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Recent advancements with trapped nano- and micro-particles have enabled the exploration of
motional states on unprecedented scales. Rotational degrees of freedom stand out due to their
intrinsic non-linearity and their coupling with internal spin degrees of freedom, opening up pos-
sibilities for gyroscopy and magnetometry applications and the creation of macroscopic quantum
superpositions. However, current techniques for fast and reliable rotation of particles with internal
spins face challenges, such as optical absorption and heating issues. Here, to address this gap, we
demonstrate electrically driven rotation of micro-particles levitating in Paul traps. We show that
micro-particles can be set to rotate stably at 150,000 rpm by operating in a hitherto unexplored
parametrically driven regime using the particle electric quadrupolar moment. Moreover, the spin
states of nitrogen-vacancy centers in diamonds undergoing full rotation were successfully controlled,
allowing accurate angular trajectory reconstruction and demonstrating high rotational stability over
extended periods. These achievements mark progress toward interfacing full rotation with internal
magnetic degrees of freedom in micron-scale objects. In particular, it extends significantly the type
of particles that can be rotated, such as ferromagnets, which offers direct implications for the study
of large gyromagnetic effects at the micro-scale.

In the last decade, advances in the control and levita-
tion of nano- and micro-particles have paved the way for
studying mechanical mode dynamics on unprecedented
scales [1–4]. Recent achievements in ground state cool-
ing of center of mass modes have even allowed explo-
ration of mechanical dynamics in a quantum regime [5–
8]. In this context, rotational degrees of freedom possess
two distinctive features that make them particularly at-
tractive for future investigations [1, 9, 10]. First, the
rotational motion is intrinsically non-linear even in the
absence of an external potential. This non-linearity rep-
resents a resource which can be controlled to produce
unique dynamical effects both in the classical and quan-
tum regime [11, 12]. Second, internal spin degrees of
freedom naturally couple to the mechanical rotation of
the hosting particle as a consequence of the Einstein–de
Haas and Barnett effects [13, 14] or through the mag-
netic torque in the presence of a magnetic field [4, 15].
These spin-mechanical couplings significantly affect the
dynamics of micro- and nano-particles [15–20]. It un-
locks the possibility to control the rotation via the in-
ternal spins [4, 10, 21, 22], as well as to use levitated
particles for applications in gyroscopy [23, 24] and mag-
netometry [25]. In the single spin limit, spin-mechanical
coupling may serve to generate macroscopic quantum su-
perpositions of rotation [22]. Precise control of the ro-
tational degree of freedom of particles with internal spin
degrees of freedom, and notably the ability to fully rotate

them, is therefore highly desirable. However at present,
reliable and non-invasive techniques for fast rotation of
such particles are lacking.

Recent demonstrations of full rotation of levitated par-
ticles are based on optical rotation of silica nanoparti-
cles [1, 26–28], which have been rotated with frequencies
as high as a few GHz [2, 29]. However, extending these
methods to particles with an internal magnetic structure
such as diamond or ferromagnets is challenging. This is
mostly due to the large optical absorption of such crys-
talline particles and the resulting heating from the in-
tense laser beam [29].

In this article we bridge this gap by demonstrating a
novel mechanism for stable and non-invasive rotation of
levitating particles, and apply this method to distinct
particle species such as silica rods and diamonds. Enter-
ing the nominally unstable regime for the angular mo-
tion of particles in standard Paul traps and exploiting
the non-linearity of the angular motion, we discover that
elongated particles can be set in rotation in the kHz fre-
quency range. The rotational frequency of the particle
is locked to the trap frequency, and can thus be tuned
by controlling the latter. Additionally, this new rotat-
ing technique is based on the electric quadrupole mo-
ment of the particle, unlike rotation via an electric field
which requires the particle to carry an electric dipole [30–
32]. Since the electric dipole moment tends to vanish for
highly charged particles [33] and no additional RF elec-
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trodes are required, this rotating technique is more ver-
satile. Furthermore, we successfully controlled the spin
state of NV centers in diamonds undergoing full rotation.
We could then employ NV magnetometry to accurately
reconstruct its angular trajectory and show a remarkable
stability of the rotational mechanism over several hours.
These demonstrations represent very first steps towards
interfacing full rotation with internal magnetic degrees of
freedom with a micron-scale object.

The article is structured as follows. In Sec. I, we
present the experimental set-up and explain the phys-
ical origin of the rotating regime of particles in Paul
traps. Using this technique, we rotate silica microrods,
obtain an experimental stability diagram for the angu-
lar dynamics and present a theoretical model that ex-
plains the underlying mechanisms. In Sec. II, we employ
the spin-resonance of NV centers in electrically rotated
micro-diamonds to reconstruct the diamond angular tra-
jectory and demonstrate the single-axis character of the
rotation mechanism.

I. ELECTRIC ROTATIONAL-LOCKING IN A
PAUL TRAP

A. Experimental Set-up

Our experimental platform consists in a bottleneck
asymmetric Paul trap. Fig. 1-(a) shows a picture as well
as a sketch of the trap with an elongated particle repre-
sented by a deformed cylinder. We have also schemati-
cally included a spin inside the particle to represent the
internal degree of freedom associated with the spins in di-
amond. The trap generates the time-dependent electric
potential:

V (r, t) ≡ V (t)
ℓ2

0
(axx2 + ayy

2 + azz
2). (1)

Here, V (t) = V0 cos(Ωdt) is the electrode AC-voltage, ℓ0
the characteristic length scale of the trap, and aj the
geometric parameters verifying ax + ay + az = 0 and the
ax < az < 0 < ay. The trap operates at an electric
potential V0 ≈ 500-2000 V and a frequency Ωd/2π ≈ 1-
10 kHz. The length scale of the trap is typically ℓ0 ≈
50 µm. It allows to levitate charged particles in the 10 µm
size range with thousands of charges on the surface [34].

Two different types of particles will be considered in
this work: diamonds and silica micro-rods. Due to the
quadrupolar form of the electrostatic potential in Eq. (1),
only the particle’s monopole (total charge), dipole, and
quadrupole moments in the particle electric multipolar
expansion play a role in the dynamics. The monopole
moment is responsible for a confining potential for the
particle’s center of mass. The dipole moment couples ro-
tation and center of mass motion [33]. However, such
coupling has never been observed in our experiments [4].
Consequently, we neglect the contribution of the dipole
moment for the remainder of the paper. Due to its

quadrupole moment, the levitating particle is subjected
to an oscillating electric torque. When this torque is av-
eraged over one cycle of the Paul trap voltage, it can
result in restoring torques for the three angular degree of
freedom of the particle. As we will explore in detail in
the following part, this oscillating torque can also lead to
a more complex angular dynamics.

B. The rotational-locking effect

Previous studies have already demonstrated the ability
to completely confine the angular degrees of freedom of
levitated particles using their quadrupole moment in a
Paul trap [15, 35]. We refer to this regime as the librat-
ing regime. In this regime, the dynamic equations for the
three Euler angles can be linearized around specific an-
gular positions, resulting in three independent Mathieu
equations (for more details, see Sec. A in the appendix).
The relevant parameter qu of the Mathieu equation can
be computed based on the Paul trap and particle param-
eters. Stable librations are expected when qu ≲ 0.9 for
all three angles, similar to the requirements for center of
mass confinement in Paul traps. However, once qu ≲ 0.9
is no longer satisfied for at least one angle, that angle
can become unstable and non-linearities in the angular
electric potential can no longer be ignored. In such case,
a different angular dynamics can emerge, the rotational-
locking regime. In this regime, the particle completes a
full rotation about the ez axis, with a rotation frequency
half that of the AC voltage. The rotation period is simply
twice the Paul trap period, given by Trot = 2/(Ωd/2π).

We now derive the complete nonlinear dynamical equa-
tion for the angular dynamics. We neglect the center of
mass to rotational coupling due to the small dipole mo-
ment (see above). Therefore, we can solely focus on the
rotational dynamics of the system. The angular motion
is ruled by the Euler equations,

L̇ = N − ΓL, (2)

where L ≡ Iω is the angular momentum of the particle,
with inertia tensor I and angular frequency vector ω, N
is the electric torque exerted by the trapping potential,
and Γ the tensor representing the gas-induced damping
[36]. The electric torque reads [33]

N = 2V (t)
3ℓ2

0

∑
j=x,y,z

ajej × Q(Ω)ej , (3)

where Q(Ω) ≡ R(Ω)Q0RT (Ω) is the electric quadrupole
moment in the laboratory frame. Its expression in the
body-fixed frame reads Q0 ≡

∫
dr ρ0(r)

(
3r ⊗ r − r21

)
,

where ρ0(r) denotes the charge distribution on the
nanoparticle surface in its reference orientation [33].

Assuming that the particle long axis is kept fixed in the
xy-plane, as will be discussed later, the reduced equation
of the particle angular dynamics can be obtained. It then
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FIG. 1. (a) Left: photo of the Paul trap electrodes used in our experiments. The particle is trapped in the bottleneck
region highlighted by the white box. Right: illustration of the system and definition of the orientation angle for a levitated
asymmetrical cylinder. (b) Electric potential given in Eq. (1) created by the electrodes at two different times t = 0 and
t = TPaul. V ′

0 = V0(r0/ℓ0)2. (c) Diagram explaining the rotational-locking effect.

reads

α̈ + γ0α̇ + ω2
0 cos(Ωdt) sin(2α) = 0. (4)

Here α describes the orientation of the particle’s longest
axis in the xy-plane [see Fig. 1-(a)], γ0/2π is the damp-
ing rate, and ω2

0 ≡ V0(ax− ay)(Q2 − Q3)/3ℓ2
0I1, where I1

is the moment of inertia for a rotation about a direction
perpendicular to the elongated axis and Qi, i = {1, 2, 3}
are the eigenvalues of the quadrupolar tensor. Eq. (4)
describes a parametrically excited pendulum for which
gravitational acceleration is neglected. The parametric
pendulum is known to have two different types of sta-
ble solutions depending on the values of the frequency
and amplitude of the parametric drive [37, 38]. These
solutions corresponds to (i) oscillatory motion about
a fixed direction and (ii) rotational motion around its
pivot [39, 40]. We expect Eq. (4) to also exhibit these
two kinds of solutions corresponding respectively to the
librating and rotational-locking regimes of the particle
dynamics. Note that this analysis is valid only if the
particule symmetry axis remains in the xy-plane at any
given time. Physically, this condition is reached once
the particle rotates, thanks to the gyroscopic effect that
provides additional angular confinement to the β and γ
oscillations as shown by Eqs. (A19-A20) in Appendix A.
We will also confirm that this single rotation axis regime
is fulfilled experimentally.

In order to provide a simple physical picture of
the rotational-locking effect, we introduce the potential
V (r, t) generated by the trap on a spherical surface at a
distance r0 from the trap center. We consider a levitated
particle that is positively and homogeneously charged.
The potential is plotted in Fig. 1(b) at two different times
t = 0 (left) and t = Td/2 (right). The potential is min-

imum in the x-axis at time t = 0, while it is minimum
in the y-axis at time t = Td/2. A schematic explanation
of the rotational-locking mechanism is then provided in
Fig. 1.(c). To distinguish between the two ends of the
particle, a circle and a cross are drawn on the two oppo-
site faces. When t = 0, the particle preferentially aligns
its long axis along the x-axis, which corresponds to the
angular position α = 0 that minimizes the quadrupolar
electric energy. When t = Td/2, the electric potential
minima are rotated by an angle α = π/2, causing the
particle to align along the y-axis. When t = Td, the elec-
tric potential is equal to its initial value (t = 0). Because
of the angular inertia of the particle, it is energetically
favorable for the particle to continue on its rotational
motion and to reach the position α = π instead of α = 0.
The particle finally completes a full rotation after two
periods of the Paul trap drive. The particle rotational
motion at Ωd/2 is thus parametrically sustained by the
electric potential oscillation, similar to a Kapitza pen-
dulum. Note that the particle could also rotate in the
opposite direction.

C. Rotational-Locking with silica micro-rods

In this section, we show rotational-locking of levitated
silica micro-rods and identify the parameters which allow
stable libration and stable rotational-locking.

We work with well calibrated silica micro-rods (from
Nippon Electric Glass Company) with a diameter of 4 µm
and a length of 15 µm. Such a large aspect ratio enables
straightforward angular motion visualization. The load-
ing of the particles is done at ambient pressure, similarly
to in [34]. The particles are then illuminated by a green
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FIG. 2. Experimental results. (a) (i) and (ii) : Power Spectral Densities of the angular motion of a silica micro-particle in the
librating regime in (i) and in the rotational-locking regime in (ii). (b) Stroboscopic imaging of the rotation. Upper two panels
show a schematic of a rotating rod at time t = 0 (left panel) together with the corresponding shadow on the distant screen (right
panel). The lower panels show the situation at t = Td/2 where the rod is rotated by π/2. (c) Experimental reconstruction of the
phase diagram showing the different dynamical regimes of the rod rotation. The red (blue) dots corresponds to the parameter
for which the particle switches from the rotating (librating) regime to the librating (rotating) regime when the frequency is
increased (decreased).

laser and their motion is detected by collecting a portion
of the light transmitted by the particle, which is then sent
to a photodetector. This detection technique is sensitive
both to the center of mass and the angular motion. The
signal from the detector is then sent to a spectrum ana-
lyzer to measure the power spectral density (PSD) of the
motion. Fig. 2(a) shows two different PSD signals, that
have been obtained from two different silica micro-rods
at atmospheric pressure.

A first class of PSD is shown in Fig. 2(a)-(i). There,
a typical sharp peak at the frequency Ωd/2π is obtained,
which indicates excess micro-motion of the particle cen-
ter of mass and angular degrees of freedom, as a result of
a displacement of the particle away from the Paul trap
potential minimum. The other peaks are detection arti-
facts, such as electronic noise of the detector. The par-
ticle center of mass and angular degrees of freedom are
overdamped by gaz collisions, so the Brownian motion
of the particle can be seen as a broad noise in the low-
frequency range (up to ≈ 500Hz). Such a signal indicates
stable center of mass and angular motion.

The second class of PSD signals is presented in
Fig. 2(a)-(ii) for a different Paul trap drive. In this
case, a sharp peak at the frequency (Ωd/2)/2π is also
present. The presence of this peak indicates that the
particle undergoes parametric mechanical motion at half
the drive frequency of the Paul trap, corresponding to the
expected rotational frequency in the rotational-locking
regime. To confirm that this peak corresponds to full
rotation, we employ stroboscopic measurements using an
Acousto-Optic Modulator (AOM). The AOM generates
short laser pulses at a slightly detuned frequency from

(Ωd/2)/2π. This technique allows us to observe the par-
ticle in slow motion on a distant screen. Fig. 2(b) shows
the shadow observed on a screen when illuminating a par-
ticle with a pulsed laser, with main particle axis point-
ing along the optical axis (left) or when it is rotated by
π/2 (right). The observation of the parametric motion
at the frequency (Ωd/2)/2π confirms the complete ro-
tational motion of the particle around the ez axis, as
anticipated.

The analysis of the PSD, along with the stroboscopic
detection, provides us with a simple and robust experi-
mental method to quickly determine the angular dynam-
ics of the levitating particle. We can thus proceed to
explore the different angular regimes as a function of the
drive frequency Ωd/2π and amplitude V0. Specifically, we
start from a particle initially in the librating regime, and
we decrease the drive frequency, while keeping the volt-
age V0 fixed. The drive frequency is decreased until the
only stable regime is the rotational-locking regime. We
then increase the drive frequency to come back to the
librating region. This protocol is performed for different
values of the trap voltage V0 with the same silica micro-
rod. The results are presented in a dynamical phase dia-
gram shown in Fig. 2.(c). We observe that for a given V0
the value Ωl→r at which the particle switches from the
librating to the rotational-locking regime is always lower
than the value Ωr→l at which the particle returns to the
librating regime from the rotational-locking regime. The
two frequencies Ωl→r and Ωr→l thus define a hysteresis
region in the dynamical behaviour of the system when V0
is varied.
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D. Theoretical analysis of the transition between
the librating and rotational-locking regimes

The librating and rotational-locking regimes can be
identified using the value of the following order parame-
ter

ηrot ≡ 2
TΩd

∫ t0+T

t0

dτ α̇(τ). (5)

It represents the averaged angular velocity over a time
interval T , starting from a time t0 which should be cho-
sen such as to avoid any initial transient dynamics. In
particular, ηrot = 0 corresponds to the oscillatory motion
of the particle in the librating regime, while ηrot = ±1
describes locked clockwise and counter-clockwise rotation
in the rotating regime.

In the large driving frequency limit, the numerical solu-
tions of Eq. (4) show small oscillations around the equilib-
rium orientations α = kπ/2, α̇ = 0 rad.s−1, where k ∈ Z,
so that ηrot = 0 in this regime. This is in agreement
with what we observe experimentally. As was realized in
the experiment, we now fix V0 and monitor the particle
behavior as a function of the drive frequency Ωd/2π. We
solve Eq. (4) numerically, with librating initial conditions
α(0) = 5 × 10−3 rad and α̇(0) = 0.01 Ωd/2 and for trap
length scale ℓ0 = 30 µm and radial asymmetry ax− ay =
0.103. To compute the quadrupole tensor we assumed the
particle to be a prolate spheroid with major and minor
axes b and a respectively. Accordingly, for a/b ≪ 1, we
have ∆Q ≡ Q2 − Q3 ≃ qtotb

2(1 + 2a2/b2)/4 [22]. Just as
the typical particles used in the experiment, we assumed
b = 15 µm and a = 4 µm, qtot = 2500 e, with e the
electron charge. From the results of the numerical inte-
gration we compute ηrot. We then repeat the procedure
for different values of V0.

The results are shown in Fig. 3(a), where we marked
with a blue dot the value Ωl→r at which the system
switches from the librating to the rotating regime. The
values of ηrot as a function of Ωd/2π are shown in
Fig. 3(b) (red circles). We see that the particle mo-
tion departs from a pure libration (where ηrot = 0) to
a rotation where ηrot = +1 at about 4.4 kHz. Then, as
indicated by a white region in Fig. 3(a), in the smaller
frequency range, the motion is not a pure rotation any-
more, and in fact resembles that of a pure libration. This
is apparent from the value of ηrot which becomes closer
to zero in the 1.5 to 2 kHz range. There, the motion is
extremely sensitive to the parameter values, signalling a
potentially chaotic response, as expected for a parametric
pendulum at a low driving frequency [37–40]. Studying
this limit in detail however goes beyond the scope of this
paper.

We then proceed to describe the opposite situation,
where we start from the rotating regime and increase
the drive frequency. This time the numerical solution
is calculated with the initial rotating conditions α(0) =
5 × 10−3 rad, α̇(0) = 1.01 Ωd/2 [41]. In Fig. 3.(a), we

marked with a red circle the smallest value of Ωr→l at
which we obtain ηrot = 0. We see that Ωr→l > Ωl→r

systematically. The order parameter ηrot thus exhibits
a hysteresis in the region comprised between Ωr→l and
Ωl→r. We note that the dynamical phase diagram ob-
tained theoretically in Fig. 3.(a) does not only recover the
three observed phases but captures also the functional
dependence of the experimental curves corresponding to
Ωr→l and Ωl→r [cf. Fig. 2.(c)]. As shown in Fig. 3-
c), other rich angular dynamics can take place when the
particle angle enters the rotating regime. These have not
been analysed experimentally so we leave the theoretical
analysis in Appendix A 2.

Electrical locking regime provides a natural rotation
mechanism for particles levitating in Paul traps. It was
realized here in a regime where the particles are highly
anisotropic. Optical read-out is then straightforward
with such large aspect-ratio particles, enabling unam-
biguous analysis of their angular dynamics. One of our
prospects for using such electrical locking effect was how-
ever to set the scene for observing gyroscopic effects tak-
ing place when crystalline particles contain internal de-
grees of freedom. Observing the motion and entering
the locking regime is then not a trivial task because
crystalline particles that contain isolated spins are of-
ten irregularly shaped. In the next section, we make use
of the spins themselves to probe the motion of rotating
crystalline particles. Specifically, we trap diamond par-
ticles containing NV centers and use NV magnetometry
to measure the particle rotation.

II. ANGULAR MOTION READOUT USING NV
CENTERS

NV centers in diamonds are widely employed in mag-
netometry because of the possibility to polarize and read
out their electronic spins under ambient conditions. NV
centers inside a freely moving diamond can also serve as a
probe of the particle motion by monitoring the change in
the photoluminescence in a known magnetic field as the
particle is moving. This technique has already been em-
ployed to characterize the angular stability of levitated
diamonds in the librating regimes of Paul traps [35] or,
more recently, for the 6D tracking of a moving biological
membrane using a tethered nano-diamond [42]. Here, we
demonstrate tracking of the angular trajectory of a lev-
itating diamond in the rotational-locking regime using
NV centers.

A. Rotational-locking of diamond micro-particles

In Fig. 4, we present the power spectral densities ob-
tained with an irregularly shaped 15 µm levitated High
Pressure High Temperature diamond from Adamas Nan-
otechnologies (Adamas Nanotechnologies, Raleigh, NC,
USA) at a pressure of P = 0.7 mbar. Working at this
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FIG. 3. (a) Dynamical stability diagram predicted theoretically from Eq. (4). The red (blue) circles correspond to the transition
frequency Ωr→l (Ωl→r) from the rotating (librating) regime to the librating (rotating) regime. The red (blue) colored region
denote the regime where only libration (locked rotation) is stable. The white region is the hysteresis region. The hatched area
indicates the unstable region of Eq. (4). The black dotted vertical line corresponds to the value of V0 for which we compute
ηrot as shown in panel (b). (b) Variation of ηrot as a function of the driving frequency for a particle initially in the librating
(red circles) and rotating (blue triangles) regimes. We assumed the initial conditions {α(0) = 0.01, α̇(0) = 0.01 Ωd/2}, and
{α(0) = 5 × 10−3, α̇(0) = 1.01 Ωd/2} for the librating and rotating regime respectively. (c) Three examples of trajectories for
a particle initially in the librating regime for three different values of Ωd as specified by the corresponding label i), ii), and iii)
in panel (b). Specifically (from left to right) Ωd/2π = 3.0 kHz, 3.7 kHz, and 4.0 kHz. In this plot, we assumed γ0/2π = 1 kHz.

FIG. 4. Power spectral density of the motion of a levitat-
ing diamond at the pressure P = 0.7 mbar in the librating
regime in (a), and in the rotational-locking regime in (b) with
Ωd/2π = 1510 Hz. The same diamond particle is employed in
both measurements.

low pressure allows us to fully resolve the center of mass
and librational confinement frequencies. In Fig. 4.(a), we
display the PSD of the diamond in the librating regime
while, in Fig. 4.(b), we present the PSD of the dia-
mond in the rotational-locking regime where a peak at
(Ωd/2)/2π appears. The two PSDs were obtained with
the exact same Paul trap parameters Ωd/2π = 1510 Hz
and V0 = 400 V. We used the previously explained hys-
teretic behavior of the angular regime to obtain these two
PSDs. We ensured that the diamond was rotating by us-
ing the AOM stroboscopic detection scheme depicted in
Fig. 2.(b).

Comparing the PSDs in these two regimes allows for

the interpretation of some of the observed peaks as cen-
ter of mass or librational modes. The three annotated
resonant modes ωx, ωy, ωz appear in both regimes at the
exact same frequencies. We thus interpret them as the
three center of mass frequencies of the diamond in the
Paul trap. To further confirm this interpretation we ob-
served that, as expected, ωx, ωy, ωz decrease for increas-
ing values of Ωd (see Appendix B)[43]. The fact that the
center of mass peaks are independent on the rotational
motion also suggests that the dipole moment of the parti-
cle – responsible for the coupling between center of mass
and rotation [33] – is negligible.

The three annotated peaks ωϕ, ωθ, ωψ in Fig. 4.(a) van-
ish when the peak at Ωd/2 appears [Fig. 4.(b)]. This is
indicating that these three modes correspond to libra-
tional modes of the particle, thus deeply within the li-
brating regime. We also observe that ωϕ, ωθ, ωψ decrease
for increasing values of Ωd which is expected from theory
(see Appendix B) [43]. In the rotational-locking regime,
two of the angular modes are proportional to Ωd/2 be-
cause of the gyroscopic stabilization, which differs sub-
stantially from the scaling of the libration modes in the
librating regime (Appendix A). Finally we observe side-
bands around the peak at Ωd/2. The value of the shift
ωδ is comparable to, but not exactly equal to ωz, ωx, ωy.
This peaks could thus correspond to a librating mode
in the rotating frame, such as one of the two gyroscopic
modes, but it is not captured by the theory. Further
investigations are needed to clearly identify its physical
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origin.
The presence of a sharp peak at (Ωd/2)/2π in addition

to the visualization of the rotation motion using a stro-
boscoped laser constitute a robust proof of the rotation
of the diamond. However, it does not give clear infor-
mation of the angular dynamics in the rotating frame,
and notably whether or not the Euler angles are con-
fined. In the next section, we employ NV magnetometry
to demonstrate rotation of the diamond around a single
axis, full stability of the three Euler angles in the ro-
tating frame, as well as the remarkable stability of this
rotational motion over time.

B. Angular detection of the diamond rotation
using NV magnetometry

The NV− center is a point defect in diamond consist-
ing in the association of a nitrogen and a vacancy [44].
The diamonds we use contain 3.5 ppm of NV− centers
which are all equally distributed among the four diamond
[111] orientations. The remarkable property of the neg-
atively charged NV− centers (NV− center for short) is
that its spin can be polarized optically under ambient
conditions in the electronic ground state. It is an effec-
tive spin 1 system in the ground state manifold. The
two |ms = ±1⟩ states are located D ≈ (2π)2.87 GHz
above the |ms = 0⟩ state. The NV− center can be op-
tically polarized to the |ms = 0⟩ ground state using a
green laser. A magnetic field lifts the degeneracy between
the two NV− excited states, making them separately ad-
dressable through resonant microwave excitation. The
magnetic state of the NV− center can be read out by
measuring the emitted photoluminescence (PL), which
decreases when an excited state |ms = ±1⟩ is populated.
The eight magnetic resonances (two magnetic resonances
|ms = 0⟩ → |ms ± 1⟩ for each of the four NV classes) can
thus be read out by collecting the PL, while scanning a
microwave frequency with a constant green laser illumi-
nation. This technique is called Optically Detected Mag-
netic Resonance (ODMR). The value of the transition
energies provides direct access to the strength and the
direction of the magnetic field in a few milliseconds, mak-
ing NV− centers particularly attractive vectorial magne-
tometers. Here, we make use of the NV− centers inside
the rotating diamond to read out of the diamond angular
position.

In Fig. 5.(a), we represent a rotating diamond in an
external magnetic field |B1| ≈ 10 mT. The four NV
center anisotropy axis rotates in the laboratory frame at
a frequency (Ωd/2)/2π, in the kHz range. The projection
angle θ

(i)
1 (t) between the magnetic field B1 and the i-th

NV center class (i ∈ [1, 4]) is a periodic function of time
for a rotating diamond and can be written as:

θ
(i)
i (t) = arccos

(
ai + bi cos

(
Ωd
2 t + ϕi

))
, (6)

where ai, bi, ϕi are constant parameters. In order to get

information on the angular dynamics of the rotating di-
amond, we perform continuous ODMR measurement on
a rotating diamond. To do so, we continuously illumi-
nate the diamond with the green laser to polarize the
|ms = 0⟩ state. A microwave is scanned from 2.4 GHz
to 3.4 GHz while the NV photoluminescence is detected.
The microwave is generated by a microwave generator
(Rohde and Schwarz SMB100A) and is brought onto the
Paul trap using a bias tee. The microwave frequency
is changed every 10 ms, which is ten times larger than
the rotation period of the diamond. The diamond thus
performs multiple turns at a given microwave frequency.

The result of this experiment is shown in Fig. 5.(b).
The observed ODMR spectra features two main regions
with decreases PL ranging from 2.45 → 2.9 GHz and
from 2.9 → 3.25 GHz. These regions are separated by the
avoided crossing between the |ms = −1⟩ and |ms = +1⟩
states at 2.9 GHz. Many such spectra have been ob-
served with similar shapes, often showing between four
to eight similarly broad dips on both sides of the avoided
crossing. Notably, it does not display the eight 6-8 MHz
wide dips which are smoking gun of an angularly sta-
ble diamond [4]. Further, the ODMR spectra does not
correspond to the typical ODMR spectra of a diamond
following an angular random walk. All frequencies within
the two broad regions on both sides of the avoided cross-
ing would otherwise carry almost equal weight within the
frequency range allowed by the magnetic field. This was
for instance observed in [45] for nano-diamonds trapped
in liquid. The ODMR we observe may however be con-
sistent with a rotating motion.

Extracting quantitative information about the dia-
mond rotational dynamics is not trivial from the above
continuous ODMR. An alternative would be to per-
form fast ODMR scans in order to track all NV reso-
nances as their frequency change with the diamond ro-
tation. This would however require spectrum acquisi-
tions on timescales on the order of the rotation period
(≈ 100 µs − 1 ms). Unfortunately the sensitivity of the
ODMR is not good enough to read-out the magnetic field
at such speeds.

We overcome this difficulty by taking advantage of the
diamond rotation periodicity, designing the stroboscopic
ODMR sequence depicted in Fig. 5.(c). A fixed fre-
quency microwave pulse of duration τ , synchronised to
the Paul trap drive, is periodically switched on at times
tn = ∆t + nTrot for a given stroboscopic delay ∆t, as
shown in Fig. 5.(c)-(i). The duration τ is chosen to be
much smaller than the rotation period τ/Trot = 0.1%,
so that the diamond can be considered as fixed angu-
larly during that time. When the microwave frequency
is resonant with an NV− transition, the population in the
|ms = 0⟩ state is transferred to an excited state. There
is thus an increase of the population in one of the ex-
cited states ρee, which then decays with a characteristic
timescale of about 10 µs, given by the optical pumping
efficiency of the green laser as depicted in Fig. 5.(c)-(ii).
The emitted photoluminescence, represented by the con-
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FIG. 5. (a) Schematics showing a levitating diamond in the rotational-locking regime. NV centers in the four different
orientations are depicted. An external magnetic field is applied at a non-zero angle with respect to the diamond rotation axis.
(b) Continuous ODMR spectra of a rotating diamond. (c) Experimental sequence used to realize stroboscopic ODMR. (i) shows
the sequence applied after the microwave generator where ∆t is the stroboscopic delay, τ is the microwave pulse duration. (ii)
shows the evolution of the population ρee in the |ms = −1⟩. (iii) shows the evolution of the photoluminescence (red line) as
well as the measured mean value of the photoluminescence (red dashed line).

tinuous red curve in Fig. 5.(c)-(iii), decreases when the
excited state is populated resulting in a total decrease of
the averaged photoluminescence signal (red dashed line).
When the microwave frequency is not resonant, the PL
remains unaffected. An important point is that the Rabi
frequency has to be at least on the order of 1/τ ≈ 1 MHz
in order to efficiently address a spin transition during the
duration τ . This is ensured experimentally by increasing
the signal by 20dBm (using ZHL-5W 422 from Minicir-
cuit).

The microwave frequency is then scanned at a fixed
stroboscopic delay ∆t = 540 µs, while measuring the
PL from the NV center. We typically obtain ODMR
spectra such as the one showed in Fig. 6.(a)-(i) within
about five minutes, when zoomed on the four |ms = 0⟩ →
|ms = −1⟩ transitions. Four resonance lines related to
the four |ms = 0⟩ → |ms = −1⟩ transitions of the NV
center classes can be seen. This testifies that the angular
position of the diamond is always the same after each
round with period Trot. The linewidth obtained from a
Gaussian fit equals 1/T ∗

2 ≈ 6−7 MHz, which corresponds
to the typical ODMR linewidth observed for NV centers
in these diamonds.

Keeping the magnetic field B1 the same, we can now
perform stroboscopic ODMR measurements for differ-
ent values of the stroboscopic delay ∆t between the mi-
crowave signal and the Paul trap drive, in the range of
[0, Trot]. In Fig. 6.(a)-(ii),(iii), we present stroboscopic
ODMR measurements for two other values of the delay
∆t = 375 µs and ∆t = 255 µs. We see that the energy of
the |ms = 0⟩ → |ms = −1⟩ transitions are shifted. Scan-
ning the delay ∆t in [0, Trot], we can then obtain a full
set of stroboscopic measurements. The result of this ex-
periment is presented in Fig. 6.(b), where the normalized
photoluminescence of the diamond is plotted as a func-
tion of the microwave stroboscopic delay. The photolu-
minescence drops corresponding to the NV resonances
are the deep blue regions on the graph. We observe that

the magnetic resonance frequencies of the four NV classes
clearly evolve according to a continuous angular motion
at a period Trot. Furthermore, precise knowledge of the
four NV resonance energies allows us to determine the
four angles θ

(i)
1 (∆t) between each of the four NV classes

i ∈ [1, 4] and the direction of the magnetic field for each
value of ∆t.

The knowledge of these four angles is not sufficient to
fully reconstruct the angular trajectory of the diamond
in the laboratory frame. This is because the values of the
angles θ

(i)
1 (∆t) would remain unaffected by a rotation of

the diamond around the magnetic field direction. Conse-
quently, there is still one angular degree of freedom that
cannot be determined with the use of a single magnetic
field. This lack of knowledge on the angular trajectory
can be resolved by performing the same experiment with
a second magnetic field B2 that is not aligned with B1.
Here, we chose B2 to be perpendicular to B1. The re-
sults are presented in Fig. 6.(c). As expected, the NV
resonances are modified by the change in magnetic field
direction. This allows us to obtain a second set of angles
θ

(i)
2 (∆t) between the NV axis and the magnetic field B2,

from which we can finally deduce the angular trajectory
of the diamond.

The evolution of the stroboscopic ODMR resonance
lines in Fig. 6.(b) and (c) are fitted by diagonalizing
the NV hamitlonian assuming a perfect rotational mo-
tion around a single axis at the angular frequency Ωd/2.
There is excellent agreement between the experimental
data and the fits, indicating that the diamond is rotat-
ing at the frequency Ωd/2 and that the three rotational
modes of the diamond are fully confined in the rotat-
ing frame. The angular confinement is here due to the
combined action of the quadrupole potential of the Paul
trap and the gyroscopic angular stabilization (see Ap-
pendix A). Only a few milliradians of angular shift have
been observed during eight hours of averaging, demon-
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FIG. 6. (a) (i) Stroboscopic ODMR measurement of the |ms = 0⟩ to |ms = −1⟩ transitions of the rotating diamond with a delay
∆t = 540 µs. The red curve corresponds to Gaussian fits of the four transitions with linewidths between 6 − 7 MHz. (ii)-(iii)
Same as (i) but for the delays ∆t = 375 µs and ∆t = 255 µs respectively. (b) 2D map of stroboscopic ODMR measurements
showing the normalized NV centers photoluminescence as a function of the microwave frequency and the stroboscopic delay ∆t
performed with the magnetic field B1. The three vertical black lines correspond to the delay at which the stroboscopic ODMR
of (a) were performed. The colored dashed lines are fits corresponding to an ideal rotation at the angular frequency Ωd/2. (c)
Same as (b) with a different magnetic field B2 ≈ 10mT perpendicular to B1. The colored dashed lines correspond to a fit
assuming the same ideal rotation as for (b). The acquisition took approximately four hours of averaging, using 48 stroboscopic
delay values. The contrast of the NV center resonances is less pronounced for microwave frequencies between 2.7 − 2.9 GHz
than between 2.5 − 2.7 GHz due to spurious reflections in the cables.

strating the extreme stability of this rotation technique
over time. This result provides bright prospects for fur-
ther studies of gyroscopy with NV centers as well as with
other magnetic particles.

III. DISCUSSION AND PERSPECTIVES

Rotating particles with internal spins offers a plethora
of interesting avenues besides the demonstrated mo-
tional read-out. One area where electrical rotation can
be used is for detecting dynamical or geometric phases
[24, 46, 47]. Currently, all experiments operate with teth-
ered diamonds where only kHz rotations are currently
attained. Larger rotation frequencies could in principle
be observed with electrical locking without the typical
technical mechanical noise coming instabilities of rotor
axes, providing a possibility to bridge the gap between
rotation frequency and electronic spin decoherence rate.
Note that the rotation frequencies we attained are al-
ready of the right magnitude for observing gyroscopic ef-

fects on nuclear spins [48]. Nuclear spins are indeed much
more isolated from magnetic noise then their electronic
counterpart so that their magnetic resonance linewidths
lie in the kHz range. It would also offer the tantaliz-
ing prospect of using magic angle spinning for reducing
the nuclear spin linewidth further, as is routinely done in
nuclear magnetic resonance.

Rotating particles in the MHz range would offer a
broader range of applications. One direction where this
could be beneficial is in the field of spin-mechanics. A
previous study was realised with angularly confined di-
amond with the same NV density [4]. There, the mag-
netic torque from the spins was able to displace the an-
gle of diamonds by about 100 µrad, as well as to cool
down the diamond libration by a factor of four from room
temperature. The ultimate limitation to the cooling ef-
ficiency was the low frequency of the mechanical oscil-
lator (≈kHz) compared to the electronic spin transition
linewidth (≈10 MHz). Such a large difference between
the two systems prevented entering the so-called side-
band resolved regime where anti-Stokes heating is miti-
gated. One solution to bridge this large frequency gap
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could be to rotate the diamond particle and benefit from
the gyroscopic stability of the angular modes in the co-
rotating frame that is directly related to the rotational
frequency.

In principle, the maximum achievable locking fre-
quency using our method is limited by the damping rate
resulting from collisions with the background gas (see Ap-
pendix A 3). According to Eq. (A22), it should be possi-
ble to reach rotation rate in the MHz range at a pressure
of 10−1 mbar. The same rates are obtained at a simi-
lar pressure with optical rotation using tweezers [2]. Al-
though tweezers are primarily utilized for spinning much
smaller particles, rotational frequencies in the MHz range
for 10 µm particles have been demonstrated [49]. How-
ever, this technique has not been applied to rotate mag-
netic particles such as diamonds, which rapidly heat up
at low pressures due to light absorption. Electric rotation
using the Paul trap rotational-locking regime circumvents
this issue. Currently, the primary practical limitation in
achieving such a regime in our setup is the loss of the
particle at frequencies above the kHz range. At higher
frequencies, the stability region for confining the center
of mass becomes narrower, making it more challenging to
retain the particle in the trap. However, compensating
for the micromotion caused by the gravitational force,
combined with feedback cooling of the three center of
mass modes, should be sufficient to stabilize the parti-
cle’s position, even when the resonant frequencies of the
center of mass modes are low. At this point, one could
also consider adding a second drive to the Paul trap in
the kHz range, which would stabilize the center of mass
motion, while the first Paul trap drive in the MHz range
would be responsible for the rapid rotation of the parti-
cle.

IV. CONCLUSIONS

In conclusion, we experimentally demonstrated an all-
electric protocol to rotate microparticles in a standard
Paul trap up to few kHz at pressures ranging from at-
mospheric pressure down to one millibar. This method
is based on the intrinsic non-linearity for the angular dy-
namics of an object in a Paul trap. Specifically by con-
trolling the parameter of the trap such as voltage am-
plitude and frequency it is possible to switch to different
dynamical regime for the particle’s rotational motion. As
such, the method is extremely versatile and it can be ap-
plied to a large variety of particles like ferromagnets. We
indeed could use diamonds with embedded color centers
to realize NV magnetometry and to reconstruct the parti-
cle angular trajectory, thereby demonstrating the single-
axis character of the rotation mechanism.

Our results are first step towards precise control of
fast rotating particles with an internal magnetic struc-
ture, thus opening the door to the experimental investi-
gation of the interplay between orbital angular momen-
tum and spin angular momentum with macroscopic par-

ticles. A particularly intriguing new research direction
is the search for atomic-like effects on magnet motion,
stemming from by the spin degree of freedom [17, 19, 25].
Observing such effects is under reach using trapped nano-
ferromagnets or particles containing a large number of
spins and could lead to several applications in gyroscopy,
magnetometry [50], spin-mechanics [51, 52], or in funda-
mental tests of quantum mechanics [22, 53]. While the
observation of some of these phenomena requires rota-
tion rates comparable or larger than spin-dephasing rates
(∼MHz), we see no fundamental limitation in reaching
higher rotational frequencies with our method.
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Appendix A: Theoretical Description of an
electrically levitated rotor in a Paul trap

In this appendix, we model the three dimensional dy-
namics of an electrically levitated rotor in a Paul trap.
We show how, from this general description, one can de-
rive the simple model in Eq. (4), and the characteristic
frequencies of the secular oscillations around the librating
and rotating solutions.

We model the levitated particle as an asymmetrical
rigid body. The degrees of freedom of the system are
thus its center of mass position R and its orientation in
space. This latter is parameterized by the generalised
coordinates Ω. The dynamics of the system can then be
described by the following set of equations

M r̈ = F(R, Ω, t), (A1a)
L̇ = N(R, Ω, t). (A1b)

Here, M is the mass of the rotor, L is the rigid body an-
gular momentum, and F(t, R, Ω) [N(t, R, Ω)] is the time
dependent force (torque) exerted by the Paul trap po-
tential. They can be obtained from the potential energy
of the particle in the trap. This is calculated by inte-
grating the surface charge distribution ϱ(r) over the trap
potential Eq. (1). Due to the quadrupole symmetry of
the potential we obtain

U(r, Ω, t) = V (t)
ℓ2

0

[
qR ·AR +2p(Ω) ·AR + 1

3Tr [Q(Ω)A]
]
.
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where q is the total surface charge and we introduced the
tensor

A ≡ ayey ⊗ ey + axex ⊗ ex + azez ⊗ ez. (A2)

We also define the particle dipole moment p(Ω) =
R(Ω)p0, and quadrupole tensor Q(Ω) = R(Ω)Q0RT (Ω),
where

p0 ≡
∫
S

dr ϱ(r) r, (A3a)

Q0 ≡
∫
S

dr ϱ(r)
(

3r ⊗ r − r21
)

(A3b)

are the dipole moment and quadrupole tensor defined
with respect to the particle center of mass. The transfor-
mation R(Ω) relates the laboratory-fixed frame Oexeyez
and the body-fixed frame On1n2n3 according to nk =
R(Ω)ek. In the following, we will parameterize the par-
ticle orientation with the Euler angles Ω = (α, β, γ) ac-
cording to the zy′z′′ convention. Within this choice the
rotation matrix reads

R(Ω) ≡

cos α − sin α 0
sin α cos α 0

0 0 1

  cos β 0 sin β
0 1 0

− sin β 0 cos β


cos γ − sin γ 0

sin γ cos γ 0
0 0 1

 .

(A4)

In our experiment, we never observed a coupling between
the center of mass and rotational dynamics. This suggest
that our particle have a negligible dipole moment and
we thus assume p0 = 0. In this case, Eq. (A1a) and
Eq. (A1b) can be treated independently. In the following
we consider only the rotational dynamics of the particle.

Let us now express the rotational dynamics of the
particle in terms of the Euler angles coordinates intro-
duced above. In the body-fixed frame On1n2n3, we
can express the angular momentum as L = Iω, where
I ≡

∑
k Iknk ⊗ nk and Ik (k = 1, 2, 3) are the constant

principal moment of inertia. Substituting this expression
into Eq. (A1b) we obtain the well known Euler equations

I1ω̇1 − (I2 − I3)ω2ω3 =N1(Ω, t),
I2ω̇2 − (I3 − I1)ω1ω3 =N2(Ω, t),
I3ω̇3 − (I1 − I2)ω2ω1 =N3(Ω, t),

(A5)

where the angular frequencies are related to the Euler
angles byω1

ω2
ω3

=

− cos γ sin β sin γ 0
sin β sin γ cos γ 0

cos β 0 1

 α̇
β̇
γ̇

 , (A6)

and the torque is given by Ni(Ω, t) ≡ ni · N(W, t), where
N(Ω, t) is given byEq. (3). Using these results one can
show that Eq. (A5) can be obtained from the following
Lagrangian

L(Ω, Ω̇) ≡ 1
2

3∑
k=1

Ikω2
k − V (t)

3ℓ2
0

Tr[Q(Ω)A]. (A7)

FIG. 7. Different equilibrium orientation for an asymmetric
particle in the Paul trap potential. In all the cases we have
α̇ = β̇ = γ̇ = 0.

1. Secular Dynamics and equilibrium oscillations

Let us now compute the dynamics of small oscillations
around the librating and rotating solutions to Eq. (A5).
In the general case, the dynamics of such oscillations is
complicated by the parametric driving. We are interested
in isolating the secular component of these oscillations.
In the regime where this is possible, the secular oscilla-
tions are harmonic and have well defined secular frequen-
cies. In the following we consider separately the case of
librating and rotating regime.

The librating regime of a charged rotor in a Paul trap
has been described in [33]. In particular, the general
form of the effective potential for the secular dynamics
of the rotor is given by Eq.(53) in [33]. Analysing this po-
tential for our situation, we find six distinct stable equi-
librium positions illustrated in Fig. 7. Let us consider
the equilibrium solution at α = 0, β = π/2 and γ = 0,
that corresponds to the librating solution in the plane
where the locking occurs. This is the librating regime
to which the particles returns after the hysteresis cycle
shown in Fig. 3.b. Linearizing about this regime, we ob-
tain that the harmonic fluctuation of the three angles are
decoupled, and have the following characteristic frequen-
cies

ωα ≡ 2
I1

(
V0

3ℓ2
0Ωd

)
| (ax − ay) (Q2 − Q3) |, (A8a)

ωβ ≡ 2
I2

(
V0

3ℓ2
0Ωd

)
| (ax − az) (Q1 − Q3) |, (A8b)

ωγ ≡ 2
I3

(
V0

3ℓ2
0Ωd

)
| (ay − az) (Q1 − Q2) |. (A8c)

We remark that the separation between macromo-
tion and micromotion that underpin the derivation of
Eq. (A8a)-Eq. (A8c) is valid only when the following con-
dition is satisfied (for i, j, k = 1, 2, 3)

V0(Qi − Qj)
IkΩ2

dℓ
2
0

≪ 1. (A9)
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When this is not the case, such as in the regime we oper-
ate our experiment, the separation between macromotion
and micromotion is not rigorously possible. We expect,
however, Eq. (A8a-A8c) to capture the dependence of the
libration peaks observed in the PSD of our experiment.

Let us now consider fluctuation around the rotational-
locking solution. To derive the frequency of these fluc-
tuations it is convenient to move to a frame co-rotating
with the particle. This is done making the substitution
α → α + Ωdt/2 in Eq. (A7). The Lagrangian in the
co-rotating frame reads

L′(Ω, Ω̇) =1
2

3∑
k=1

Ik

(
ωk + Ωd

2 ez · nk
)2

−U0− U1(t).

(A10)

We separated the quadrupole potential into two terms.
The first term, U0, is time-independent and reads The

U0 = V0

12ℓ2
0

(ax − ay)
{[

Q2
(
cos2 β sin2 γ − cos2 γ

)
+ Q1

(
cos2 β cos2 γ − sin2 γ

) ]
cos 2α

+ (Q2 − Q1) cos β sin 2γ sin 2α

+ Q3 sin2 β cos 2α
}

.

(A11)

The second term, U1(t) is a time dependent potential and
reads

U1(t) ≡u1(Ω) cos(Ωdt) + u2(Ω) cos(2Ωdt)
+ u3(Ω) sin(2Ωdt),

(A12)

where we defined the following functions

u1(Ω) ≡ V0

3ℓ2
0

{
az

[
Q3 cos2 β +

(
Q1 cos2 γ + Q2 sin2 γ

)
sin2 β

]
+

(
ax + ay

2

) [ (
Q1 sin2 γ + Q2 cos2 γ

)
+{Q3 sin2 β +

(
Q1 cos2 γ + Q2 sin2 γ

)
cos2 β

]}
, (A13)

u2(Ω) ≡ V0

6ℓ2
0

(
ax − ay

2

) {
cos(2α)

[
Q3 sin2 β +

(
Q2 sin2 γ + Q1 cos2 γ

)
cos2 β −

(
Q1 sin2 γ + Q2 cos2 γ

) ]
+ (Q2 − Q1) cos β sin(2γ) sin(2α)

}
, (A14)

u3(Ω) ≡ − V0

6ℓ2
0

(
ax − ay

2

) {
sin(2α)

[
Q3 sin2 β +

(
Q2 sin2 γ + Q1 cos2 γ

)
cos2 β −

(
Q1 sin2 γ + Q2 cos2 γ

) ]
+ (Q2 − Q1) cos β sin(2γ) cos(2α)

}
. (A15)

From Eq. (A10) we then obtain the equations of mo-
tion of the system. The secular potential will have both
the static contribution of U0 and the additional correc-
tion coming from the secular approximation of U1(t) ob-
tained with the method of [33]. This latter are much
smaller than U0, and we shall thus neglect them. The
dominant contribution to the effective potential arises
from the kinetic energy and it is proportional to (Ωd/2)2.
It acts only on the angles β and γ and represents the
gyroscopic confinement produced by the particle rota-
tion. Linearizing the equation of motion obtained from
Eq. (A10) around α = β = π/2 and γ = 0 we have
that α decouples from the other degrees of freedom and
performs harmonic oscillations at the frequency

ω̃α ≡

√
V0(Q2 − Q3)

3I1ℓ2
0

(ay − ax). (A16)

The remaining degrees of freedom evolve instead accord-

ing to

β̈ = −ω̃2
ββ − Ωd

2

(
I1

I2
− 1

)
γ̇, (A17)

γ̈ = −ω2
γγ + Ωd

2 β̇, (A18)

where the characteristic frequencies read

ω̃β ≡

√
I1

I2

(
Ωd
2

)2
− V0(Q1 − Q3)

6I2ℓ2
0

(ax − ay), (A19)

ω̃γ ≡
[

I1

I3

(
I1

I2
− 1

) (
Ωd
2

)2

−V0(Q2 − Q1)
6I3ℓ2

0
(ax − ay)

]1/2
. (A20)

Let us note that the stable equilibrium solution for α
is 0 or π/2 depending whether ax > ay or conversely.
Linearising around α = 0 instead than α = π/2, as done
here, flips the sign in front of (ax − ay).
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2. Beyond libration and full rotation

Fig. 3-c) shows 3 different regimes that we now analyse
in more details. The transition from the librating to the
rotating regime at Ωl→r is explained by a loss of stabil-
ity of the confined solutions α = kπ/2, α̇ = 0 rad.s−1.
We apply the same Floquet methods generally used for
solving the Mathieu equation to investigate the stability
of Eq. (4) [54]. The resulting instability region is marked
by the hatched area in Fig. 3.(a). We see that the bor-
der of the unstable regime does not perfectly coincide
with the transition to the rotational-locking. This dis-
crepancy arises from the fact that, close to the stability
region, α can jump between angles kπ/2. This is shown
in Fig. 3(c)-ii), where a selection of four horizontal dashed
lines highlights the stable angles. Additionally, we note
that within the stable rotating regime but close to the
border of instability, α performs large amplitude oscilla-
tions around the initial equilibrium value at a frequency
locked to the voltage frequency at Ωd/2 [see Fig. 3(c)-iii)].
This locked oscillations are detected as a peak at Ωd/2
in the PSD and can be mistaken for rotational-locking as
discussed in Sec. I C.

3. Effects of Dissipation

Until now we have considered only the dynamics of
the system in the absence of dissipation. For the pres-
sure at which the experiment is operated, scattering with
background gas particles represents the largest source of
dissipation. The effects of the viscous drag coming from
the background gas can be included as shown in Eq. (2).
The form of the tensor Γ depends on both the shape of
the rotor and on the properties of the background gas. In
particular, it depends on the ratio between the particle
size and the mean free path of the gas. In the Knudsen
regime, i.e. when the particle size is smaller than the
mean free path of the gas, Γ can be obtained as shown
in [36]. When this is not the case, as for our experi-
ment, the form of the tensor is not easy to obtain. For
the theoretical calculations discussed in I D we assumed
a damping rate of γ0/2π = 1 kHz which is of the same or-
der of magnitude as observed in the experiment. Eq. (4)
can be obtained from the general model presented here
by evaluating Eq. (A5) on β = π/2 and γ = 0 and adding
a phenomenological damping rate γ0.

Let us now focus on the transition from rotation to
confinement at Ωr→l. The stability of the rotating regime
is best investigated in the co-rotating frame at the locking
frequency. Hence, we transform Eq. (4) according to α →
α−Ωdt/2. We now consider the case Ωd ≫ ω0, and after
averaging over the period of the micromotion, we obtain

the following equation for the secular dynamics in the
co-rotating frame

α̈ + γ0α̇ + ω2
0

2 sin(2α) = −γ0Ωd
2 . (A21)

Eq. (A21) describes the angular secular dynamics of the
particle in the rotating frame. For the rotation to remain
stable, the rotational speed cannot exceed a certain value
Ωmax at which the torque induced by gas collisions be-
comes stronger than the restoring torque of the Paul trap.
This establishes an upper-bound condition on the Paul
trap drive frequency that is directly lied to the rotational
speed as a function of the damping coefficient

Ωd < Ωmax ≡ ω2
0

γ0
. (A22)

As shown by the red dashed line in Fig. 3.(a), Ωmax
roughly approximates Ωr→l and captures its linear de-
pendency on V0. We note that Eq. (A22) can be obtained
rigorously in the adiabatic regime of the Paul trap (i.e.
when ω0/Ωd ≪ 1). In our case instead ω0/Ωd ≲ 1, which
we believe explains the discrepancy between Eq. (A22)
and Ωr→l in Fig. 3.(a).

Appendix B: Mechanical modes in the librating and
rotational-locking regime

In this appendix, we present extended datas of the two
PSDs shown in Fig. 4, where a levitating diamond can be
either found in the librating regime or in the rotational-
locking regime within the hysteretic angular stability do-
main. With the same method than the one used to ob-
tain the results in Fig. 4, we obtained different PSDs of
the levitating for different values of the Paul trap drive
frequency Ωd/2π in the two different angular regimes.
We present these results in Fig. 8.(a) for the librating
regime and in Fig. 8.(b) for the rotational-locking regime
for five different values of the Paul trap frequency drive:
Ωd/2π = 1260 Hz, 1310 Hz, 1510 Hz, 1610 Hz, 1660 Hz.
The three center of mass (C.o.M) modes have been iden-
tified by comparing the PSDs in the two different regimes.
In Fig. 8 (c), we have plotted the three C.o.M modes reso-
nant frequencies as a function of the Paul trap frequency
drive being in the two different angular regimes. The
decrease of the C.o.M. frequencies values with the drive
frequency is consistent with Floquet theory. Moreover,
the frequencies of the C.o.M. modes do not crucially de-
pend on the angular regime that indicates that there is
no coupling between the angular and C.o.M. modes. It
justifies that the electric dipole, which could be respon-
sible to a coupling between these modes, can be safely
neglected in the calculation.
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