions
to maintains a constant precision. As a result, given finite
computational resources, standard TN algorithms [42]
only give reliable predictions for relatively short times
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FIG. 3. The entropy of the reduced density matrix for the
fast degrees of freedom (c), computed from the decomposition
in fig. 2(I.a), measures the residual fast-slow entanglement.
After identifying the optimal unitaries UL and VR we find
a residual entropy shown as a function of time for the Ising
model (4), (a) for several integrable quenches (g ̸= 0, J2 = 0)
and (b) non-integrable ones (g = 2, J2 ̸= 0), always starting
from the state |X+⟩. The amount of entanglement between
L and R we are able to isolate with the identified unitaries is
quantified by the logarithmic negativity [34] between Lf and
Rf and is reported as EN = · · · for each of the lines. The inset
of (a) shows the effect of the block size ℓ for the case (g = 2,
J2 = 0) (from darker to lighter blue, ℓ = 2, 4, 6, 8). Last, the
inset of (b) shows the logarithmic negativity of the reduced
density matrix for the fast degrees of freedom, according to
the partition Lf vs Rf .

(typically of the order Jt ≃ 10 with J the relevant en-
ergy scale).

Translating the QP intuition above to the TN setting
we can however obtain a more efficient TN description
for the local observables. Let us, for simplicity, assume
that each MPS tensor represents precisely ℓ sites [43].

Singling out one subsystem, the whole state can thus be
written as

|Ψ⟩ =
∑

αsℓβ

Csℓ
αβ |ΦL

α⟩|sℓ⟩|ΦR
β ⟩, (2)

where the sum is over orthonormal bases of the block
and its left and right environments {|ΦL/R⟩}, meaning
that we use the gauge in which the tensor Csℓ

αβ for the
subsystem {|s⟩} is the orthogonality center of the MPS
[13, 37, 44, 45].
If there are long-range entangled degrees of freedom

that decouple from S, the state will have a product
structure, with one component completely disentangled
from the physical degrees of freedom. There will thus
exist basis transformations (disentanglers [46, 47]) on L
and R identifying the decomposition L = Lf ⊗ Ls and
R = Rf ⊗Rs, such that

U†
L ⊗ 1S ⊗ V †

R|Ψ⟩ = |ψLsSRs⟩ ⊗ |ϕLfRf
⟩, (3)

as depicted in Fig. 2(I.a). Assuming such UL and VR ex-
ist, they need to be determined variationally, for example
by minimizing the Euclidean distance between the left
and right-hand side of (3). Namely, given the evolved
state in the form (2), and for fixed dimension dfast of the
long-range component, we iteratively optimize each of
the disentanglers UL and VR and the vectors |ψLsSRs

⟩
and |ϕLfRf

⟩ until we reach the minimal possible Eu-
clidean distance among the right and left hand sides of
Eq. (3) [48]. Since the dimension dfast of the fast fac-
tors Lf and Rf is not known, the procedure needs to be
repeated for different trial values.

Assuming the above procedure is successful, we now
can transform the identified long-range entanglement into
mixture by applying the substitution (1) to each consec-
utive subsystem in the chain. As schematically shown in
Fig. 2(I.b), this exchanges the pure MPS description of
the system by a mixed (purified) MPO with smaller bond
dimension D/dfast, at the expense of additional (purifi-
cation) indices.

When the decomposition (3) is exact, this mixed state
has the property that the reduced density matrices for
SℓR (resp. LSℓ) are unchanged [49]. As a consequence,
also the reduced density matrix for two adjacent blocks,
and thus all observables with support on up to ℓ sites are
preserved. We can then continue the evolution with the
original Hamiltonian acting on the physical indices. Fast
degrees of freedom will continue propagating entangle-
ment through the subsystem S. Thus, the step of finding
and mixing the long-range entangled components is re-
peated periodically.

An improved TN algorithm. In practice, the optimal
decomposition we are able to identify using the strategy
just outlined still retains some residual entropy between
fast and slow degrees of freedom S(ρfast). We apply the
truncation when this entropy falls below a given thresh-
old ηS . This results into small errors when building the
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FIG. 4. (a) Evolution of the transverse magnetization for the
integrable quench (g = 2, J2 = 0) as obtained with the direct
decomposition shown in fig. 2(I) (orange) and the heuristic
algorithm of fig. 2(II) (blue). The latter shows very good
agreement with the exact result (dashed black line), and con-
verges towards the equilibration value (dashed grey). The
iTEBD simulation with D = 500 (pink), in contrast, deviates
at times O(10). The lower insets show close-ups of the short-
and long-time regions. In the left one, the vertical dashed
lines indicate mixing steps, inducing jumps in the simple but
not the heuristic algorithm. (b) Same observable for the non-
integrable quench (g = 2, J2 = 0.1) using the heuristic al-
gorithm. Different colors indicate different residual entropy
thresholds ηS . Our simulations converge towards the diago-
nal ensemble value ⟨σx⟩DE (dashed gray line). This can be
more clearly seen in the time average of the observable (lower
inset) or the value of the time average at time t as a function
of ηS (upper-left inset). For both quenches, the upper (right)
inset shows the bond dimension as a function of time.

mixed state that reflect in the evolution of local observ-
ables [see Fig. 4(a)]. Therefore we introduce an improved
heuristic TN algorithm, in which, after solving (3), if
the residual entropy falls below ηS we directly propose
an effective purification ansatz, described by three rank-3
tensorsML, Bℓ, NR with fixed dimensions dpDD

′, dℓD′2

and dpD
′D, where dp is a chosen dimension for the pu-

rification index and D′ = D/dp [see Fig. 2(c)].

The purification tensors are found variationally by
minimizing the distance between the reduced density ma-
trices ρSR (and ρLS) obtained from the original state (2)

and from the purification. As initial guess we use the
tensors obtained from solving (3), and we use gradient
descent for the minimization problem (see [49]) .

Notice that the number of purification legs increases
after each mixing step. To handle this in practice, we
group together all the purification indices between two
physical sites and apply a cutoff to the total purification
dimension [50].

Numerical results. We benchmark the algorithm us-
ing the transverse field Ising model with an additional
integrability-breaking next-to-nearest neighbor interac-
tion,

H = −
∑

i

(
σz
i σ

z
i+1 + gσx

i + J2σ
z
i σ

z
i+2

)
. (4)

Initially in a product state |X+⟩ ≡ ⊗ 1√
2
(|0⟩+ |1⟩), cor-

responding to the ground state deep in the paramagnetic
phase (g → ∞), the system is quenched to a finite value
of the transverse field g (and potentially J2).

To explore systematically the structure of the time-
evolved MPS, we simulate accurately the short-time evo-
lution using the infinite time-evolving block decimation
(iTEBD) algorithm [37] with a large enough bond dimen-
sion. We then probe the disentangling of fast and slow
degrees of freedom at different times solving (3) for a
subsystem of ℓ = 2 sites for several quenches.

As shown in Fig. 3, after a certain time we can iden-
tify subsystems of L and R that practically disentangle
from the local region and carry long-range entanglement
between the environments, measured by the logarithmic
negativity [34] of the reduced density matrix for the fast
degrees of freedom trLsSRs

|Ψ⟩⟨Ψ|. For all quenches, the
residual entanglement entropy between the fast degrees
of freedom and the rest decays fast with time, at a slower
rate when the quench is into the ordered phase [51]. Also
as expected, the time at which fast degrees of freedom
start decoupling from the local system depends linearly
on its size ℓ, as illustrated in the inset of Fig. 3(a)].

We now use the TN algorithm described above and
check its performance simulating the long-time evolu-
tion of local observables. Fig. 4(b) shows the results for
the integrable quench g = 2, J2 = 0 and the only non-
vanishing (due to the Z2 symmetry) single-site observable
⟨σx⟩. Solving (3) and trading entanglement by mixture
captures the qualitatively correct dynamics, but intro-
duces discontinuous jumps (orange line and lower-left in-
set) that we attribute to the decomposition not being
exact. The improved heuristic algorithm achieves much
better results (blue line and lower-right inset). While the
approximation induces some residual oscillations, these
are very small and close to the exact equilibration re-
sults even after considerably long times. In contrast, the
iTEBD results with a maximal bond dimension D = 500
(pink line) start to severely deviate from the exact solu-
tion at around t = 10.
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Our algorithm uses instead a much smaller bond di-
mension: during the time evolution steps, the required
bond dimension of the purified MPS grows exponentially,
but each time we trade some of the entanglement for mix-
ture, the bond dimension gets halved [52] As we iterate
the procedure, the maximum required bond dimension
tends to a constant D ∼ 100 (upper inset).

In Fig. 4(b) we repeat a similar analysis for the non-
integrable quench g = 2, J2 = 0.1. The different colors
show the results for different thresholds for the residual
entropy ηS . Smaller values require longer evolution be-
tween mixing steps, and thus larger bond dimension, but
improve the results systematically.

Our results systematically approach the long-time
limit predicted by the diagonal ensemble ⟨σx⟩DE =
0.852 [53]. Even for the largest threshold, the relative
error in the time-averaged value after t ∼ 50 is below 1%
(0.848). Also the time-averaged magnetization exhibits a
similar precision, as shown in the lower inset. Also in this
case the largest bond dimension saturates with t (upper
right inset).

In the supplementary material, we also repeat the cal-
culations in the integrable case directly using the free-
fermionic formalism where we can track the coherence we
discard in our simulation and confirm it does not play a
relevant role in the long-time dynamics of local observ-
ables [49].

Discussion. By identifying the long-range entangle-
ment produced in the out-of-equilibrium dynamics after a
quantum quench and converting it into mixture, we have
proposed an explicit approach to avoid the entanglement
barrier and simulate the out-of-equilibrium dynamics of
an infinite quantum chain with MPS using finite compu-
tational resources.

Our approach is inspired by the intuitive understand-
ing of entanglement dynamics in terms of the radiation
of QP. It relies on the hypothesis that fast degrees of
freedom propagate correlations to steadily growing dis-
tances, contributing to the linear growth of entanglement
across the system, but only as statistical mixture to suf-
ficiently local observables. Our numerical results for the
Ising chain show that the intuition is accurate in the free-
fermionic case, which best fits the QP picture.

We have generalized our intuition to a heuristic algo-
rithm that goes beyond the QP picture and also per-
forms well in non-integrable regimes of the model. It is
thus important to pursue further characterization of the
algorithm in order to chart its potential and limitations.
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[55] A. Zamora, J. Rodŕıguez-Laguna, M. Lewenstein, and
L. Tagliacozzo, Journal of Statistical Mechanics: Theory
and Experiment 2014, P09035 (2014).

[56] Y. Chen and G. Vidal, J. Stat. Mech. 2014, P10011
(2014), arxiv:1406.1471 [cond-mat, physics:quant-ph].

[57] J. Hauschild, E. Leviatan, J. H. Bardarson, E. Altman,
M. P. Zaletel, and F. Pollmann, Phys. Rev. B 98, 235163
(2018).



Supplementary material for Converting long-range entanglement into mixture:
tensor-network approach to local equilibration

Miguel Fŕıas-Pérez,1, 2, ∗ Luca Tagliacozzo,3 and Mari Carmen Bañuls1, 2
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DESCRIPTION OF THE ALGORITHMS

In the main text we discussed a way to transform the
long-range entanglement generated in a quench into mix-
ture using tensor networks. The transformation is such
that it reduces the bond dimension of the TN, while aim-
ing to preserve the local observables and their evolution.
In this section of the supplementary material we pro-
vide a complete description of the algorithms we use for
that purpose. First, in order to set the notation and
introduce some useful concepts, we briefly describe the
uniform MPS formalism. For a more complete descrip-
tion, we refer the reader to the excellent review [1], whose
notation we follow here.

Uniform MPS

Uniform MPS (uMPS) are TN states that represent
one-dimensional quantum many-body states in the ther-
modynamic limit. These states are constructed by re-
peating infinitely many times a tensor along a line (or
repeating in a cyclic manner a finite set of them, if we
work with a unit cell larger than one). In graphical TN
notation,

|Ψ(A)⟩ = . (1)

Where A is a d×D×D tensor, d being the physical dimen-
sion of the sites of the chain and D the bond dimension.
A central object in uMPS simulations is the transfer op-
erator, defined as the following four-legged tensor:

E(A) = . (2)

We can interpret this object as a D2×D2 matrix (left vs.
right indices). Many of the important properties of the
state are captured by the dominant left and right eigen-
vectors of this matrix. For instance, they determine the
reduced density matrix of any (connected) subsystem and
thus appear in the calculation of any local expectation

value. In the generic case, these dominant eigenvectors
are non-degenerate [2]. If the state is normalized, the
largest eigenvalue is 1, and the leading eigenvectors cor-
respond to the fixed points of the transfer operator seen
as a map from the left to the right indices and viceversa.
It is possible to exploit the gauge freedom in the TN to

transform these eigenvectors into a canonical form, which
is particularly simple. In particular, in the so-called left-
canonical form, the MPS tensor for a normalized state
satisfies the conditions

, , (3)

where λ2 is a diagonal matrix with positive entries. Cut-
ting (1) in half across one cut defines D states for the
left half-chain |ΦL

α⟩, and the same number for the right
half-chain, indexed by the (now open) virtual leg. The
first condition in (3) ensures that the D states on the left
half-chain are orthonormal. Alternatively, one can im-
pose a right-canonical form AR in which the conditions
are the symmetrical ones and orthonormality is satisfied
by the states to the right of the cut.
In practice, it is instead common to work in a mixed

gauge, in which one can define [1] a single central tensor
Cs

αβ =
∑

γ(AL)
s
αγλγβ , where α (γ) is the left (right)

virtual index of the tensor AL, and s denotes its physical
index. The state can then be written as a half-chain of
left-canonical tensors to the left of C and a half-chain
of right-canonical ones to the right, such that both left
and right virtual bonds of C are in orthonormal bases.
Taking the tensor product of these two bases with the
single-site physical basis, the state can be written as,

|Ψ⟩ =
∑

αsβ

Cs
αβ |ΦL

α⟩|s⟩|ΦR
β ⟩. (4)

We can rewrite the full uMPS in terms of the single tensor
C, as

. (5)
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In this work, we are interested in the long-range en-
tanglement between distant regions of the system L and
R, separated by a block S of finite size ℓ. Thus, it is con-
venient to use the central canonical form with respect
to the whole block S, such that we can study the long-
range entanglement at the level of the virtual indices of
the MPS. After blocking the ℓ sites of the subsystem S,
the wave function of the system can be written as

|Ψ⟩ =
∑

αsℓβ

Csℓ
αβ |ΦL

α⟩|sℓ⟩|ΦR
β ⟩. (6)

As we will see in the next three subsections, our study
of the long-range entanglement will allow us to construct
a low-rank decomposition of the tensor C when parti-
tioned between L and SR (or LS versus R), at the cost
of introducing indices that couple the tensors in the bra
and the ket. This decomposition will be such that the
local expectation values and their evolution will be pre-
served, while the long-range coherences will be discarded.

Detection of long range entanglement

In this subsection we describe the algorithm that we
use to identify the long-range entanglement in our MPS.

As discussed in the main text, if there are long-range
entangled degrees of freedom that decouple from S, the
state will factorize in a tensor product with one compo-
nent completely disentangled from the physical degrees of
freedom in S. There will thus exist basis transformations
on L and R identifying the decomposition L = Lf ⊗ Ls

and R = Rf ⊗ Rs, such that the degrees of freedom in
the Hilbert spaces Lf and Rf are in a tensor product
structure with the rest of the system. Graphically,

. (7)

To look for such a decomposition we numerically mini-
mize the square of the Euclidean distance between the
left and the right-hand side of the previous diagram (7).
The variables in the optimization problem are the uni-
tary matrices UL and VR, which respectively determine
the left and right basis transformations, and the two re-
sulting vectors, |ψLsSRs

⟩ and |ϕLfRf
⟩. The full optimiza-

tion is a complicated non-linear problem. However, as a
function of each of the individual pieces, the cost function
is quadratic and can be solved using basic linear algebra.
Hence, to find the decomposition we use an alternating
scheme, first used in [3]: we fix all the variational tensors
but one, and substitute the free piece by the one that
minimizes the value of the cost function. When the uni-
taries are fixed, the optimal for the two vectors are just
the leading left and right singular vectors across the par-
tition LsSRs versus LfRf . For the case of the unitaries,

after imposing the unitarity constraint, the cost function
is linear in each of them. That kind of problems can also
be easily solved with a singular value decomposition of
the environment [4].
The algorithm is efficient, with cost scaling as O(D3)

with the bond dimension, and we find that it shows a
good performance. In particular, we find components
of the wave function which mediate long-range entangle-
ment and decouple from the slower degrees of freedom,
as expected according to the intuition drawn from the
quasiparticle picture.

Simple truncation algorithm

In the previous section we have discussed the TN al-
gorithm we use to identify the degrees of freedom that
contribute to the long-range entanglement in our MPS
representation of the time-evolved state. In practice, we
combine the previous algorithm with an iTEBD simula-
tion that provides us with a faithful representation of the
state at short times and later allows us to evolve the local
tensors in the ansatz.
Starting from a pure state (uMPS) description of the

initial state, we evolve unitarily with iTEBD. At peri-
odic time intervals, we look for the above decomposition
of the simulated wave function. The extent to which our
time-evolved state has the sought structure can be char-
acterized in several ways. We choose to use the entangle-
ment entropy between the fast and slow degrees of free-
dom, which can be identified after we have transformed
the basis of the bond dimension indices according to the
found unitaries. We thus need to compute the entropy

of the reduced density matrix ρ
(fast)
LfRf

= trLsSRs
|Ψ⟩⟨Ψ|,

which can be graphically represented as

ρ(fast) = . (8)

A vanishing entanglement entropy means that our state
has, in the found virtual bases, exactly the desired tensor

product structure, |Ψ⟩ = |ψ(slow)
LsSRs

⟩⊗|ϕ(fast)LfRf
⟩. In this case,

it is possible to modify the state in such a way that local
expectation values are preserved while discarding some
long-range correlations, as described in the main text.
More concretely, we substitute the density operator of
the full system |Ψ⟩⟨Ψ|, represented graphically in Fig. S1
(left), by a mixed state (right) that, in the basis of the
virtual degrees of freedom in which the state factorizes,
corresponds to

|ψ(slow)
LsSRs

⟩⟨ψ(slow)
LsSRs

| ⊗ ρ
(fast)
Lf

⊗ ρ
(fast)
Rf

,
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(a) (b)

FIG. S1. Graphical representation of the density matrices of
the entire state before (a) and after the truncation of the fast
degrees of freedom (b).

with ρ
(fast)
L(R) ≡ trR(L)

[
ρ
(fast)
LR

]
as defined in the main text.

The state on Fig. S1(a) is an exact representation of
the tensor C in the case in which the time-evolved state
presents the exact sought structure. The state on the
right (Fig. S1(b)) has a different structure: it represents
a mixed state. Despite the two states being globally dif-
ferent, the two have the same reduced density matrices
on the subsystems LS, as graphically shown in Fig. S2.
An analogous computation shows that the reduced den-
sity matrix for SR is also preserved by this substitution.
Furthermore, as can be seen from Fig. S1, the rank of the
state (or bond dimension) across the cut L versus SR is
reduced by a factor which is given by the dimension of
the fast degrees of freedom.

(a)

(b)

FIG. S2. Reduced density matrix on the subsystem LS be-
fore (a) and after (b) the truncation. Using the unitarity of
VR, one can check that the reduced density matrices are iden-

tical (right-hand side of the equalities). The state |ϕ(fast)
LfRf

⟩
is normalized, and thus, the tensor contraction in the right-
hand side of the equation in (b) gives 1. This same diagram
also shows that the fixed points are unchanged by the mix-
ing step: notice that by tracing subsystem R, we get a con-
dition equivalent to the second equality in 3 (namely, that∑

sℓβ
C

sℓ
αβC̄

sℓ
α′β = (λ2)αα′). Both the state before and after

the truncation give the same resulting tensor. A similar ar-
gument can be made for the left fixed point.

(a)

(b)

(c)

FIG. S3. Reduced density matrices on two consecutive blocks
of the system, before (a) and after (b) the truncation of the
fast degrees of freedom. As explained in the text, the fixed
points are also unchanged by the transformation. Using the
unitarity of the two basis transformations in the virtual de-
grees of freedom, one can show that the expectation value for
both is given by the same contraction (c).

Because the state of the chain can also be explicitly
written as a sequence of blocks, using the form (5), we
can perform the same transformation in all blocks of the
chain at the same time [i.e., we substitute all the tensors
C in (5) as shown in Fig. S4]. After this substitution, it
can be shown that the leading left and right eigenvectors
of the transfer operator for the block are unchanged (see
Fig. S2). This can be used to show graphically that the
reduced density matrices of up to two blocks (2ℓ consec-
utive sites) are preserved (Fig. S3).

FIG. S4. After identifying the long range entanglement, we
truncate the fast degrees of freedom in all block simultane-
ously.

In practice, as can be seen from Fig. 3 of the main text,
the decomposition we obtain variationally never reaches
full separation between fast and slow degrees of freedom
and as a result the substitution is never exact. However,
the fast-slow entropy seems to decay fast with time. Our
simple truncation consists just on performing an iTEBD
simulation, while monitoring the ”disentangling” entan-
glement entropy. When it falls below a certain threshold,
we substitute all the C tensors on the present state by
its tensor product approximation, and mix the fast de-
grees of freedom according to the diagrams above. After
that, because the last step is not exact, we normalize
again the state. The results from this evolution are the
orange line in Fig. 4(a) of the main text. In them, it can
be appreciated that at the times where the truncation
is performed, we incur in an instantaneous error in the
local observable. However, as we evolve the state again
the dynamics seems to be correctly captured modulo the
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FIG. S5. Evolution of the transverse magnetization for the
integrable quench (g = 2, J2 = 0) as obtained with the algo-
rithm discussed in the section above, in orange. The exact
result is shown by the black dashed line. The inset shows
a close-up of the evolution. In the inset, the vertical gray
dashed lines show the times in which the truncation is per-
formed.

instantaneous shift introduced by the truncation. The
same phenomenon repeats itself as we perform more and
more truncations in the same simulation. A closer-up fig-
ure of the results for this truncation in the main text can
be seen in Fig. S5. The qualitative agreement with the
true dynamics of this simple algorithm corroborates the
intuitive picture discussed in the main text, and justi-
fies using these tensors as starting point for an improved
method that corrects for those discontinuous jumps in a
heuristic manner. We discuss the improved technique in
the next section.

Heuristic truncation

Inspired by the results of our initial truncation, we
present in this section a small modification of the previ-
ous algorithm that attempts to correct the shifts induced
by the fact that we do not find an exact factorization be-
tween fast and slow degrees of freedom.

Our improved heuristic algorithm takes advantage of
this fact and tries to find an alternative purification form
that generalizes the one of the simple algorithm and guar-
antees the correct marginals for LS and SR. The ansatz
we use is composed by three tensorsML, Bℓ and NR. We
initialize their values from the pieces of the decomposi-
tion recovered by the simple algorithm and modify them
to ensure the desired property (see Fig. S6 and Fig. S7).

In order to improve the purification, we minimize the
sum of the Euclidean distances between the new and pre-
vious reduced density matrices, namely we are interested
in

argminML,Bℓ,NR

(
∥ρLS − ρ̃LS∥2 + ∥ρSR − ρ̃SR∥2

)
,

(a) (b) (c)

FIG. S6. (a) Tensor C obtained from the uMPS dynamical
simulation in the mixed gauge. (b) Using the entanglement
decomposition, we find an approximation to the tensor C in
terms of the different pieces that mediate the fast and slow
degrees of freedom. (c) We group the pieces according to the
dotted lines to construct the new tensors ML, Bℓ and NR,
which will be the starting point for the heuristic optimization
variables.

FIG. S7. In order to improve our purification, we minimize
the squares of the euclidean distances between the left and the
right hand side of the two approximate equations above. We
minimize the sum of the two distances, as we need a resulting
state that satisfies both.

where ρ̃ denotes the new reduced density matrices ob-
tained from the mixed state defined by the tensors
ML, Bℓ and NR, which are the variables in the optimiza-
tion. To minimize the cost function we use a gradient-
descent scheme, as the optimization contains terms which
are of fourth order in the entries of the tensors. The
dimensions of the tensors, and the fact that they have
purification legs guarantee that the original pure state
will be approximated by a mixed state with a lower bond
dimension.
The same as in the simple algorithm, we combine this

decomposition with an iTEBD simulation. As the evo-
lution unfolds, we monitor the behavior of the entangle-
ment entropy between fast and slow degrees of freedom.
Once it falls below a pre-established threshold ηS , we
perform the truncation described by the direct decompo-
sition and group the pieces obtained in it into the ten-
sors ML, Bℓ and NR, as can be seen in Fig. S6. Lastly,
we use these tensors as a starting guess for the heuris-
tic optimization described in the paragraph above, which
modifies them slightly to correct for the small deviation
in the reduced density matrices. Once the optimization
is stopped, we substitute the pieces for all the tensors C
in our chain, normalize again the state and continue the
evolution. After the tensors C are substituted by their
lower-rank counterparts for the first time, the structure of
the uMPS describing the purification contains a sequence
of tensors Bℓ that carry the physical indices, separated
by two purification tensors NR and ML, themselves con-
nected by a diagonal of inverse Schmidt values. Notice
that the subsequent time evolution is applied only to the
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physical indices of each Bℓ tensor, but not to the purifi-
cation ones. Nevertheless, these tensors mediate the en-
tanglement between physical sites, which in general will
continue building up in time. We thus need to continue
monitoring the fast-slow entanglement entropy of the Bℓ

tensors in order to apply further truncations as required.

Two extra aspects of the algorithm deserve a comment.
The first one is that with each truncation/mixing step,
the number of purification sites between a pair of blocks
increases by two. In principle, since there is a large free-
dom in the representation of the purification indices, it
would be possible to look for a more efficient description
of this set of tensors (e.g. minimally entangled, in the
spirit of [5]). In this work, for simplicity, we group all
the purification legs together and work with a unit cell
that has two tensors, one with the physical dimension
and another one with the purification dimension. The di-
mension of the purification index would thus in principle
grow exponentially with the number of truncations. In
order to efficiently deal with it, we perform a SVD of the
purification tensor, splitting virtual vs purification legs,
and implement a hard cutoff on this dimension (with a
value of a dpurification = 1000, for our simulations). Then
we continue the evolution while keeping the purification
dimension fixed. The second aspect that deserves a men-
tion refers to the performance of the heuristic truncation
without using the input from the entanglement decom-
position. We observe that whenever we do not make use
of it, the heuristic optimization results (i.e. the distance
between the correct marginals and the density matrices
of the varitional mixed state) are not good, and thus, we
incur in errors that accumulate during the simulation.

FREE FERMION CALCULATIONS

In the integrable case (J2 = 0), the model can be
mapped to an exactly solvable free fermionic system. We
can use this solution to perform the same calculations as
with the TN algorithm, and thus corroborate and gain a
deeper understanding of the observed numerical results.

Disentangling the long-range components

Fig. 3(a) of the main text shows that, for quenches
from the ground state at g → ∞, the residual entropy
between fast and slow degrees of freedom decays slower
for smaller values of g, even though for all the cases stud-
ied the decay is compatible with an exponentially fast
decrease in time. At the same time, the saturation value
of the logarithmic negativity carried by the fast degrees
of freedom seems to grow as we scan the final value of
the transverse field from g = 2 to g = 0.5. In fact, at
g = 1, the logarithmic negativity seems to saturate to 1,

the maximal possible value for a bipartite state of two
qubits [6].
We can relate this behavior to the distribution of quasi-

particles in the initial state, illustrated in figure S8 for the
studied quenches. As we scan from g = 2 to g = 0.5 in the
phase diagram, the occupation number of the freely prop-
agating modes of the quench Hamiltonian grows. Some-
thing similar happens to the coherences between opposite
momenta. This is reminiscent of the behavior of the log-
arithmic negativities in the TN computations and of the
fact that as we quench to smaller values of g, the energy
of the initial state according to the final Hamiltonian gets
closer to the middle of the spectrum. Furthermore, by
analysing the group velocities one can get some intuition
of the rates of decay of the residual entropy. For a quench
inside the paramagnetic phase, the maximum of the oc-
cupation coincides with the maximal group velocity. In
contrast, when we quench to the ferromagnetic phase, the
maximally occupied mode has vanishing group velocity.
This could be an explanation of the slower decay rate
observed when quenching to the ferromagnetic phase.

Eliminating the long-range coherences

The free fermionic chain can also provide insight on
the transformation performed by the TN algorithm. A
Jordan-Wigner transformation maps the spin chain to
a system of N fermionic modes, created by operators
a†i , i = 1, . . . N , that fulfill standard commutation rela-

tions
{
a†i , aj

}
= δi,j , with δ the Kronecker delta. Be-

cause the resulting Hamiltonian involves only quadratic
terms in ai, a

†
j , the fermionic system is free, and ground

states and their evolution are described by Gaussian
states. By virtue of Wick’s theorem, these are completely
characterised by two-point correlation functions, which
can be organized in the 2N × 2N correlation matrix [7]

Γi,j = ⟨αiα
†
j⟩, where the operator-valued vector

α† =
(
a1, a2, . . . , aN , a

†
1, a

†
2, . . . , a

†
N

)

holds all creation and annihilation operators of the chain.
Other sets of fermions c = Uα can be defined through
symplectic transformations, which conserve the anticom-
mutation relations.

We can now divide the system in three parts, namely a
central region S containing few fermions and playing the
role of the local block in the above description, and two
regions L and R, containing respectively all the fermions
to the left or right of S. Because the state is Gaussian,
all correlations of operators supported in one connected
region are determined by the restriction of the correla-
tion matrix to the modes in that region. The symplectic
transformation representing a unitary that acts on the
left (right) virtual leg of the MPS would in this setting
act only on the modes defined in L (R).
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FIG. S8. Occupation of the eigenmodes of the quench Hamiltonian (solid lines) and their group velocity (dotted lines) as a
function of their momentum in the integrable quenches shown in figure 3(a) in the main text. Dashed lines show the initial
coherence between opposite momenta. In the leftmost plot (g = 0.5), the coherence between opposite momenta and the group
velocity are on top of each other.

FIG. S9. We reproduce the TN calculations for the integrable quench g = 2 using the free fermionic formalism. For a system
of size N = 800 we consider a block S of 4 sites and identify a pair of modes, respectively in L and R, that disentangle from
S, as explained in the text. The residual fast-slow entropy (a) shows the same behavior as in the TN calculation, as does the
logarithmic negativity between the L and R fast components (inset). (b) shows the contribution to the correlation matrix of
the coherences of this long-range pair when it is identified at t = 5 (inset) and after an additional evolution for ∆t = 20.

The free-fermionic equivalent of the TN algorithm
should try to single out, after some evolution time, at
least one fermionic mode localized in L and entangled
only with modes in R. Namely we want to identify
modes l =

∑
j U

L
1,jα

L
j and r =

∑
j U

R
1,jα

R
j such that

⟨λ ·αS†⟩ = ⟨ρ ·αS†⟩ = 0, where ρ† = (r, r†), λ† = (l, l†)
and αS(L,R) is the restriction of α to the modes in S
(L, R). To this end, after discarding modes that are
pure in either L or R, we optimize numerically the linear
combinations above that produce the lowest overlap with
modes in S.

In order to compare to the TN results, we have ap-
plied this procedure to the quench g = 2 for a system
of N = 800 fermionic modes, in which we singled out
a central region of four sites. After time t = 5, we
solve the optimization described above to identify a pair
of fermionic modes carrying long-range entanglement.
Fig. S9(b) shows (in absolute value) the contribution of
this pair to the (a†a part of the) correlation matrix (in-
set) as well as how this has evolved after a time ∆t = 20
has elapsed. The empty region around (0, 0) corresponds
to our block S.

In panel (a) of the same figure we show how the partic-
ipation of those modes changes in time. In particular we
observe that, despite the fact that these mode spread and
eventually enter S, their participation on the S modes
is extremely small compared to their participation else-
where. Therefore at the level of the local system S, this
pair can be substituted by a density operator, completely
disentangled from the local degrees of freedom, starting
at time t = 5 and for the rest of the evolution.

Fig. S9(a) shows the residual entanglement between
the l, r pair and the modes in S (main panel) for sev-
eral values of the quench parameter, together with the
negativity between the two modes l and r (inset), to be
directly compared to the results in Fig. 3 in the main
text. Both quantities show good agreement with the TN
results and confirm that in all scenarios, as time passes,
the identification of l, r becomes more and more accu-
rate, and that both modes keep being robustly entan-
gled with each other. Notice that the agreement is not
only qualitative, but the magnitude of the entanglement
quantities is very similar to those found with the TN
algorithm, which supports our interpretation of the TN
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transformation as correctly identifying the quasiparticles
that carry away long-range entanglement.
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