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In the out-of-equilibrium evolution induced by a quench, fast degrees of freedom generate long-range
entanglement that is hard to encode with standard tensor networks. However, local observables only sense
such long-range correlations through their contribution to the reduced local state as a mixture. We present a
tensor network method that identifies such long-range entanglement and efficiently transforms it into
mixture, much easier to represent. In this way, we obtain an effective description of the time-evolved state
as a density matrix that captures the long-time behavior of local operators with finite computational
resources.
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Reconciling the time-reversal invariant unitary evolution
of closed quantum many-body systems with the emergence
of statistical mechanics and its well defined arrow of time is
still an open question, hindered by the exponential com-
plexity of simulating this problem in the generic case.
In contrast, the equilibrium wave functions of a large

class of physically relevant systems live in a small corner of
the exponentially large Hilbert space, characterized by a
bounded amount of entanglement [1]. States therein admit
an efficient approximation as a tensor network (TN) [2].
This property implies we can perform very precise numeri-
cal simulations with only polynomial resources [3–9], such
as those with matrix product states (MPS) in one dimension
[4,10–13].
Out of equilibrium, instead, initially localized correla-

tions can propagate over arbitrarily large distances. As a
result, the entanglement in the system increases rapidly
[14–19] and simple TN Ansätze like MPS have limited
applicability. By focusing on the local description of the
state, nevertheless, one can circumvent the exponential
complexity that originated from such nonlocal correlations.
Significant simplifications using this approach have already
been observed [20–30].
Here we develop this idea and propose a new algorithm

that explicitly identifies long-range entanglement in the
system and trades it for mixture (see also [26]). In
particular, our method focuses on separating fast and slow

propagating degrees of freedom. Already from an early
time we observe that the fast degrees of freedom mediate
nonlocal correlations whose effect on local observables is
that of a statistical mixture. Using that knowledge, we
devise a TN algorithm that provides an effective description
of the time-evolved state as a density matrix, represented by
a matrix product operator (MPO) with bounded bond
dimension, and accurately captures the long-time behavior
of local operators.
To benchmark the algorithm, we simulate quenches in

the transverse field Ising model and its nonintegrable
generalization. We find that our results agree with those
dictated by, respectively, the analytical solutions and the
prediction of the diagonal ensemble [31–33].
Quenches and quasiparticles.—We focus on quantum

quenches [14,34], in which a one-dimensional system in
the thermodynamic limit is prepared at t ¼ 0 in a product
state jψ0i, and later evolved with an entangling
Hamiltonian H. Our aim is to compute the time-dependent
expectation value of a local observable O.
The initial state has a finite energy density above the

ground state, and thus a large occupation of excited states,
often described as quasiparticles states (QP). The subsequent
dynamics can be described as the radiation of entangled pairs
of QPs [14]. In translational invariant systems indeed QPs
possess a well-defined dispersion relation ϵðkÞ, and a QP
wave packet centered at k0 propagates with group velocity
vk0 ¼ ∂kϵðkÞjk0 , while momentum conservation enforces
equal occupation of states that propagate with opposite
momenta.
Identifying long-distance entanglement.—In order to

identify the long-distance contributions to the entanglement
we need to focus on a subsystem S of l neighboring spins,
and label L and R the remaining left and right regions of the
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system (see Fig. 1). Entanglement across a bipartition (e.g.,
L vs SR) is created by correlated pairs of QPs with support
on both sides of the cut. We define as long-distance
entanglement the contribution to the entanglement gener-
ated by any QP pair supported on L and R, but not on S.
We can visualize this in the cartoon of Fig. 1(a), where

we consider a quench that excites a single pair of entangled
QPs, initially located inside S, that later travel with opposite
velocities �v [35]. In this simple example, S becomes
entangled with the rest when one member of the pair leaves
the region, but after t ∼ l=v both QPs have left, and the
total state factorizes into the product of an entangled state
of LR and a state of S.
In a more general scenario such complete factorization is

not possible, since S and LRmight contain other sources of
entanglement. The simplest generalization depicted in
Fig. 1(b) involves two pairs of QPs, one fast (orange)
and one slow (blue). When the former has left S the latter is
still partially in S. At that stage, it is still possible to
disentangle a part of L and R from S. We can indeed
identify a factorization of the Hilbert spaces, L≡ Ls ⊗ Lf

and R≡ Rs ⊗ Rf, such that the subsystem Lf ⊗ Rf is not
entangled with S. In the simple scenario presented above,
Lf ⊗ Rf is defined by the degrees of freedom that describe
the fast pair, and we can factorize the state as

jψ ðslowÞ
LsSRs

i ⊗ jϕðfastÞ
LfRf

i, where the second factor captures the

pair of fast modes.
Trading long-distance entanglement for mixture.—In a

translationally invariant system we can repeat the cartoon
picture above for each block of l sites. When computing
the expectation value of a local observable, all the degrees
of freedom are traced out, except those supporting the
observable. For fast entangled pairs separated by at least l
sites, one partner will necessarily be traced out, leaving the
other in a mixed state.
Thus, when focusing on local observables, we can

describe the system as a mixed state where, for each fast

pair, we have substituted the entangled state ρðfastÞLfRf
by ρ̃ðfastÞLfRf

,

the product of the mixed states obtained by tracing out each
partner in the pair,

ρðfastÞLfRf
¼ jϕðfastÞ

LfRf
ihϕðfastÞ

LfRf
j → ρ̃ðfastÞLfRf

¼ ρðfastÞLf
⊗ ρðfastÞRf

; ð1Þ

where ρðfastÞLðRÞ ≡ trRðLÞ
�
ρðfastÞLR

�
are the reduced density matri-

ces of each QP. This provides a more efficient local
description in terms of entanglement, as the long-distance
components have been removed.
From the QP intuition to a TN algorithm.—Standard

MPS algorithms for this setup attempt to represent the time-
evolved state as a MPS, parametrized by one or few tensors
Am of size d ×D ×D, where d is the physical dimension of
the chain sites and D the bond dimension [39–41]. Since
the half-chain entropy of the MPS is upper bounded by
logD [4,42,43], the typical linear growth in time of entropy
after a quench [14,16] requires an exponential increase of
the tensor dimensions to maintain a constant precision. As a
result, given finite computational resources, standard TN
algorithms [44] only give reliable predictions for relatively
short times (typically of the order Jt ≃ 10 with J the
relevant energy scale).
Translating the QP intuition above to the TN setting we

can however obtain a more efficient TN description for the
local observables. Let us, for simplicity, assume that each
MPS tensor represents precisely l sites [45]. Singling out
one subsystem, the whole state can thus be written as

jΨi ¼
X
αslβ

Csl
αβjΦL

α ijslijΦR
β i; ð2Þ

where the sum is over orthonormal bases of the block and
its left and right environments fjΦL=Rig, meaning that we
use the gauge in which the tensor Csl

αβ for the subsystem
fjsig is the orthogonality center of the MPS [13,39,46,47].
If there are long-range entangled degrees of freedom that

decouple from S, the state will have a product structure,
with one component completely disentangled from the
physical degrees of freedom. There will thus exist basis
transformations (disentanglers [48,49]) on L and R iden-
tifying the decomposition L ¼ Lf ⊗ Ls and R ¼ Rf ⊗ Rs,
such that

U†
L ⊗ 1S ⊗ V†

RjΨi ¼ jψLsSRs
i ⊗ jϕLfRf

i; ð3Þ

as depicted in Fig. 2(I.a). If UL and VR exist, they can be
determined minimizing the Euclidean distance between the
left- and right-hand side of (3) [50]. Namely, given the
evolved state in the form (2), and for fixed dimension dfast
of the long-range component, we iteratively optimize each
of the disentanglersUL and VR and the vectors jψLsSRs

i and
jϕLfRf

i until the distance converges. Since the dimension
dfast of the fast factors Lf and Rf is unknown, the procedure
needs to be repeated for different trial values.
Assuming the above procedure succeeds, we now can

transformthe identified long-rangeentanglement intomixture
byapplying the substitution (1) toeachconsecutive subsystem
in the chain. As schematically shown in Fig. 2(I.b), this
exchanges the pureMPSdescription of the systemby amixed

FIG. 1. (a) A correlated QP pair initially located inside region S
creates long-distance (pure LR) entanglement when both QPs
propagate outside of S. (b) At that time, slower QPs (blue) can
still contribute to entanglement between S and its surroundings.
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(purified) MPO with smaller bond dimension D=dfast, at the
expense of additional (purification) indices.
When the decomposition (3) is exact, this mixed state has

the property that the reduced density matrices for SlR
(respectively LSl) are unchanged [51]. As a consequence,
also the reduced density matrix for two adjacent blocks,
and thus all expectation values and correlation functions
with support on up to l sites are preserved. Larger supports
can be achieved working with a larger l, at the cost of
longer disentangling times. We can then continue the
evolution with the original Hamiltonian acting on the
physical indices. Fast degrees of freedom will continue
propagating entanglement through the subsystem S. Thus,
the step of finding and mixing the long-range entangled
components is repeated periodically.
An improved TN algorithm.—In practice, the best

decomposition we identify using this strategy retains some
residual entropy between fast and slow degrees of freedom
SðρfastÞ. We apply the truncation when this entropy falls
below a given threshold ηS. This results in small errors
when building the mixed state that reflect in the evolution
of local observables [see Fig. 4(a)]. Therefore we introduce
an improved heuristic TN algorithm in which, after solving
(3), if SðρfastÞ < ηS we propose an effective purification
Ansatz, described by three rank-3 tensors,ML, Bl, and NR,
with fixed dimensions dpDD0, dlD02, and dpD0D, where
dp is a chosen dimension for the purification index and
D0 ¼ D=dp [see Fig. 2(c)].
The purification tensors are found variationally by

minimizing the distance between the reduced density
matrices ρSR (and ρLS) obtained from the original state
(2) and from the purification. As initial guess we use the
tensors obtained from solving (3), and we use gradient
descent for the minimization problem (see [51]).

The dimension of the purification indices doubles after
each mixing step. In practice, after few steps we keep it
fixed by discarding the smallest eigenvalues of its reduced
density matrix since we observe that the error induced by
this truncation is negligible compared to other sources of
errors in the simulation [52].
Numerical results.—We benchmark the algorithm using

the transverse field Ising model with an additional inte-
grability-breaking next-to-nearest-neighbor interaction,

H ¼ −
X
i

ðσziσziþ1 þ gσxi þ J2σ
z
iσ

z
iþ2Þ: ð4Þ

Initially in a product state jXþi≡ ⊗ ð1= ffiffiffi
2

p Þðj0i þ j1iÞ,
corresponding to the g → ∞ ground state, the system is
quenched to finite values of g, and potentially J2.
To explore systematically the structure of the time-

evolved MPS, we simulate accurately the short-time
evolution using the infinite time-evolving block decimation
(iTEBD) algorithm [39] with a large enough bond dimen-
sion. We then probe the disentangling of fast and slow
degrees of freedom at different times solving (3) for a
subsystem of l ¼ 2 sites for several quenches.
As shown in Fig. 3, after a certain time we can identify

subsystems of L and R that practically disentangle from the
local region and carry long-range entanglement between
the environments, measured by the logarithmic negativity
[54,55] of the reduced density matrix for the fast degrees of
freedom trLsSRs

jΨihΨj. For all quenches, the residual
entropy SðρfastÞ decays fast with time, with a slower rate
when quenching into the ordered phase [56]. As expected,
the time at which fast degrees of freedom start decoupling
from the local system depends linearly on l [inset of
Fig. 3(a)].

FIG. 2. First iteration in the transformation of long-range entanglement into mixture in TN. (I.a) Decomposition (3) for a block S,
represented by a single tensor. (I.b) The density matrix of the full state (left) can be written in terms of the new tensors (middle) when we
apply the decomposition to each block [black circles represent the inverse Schmidt values matrix, inserted to compensate for the central
gauge in (I.a)]. We then substitute each long-range component by the product of its marginals, giving rise to a mixed description (right).
(II.a) The heuristic algorithm directly searches for tensors that (approximately) preserve the reduced density matrices for LS and SR.
(II.b) The density matrix for the full state is replaced by a purification defined by the solution. The structure is analogous to that in (I.b)
(in each case we have indicated the relevant dimensions).
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We now use the TN algorithm described above and
check its performance simulating the long-time evolution
of local observables. Figure 4(b) shows the results for the
integrable quench g ¼ 2, J2 ¼ 0 and the only nonvanishing
(due to the Z2 symmetry) single-site observable hσxi.
Solving (3) and trading entanglement by mixture captures
the qualitatively correct dynamics, but introduces discon-
tinuous jumps (orange line and lower-left inset) that we
attribute to the decomposition not being exact. The
improved heuristic algorithm achieves much better results
(blue line and lower-right inset). While the approximation
induces some residual oscillations, these are very small,
and the results are close to the exact equilibration even after
considerably long times. In contrast, iTEBD results with a
maximal bond dimension D ¼ 500 (pink line) start to
severely deviate from the exact solution at around t ¼ 10.
Our algorithm uses instead a much smaller bond dimen-

sion: during the time evolution steps, the required bond

dimension of the purified MPS grows exponentially, but
each time we trade some of the entanglement for mixture,
the bond dimension gets halved [57]. As we iterate the
procedure, the maximum required bond dimension tends to
a constant D ∼ 100 (upper inset).
In Fig. 4(b) we repeat a similar analysis for the non-

integrable quench g ¼ 2, J2 ¼ 0.1. The different colors
show the results for different thresholds for the residual
entropy ηS. Smaller values require longer evolution

FIG. 3. Entropy (main plots) and left-right logarithmic neg-
ativity (insets) of the reduced density matrix for the fast degrees
of freedom [see sketch in panel (a)], computed from the
decomposition in Fig. 2(I.a) at different times (a) for several
integrable quenches (g ≠ 0, J2 ¼ 0) and (b) nonintegrable ones
(g ¼ 2, J2 ≠ 0).

FIG. 4. (a) Evolution of the transverse magnetization for the
integrable quench (g ¼ 2, J2 ¼ 0) as obtained with the direct
decomposition of Fig. 2(I) (orange) and the heuristic algorithm of
Fig. 2(II) (blue). For comparison, we show the exact result
(dashed black line), the equilibration value (dashed gray), and the
iTEBD result with D ¼ 500 (pink). The lower insets show
enlargements of the short- and long-time regions. In the left
one, the vertical dashed lines indicate mixing steps, inducing
jumps in the simple but not the heuristic algorithm. (b) Same
observable for the nonintegrable quench (g ¼ 2, J2 ¼ 0.1) using
the heuristic algorithm. Different colors indicate different residual
entropy thresholds ηS. Our simulations converge toward the
diagonal ensemble value hσxiDE (dashed gray line). This can
be more clearly seen in the time average of the observable (lower
inset) or the value of the time average at time t ¼ 50 as a function
of ηS (upper left inset). For both quenches, the upper (right) inset
shows the bond dimension as a function of time.
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between mixing steps, and thus larger bond dimension, but
improve the results systematically.
Our results systematically approach the long-time limit

predicted by the diagonal ensemble hσxiDE ¼ 0.852 [58].
Even for the largest threshold, the relative error in the

time-averaged value after t ∼ 50 is below 1% (0.848). Also
the time-averaged magnetization exhibits a similar preci-
sion, as shown in the lower inset. Also in this case the
largest bond dimension saturates with t (upper right inset).
In the Supplemental Material [51], we also repeat the

calculations in the integrable case directly using the free-
fermionic formalism [59] where we can track the coherence
we discard in our simulation and confirm it does not play a
relevant role in the long-time dynamics of local observ-
ables [51].
Discussion.—By identifying the long-range entangle-

ment produced in the out-of-equilibrium dynamics after a
quantum quench and converting it into mixture, we have
proposed an explicit approach to avoid the entanglement
barrier and simulate the out-of-equilibrium dynamics of an
infinite quantum chain with MPS using finite computa-
tional resources.
Our approach is inspired by the intuitive understanding

of entanglement dynamics in terms of the radiation of QP. It
relies on the hypothesis that fast degrees of freedom
propagate correlations to steadily growing distances, con-
tributing to the linear growth of entanglement across the
system, but only as a statistical mixture to sufficiently local
observables. Our numerical results for the Ising chain show
that the intuition is accurate in the free-fermionic case,
which best fits the QP picture.
We have generalized our intuition to a heuristic algo-

rithm that goes beyond the QP picture and also performs
well in nonintegrable regimes of the model. It is thus
important to pursue further characterization of the algo-
rithm in order to chart its potential and limitations.
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