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Many quantum algorithms rely on the measurement of complex quantum amplitudes. Standard
approaches to obtain the phase information, such as the Hadamard test, give rise to large overheads
due to the need for global controlled-unitary operations. We introduce a quantum algorithm based on
complex analysis that overcomes this problem for amplitudes that are a continuous function of time. Our
method only requires the implementation of real-time evolution and a shallow circuit that approximates a
short imaginary-time evolution. We show that the method outperforms the Hadamard test in terms of circuit
depth and that it is suitable for current noisy quantum computers when combined with a simple error-
mitigation strategy.
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Introduction.—The complex phases of quantum ampli-
tudes play an essential role in quantum algorithms [1–6]
and quantum sensing [7]. Many algorithms require meas-
uring the relative phase between two quantum states [8–
17]. A common subroutine for this purpose is the
Hadamard test, which converts phase information into
probabilities by means of interference [18]. Despite impres-
sive experimental progress, the Hadamard test remains out
of reach for most applications owing to the challenge of
implementing the required controlled-unitary operation. In
this Letter, we propose an alternative method to determine
the complex overlap between certain states that uses no
ancillary qubits or global controlled-unitary operations.
Unlike other ancilla-free schemes [12,19], our approach
does not require the preparation of superpositions with a
reference state, which are highly susceptible to noise [20–
25]. Instead of interference, our method hinges on the
principles of complex analysis.
The proposed approach applies to overlaps of the form of

the (generalized) Loschmidt amplitude

GðtÞ ¼ hψ 0je−iHtjψi; ð1Þ

where H is a local Hamiltonian. Our algorithm requires
that jψi has a short correlation length and that jψ 0i can
be prepared using a unitary circuit. These assumptions
are needed to be able to efficiently apply a short

imaginary-time evolution to jψi [26–34] and to perform
a projective measurement onto the final state jψ 0i [35]. The
absolute value jGðtÞj can be obtained by repeatedly
evolving jψi and averaging over projective measurements
onto jψ 0i. Here, we describe how to obtain the phase.
Equation (1) includes several cases of interest. When

jψ 0i ¼ jψi, GðtÞ is the Fourier transform of the local density
of states, which has applications in the study of quantum
chaos [36,37], in optimal measurements of multiple expect-
ation values [14], and in estimating energy eigenvalues
[9,10,13,15,17]. The case when jψ 0i ¼ Ae−iHt0 jψi, for a
local unitary A, is relevant for probing thermal properties of
many-body systems [12,38–40].
The key idea underlying our method is to view G as a

function of a complex variable z. Assuming that GðzÞ is
analytic and nonzero, the Cauchy-Riemann equations
imply that the real-time derivative of the phase of GðzÞ
is equal to the derivative of ln jGðzÞj along the imaginary-
time direction. We use this relation to obtain the desired
phase by carrying out the following three steps on a
quantum computer (see Fig. 1). First, a quantum circuit
applies an evolution under the Hamiltonian H for a short
imaginary time h to the initial state jψi [26–31]. Second,
we evolve the system underH for the real time t. Third, we
perform a projective measurement onto the state jψ 0i by
inverting the circuit that prepares jψ 0i from a computational
basis state, followed by measurements in the computational
basis. Using these steps, we can estimate jGðt� ihÞj. This
yields a finite-difference approximation to the imaginary-
time derivative of ln jGðzÞj, which is equal to the real-time
derivative of the phase. We finally compute the phase of the
Loschmidt amplitude by repeating these steps for different
values of t and numerically integrating the derivative,
starting from a time at which the phase is known.
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We show below that our method is efficient if jGðt� ihÞj
is bounded from below by an inverse polynomial in the
system size N. For product states jψ 0i ¼ jψi, however, the
Loschmidt amplitude decays as a Gaussian function on a
timescaleOð1= ffiffiffiffi

N
p Þ [41]. In this case, our approach will be

inefficient even for short constant times, for which the
Loschmidt amplitude can be computed by a polynomial-
time, classical algorithm [42]. By contrast, no efficient
classical algorithm is known for the case jψ 0i ¼ Ae−iHt0 jψi.
Since the real- and imaginary-time evolution operators
commute, our method can be used to compute the phase
as a function of t − t0, with the expectation value
hψ jeiHt0Ae−iHt0 jψi serving as the reference for the integra-
tion. This is expected to be classically hard even for
small t − t0 since computing the reference value at times
t0 ¼ polyðNÞ is BQP-complete [43].
Although our approach is based on the analytic proper-

ties of a function of a continuous variable, we show below
that it also works well in the discrete setting of Trotter
evolution. Hence, the method applies to both circuit-based
quantum computers and to analog quantum simulators

supplemented by shallow circuits to implement the
imaginary-time evolution. To demonstrate the suitability
of the method for near-term quantum devices, we combine
it with a simple error-mitigation strategy [44–49] and show
numerically that the phase can be reliably recovered in a
system of N ¼ 24 qubits. Beyond providing a viable
alternative to the Hadamard test on near-term quantum
computers, our method may be useful in the early fault-
tolerant regime as the absence of controlled global oper-
ations significantly reduces the circuit depth.
Theoretical approach.—To formally describe the algo-

rithm, we consider the complex variable z ¼ t − iβ, where t
represents real time and β stands for imaginary time or
inverse temperature. The generalized Loschmidt amplitude,
Eq. (1), can be decomposed into its absolute value and
phase according to

GðzÞ ¼ rðzÞeiϕðzÞ; ð2Þ

where 0 ≤ rðzÞ ≤ 1 and ϕðzÞ is real. In a system of finite
size, the Loschmidt amplitude can be written as a sum of
exponentials by expanding the states jψi and jψ 0i in the
energy eigenbasis. The logarithm lnGðzÞ is therefore
holomorphic everywhere except when GðzÞ ¼ 0. For an
analytic branch of ϕðzÞ, the Cauchy-Riemann equations
applied to lnGðzÞ ¼ ln rðzÞ þ iϕðzÞ give

∂

∂t
ϕðzÞ ¼ ∂

∂β
½ln rðzÞ�: ð3Þ

Therefore, if GðtÞ ≠ 0 in the interval ½t1; t2�, the phase
difference ϕðt2Þ − ϕðt1Þ can be computed as

ϕðt2Þ − ϕðt1Þ ¼
Z

t2

t1

∂

∂β
½ln rðzÞ�jβ¼0dt: ð4Þ

If the phase ϕðt1Þ is known, then ϕðt2Þ may be computed
from the partial derivative of rðzÞ along the imaginary-time
direction. In practice, we numerically approximate the
partial derivative by the midpoint formula

∂

∂β
½ln rðzÞ�jβ¼0 ≈

ln rðt − ihÞ − ln rðtþ ihÞ
2h

; ð5Þ

where h is a small parameter.
This procedure is well defined for rðt� ihÞ > 0 in the

interval ½t1; t2�. To bound the computational errors, we
make the stronger assumption that j ln rðzÞj ≤ cN at all
points in the complex plane within distance a of the interval
½t1; t2�, for constants c and a > h. In the case of Trotter
evolution, we make analogous assumptions for closely
related functions [50]. We highlight, however, that our
approach can be extended to treat zeros in GðtÞ by
separately considering the resulting discontinuities in the
phase [50].

FIG. 1. (a) The time derivative of the complex phase ϕðtÞ
of Loschmidt amplitude GðtÞ can be estimated from
rðt� ihÞ ¼ jhψ 0je−iHte�hHjψij. The right panel shows the result
of our approach with h ¼ 0.1 for the transverse-field Ising chain,
Eq. (8), of length N ¼ 40. The solid lines on the lower right
correspond to the complex Loschmidt amplitude obtained from
the algorithm, while the overlapping dashed lines indicate the
exact result. (b) Circuit to measure rðt� ihÞ. For initial product
states, the rescaled imaginary-time evolution has the same
brickwork layout as a single real-time Trotter step.
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The above analysis has reduced the problem to meas-
uring the absolute values rðt� ihÞ2. It involves nonunitary
imaginary-time evolution that cannot be directly applied.
However, Motta et al. [27] showed that e�hH can be
simulated by a unitary circuit for short times h if the
spatial correlations of jψi decay exponentially with corre-
lation length ξ and H is a local Hamiltonian. For each local
term Hm in the Hamiltonian, it is possible to approximate
e�hHm jψi ≈ c�mV�

mjψi, where V�
m is a local unitary and

c�m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ je�2hHm jψi

p
accounts for the normalization.

Since h is small, the product over all V�
m=c�m (in arbitrary

order) is a good approximation of e−hH. The operators V�
m

act on O½ðξ logNÞd� qubits in d spatial dimensions and the
complexity of computing V�

m is quasipolynomial in N for
d > 1. This renders the approach challenging for large ξ.
Below, we focus on the simplest case of product states, for
which the unitaries V�

m act on the same sites as Hm and can
be efficiently computed. The resulting circuit has the same
structure as a single Trotter step [50].
Error analysis.—We next analyze the error in the

estimated phase arising from the different approximations
in our algorithm. The approximation error of the imagi-
nary-time evolution is dominated by the first-order Trotter
decomposition, which results in the phase error [50]

ΔϕITE ¼ OðNth2Þ: ð6Þ

The factor t ¼ t2 − t1 accounts for the accumulation of
errors in the integral in Eq. (4). While the real-time
evolution can be carried out exactly on analog quantum
simulators, digital quantum computers incur an additional
Trotter error, leading to the phase error [50]

ΔϕRTE ¼ OðNt2τpÞ: ð7Þ

Here, τ is the time of a single Trotter step, p is the order of
the Trotter decomposition [59], and we again included the
accumulation of errors in Eq. (4). Numerical differentiation
and integration give rise to additional errors. They can,
however, be safely ignored for practical orders of the
Trotter expansion (p ≤ 4) as they are asymptotically at
most as big as ΔϕITE and ΔϕRTE [50].
We verify these analytic estimates using numerical

results for the transverse-field Ising chain, whose
Hamiltonian is given by

H ¼ −J
XN−1

i¼1

SziS
z
iþ1 þ g

XN
i¼1

Sxi : ð8Þ

Throughout this work, we set J ¼ 1 and g ¼ 0.5, corre-
sponding to the ferromagnetic phase. Both states jψi and
jψ 0i are chosen as j↑↑↑ � � �i. For the Trotter decomposition,
we alternate between the ferromagnetic and transverse-
field terms.

Figure 2 shows the error in the phase computed using our
approach. The numerical results were obtained by matrix
product state simulations with bond dimension 200, for
which truncation errors are negligible [50]. In Fig. 2(a), we
set τ ¼ 0.01 such that the error in the imaginary-time
evolution dominates. The phase error collapses onto a
single curve upon dividing by Nh2, which confirms the
predicted error due to imaginary-time evolution, Eq. (6).
Similarly, we set h ¼ 0.01 in Fig. 2(b) to isolate the effect
of the real-time Trotter error. The collapse of the data agrees
with Eq. (7).
In addition to numerical errors, any experiment incurs

statistical errors. Given M measurements, a probability p
estimated by counting successful outcomes will have a
multiplicative error

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − pÞ=Mp
p

, governed by the stan-
dard deviation of the binomial distribution. According
to Eq. (5), for the measured probabilities p�ðtÞ ¼
rðt� ihÞ2=Qmðc�mÞ2, this contributes an additive error

ΔϕS ¼ O
�

It

h
ffiffiffiffiffi
M

p
�

ð9Þ

to the final phase for M measurements per time step.
The integral in Eq. (4) is included in the factor I ¼R t2
t1 dt

0� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=pþðt0Þ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=p−ðt0Þ

p �
=t. In contrast to the

previous errors, the statistical error depends on the magni-
tude of the measured probabilities.
Comparison with existing methods.—To compare our

approach to existing methods, we consider the error ΔG in
the complex Loschmidt amplitude G. This error is related to
the phase error,Δϕ, by jΔGj2 ¼ Δr2 þ ðrΔϕÞ2. Here,Δr is
the error from an independent measurement of r, which
only requires the Trotterized circuit without imaginary-time
evolution. To bound Δr by ϵ, we need a circuit of depth
Dr ¼ Oðt=τÞ ¼ Oðt1þð1=pÞNð1=pÞ=ϵð1=pÞÞ and a number of

(a) (b)

FIG. 2. Error in the phase of Loschmidt amplitude, Δϕ,
computed using our approach for the transverse-field Ising chain,
Eq. (8). (a) Δϕ=Nh2 as a function of time t with fixed real-time
Trotter step τ ¼ 0.01 for different values of the imaginary-time
step h and different system sizes N. (b) Δϕ=Nτ2 for h ¼ 0.01 and
different values of τ and N. The color coding is the same as in (a).
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Mr ¼ Oð1=ϵ2Þ measurements [50]. For the term rΔϕ, we
bound the individual contributions to the phase error.
For instance, rΔϕITE < ϵ implies that h ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffi

ϵ=rNt
p Þ.

A similar bound on the real-time evolution gives
τ ¼ O½ðϵ=rNt2Þð1=pÞ�, resulting in the circuit depth
D ¼ Oðrð1=pÞt1þð2=pÞNð1=pÞ=ϵð1=pÞÞ. Bounding the statisti-
cal error yields the number of measurements M ¼
OðI2r3t3N=ϵ3Þ for each time step. We note that when r
is bounded from below by a constant, the cost of estimating
ϕ dominates.
We compare this resource cost to the Hadamard test and

sequential interferometry [12]. The latter method employs a
reference state whose Loschmidt amplitude, including the
phase, is known. The details of these two methods are

described in the Supplemental Material [50]. Table I
summarizes the resource cost for each method. For a
constant evolution time t, the circuit depth needed for
our algorithm is reduced by a factor OðN1þ1=dÞ compared
to the Hadamard test with swaps, and by OðN1=pÞ
compared to sequential interferometry. This improvement
is particularly significant for noisy quantum computers, for
which circuit depth is the key limiting factor.
Applications.—For practical applications of our protocol,

it is important to consider the role of noise. We propose a
simple rescaling strategy based on previouswork tomitigate
the effects of noise [49]. The key observation is that errors
are unlikely to drive the system toward the target state jψ 0i.
Hence, the measured probabilities are decreased in a
consistent fashion, which can be mitigated by rescaling
with the probability of having no noise. This is equivalent to
zero-noise extrapolationwith an exponential fitting function
[44,60,61]. Below, we simply use the known noise rate for
rescaling. In practice, the rescaling factor can be determined
by enhancing the noise or by measuring the survival
probability after forward plus backward evolution [49].
As a proof of concept, we apply our approach to compute

the local density of states (LDOS) dðEÞ through the Fourier
transform

dðEÞ ¼ hψ jδðE −HÞjψi ¼ 1

2π

Z
∞

−∞
GðtÞeiEtdt: ð10Þ

If the initial state has a sufficiently large overlap with the
ground state, its LDOS enables determining the ground
state energy. In quantum chemistry, this can hold even for
product states, rendering our approach particularly suitable
[62]. We further note that our approach is compatible with

TABLE I. Circuit depth D and number of measurements M to
estimate the complex Loschmidt amplitude G with additive error
ϵ. All protocols use a real-time Trotter decomposition of order p.
The Hadamard test is implemented using a single ancilla qubit
with swap operations in d spatial dimensions. The latter two
methods require M measurements at each intermediate state or
time step, but the corresponding values of the phase are also
returned. For these approaches, we only consider initial product
states and ϵ bounds the error rΔϕ arising from the uncertainty in
the phase. The quantities Ĩ and I depend on the intermediate
amplitudes in these sequences; see text and Supplemental
Material [50].

Method D M

Hadamard test Oðt1þð1=pÞN1þð1=dÞþð1=pÞ=ϵð1=pÞÞ Oð1=ϵ2Þ
Sequential
interferometry

Oðrð1=pÞt1þð1=pÞNð2=pÞ=ϵð1=pÞÞ OðĨ2r2N2=ϵ2Þ

This work Oðrð1=pÞt1þð2=pÞNð1=pÞ=ϵð1=pÞÞ OðI2r3t3N=ϵ3Þ

(a) (b) (c)

FIG. 3. (a) Absolute value of the Loschmidt amplitudes for an Ising chain of lengthN ¼ 24with initial state j↑↑↑ � � �i and Trotter step
sizes τ ¼ h ¼ 0.3. The dashed lines include single-qubit depolarizing noisewith probability γ ¼ 3 × 10−3 after each gate. The dash-dotted
lines are obtained by the error mitigation described in the text. We quantify the statistical error of the error-mitigated curves by simulating
100 experiments, each of which usesM ¼ 106 measurements to estimate the survival probability. The dash-dotted line corresponds to the
median of the 100 experiments, while the shaded areas indicate the range between the first and third quartile. (b) Real part of the Loschmidt
amplitude computed from the data in (a) using our algorithm. The exact value under continuous time evolution is plotted for reference. The
inset shows the absolute difference of the reconstructed values from the exact amplitude. (c) The LDOS obtained through discrete Fourier
transform from the data in (b). The vertical, dashed line indicates the exact ground state energy E0 ≈ −7.55.
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recent proposals that classically process the Loschmidt
amplitudes at different times in order to solve the general
quantum eigenvalue estimation problem [10,50] with
Heisenberg-limited scaling [13,15,17].
We apply our approach to compute the LDOS of jψi ¼

j↑↑↑ � � �i in an Ising chain of system size N ¼ 24. We
numerically carry out the Trotter evolution with Trotter
steps τ ¼ h ¼ 0.3 using the Cirq library [63]. We add
single-qubit depolarizing noise of rate γ ¼ 3 × 10−3 after
each layer of the quantum circuit. We average over 5000
trajectories of a Monte Carlo wave function simulation to
obtain the probabilities p�. The results are shown in Fig. 3.
Here, we have included statistical noise by simulating the
experimental sampling procedure (see caption).
Figure 3(a) shows that the depolarizing noise is mitigated

well by rescaling r2ðtÞ and r2ðt� ihÞ by ð1 − γÞND. The
error in the reconstructed Loschmidt amplitude remains
small within the range of t in Fig. 3(b). We estimate the
LDOS of the initial state by a discrete Fourier transform of
the data in Fig. 3(b) and similar data for the imaginary part
of GðtÞ. The energy resolution is π=tmax ≈ 0.31, determined
by the maximum time tmax ¼ 10. We show the result in
Fig. 3(c) for both noisy, error-mitigated (green) and noise-
less (orange) Trotter simulations. For reference, we also
include the exact result (black line), which is broadened by
a Gaussian of width 0.08. For both Trotter simulations, the
first point with dðEÞ > 0.1 appears at E ≈ −7.50, while the
exact ground state energy is E0 ≈ −7.55.
Summary and outlook.—We propose a quantum algo-

rithm to estimate the phase of Loschmidt amplitudes
applicable to states with short-ranged correlations. It can
replace and outperform the Hadamard test for amplitudes
that arise from continuous time evolution under a local
Hamiltonian. While our analysis focused on generalized
Loschmidt amplitudes, the approach can be readily
extended to multiple time-evolution operators [50], which
renders it applicable to many quantities of physical interest
including transport coefficients [64–66] and out-of-time-
ordered correlators [67,68]. The algorithm requires no
ancillary qubits or controlled operations. When combined
with a simple error-mitigation strategy, our algorithm may
enable phase-sensitive measurements on current noisy
quantum devices for system sizes that out of reach for
other methods.
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