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We study the phase diagram of a bilayer quantum spin liquid model with Kitaev-type interactions
on a square lattice. We show that the low energy limit is described by a π-flux Hubbard model with
an enhanced SO(4) symmetry. The antiferromagnetic Mott transition of the Hubbard model signals
a magnetic fragmentation transition for the spin and orbital degrees of freedom of the bilayer. The
fragmented “Néel order” features a non-local string order parameter for an in-plane Néel component,
in addition to an anisotropic local order parameter. The associated quantum order is characterized
by an emergent Z2 × Z2 gauge field when the Néel vector is along the ẑ direction, and a Z2 gauge
field otherwise. We underpin these results with a perturbative calculation, which is consistent with
the field theory analysis. We conclude with a discussion on the low energy collective excitations of
these phases and show that the Goldstone boson of the Z2×Z2 phase is fractionalized and non-local.

Quantum spin liquids (QSLs) are frustrated magnets
that do not exhibit long range magnetic order down to
zero temperature[1–4]. Quantum fluctuations in these
systems give rise to exotic phenomena such as fraction-
alization and long-range entanglement, which now be-
come the defining properties for QSLs[5–7]. The Ki-
taev model on the honeycomb lattice[8] is one of the
few examples of an exactly solvable model with a QSL
ground state (GS). In recent years, remarkable progress
in identifying candidate materials with strong Kitaev-
type interactions has been achieved, in such instances
as the iridates[9, 10] and α-RuCl3 [11]. Kitaev in-
teractions may also be strong in other van der Waals
(vdW) materials[12]. Bilayers and moiré superlattices
of vdW materials are new tunable quantum platforms
for realizing a multitude of novel phases, with a va-
riety of basic building blocks including graphene[13],
semiconductors[14] and superconductors[15].

Motivated by these developments, we study the phase
diagram of a bilayer QSL model with Kitaev-type interac-
tions on a square lattice (see Fig 1(a)). First introduced
in Ref. 16, the exact ground state of the monolayer model
is an algebraic QSL featuring two flavors of Majorana
fermions that are delocalized on the π-flux square lat-
tice, and gapped π-flux (vison) excitations[17]. In the bi-
layer model Eq. (1), we add an Ising-type interlayer spin
interaction, which commutes with the intra-layer flux op-
erators and hence allows for controlled calculations. Our
main results are summarized as follows: (i) Below the vi-
son gap, we map the low-energy subspace of the bilayer
model to a π-flux Hubbard model at half-filling, with an
emergent SO(4) symmetry. Monte Carlo studies of this
model show an antiferromagnetic (AFM) Mott transition
at critical Uc ∼ 6t [18]. (ii) The in-plane components of
the AFM order parameter, i.e. nx,y of the Néel vector
n, correspond to non-local order parameters whereas the

out-of-plane component (nz) is a local order parameter in
terms of the spin and orbital degrees of freedom (DOF)
of the bilayer system. (iii) The system features a Z2×Z2

gauge field when the Néel vector points along ẑ, and a
Z2 gauge field otherwise. (iv) To complement the re-
sults of the Hubbard model, we perturbatively derive an
effective Hamiltonian in the limit of large interlayer in-
teractions. We confirm the magnetic fragmentation and
topological degeneracy directly in terms of the original
DOF, which are consistent with the Majorana fermion
representation of the spin model. (v) We show that the
Goldstone modes of the fragmented AFM order is frac-
tionalized in the Z2 × Z2 phase, in comparison to the
normal Goldstone modes in the Z2 phase.

Microscopic model. One of the key conditions for the
exact solution of the Kitaev model is the anticommu-
tation relations of the Pauli matrices, {σi, σj} = 2δij .
Since there are only three Pauli matrices, this method
can only be applied to lattices with coordination num-
ber z = 3 such as honeycomb, hyperhoneycomb and hy-
peroctagon lattices. However, it is possible to extend
Kitaev’s method to Γ matrices that obey the Clifford
algebra {Γi,Γj} = 2δij [19, 20]. For instance, for a four-
dimensional representation of the Clifford algebra, there
are five Γα operators along with ten Γαβ = i

2 [Γ
α,Γβ ] and

an identity matrix, which span the local Hilbert space.
Therefore, Kitaev’s construction can be extended to lat-
tices with coordination number up to z = 5 [19, 20].
We adapt this representation and consider the intra-layer
Hamiltonian [16], HK = −∑⟨ij⟩γ ,ν Kν(Γ

γ
νiΓ

γ
νj+Γγ5

νiΓ
γ5
νj ),

where ν = 1, 2 is the layer index and γ is the type
of the bond as depicted in Fig. 1. We also intro-
duce an inter-layer Ising interaction HJ = J

∑
i Γ

5
1iΓ

5
2i.

The full Hamiltonian can be expressed in terms of spins
(σ) and orbital (τ) Pauli matrices using the relation
Γα = −σy ⊗ τα (α = x, y, z), Γ4 = σx ⊗ I2 and
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FIG. 1. Schematic of the model and the phase diagram: (a)
single layer unit cell. Four different colors depict four types
of bonds. There are two inequivalent plaquettes p and p′ in
a unit cell. (b) Bilayer model with intra-layer Kitaev param-
eters Kν and an inter-layer exchange, J . (c) The low-energy
description of the model is a π-flux Hubbard model which ex-
hibits a Mott transition at U/t ∼ 6 (black). In terms of the
original degrees of freedom, the Mott transition corresponds
to a magnetic fragmentation transition where a local mag-
netic order coexists with a non-local topological order.

Γ5 = −σz ⊗ I2,

H = HK +HJ =

−
∑

⟨ij⟩γ ,ν
Kν(σ

x
νiσ

x
νj + σy

νiσ
y
νj)(τ

γ
νiτ

γ
νj) + J

∑

i

σz
1iσ

z
2i

(1)

Here τγ = τx, τy, τz, I for γ = 1, 2, 3, 4 respectively, cor-
responding to the 4 bonds incident on a vertex of the
square lattice as shown in Fig. 1(a) and the sum is over
all the γ bonds. Note that the γ = 4 (yellow) bond, which
we refer as the ‘identity’ bond henceforth, has trivial or-
bital dependence. We consider K1 = K2 = K, unless
specified otherwise. We identify two inequivalent intra-
layer flux plaquette operatorsWνp = σz

νkσ
z
νnτ

x
νiτ

y
νjτ

x
νkτ

y
νn

and Wνp′ = σz
νkσ

z
νnτ

x
νnτ

y
νkτ

x
νlτ

y
νm, each with ± 1 eigen-

values. Both types of plaquette operators commute
with the Hamiltonian and the Hilbert space is divided
into sectors of conserved fluxes. Note that the Ising
form of the inter-layer exchange is crucial to preserve
[Wνp/p′ , H] = 0 [17]. The intra-layer Hamiltonian can be
solved by using a Majorana fermion representation of the
Γ matrices[16], HK = K

∑
⟨ij⟩γ ,ν iu

γ
ν,ij [c

x
νic

x
νj + cyνic

y
νj ]

where uγν,ij = ibγνib
γ
νj (see supplemental material (SM)

for details). This representation is redundant and the

physical states in each layer must be restricted to the
eigenstates of Dνj = ib1νjb

2
νjb

3
νjb

4
νjc

x
νjc

y
νj , with eigenval-

ues 1. As in the Kitaev model, these constraints are
imposed by the projection operator Pν =

∏
i(1+Dνi)/2.

The intra-layer bond operators, uγν,ij commute with HK

and therefore are conserved with eigenvalues ±1. A Z2

gauge transformation at site i for layer ν involves flip-
ping the signs of the Majorana fermions and bond op-
erators, cανi → −cανi; uγν,⟨ij⟩ → −uγν,⟨ij⟩. We combine

the Majorana fermions on the two layers to form com-
plex fermions, fνi = (cxνi − icyνi)/2 such that HK =

2K
∑

⟨ij⟩ u
γ
ν,ij [if

†
νifνj +H.c.].

According to Lieb’s theorem [21], the GS manifold of
HK lies in the π-flux sector and consequently the eigen-
value of Wνp/p′ =

∏
p/p′ u

γ
νij is −1 in any GS configu-

ration, for all square plaquettes. The spectrum is given

by EK = ±4K
√
cos2 kx + sin2 ky which includes two in-

equivalent Dirac points at (±π
2 , 0).

Next, we represent the inter-layer interaction in terms
of the Majorana fermions: HJ = −J∑i c

x
1ic

y
1ic

x
2ic

y
2i.

HJ commutes with the intra-layer flux operators Wp/p′.
However, the quartic form of the inter-layer exchange pre-
cludes the exact solvability of H, which can be expressed
as

H = 2K
∑

⟨ij⟩γ ,ν
uγν,ij [if

†
νifνj +H.c.]

+ 2J
∑

i

[n1i + n2i − 1]2 (2)

where nνi = f†νifνi.
Enhanced emergent symmetry. The Hamiltonian in
eq. 2 has a global U(1) symmetry in each layer (ν = 1, 2),
e−iθ

∑
i σ

z
νiHeiθ

∑
i σ

z
νi = H, a Z2 layer exchange symme-

try X , a particle-hole symmetry C, and a time rever-
sal symmetry T . This results in a full symmetry group
G = O(2)c × O(2)s × ZT

2 of model (1), as detailed in
SM. After the Majoranization, the two U(1) rotations
manifest themselves as:

Uc(θ)fνiU
−1
c (θ) = e−iθfνi,

Us(θ)fνiU
−1
s (θ) = e−iκθfνi (3)

where κ = −1, 1 for ν = 1, 2 respectively. This can

be viewed as “charge”: Uc = eiθ
∑

νi f
†
νifνi and “pseudo-

spin”: Us = eiθ
∑

νi κf
†
νifνi rotations where κ = +1(−1)

for ν = 1(2). The particle-hole symmetry C and U(1)
charge rotations form the O(2)c subgroup, while the
layer exchange X and U(1) pseudo-spin rotations form
the O(2)s subgroup. Next, we fix the gauge by choos-
ing uγν,ij = uij , for both the layers and pick the π-flux
configuration as discussed above. The resulting low-
energy Hamiltonian (below the flux/vison gap) is a π-
flux Hubbard model at half-filling with a hopping am-
plitude t = 2K and interaction strength U = 4J . It is
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Néel vector Unbroken subgroup H G/H Gauge group

n ∥ ẑ O(2)c × U(1)s ⋊ ZX·T
2 Z2 Z2 × Z2

n ⊥ ẑ O(2)c × Z2 × ZT̃
2 S1 Z2

nz ̸= 0, nxny ̸= 0 O(2)c × ZTn
2 O(2) Z2

TABLE I. Distinct ground state phases associated with dif-
ferent orientations of the Néel vector n in (4). In each phase,
the full symmetry G = O(2)c × O(2)s × ZT

2 of model (1) is
spontaneously broken down to a different subgroup H ≤ G,
with an order parameter manifold M = G/H. The gauge
group for the associated topological order in each phase is
also listed.

well established [22] that the Hubbard model on a bipar-
tite lattice possesses an enhanced G′ = SO(4) × ZT

2 =
ZT
2 × SU(2)c × SU(2)s/Z2 symmetry. The equivalence

established above shows that our model also exhibits an
enhanced SO(4) symmetry at the low energy sector. In
fact, this emergent SO(4) symmetry exists in any sub-
space with a fixed flux configuration. Emergent symme-
tries can play a key role to describe the low energy physics
of strongly correlated systems including cuprates[23] and
iron pnictides[24].

Quantum Monte Carlo studies have shown that the re-
pulsive (J > 0) π-flux Hubbard model displays a phase
transition from Dirac semimetal to an AFM Mott insula-
tor at J/K ∼ 3 (U/t ∼ 6) [25] (see Fig. 1(c)). Moreover,
due to J → −J mapping in the Hubbard model, the
phase diagram is symmetric for ferromagnetic (FM) and
AFM inter-layer exchange, for which the Néel order maps
to superconducting and charge density wave orders.

The Néel vector of the AFM order

n =
1

N

∑

i

ni, ni = (−1)rix+riy ⟨f†µiσµνfνi⟩, (4)

where N is the number of sites and rix(y) is the x(y) co-
ordinate of site i, can point along any direction on the
Bloch sphere. Goldstone modes always arise since the
emergent symmetry G′ = SO(4) × ZT

2 is spontaneously

broken down to H ′ = SU(2)c × U(1)s ⋊ ZT̃
2 in the Néel

order (see SM for details). However, as we show be-
low, different orientations of the Néel vector correspond
to distinct ground states with different symmetry and
topological properties, as summarized in Table I.
(i) The Néel vector points along the z-direction, n ∥ ẑ,

nzi = (−1)rix+riy ⟨f†1if1i − f†2if2i⟩ ≠ 0 (5)

In terms of Majorana fermions, eq. 5 takes the form
nzi = (−1)rix+riy i(cx1ic

y
1i − cx2ic

y
2i). Note that nzi is in-

variant under local Z2 gauge transformations (cxνi, c
y
νi) →

(−cxνi,−cyνi), hence corresponding to a physical operator
(−1)rix+riy (σz

1i−σz
2i). In other words, nz is a local order

parameter of a Landau-type long range order.
The Z2 gauge fields for the two layers, u1,ij and

u2,ij , are decoupled, leading to a Z2 × Z2 topolog-

ical order described by 4-component Abelian Chern-

Simons theory[26] characterized by matrixK =

(
0 2

2 0

)
⊕

(
0 2

2 0

)
. However, the Goldstone mode of the Néel order

nx + iny ∼ bk⃗=(π,π) ∼
∑

i

(−1)ix+iyf†2if1i (6)

is not a gauge-invariant quantity, but instead an anyon
obeying mutual semion statistics with the vison in each
layer. More precisely, the above Goldstone mode car-
ries the gauge charge for the Z2 gauge field from each
layer. Incorporating the gapless anyon b in (6) into the
low energy description, the effective field theory for this
algebraic spin liquid reads

LASL =
∑

I,J
ϵµνρ

4π aIµKI,J∂νa
J
ρ −∑α,I

ϵµνρ

2π Aα
µq

α
I ∂νa

I
ρ

+|(− i∂µ − 2As
µ − a1µ − a2µ + a3µ − a4µ)

2b|2 + · · · (7)

where Aα=c,s
µ label the charge and pseudo-spin external

gauge fields, and

qc = (2, 0, 2, 0)T , qs = (2, 0,−2, 0)T . (8)

are the charge and pseudo-spin vectors[26] for the Chern-
Simons theory.
(ii) The Néel vector lies in-plane, e.g. n ⊥ ẑ with

n+ ≡ nxi + iny
i = (−1)rix+riy ⟨f†1if2i⟩ ≠ 0 (9)

Unlike nz, the in-plane components, nx and ny are not
gauge invariant as the local gauge transformation maps
nx(y) → −nx(y). However, a non-local gauge invariant
correlator can be defined [27].

Cx(y)(r, r′) = ⟨nx(y)(r)B(r, r′)nx(y)(r′)⟩, (10)

where the gauge string for fermions, B(r, r′) =∏
ij∈(r,r′) u1iju2ij , connects operators at the end sites

(r, r′). The value of Cx(y)(r, r′) is the same in all gauge
choices. Therefore, the ground state, symmetrized over
all gauge configurations through the projection proce-
dure, also has the same value of Cx(y)(r, r′), signifying a
string order parameter. Physically, the long-range string
order corresponds to the condensation of anyon b in the
field theory (7), hence breaking the gauge group down to
Z2 via the Higgs mechanism[28].

An alternative way to understand the gauge structure
is to notice the following local order parameter for the
in-plane Néel order

S+
⟨i,j⟩ ≡ ⟨n+i B(i, j)n+j ⟩ (11)

for a pair of nearest neighbor sites ⟨i, j⟩. Due to the mu-
tual braiding phase of eiπ between a vison and a fermion
in each layer, a vison from layer 1 (or 2) is nothing but
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a vortex for the above local order parameter, since S+
⟨i,j⟩

acquires a e±2πi phase as it travels around a vison from
layer 1 (2). The logarithmic confinement of vortices in
the in-plane Neel phase suggest that the vison from layer
1 (or 2) is confined, therefore reducing the Z2×Z2 gauge
group down to Z2. A similar conclusion can be drawn if
the Néel vector has both in-plane and ẑ components.

In general, the ground state can have both non-zero
out-of-plane (nz) and in-plane (nx, ny) components. The
term, ‘magnetic fragmentation’ is coined for phases that
display a coexistence of a local Landau-type order pa-
rameter and a non-local topological order [29–34]. Mag-
netic fragmentation is theoretically predicted[29] and ex-
perimentally observed[30] in spin ice materials such as
Nd2Zr2O7 where a local AFM order coexists with a spin
liquid with FM correlations. The conclusions we draw
from the Hubbard model rely on mean-field order param-
eters. Next, we underpin these results by a perturbative
analysis.

Perturbative analysis in the limit of large inter-
layer exchange. We corroborate the results of the
Hubbard model (Eq. 2) by considering the bilayer in
the large-J limit, without reference to the Majorana
representation (Eq. 1), on a torus. We introduce effective
pseudo-spin and orbital DOF appropriate to this limit.
We next derive effective models on the large-J GS
manifold, to fourth order in the intra-layer coupling
K. By analogy to the Hubbard model, we distinguish
between cases with a) Z2 and b) Z2 × Z2 topological
order. For a), we show that the GS manifold is a state
of uniform π flux, with a finite Cx(y) correlator (Eq. 10).
We also demonstrate that the GS manifold has four-fold
topological degeneracy and that the visons are confined.
For b), we also obtain a GS with uniform π flux, which
has sixteen-fold topological degeneracy and deconfined
vison excitations. These results naturally lead to the
conclusion that the two phases are separated by a
topological phase transition.

Effective degrees of freedom. We first introduce the effec-
tive pseudo-spin and orbital DOF. For K = 0 and finite
FM inter-layer interactions (J < 0), the spins on over-
lapping sites form GS doublets |↑1↑2⟩ , |↓1↓2⟩. These can
be represented by a bilayer pseudo-spin

ηzi =
1

4
(σz

1i + σz
2i)

η±i =
1

4
σ±
1iσ

±
2i, (12)

obeying an SU(2) algebra. In addition, the orbital DOF
for each pair of overlapping sites form a four dimensional
Hilbert space, corresponding to one singlet and three
triplet configurations. To represent these states, we in-
troduce the inter-layer orbital operators qγi = τγ1iτ

γ
2i, γ =

x, y, z, which mutually commute as [qαi , q
β
i ] = 0. The

four orbital states can be labeled by the three eigenval-
ues qγi = ±1, constrained to obey

∏
γ q

γ
i = −1. The

Hilbert space thus includes all states of the form

|{ηz}, {qγ}⟩ = |{ηzi }⟩ ⊗ |{(qxi , qyi , qzi )}⟩ , (13)

with the implicit local constraint. Pairs of nearest-
neighbor qγi/j define the bond variables

ργij = qγi q
γ
j (14)

which take on values of ±1 for γ ∈ {x, y, z}, while they
are trivially equal to 1 for additional identity bonds, la-
beled by ργ=I ≡ 1. To any {qγi } configuration, we can as-
sociate a unique {ργij} bond configuration, while the con-
verse is not true. Orbital states like |ϕ⟩0 = |∀ qγi = −1⟩,
which have uniform ργij = 1, play an important role in all
subsequent discussions.
Defects in |ϕ⟩0 take the form of strings of nega-

tive bonds as shown in Fig. 2 (b). Defects in both
pseudo-spin and ργij bonds are introduced by operating
with the flux operators Wνp/p′ . Each of these flips the

pseudo-spin components along x/y as η
x/y
n,k → −ηx/yn,k in

the corresponding unit cell (2 (a)). Each also changes
the signs of all six ργ bonds connected with sites n, k.
Note that any string defect cannot be eliminated by
application of Wνp/p′ operators.

Effective Hamiltonian. The effective Hamiltonian Hη−ρ,
projected onto the K = 0 GS manifold, reads

Hη−ρ = Hg2 +Hg4 , (15)

where

Hg2 =g2

[∑

⟨ij⟩
ηzi η

z
j +

∑

⟨ij⟩γ

1

2
(η+i η

−
j + η−i η

+
j )ρ

γ
ij

]
+
∑

i

(−1)ix+iy (hxη
x
i + hzη

z
i ) , (16)

is obtained at second order in K (g2 = K2/4J). Note the distinction between NN, in-plane pseudo-spins connected
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via variable and trivial identity ργij bonds, respectively.
We introduce small perturbations hx/z > 0 to explicitly
break the continuous symmetry, enforcing the staggered
pseudo-spin configurations along x/z, respectively. As it
turns out, these respectively correspond to Z2 and Z2×Z2

topological order. The fourth-order contribution is

Hg4 = g4


∑

ν,p

η□p Wνp +
∑

ν,p′

η□p′Wνp′


 , (17)

where g4 = K4/J3. η□p and η□p′ include linear combi-
nations of products of η and qγ operators around p/p′

plaquettes. Hg2 commutes with all flux operators for
hx → 0, while this always holds for Hg4 . Technical de-
tails and derivations related to the effective Hamiltonian
and the following sections are relegated to SM.

Z2 topological order. We consider Hη−ρ with hx > 0 and
hz = 0, on a torus. Exact diagonalization calculations
indicate that the GS manifold of Hg2 includes |ηxx, ϕ0⟩,
with ηxx denoting a finite staggered pseudo-spin along
x (see SM). Importantly, any configuration with string
defects in the ργ bonds are gapped, with an energy cost
which scales as the string length.

We next consider the evolution of the GS manifold
at Hg4 level for hx ≪ g4 ≪ g2. In SM, we show that
exact diagonalization calculations indicate Hg4 projects
|ηxx, ϕ0⟩ onto a state of uniform π flux per plaquette:

|ΨGS⟩ =
∏

ν,p,p′

(1−Wνp) (1−Wνp′)

4
|η̃xx;ϕ0⟩+O

(
hx
g4

)
.

(18)

Note that η̃xx is a state of staggered pseudo-spins in-
cluding corrections at both Hg2 and Hg4 levels. This is a
state of definite π flux sinceWνp(1−Wνp) = −(1−Wνp).
Moreover, all Wνp/p′ commute with the operator

Dx
ij =η

x
i


 ∏

i′j′∈Cij

ργij


 ηxj . (19)

Consequently, the latter has a finite expectation value in
|ΨGS⟩ for any pair of i, j, reflecting a locking of pseudo-
spin and ργij bond configuration. Moreover, Dx

ij is equiva-
lent to a gauge-invariant correlator of the Hubbard model
corresponding to an in-plane Néel vector (Eq. 10).

Note that any state with an open string defect,
obtained by first including strings in ϕ0, involves one or
more visons on the plaquettes at each end (2 (b)). As
the energy of this excitation depends on the string length
and diverges for infinite vison separation, it follows that
the latter are confined in an infinite system.

Z2 × Z2 topological order. In this case, we consider
Hη−ρ with hz > 0 and hx = 0. By analogy with the

FIG. 2. Illustration of the pseudo-spin and bond (η− ρ) con-
figurations. (a) Effect of flux operator Wνp on a state with
fixed ργij bonds. Wνp changes the signs of the bonds marked

in blue. It also changes the signs of ηx/y pseudo-spins on the
identity (dashed) bond. (b) String defect, with red lines in-
dicating bonds with signs opposite to the background bonds,
marked in black. The string shown here is created by operat-
ing with τxνi on any orbital state along the sites marked with
blue dots. When operating on the GS in Eq. 18, the τ ’s change
the fluxes on the hashed plaquettes, since they anti-commute
with Wνp/p′ . Consequently, this open string terminates with
a pair of visons.

case with Z2 topological order, the GS manifold of Hg2

now includes |ηzz, ϕ0⟩, where ηzz indicates finite stag-
gered pseudo-spins along z. Similarly, any open string
defects are gapped. However, in contrast to the case
for Z2 topological order, the gap for these excitations
remains finite for arbitrary string length, in the infinite-
system size. In the same limit, states with strings forming
non-contractible loops become degenerate with |ϕ0⟩ for
hz ≫ g2/4.

The effect of Hg4 is analogous to the case with Z2

topological order. Consequently, the GS has the form
in Eq. 18, with the replacement |η̃xx;ϕ0⟩ → |η̃zz;ϕ0⟩, in-
dicating a surviving pseudo-spin staggering. While the
two-point correlator for the ηz pseudo-spins is always fi-
nite, Dx

ij vanishes for infinite separation as in the Hub-
bard model with Z2 × Z2 topological order.

Since the energy cost of an open string remains finite
even in an infinite-size system, the visons are decon-
fined. Similarly, as states with non-contractible loops
of negative ργ bonds become degenerate with the GS,
in the limit of infinite system-size, the latter acquires
additional topological degeneracy. Consequently, this
entails a sixteen-fold topological degeneracy on the
torus, consistent with Z2 × Z2 topological order.

Conclusion and outlook. We have studied a bilayer
adaptation of a QSL model on a square lattice with
Kitaev-type interactions. We have shown that the low
energy model exhibits an AFM Mott transition which
corresponds to magnetic fragmentation in terms of the
original DOF. We have corroborated these results by a
perturbative calculation for the topological degeneracy,
which is consistent with field theory analysis. The anal-
ysis we have presented here may be of particular value
as a largely tractable yet highly non-trivial instance of
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magnetic fragmentation.

Interesting future directions include examining the role
of fluctuations on the emergent symmetry which may re-
duce the ground state manifold via order by disorder[35–
37]. Another direction is to generalize our mechanism for
fractionalized Goldstone modes in bilayer systems to mul-
tilayer systems with larger emergent symmetries, such as
SU(N).

The study of moiré superlattices of QSLs is another in-
triguing direction[27, 38]. Our work suggests that mani-
fold new phenomena arising from a combination of emer-
gent symmetry and strong interactions are awaiting dis-
covery here, providing a new vista on strongly correlated
magnetism.
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order-by-disorder in strongly correlated metals,” Annual
Review of Condensed Matter Physics 9, 59–77 (2018).

[38] Z. X. Luo, U. F. P. Seifert, and L. Balents, “Twisted bi-
layer U(1) Dirac spin liquids,” Phys. Rev. B 106, 144437
(2022).



Supplementary material for “Emergent symmetry and fractionalized Goldstone modes
in a bilayer quantum spin liquid”

Aayush Vijayvargia1, Emilian Marius Nica1,2, Roderich Moessner3, Yuan-Ming Lu4, Onur Erten1
1Department of Physics, Arizona State University, Tempe, AZ 85287, USA

2Department of Physics and Astronomy, Rice University, 6100 Main St, Houston 77005 TX, USA
3Max-Planck-Institut für Physik komplexer Systeme,
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I. MAJORANA FERMION REPRESENTATION

The Hamiltonian of the bilayer is

H = HK +HJ (1)

where HK and HJ are the intra- and inter-layer terms, respectively. HK has the form [? ],

HK = −K
∑

⟨ij⟩γ ,ν
(Γγ

νiΓ
γ
νj + Γγ5

νiΓ
γ5
νj ) (2)

where Γγ matrices obey the Clifford algebra, {Γα,Γβ} = δα,β and Γαβ = [Γα,Γβ ]. Using Γα = −σy⊗τα (α = x, y, z),
Γ4 = σx ⊗ I2 and Γ5 = −σz ⊗ I2, HK can be re-cast as

HK = −
∑

⟨ij⟩γ ,ν
Kν(σ

x
νiσ

x
νj + σy

νiσ
y
νj)(τ

γ
νiτ

γ
νj) (3)

where σ(τ) Pauli matrices act on spin(orbital) degrees of freedom (DOF). Here τγ = τx, τy, τz, I and γ = 1, 2, 3, 4
correspond to the 4 inequivalent bonds at each site. We introduce a Majorana fermion representation via

Γα
j = ibαj cj , Γαβ

i = ibαi b
β
i (4)

and relabel b5i → cxi and ci → cyi for convenience to obtain

HK = K
∑

⟨ij⟩γ
iuν,ij [c

x
νic

x
νj + cyνic

y
νj ] (5)

where uν,ij = ibγνib
γ
νj . The inter-layer interaction Hamiltonian, HJ = J

∑
i Γ

5
1iΓ

5
2i can be similarly expressed as

HJ = J
∑

i

σz
1iσ

z
2i

= −J
∑

i

cx1,ic
y
1,ic

x
2,ic

y
2,i (6)

Note that the fermion Hilbert space per site is 23 = 8-dimensional, twice the size of the 4-dimensional physical Hilbert
space expanded by Pauli matrices σ⃗ and τ⃗ . To faithfully represent the physical system with the Majorana fermion
degrees of freedom, we have to enforce the following onsite constraint

Dνj = ib1νjb
2
νjb

3
νjb

4
νjc

x
νjc

y
νj = 1, ∀ j, ν. (7)

II. SOLUTION OF THE INTRA-LAYER HAMILTONIAN

According to Lieb’s theorem[? ], the ground state of each layer of HK lies in the π-flux sector. Such states can be
obtained by choosing gauge configurations where every x-bond (see Fig. 1(a) in the main text) has uij = −1, while all
remaining bonds have uij = 1. The unit cell includes two inequivalent square plaquettes with primitive lattice vectors
a1,2 = (1,±1) and corresponding reciprocal vectors b1,2 = π(1,±1) (in units of a = 1) as shown in Supplementary
figure 1. Performing a Fourier transform f(A,B)i = Σke

−ikrif(A,B)k, we obtain

HK =
∑

k∈1st BZ

(
f†Ak f†Bk

)( 0 4K(cos ky + i sin kx)
4K(cos ky − i sin kx) 0

)(
fAk

fBk

)
(8)

with a dispersion EK = ±4K
√

sin2 kx + cos2 ky. EK has two inequivalent Dirac points at (0,±π
2 ) as shown in

Supplementary figure 1.
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Supplementary figure 1. (a) Lattice vectors a⃗1,2 = (1,±1). The unit cell includes two inequivalent plaquettes labeled p and
p′. Note the specific gauge choice adopted here, where green bonds and black bonds correspond to uij = −1 and uij = 1,

respectively. (b) Brillouin zone (BZ) (green square) with reciprocal vectors b⃗1,2 = π(1,±1). Red crosses indicate the two
inequivalent Dirac points at (0,±π

2
).

III. SYMMETRY AND TOPOLOGICAL PROPERTIES

A. Symmetry of the full Hamiltonian

We first consider the symmetry of the single layer Hamiltonian (2). The (spinless) time reversal symmetry operator
T = K is simply implemented by the complex conjugation K. In addition, we have a unitary U(1)ν ⋊ ZC

2 symmetry,
generated by U(1) “charge” rotations in each layer ν

U(1)ν = {e iθQν |Qν =
∑

j

icxνjc
y
νj + 1

2
, 0 ≤ θ < 2π}, (9)

and the particle-hole symmetry in layer ν

Cν =
∏

j

(icyνjb
γ
νj), (10)

where we can choose an arbitrary (but fixed) bond direction 1 ≤ γ ≤ 4. Note that all these symmetries commute
with the onsite constraint (7).

Next we take the inter layer interaction term (6) into account to analyze the symmetry of the full Hamiltonian (1).
Note that the particle-hole symmetry (10) in each layer does not commute with the onsite constraint (7), and hence
ceases to be a symmetry of the full Hamiltonian (1). Instead, the following particle-hole symmetry for both layers

C ≡ C1C2 =
∏

j,ν

(icyνjb
γ
νj) (11)

remain as a symmetry of the full Hamiltonian. Moreover, there is a layer exchange symmetry generated by

X =
∏

i

[1 + cx1,ic
x
2,i√

2
·
1 + cy1,ic

y
2,i√

2
·
∏

γ

1 + bγ1,ib
γ
2,i√

2

]
(12)

As a result, the symmetry of the full Hamiltonian is given by

G =
[
U(1)× U(1)× ZT

2

]
⋊
[
ZX
2 × ZC

2

]
(13)

The symmetry of the full Hamiltonian can be conveniently understood in the basis of complex fermions fν,j defined
as

fν,j ≡
cxν,j − icyν,j

2
=⇒ {fν,i, f†µ,j} = δi,jδµ,ν (14)
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In this basis, the U(1) symmetries for each layer can be recombined into “charge” U(1)c and pseudo-spin (i.e. layer)
U(1)s rotations:

U(1)c : fν,j → e iθfν,j ; Cfν,jC−1 = f†ν,j ; (15)

U(1)s : fν,j → e iκθfν,j ; Xfν,jX−1 = κfν′,j , (16)

where κ = −1, 1 for ν = 1, 2 respectively and ν′ = ν+1(mod2). If we represent the pseudo-spin-1/2 complex fermions
using the following matrix

Fj ≡
(
f1,j f†2,j
f2,j −f†1,j

)
(17)

the pseudo-spin and charge rotations correspond to left and right rotations on the matrix Fj :

R(Us
θ ) = e iθZL ; R(X ) = iYL; (18)

R(U c
θ ) = e iθZR ; R(C) = XR. (19)

where σ⃗L/R ≡ (XL/R, YL/R, ZL/R) stands for Pauli matrices multiplied to the left/right of matrix Fj in (17). Now it
is clear that the full symmetry group can be written as

G = O(2)c ×O(2)s × ZT
2 (20)

where O(2) = U(1)⋊ Z2 is the rotation group for either the charge or pseudo-spin degrees of freedom.

B. Emergent symmetry for a fixed flux configuration

One type of gapped excitations in model (1) are the visons[? ], i.e. π flux excitations in each plaquette. More
precisely, Majorana fermions {cx,yν,i } hop in a background flux, where the flux in the plaquette ⟨i, j, k, l⟩ is given by

Fν,ijkl = uν,ijuν,jkuν,kluν,li = ±1 (21)

In a fixed flux configuration where both layers share the same flux in every plaquette, we can always choose a gauge
so that uν,ij ≡ uij = ±1 are fixed as constants. Therefore the physical spectrum with fixed fluxes (i.e. without vison
excitations) is given by a Hubbard model of Majorana fermions {cx,yν,i } with a hopping strength K and a Hubbard
interaction strength J . The effective symmetry for a fixed flux configuration is generated by the spinless time reversal
symmetry

T =
∏

j,ν

(icxνjc
y
νj)

jx+jy · K (22)

and the well-known unitary SO(4) = SU(2)× SU(2)/Z2 symmetry of a 2-flavor Hubbard model[? ], where the layer
index ν plays the role of the psuedo-spin. We have used j = (jx, jy) ∈ Z2 to label a site on the square lattice.
Therefore the emergent symmetry group for a fixed flux configuration is given by

G′ = SO(4)× ZT
2 (23)

It is most convenient to represent the symmetry in the uν,ij ≡ uij = ±1, ∀ ν = 1, 2 gauge, where the SO(4) symmetry
is simply implemented by an SO(4) unitary rotation on the Majorana basis

ψj ≡ (cx1,j , c
y
1,j , c

x
2,j , c

y
2,j)

T (24)

since the fixed-flux Hamiltonian in this gauge is written as

Ĥfixed flux = −K
∑

⟨i,j⟩
uij

∑

ν=1,2

∑

α=x,y

icαν,ic
α
ν,j + J

∑

i

cx1,ic
y
1,ic

x
2,ic

y
2,i (25)

Meanwhile, under the spinless time reversal symmetry operation, the Majorana fermions (24) transform as

ψj
T−→ (−1)jψj (26)
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The SO(4) symmetry can also be understood in the basis of complex fermions fν,j defined in (14), where SU(2)s
pesudo-spin rotation and SU(2)c charge rotation are realized as left and right SU(2) rotations on the matrix in (17):

Fj ≡
(
f1,j f†2,j
f2,j −f†1,j

)
→MsFjM

†
c , Mc,s ∈ SU(2) (27)

Physically, at an energy scale much smaller than the vison gap, vison excitations are suppressed and the low energy
subspace has a fixed flux configuration. As proven by Lieb[? ], a uniform π flux per plaquette has the lowest energy
and the low energy physics is described by Majoranas ψj hopping in a uniform background of π flux per plaquette.
Therefore, the effective (or emergent) symmetry of the system below the vison excitation gap is exactly given by the
symmetry of a fixed flux configuration as we described above.

C. Remnant symmetry of the Néel order

In a Hubbard model on the square lattice, as the onsite repulsive Hubbard interaction strength J/K increases
beyond a critical value Jc/K, the system enters a Néel ordered phase with the long-range antiferromagnetic order.
Now that we have obtained the symmetry of the full Hamiltonian (1) and of any fixed flux configuration, next we
analyze the remnant (unbroken) symmetry of the Néel ordered ground state in our model (1).

The Néel order in the Hubbard model is characterized by the staggered magnetization as its order parameter,
represented by the Néel vector:

n =
1

N

∑

j

nj , nj = (−1)jx+jy ⟨f†µjσµνfνj⟩ = (−1)jx+jyTr(F †
j σFj) (28)

Note that the Néel vector always changes sign when transformed under the spinless time reversal symmetry T = K,
therefore it always spontaneously breaks the antiunitary time reversal symmetry T . From (28) it is clear that the Néel
vector is invariant under charge rotations Mc ∈ SU(2)c in (14), therefore it always preserves the O(2)c subgroup of
“charge” symmetries of the full Hamiltonian (1), or the SU(2)c subgroup of the emergent G′ = SO(4)×ZT

2 symmetry
for a fixed flux configuration. In fact, independent of the Néel vector orientation, in a fixed flux configuration, the
Néel order always spontaneously breaks the emergent symmetry group G′ = SO(4)× ZT

2 down to a subgroup

H ′ = SU(2)c × U(1)n ⋊ ZTn
2 (29)

where in the complex fermion basis (17) we have defined

U(1)n = {e iθn̂·σ⃗L |0 ≤ θ < π}, R(Tn) ≡ (im̂ · σ⃗L) · YLYR · K (30)

Here m̂ ∥ ẑ × n is an in-plane unit vector perpendicular to the unit Néel vector n̂.
Below we analyze three cases with different orientations of the Néel vector n, where the symmetry group G in (20)

of the full Hamiltonian is spontaneously broken down to different subgroups.
(1) If the Néel vector n is parallel to the ẑ axis, the U(1)s symmetry is preserved while the layer exchange X is

broken. As a result, the remnant symmetry group is

H(n ∥ ẑ) = O(2)c × U(1)s ⋊ ZX·T
2 (31)

The associated order parameter manifold is given by

M = G/H = Z2 (32)

(2) If the Néel vector n lies in the plane perpendicular to the ẑ axis, the U(1)s spin rotation is broken while a layer
exchange symmetry Xn defined by

R(Xn) = i n̂ · σ⃗L (33)

in the complex fermion basis (17) is preserved. As a result, the remnant symmetry group is

H(n ⊥ ẑ) = O(2)c × ZXn
2 × ZT̃

2 (34)
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Néel vector Unbroken subgroup H G/H Topological defects Gauge group

n ∥ ẑ O(2)c × U(1)s ⋊ ZX·T
2 Z2 Domain wall Z2 × Z2

n ⊥ ẑ O(2)c × Z2 × ZT̃
2 S1 Vortex Z2

nz ̸= 0, nxny ̸= 0 O(2)c × ZTn
2 O(2) Domain wall + Vortex Z2

TABLE I. A summary of distinct long range orders for different orientations of the Néel vector n, and the associated gauge
group for their topological orders.

where the preserved anti-unitary symmetry is defined as

R(T̃ ) = XLYR · K (35)

As a result, the associated order parameter manifold is

M = G/H = U(1) ≃ S1 (36)

(3) If the Néel vector has both in-plane and ẑ components, both U(1)s rotation and layer exchange X are broken,
leaving anti-unitary Tn defined in (30) an unbroken symmetry. Therefore the remnant symmetry group is

H(nz ̸= 0, nxny ̸= 0) = O(2)c × ZTn
2 (37)

and the associated order parameter manifold is

M = G/H = O(2) (38)

A summary of the long range orders and associated topological defects of the local order parameters is shown in
Table I.

D. Local and string order parameters for the long range Néel order

According to Lieb’s theorem[? ], for the model (25) of interacting fermions with bipartite hopping and particle-hole
symmetry, a uniform π flux per plaquette has the lowest energy. As a result, in the low-energy manifold below the
vison gap, we can consider a π-flux Hubbard model of fermions {fν,j} on the square lattice. To understand the
topological nature of the ground state and its excitations, we need to understand the wavefunctions of the bilayer
spin liquid model.

In the low-energy manifold, since the flux (21) in every plaquette is fixed to Fν,ijkl ≡ −1, ∀ ν, we can choose a
gauge so that

ib
γij

i b
γij

j = uij , ∀ ν = 1, 2 (39)

where uij is fixed as shown in Fig. 1. In the fixed gauge, let’s denote the eigenstates for the Hubbard model (25) of
fermions {fν,j} (or equivalently of {ψj}) as |ψ⟩. Then the mean-field ansatz |MF ⟩ of all fermions {cx,yν,j , b

γ
ν,j} can be

written as

|MF ⟩ = |ψ⟩ ⊗ | ibγij

i b
γij

j = uij⟩ (40)

where | ibγij

i b
γij

j = uij⟩ denotes the unique eigenstate of fermions {bγν,j} that satisfies the fixed gauge (39). The physical

eigenstate of the bilayer spin liquid model (1) is then obtained by enforcing the onsite constraint (7) on the mean-field
ansatz:

|QSL⟩ =
∏

j,ν

1 +Dν,j

2
|MF ⟩ (41)

via the projection operator
1+Dν,j

2 on every site.
In the Néel order of the square-lattice Hubbard model, there is an off-diagonal long range order for the Néel vector

(28) in the mean-field ansatz:

lim
|i−j|→∞

(−1)ix+iy+jx+jy ⟨MF |f†µ,iσ⃗µνfν,i · f†a,j σ⃗abfb,j |MF ⟩ ≠ 0 (42)



7

However, this does not guarantee the same local order parameter to exist in the physical ground state (41). More
precisely, while the ẑ-component of the Néel vector

nzj ∝
∑

µ=1,2

µf†µ,jfµ,j =
∑

ν

κΓ5
ν,j (43)

where κ = −1, 1 for ν = 1, 2 respectively. nzj is a local operator and, the in-plane components

n+j = nxj + inyj ∝ f†2,jf1,j (44)

do not commute with the onsite constraint (7). As a result, the off-diagonal long range order of local order parameters
in the mean-field anstaz will translate into a string order parameter in the physical wavefunction:

lim
|i−j|→∞

(−1)ix+iy+jx+jy ⟨QSL|f†2,if1,i
(∏

ν

M∏

a=1

ib
γja,ja+1

ν,ja
b
γja,ja+1

ν,ja+1

)
f†1,jf2,j |QSL⟩ ≠ 0 (45)

where (j1, j2, · · · , jM ) is a string of consecutive sites that connect j1 = i and jM = j. It is straightforward to check
that the string order parameter above commutes with the onsite constraint (7). Although the in-plane component
n+ of the Néel vector is not a local operator, there is a local order parameter for the in-plane Néel order:

S+
⟨ij⟩ ≡ f†2,if1,i(

∏

ν

ib
γij

ν,i b
γij

ν,j )f
†
2,jf1,j (46)

where ⟨i, j⟩ is a pair of nearest neighbor sites. And one can check that the in-plane Néel order in the mean-field ansatz
|MF ⟩ implies the following long range order of the physical wavefunction |QSL⟩:

lim
|i−i′|→∞

⟨QSL|S+
⟨ij⟩S

−
⟨i′j′⟩|QSL⟩ ≠ 0 (47)

E. Topological orders in the Néel ordered phase

For a small value of J/K, the π-flux Hubbard model (25) has a gapless spectrum with massless Dirac fermion
excitations. Each layer hosts one type of vison (i.e. π-flux) excitations, giving rise to a Z2 × Z2 gauge field. The low
energy physics is therefore described by the two decoupled layers of gapless Z2 spin liquids, each layer described by
two branches of massless Dirac fermions coupled to a Z2 gauge field.

In the large J/K case, a long-range Néel order develops in the ground states of the π-flux Hubbard model (25),
where the Dirac fermions acquires a mass, giving rise to a gapped spectrum for all fermions. Different orientations
of the Néel vector (28) not only give rise to distinct long range orders with different order parameters, but also
distinct topological orders with different gauge groups. Below we analyze the 3 different orientations of the Néel
vector summarized in Table I.

1. n ∥ ẑ

As previously discussed, when the Néel vector aligns along ẑ-axis, the ẑ-component of the Néel vector is a local
order parameter for the Ising-type Néel order, with a order parameter manifold of G/H = Z2. Since the fermions are
all gapped, the ground state exhibits a Z2×Z2 topological order, due to deconfined vison excitations from each layer.

The only gapless excitations in this case are the Goldstone modes of the Néel order, described by the spin flip

operator in (44). However, the operator n+j ∼ (−1)jx+jyf†2,jf1,j is not a gauge invariant operator as it violates the

onsite constraint (7). The gapless Goldstone modes of the Hubbard model lead to a power-law decaying correlation
of the string order parameter (45) in this case.

If the system is gapped, it will naively be an Abelian Z2 × Z2 topological order described by a 4-component
Chern-Simons theory with the following K matrix

K =

(
0 2

2 0

)
⊕
(
0 2

2 0

)
(48)
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Since both U(1)c and U(1)s symmetries are preserved, they are captured by charge and pseudo-spin vectors

qc = (2, 0, 2, 0)T , qs = (2, 0,−2, 0)T . (49)

However, the nature of the gapless “Goldstone modes” here, plays a crucial role to interpret the physical ground

state (41) after the projection
1+D̂ν,j

2 on each site. Notice, the two real Goldstone modes together form a complex
bosonic mode

nx + iny ∼ bk⃗=(π,π) ∼
∑

i

(−1)ix+iyf†2,if1,i (50)

which is gapless, with a linear dispersion. This mode carries a unit gauge charge of both Z2 gauge fields, one from
each layer, and is hence not a local excitation. Therefore, this ground state should be understood as an algebraic
Z2 ×Z2 spin liquid, where the bound state (50) (with quasiparticle vector (1, 1,−1, 1)T in the Abelian Chern-Simons
theory) of two types of fermionic spinons f2 (with quasiparticle vector (1, 1, 0, 0)T ) and f1 (with quasiparticle vector
(0, 0,−1, 1)T ) becomes gapless with an algebraic correlation in (45). The mode b obeys bosonic self statistics, but is
really an anyon excitation with semionic mutual braiding with fermions fν,j from either layer. Therefore the system
exhibits fractionalized Goldstone modes that obey anyonic statistics.

After incorporating the gapless anyon b in (50) into the low energy description, the effective field theory for this
algebraic spin liquid writes

LASL =
∑

I,J

ϵµνρ

4π
aIµKI,J∂νa

J
ρ −

∑

α=c,s

∑

I

ϵµνρ

2π
Aα

µq
α
I ∂νa

I
ρ + |(− i∂µ − 2As

µ − a1µ − a2µ + a3µ − a4µ)
2b|2 + · · · (51)

where b denotes the critical anyon mode out of the Goldstone modes of the broken emergent symmetry. Typically,
the robust presence of a gapless anyon excitation in a system requires a mechanism to protect it. In this case, it is
the emergent pseudo-spin SU(2)s symmetry that protects the criticality of this anyon mode.

2. n ⊥ ẑ

It’s straightforward to show that a nonzero in-plane Néel component ⟨b⟩ ≠ 0 corresponds to condensing the anyon
characterized by vector (1, 1,−1, 1) in the Chern-Simons theory, and drives the system into a usual Z2 topological

order described by a 2-component Abelian Chern-Simons theory with K =

(
0 2

2 0

)
.

This can be understood by considering the topological defects of the local order parameter (46): since the order
parameter manifold for an in-plane Néel order (n ⊥ ẑ) is G/H = U(1) ≃ S1, the long-range order supports point
defects (i.e. vortices) classified by an integer-valued vorticity π1(G/H) = Z. The vortex of local order parameter
S+ = Sx + iSy in (46) is nothing but a π flux from either layer, characterized by quasiparticle vector (1, 0, 0, 0) or
(0, 0, 1, 0) in the 4-component Abelian Chern-Simons theory. Since the vortices are logarithmically confined in two
spatial dimensions, the π flux from either layer is confined with an in-plane Néel order. As a result, the ground state
features a Z2 topological order, whose vison excitation is the bound state of a π flux from both layers.

Next we describe the Goldstone modes in the in-plane Néel order. Without loss of generality, we assume the Néel
vector to point along x̂ axis in the ground state, i.e. ⟨nx⟩ ̸= 0 in the ground state of the gauge-fixed π-flux Hubbard
model (25). In this case, we can write down the following local operator that creates the Goldstone mode ny:

N y =
∑

i

nxi
∏

ν

(ibγν,ib
γ
ν,i+êγ

)nyi+êγ
(52)

where êγ is the unit lattice vector along bond γ direction. Due to the long-range string order (45) in the ground state,
it is straightforward to show that

N y|QSL⟩ ∼ (
∏

ν,i

1 +Dν,i

2
)ny|MF ⟩ (53)

3. nz ̸= 0, nxny ̸= 0

When the Néel vector has both in-plane and ẑ components, the ground state also exhibits a Z2 topological order,
for the same reason as discussed above. With an order parameter manifold of G/H = O(2), the topological defects
in this case include both domain walls classified by π1(O(2)) = Z2, and vortices classified by π1(O(2)) = Z.
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IV. EFFECTIVE η − ρ HAMILTONIAN IN THE LARGE-J LIMIT

In this section, we provide the details of the derivation for the effective Hamiltonian to fourth-order in |K/J | ≪ 1,
which we label as an “η − ρ” model. For K = 0, the ground state (GS) is doubly degenerate, |↑1↑2⟩ , |↓1↓2⟩ at each
site. These doublets can be represented by the pseudospins |⇑⟩ , |⇓⟩ with associated operators

ηzi =
1

4
(σz

1i + σz
2i)

η±i =
1

4
σ±
1iσ

±
2i (54)

which obey an SU(2) algebra. Note that ηzi is a dipolar operator whereas ηxi and ηyi ,

ηxi =
1

4
(σx

1iσ
x
2i − σy

1iσ
y
2i)

ηyi =
1

4
(σx

1iσ
y
2i + σy

1iσ
x
2i) (55)

are quadrupole operators. Apart from the pseudospin doublet, there is an additional four-fold degeneracy per site,
arising from the orbital DOF. We introduce an operator

P0 =
∏

i

1 + σz
1iσ

z
2i

2
, (56)

which projects out the states |↑1↓2⟩ , |↓1↑2⟩ at each site.
In the following, we derive the effective Hamiltonian perturbatively to fourth-order in K. We also note that all

odd-ordered terms vanish since HK only connects states inside the GS manifold to states outside of it.

A. Second-order effective Hamiltonian Hg2

The effective Hamiltonian to second order is

H(2) = P0HKSHKP0 (57)

where

S =
(1− P0)

(E0 −HJ)
, (58)

and HJ is the inter-layer coupling. In order to evaluate eq. 57, we introduce the operators

Xij = σ+
1iσ

−
1jτ

γ
1iτ

γ
1j + σ−

2iσ
+
2jτ

γ
2iτ

γ
2j (59)

and re-write HK =
∑

⟨ij⟩γ Xij +Xji. Since P0X
2
ijP0 = 0, we obtain

H(2) =
K2

4J

∑

⟨ij⟩γ
P0{Xij , Xji}P0. (60)

Furthermore, we use the identities

P0σ
+
1iσ

+
2iP0 = 4η+i

P0σ
−
1iσ

−
2iP0 = 4η−i

P0σ
+
νiσ

−
νiP0 = 2(1 + 2ηzi )

P0σ
−
νiσ

+
νiP0 = 2(1− 2ηzi ), (61)

to express

H(2) = −g2
∑

⟨ij⟩γ

[
−ηzi ηzj +

1

2
(η+i η

−
j + η−i η

+
j )τ

γ
1iτ

γ
1jτ

γ
2iτ

γ
2j

]
, (62)
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where g2 = K2/4J . We perform rotations by π about the z-axis on the η pseudo-spins at every other site to obtain
the effective Hamiltonian at g2 level

Hg2 = g2
∑

⟨ij⟩γ

[
ηzi η

z
j +

1

2
(η+i η

−
j + η−i η

+
j )τ

γ
1iτ

γ
1jτ

γ
2iτ

γ
2j

]
. (63)

Note that τγ1iτ
γ
1jτ

γ
2iτ

γ
2j = ργij , where ρ

γ
ij = qγi q

γ
j .

B. Fourth-order effective Hamiltonian Hg4

The general expression to fourth order reads

H(4) = P0HKSHKSHKSHKP0 −
1

2

(
P0HKS

2HKP0HKSHKP0 + P0HKSHKP0HKS
2HKP0

)
(64)

We focus on the first term, which, as described below, includes coupled pseudo-spin and orbital DOF around the p/p′

plaquettes. These play a critical role in lifting the extensive degeneracy of the GS of the leading Hg2 , due to the
orbital DOF, as implied by ργij = 1 ∀ γ, ⟨ij⟩ (Supplementary section VI). By contrast, the remaining terms in eq. 64

are either independent of the orbital DOF or involve two pairs of NN pseudo-spins coupled to ργijρ
γ′

jk, where γ ̸= γ′

for the two connected bonds. These involve subleading corrections to the pseudo-spin configuration, but do not lift
the GS degeneracy of Hg2 . Consequently, we ignore these contributions and focus instead on the plaquette terms in
the following. To illustrate, we consider a single p plaquette (Supplementary figure 1) in the first term as

P0HKSHKSHKSHKP0 =
K4

8J3
P0[−2{XijXkl, XjkXli} − {{Xij , Xjk}, {Xkl, Xli}}
− {{Xjk, Xkl}, {Xli, Xij}}]P0 + . . . (65)

where . . . includes all remaining p/p′ plaquettes. We simplify the expressions by using the identities in eq. 61 and by
rotating the pseudo-spins such that η±i → −η±i at every other site. Carrying out similar operations for the remaining
plaquettes, we obtain the effective Hamiltonian at fourth order

Hg4 = g4
∑

p

[η□ijkn(W1p +W2p) + η□klmn(W1p′ +W2p′)], (66)

where

η□ijkn = [5ηzi η
z
j η

z
kη

z
n + 5/2(η+i η

−
j η

+
k η

−
n + η−i η

+
j η

−
k η

+
n )

− 5/2(η+i η
−
j η

z
kη

z
n ρij + 11 permutations)+

[(ηzi η
z
j + 1/2(η+i η

−
j + η−i η

+
j ) ρij)+

(ηzj η
z
k + 1/2(η+j η

−
k + η−j η

+
k ) ρjk)+

(ηzkη
z
n + 1/2(η+k η

−
n + η−k η

+
n ))+

(ηznη
z
i + 1/2(η+n η

−
i + η−n η

+
i ) ρij)+

(ηzi η
z
k + 1/2(η+i η

−
k + η−i η

+
k ) ρni)+

(ηzj η
z
n + 1/2(η+j η

−
n + η−j η

+
n ) ρjk) + 1]].

Note that these are due to the terms in eq. 65.

V. THE EFFECTS OF τν,i AND Wνp/p′ OPERATORS IN THE η − ρ BASIS

We first consider τν,i operating on any local orbital state determined by the set {qxi , qyi , qzi } subject to the constraint
qxi q

y
i q

z
i = −1:
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τx1 |−,−,−⟩ = −|−,+,+⟩ (67)

τx2 |−,−,−⟩ = +|−,+,+⟩
τy1 |−,−,−⟩ = i|+,−,+⟩
τy2 |−,−,−⟩ = −i|+,−,+⟩
τz1 |−,−,−⟩ = +|+,+,−⟩
τz2 |−,−,−⟩ = −|+,+,−⟩
τx1 |−,+,+⟩ = −|−,−,−⟩
τx2 |−,+,+⟩ = +|−,−,−⟩
τy1 |−,+,+⟩ = i|+,+,−⟩
τy2 |−,+,+⟩ = i|+,+,−⟩
τz1 |−,+,+⟩ = +|+,−,+⟩
τz2 |−,+,+⟩ = +|+,−,+⟩
τx1 |+,−,+⟩ = +|+,+,−⟩
τx2 |+,−,+⟩ = +|+,+,−⟩
τy1 |+,−,+⟩ = −i|−,−,−⟩
τy2 |+,−,+⟩ = +i|−,−,−⟩
τz1 |+,−,+⟩ = +|−,+,+⟩
τz2 |+,−,+⟩ = +|−,+,+⟩
τx1 |+,+,−⟩ = +|+,−,+⟩
τx2 |+,+,−⟩ = +|+,−,+⟩
τy1 |+,+,−⟩ = −i|−,+,+⟩
τy2 |+,+,−⟩ = −i|−,+,+⟩
τz1 |+,+,−⟩ = +|−,−,−⟩
τz2 |+,+,−⟩ = +|−,−,−⟩

In summary, τx1/2,i preserve qxi while changing the signs of q
y/z
i , and so on for all permutations. In terms of the

ργij = qγi q
γ
j bonds , the same operator changes the signs of ρyij and ρzik, where ij and ik are NN pairs.

The flux operators are defined by

Wνp =σz
νkσ

z
νnτ

x
νiτ

y
νjτ

x
νkτ

y
νn (68)

Wνp′ =σz
νkσ

z
νnτ

x
νlτ

y
νmτ

x
νkτ

y
νn, (69)

where the index convention is illustrated in Supplementary figure 1. These operators act both on the spin (σ), as well
as on the orbital (τ) DOF. The labels p, p′ label the plaquettes, as illustrated in Supplementary figure 1. By applying
eq. 68 around a single p plaquette, we see that W1p flips the qγ ’s at four of the six sites of the unit cell. Consequently,
six ργij bonds change signs, as shown in Supplementary figure 2 (a). The effect of W1p′ is similar (Supplementary

figure 2 (b)) although the end state differs in the qγ values at each of the six sites. Due to the presence of the σz
k and

σz
n operators, both W1p and W1p′ also rotate the in-plane pseudo-spin components at sites k and n as ηx,yk → −ηx,yk

and ηx,yn → −ηx,yn .

VI. EXACT DIAGONALIZATION OF Hg2

The effective Hamiltonian

Hg2 =g2

[∑

⟨ij⟩
ηzi η

z
j +

∑

⟨ij⟩γ
(ηxi η

x
j + ηyi η

y
j )ρ

γ
ij

]
+
∑

i

(−1)ix+iy (hxη
x
i + hzη

z
i ) , (70)

couples the in-plane pseudo-spin components η
x/y
i with the orbital bonds ργij = qγi q

γ
j . The latter are preserved and

Hg2 can be solved for the pseudo-spins in any given bond configuration which is consistent with the local constraint
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Supplementary figure 2. The effects of the flux operators on the qγi orbital states and ργij bond configurations. Black lines
indicate positive bonds with all qγi = −1 around the unit cell. Blue lines indicate negative bonds, while red lines are positive
bonds with non-trivial qγi values. The right panels show how the latter transform. We illustrate for (a) W1p, (b)W1p′ , and (c)
W1pW1p′ .

∏
γ q

γ
i = −1. Here, we consider Hg2 on a 4 × 4 torus with both hx/z = 0. We determine the GS energy via

exact diagonalization in the pseudo-spin sector for various bond configurations. We find that the uniform ργij = 1
configuration has the lowest energy. In this sector, Hg2 maps onto a 2D Heisenberg model with periodic boundary
conditions. In contrast, all states with one or more strings of ργij = −1 bonds have higher energy, as shown in
Supplementary figure 3.

Note that exceptions to these conclusions occur for hz > 0, hx = 0, or when the pseudo-spin spontaneously order
along the z direction only, in the infinite-size system. As shown in Supplementary section VIII, a non-contractible
string of ργij = −1 bonds becomes degenerate with the uniform ργij = 1 state.

VII. EXACT DIAGONALIZATION OF Hg4

As discussed in Supplementary section VI, a state with uniform ργij = 1 bonds and zero net pseudo-spin, as in a
2D Heisenberg model, has the lowest energy at Hg2 level. For hx = 0, Hg2 commutes with the flux operators Wνp/p′ .
Therefore, the states

∏

{ν,p},{ν′,p′}
WνpWν′p′ |ηHeisenberg, ∀ ργij = 1⟩ , (71)

where the ket is the GS at Hg2 level, are degenerate with the latter. The products can include any combinations of
Wνp/p′ operators and this implies an extensive degeneracy of the GS. For hx > 0, Hg2 only commutes with Wν,pWν,p′ ,
where p/p′ are in the same unit cell, such that the degeneracy is partially lifted. We shall assume a small hx in the
following and ignore this additional complication.

Hg4 lifts the extensive degeneracy. To see how, we first project onto states of definite flux as
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Supplementary figure 3. Bond configurations and ground-state energy for a 4×4 lattice on a torus. (a) Dotted bonds correspond
to the identity bond while gray bonds illustrate wrapping around the torus. The configurations shown correspond to (1) Uniform
ργij = 1, and (2-6) strings of negative bonds. (b) Difference in the ground-state energies corresponding to (a). The uniform
configuration is lowest in energy.

|η; {aνp, aνp′}⟩ =
∏

ν,p,p′

1

24
(1 + aνpWνp) (1 + aνp′Wνp′) |ηHeisenberg, ∀ ργij = 1⟩ aνp/p′ = ±1. (72)

|η; {aνp, aνp′}⟩ are eigenstates of Wνp/p′ with eigenvalue aνp, corresponding to a π(1− aνp)/2 flux per plaquette p in
layer ν, and similarly for p′. We can consider the effect of Hg4 on the degenerate GS manifold of Hg2 . The former
commutes with the fluxes and its matrix elements are diagonal in the projected basis:

⟨η; {aνp, aνp′}|Hg4 |η; {bνp, bνp′}⟩ = g4
28


∑

ν,p

⟨η□p ⟩ aνp +
∑

ν,p′

⟨η□p′⟩ aνp′


 δ{aνp},{bνp}δ{aνp′},{bνp′}, (73)

where

⟨η□p ⟩ = ⟨5(ηηηi · ηηηj)(ηηηk · ηηηn) + 5(ηηηi · ηηηn)(ηηηj · ηηηk)− 5(ηηηi · ηηηk)(ηηηj · ηηηn)− (ηηηi · ηηηj)− (ηηηj · ηηηk)− (ηηηk · ηηηn)− (ηηηi · ηηηn)
− (ηηηi · ηηηk)− (ηηηj · ηηηn) + 1⟩ηHeisenberg

. (74)

This expression is the expectation value of pseudo-spin ring- and pair-exchange terms on plaquette p, in the GS of
the 2D Heisenberg model. A similar expression holds for the p′ plaquettes. Depending on the sign of the expectation
value, Hg4 lifts the extensive degeneracy at Hg2 level to leading order, and selects a GS of uniform flux. We confirmed
the previous conclusion via exact diagonalizion of Hη−ρ in a unit cell. The Hilbert space includes all pseudo-spins
for uniform ργij = 1 bonds and all states obtained by applying Wνp/p′ on the latter. The resulting Hamiltonian in
the pseudo-spin basis was solved numerically. We find that the GS is unique and corresponds to a state of uniform
π flux for both p/p′ plaquettes (Supplementary figure 4(b)). We also find that the GS overlaps significantly with
|η; {aνp, aνp′}⟩ for g4 ≪ g2 as shown in Supplementary figure4(a).

VIII. ργij STRING DEFECTS

In this section, we consider

Hg2 =
∑

i

(−1)ix+iy (hxη
x
i + hzη

z
i ) + g2

[∑

⟨ij⟩
ηzi η

z
j +

∑

⟨ij⟩γ
(ηxi η

x
j + ηyi η

y
j )ρ

γ
ij

]
, (75)
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Supplementary figure 4. (a) The overlap between |ψGS⟩ and the wavefunction obtained from ED as a fuction of K/J . The
overlap decreases slowly as the perturbation gets stronger. (b) The lowest energy eigenstate is the state with both W1p = −1
and W1p′ = −1 up to K/J = 0.1.

where γ ∈ {x, y, z, I}, on a torus. We distinguish two regimes for a) hx ≫ g2, hz = 0 and b) hz ≫ g2, hx = 0,
respectively. Hg2 preserves ργij bonds and can be solved separately in any configuration of the latter, which is

consistent with the local constraint
∏

i q
γ
i = −1. Here, we consider the uniform ργij = 1 configuration, together with

related states which include non-contractible strings of n bonds along which ργij = −1. We present a semi-classical

analysis and perturbation theory results, which show that the string has infinite energy cost for a), while for b) it
vanishes, in the infinite-size system.

We first proceed by singling out n, ργij bonds along a non-contractible loop Cx/y which winds once around the torus

(Supplementary figure 5). We re-write the Hamiltonian as

Hg2 = HString +HBackground +HCoupling, (76)

whereHString includes all on-site and NN exchange terms along the path. For the latter, we consider two configurations
with ργij bonds either all negative or all positive. Similarly, HBackground includes the remaining sites, with bonds
trivially equal to 1. HCoupling includes all of the exchange terms which connect string and background sites, with
associated ργij = 1 bonds. We calculate corrections to the GS energy in perturbation theory for the g2 terms.

The string of negative bonds around Cx/y loops are equivalent to periodic boundary conditions (PBC) for the
pseudo-spins along the direction of the loops. By contrast, the boundary conditions in the direction which crosses
Cx/y are

η
x/y
i =− η

x/y
i+N2/1

(77)

ηzi =ηzi+N2/1
. (78)

for both sublattices. N2/1 is the number of unit cells along the two directions implied by Cy/x. The ηx/y components
obey anti-periodic BC (ABC), while the z-components are subject to PBC.

A. hx > 0, hz = 0

It is convenient to apply a global rotation ηxi → η̃zi , η
y
i → η̃yi , η

z
i → −η̃xi which maps Hg2 to

H̃g2 =hx
∑

i

(−1)ix+iy η̃zi + g2
∑

⟨ij⟩γ

[
η̃zi η̃

z
j ρ

γ
ij + η̃xi η̃

x
j + η̃yi η̃

y
j ρ

γ
ij

]
, (79)
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Supplementary figure 5. Two non-contractible loops Cx,y for the lattice on a torus. Solid black lines represent non-trivial
ργij = 1 bonds while the dashed black lines are identity bonds. Cx/y only include non-trivial bonds. Dashed red and green lines
indicates paths used in constructing the Wilson loop operators in eq. 109

.

For a uniform ργij = 1 configuration, this reduces to a 2D AFM Heisenberg model which has finite staggered pseudo-
spins in the GS for any hx ̸= 0. A non-contractible loop implies ABC for η̃zi = −η̃zi+N1/2

. At a semi-classical level,

the presence of the staggered field hx implies that such a twist costs an amount of energy which scales with N2/1.
Moreover, this energy cost diverges for an infinite-size system. This also holds in the subsequent hx → 0 limit.

The same conclusion can be reached using a perturbative analysis. It is convenient to re-write

H̃g2 =H0 + g2
∑

⟨ij⟩γ
V γ
z,ij + g2

∑

⟨ij⟩γ
V γ
⊥,ij , (80)

where

H0 =hx
∑

i

(−1)ix+iy η̃zi (81)

V γ
z,ij =η̃

z
i η̃

z
j ρ

γ
ij (82)

V γ
⊥,ij =η̃

x
i η̃

x
j + η̃yi η̃

y
j ρ

γ
ij . (83)

When considering matrix elements, we shall label the expectation value in the GS of H̃0 as ⟨⟩00. ⟨⟩01 indicates matrix
elements between GS and an excited state with a NN pair of flipped pseudo-spins, and similarly ⟨⟩12 for the matrix
elements between two excited states with 1 and 2 pairs of flipped pseudo-spins, respectively. The GS has staggered
pseudo-spins to zeroth order in g2. To first order, the correction to the GS energy is

E(1)
n,ρ =g2

〈∑

⟨ij⟩γ

V γ
z,ij

〉

00

(84)

=− g2 × n× ρ+Background, (85)

where we explicitly indicated the number of contributing configurations and their weights. These are due to the Ising
exchange terms along the (rotated) z axis, and amount to taking into account all of the bonds in H̃String and H̃Coupling.
ρ stands for the two cases with either all bonds positive or negative on the string. The remaining contributions from
H̃Background are independent of ρ. The corrections to second order are due exclusively to the (rotated) in-plane terms,
which introduce pseudo-spin flips for NNs. Importantly, each flip carries a (1 + ργij) factor as

E(2)
n,ρ =g22

∑
⟨ij⟩γ ⟨V

γ
⊥,ij⟩

2

01

∆E01
(86)

=− g22
32hx

× n× (1 + ρ)2 +Background, (87)

where ∆E01 = −2hx is the energy cost of an excited state with a single pair of flipped pseudo-spins. Also note that
⟨V γ

⊥,ij⟩ = 2−2(1 + ργij). To third order, we obtain
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E(3)
n,ρ =g32

∑
⟨ij⟩γ ⟨V

γ
⊥,ij⟩01

(
⟨∑⟨ab⟩γ V

γ
z,ab⟩

11
− ⟨∑⟨ab⟩γ V

γ
z,ab⟩

00

)
⟨V γ

⊥,ij⟩10
(∆E01)2

=
g32

64h2x

[
n× (1 + ρ)2(8 + 4ρ) + 2n× 4(8 + 4ρ)

]
+Background. (88)

These corrections are due to the energy cost introduced by V γ
z terms in the presence of a pair of flipped pseudo-spins

in the string and connecting bonds. To fourth order, the corrections read

E(4)
n,ρ =g42

(∑
p ⟨V

γ
⊥,ij⟩01 ⟨V

γ
⊥,jk⟩11 ⟨V

γ
⊥,kn⟩11 ⟨V

γ
⊥,ni⟩10

(∆E01)3
+

∑
p ⟨V

γ
⊥,ij⟩01 ⟨V

γ
⊥,nk⟩12 ⟨V

γ
⊥,kj⟩21 ⟨V

γ
⊥,ni⟩10

(∆E01)2∆E02
+ (Permut./p↔ p′)

+

∑
⟨ij⟩γ

∑
⟨jk⟩γ ,k ̸=i ⟨V

γ
⊥,ij⟩01 ⟨V

γ
⊥,jk⟩11

(
⟨V γ

⊥,jk⟩11 ⟨V
γ
⊥,ij⟩10 + ⟨V γ

⊥,ij⟩11 ⟨V
γ
⊥,jk⟩10

)

(∆E01)3

+

∑
⟨ij⟩γ

∑
⟨ab⟩γ ,ab̸=ij ⟨V

γ
⊥,ij⟩01 ⟨V

γ
⊥,ab⟩12

(
⟨V γ

⊥,ab⟩21 ⟨V
γ
⊥,ij⟩10 + ⟨V γ

⊥,ij⟩21 ⟨V
γ
⊥,ab⟩10

)

(∆E01)2∆E02

−
∑

⟨ij⟩γ
∑

⟨jk⟩γ ,k ̸=i ⟨V
γ
⊥,ij⟩

2

01
⟨V γ

⊥,jk⟩
2

01

(∆E01)3
−
∑

⟨ij⟩γ
∑

⟨ab⟩γ ⟨V
γ
⊥,ij⟩

2

01
⟨V γ

⊥,ab⟩
2

01

(∆E01)3

+

∑
⟨ij⟩γ ⟨V

γ
⊥,ij⟩01

(
⟨∑⟨ab⟩γ V

γ
z,ab⟩

11
− ⟨∑⟨ab⟩γ V

γ
z,ab⟩

11

)2
⟨V γ

⊥,ij⟩10
(∆E01)3

)
(89)

The first line includes all pseudo-spin flips around p/p′ plaquettes. The next three lines amount to flips on single
bonds and on pairs of connected bonds, while the last line contains corrections similar to those at third order. Their
effective contribution is

E(4)
n,ρ =− g42

2048h3x

(
20× n× 4(1 + ρ)2 + 2× n× (1 + ρ)4 + 2× 4n× 4(1 + ρ)2 + 2× 2n× 16

+ n× (1 + ρ)2(8 + 4ρ)2 + 2n× 4(8 + 4ρ)2 − n× (1 + ρ)4 − 2n× 16

)
+Background. (90)

The energy cost of the string to fourth order is

En,ρ=−1 − En,ρ=1 = n

(
2g2 +

g22
8hx

− 7g32
4h2x

+
129g42
128h3x

)
+O(g52). (91)

It is apparent that this diverges as the system size, and thus n, grows to infinity. Note that this also implies that
the cost of an open string of infinite extent likewise diverges. An open string of length (n − 2) is obtained from the
non-contractible loop by changing the sign of two neighboring bonds. This is a local perturbation, which costs a finite
amount of energy. The energy of the string therefore diverges as that of the parent state. As discussed in the main
text, this implies that the visons are confined.

B. hz > 0, hx = 0

In contrast to the case with hx > 0, hz = 0, here the BCs associated with the loop do not imply a finite energy cost
in a semi-classical approximation. This is due to the fact that the pseudo-spins are staggered along z, and ηz does not
couple to the bonds. We further illustrate by considering the Holstein-Primakoff representation for the pseudo-spins [?
].

η+i =
(√

2η − nb,i
)
bi (92)

η−i =b†i
(√

2η − nb,i
)

(93)

ηzi =η − nb,i. (94)
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Here, bi, b
†
i are bosons, nb,i = b†i bi, and η ≫ nb,i is the size of the pseudo-spin. The BCs for the pseudo-spins can be

implemented by imposing ABCs for the bosons as bi = −bi+N2
. The remaining analysis follows the usual semi-classical

approximation. In particular, as hz → 0, the zero-point energy of the GS involves a summation over the reciprocal
unit cell as [? ].

E′ = 2
∑

k

g2η

(√
1− α2

k − 1

)
, (95)

where αk is the usual form factor for a square lattice. ABC amount to a trivial translation of the entire reciprocal
unit cell in the extended BZ by G1/2/2N1/2, where G2 is a reciprocal lattice vector. The correction to the classical
GS energy is invariant. Consequently, at this level of approximation, the string is degenerate with the uniform ργij = 1
state.

We reach the same conclusion using a perturbative analysis. In contrast to the hx > 0 case, the first-order corrections
are independent of ργij :

E(1)
n,ρ =− g2

∑

⟨ij⟩

=− ng2 +Background, (96)

since the Ising interaction along z does not couple to the bonds. The second-order contribution, due to pairs of NN
pseudo-spin flips, reads

E(2)
n,ρ =− g22

∑
⟨ij⟩(ρ

γ
ij)

2

8hz

=− ng22
1

8hz
+Background. (97)

Note the important difference w.r.t. the hx > 0 case, where each flip of NN pseudo-spins was multiplied by a (1+ργij)
factor. Here, the corrections are independent of bond configuration. A similar conclusion holds at third order. At
fourth order, we obtain the plaquette terms

E(4)
n,ρ =− g42

32h3x

[∑

p

( ∏

⟨ij⟩∈p/p′

ργij

)
+ p↔ p′

]
+ . . . , (98)

where we omitted contributions similar to those at third order, which likewise are independent of the bonds. The
terms shown above involve products of ρ’s around p/p′ plaquettes. Since each plaquette contains at least two bonds on
the string, these are also trivial. However, similar corrections involving pseudo-spin flips around closed loops, which
intersect the string an odd number of times, are non-trivial. It is straightforward to check that only non-contractible
loops, which wrap around the torus at least once, can contribute. These occur at leading nth order and scale with a
factor of gn2 /h

n−1
z . Consequently, each is exponentially suppressed as the system size, and therefore n, goes to infinity.

The string becomes degenerate with the uniform ργij = 1 state in this limit. This also implies an upper bound on the
energy cost of any open string of length n− 2. The latter can be obtained by changing the sign of any two NN bonds,
which is a local perturbation, implying a finite energy cost. This also holds as the system size goes to infinity. As
discussed in the main text, it follows that visons are deconfined.

IX. CONNECTION BETWEEN HUBBARD AND η − ρ MODELS

In this section, we show that the GSs of the Hubbard model and Hη−ρ models are equivalent.
We start with the Hubbard model (eq. 3 in the main text). In general, the GS for large J is characterized by a

finite expectation value of the gauge-invariant correlators

Cx
ij = ⟨Nx

i

∏

i′j′∈(i,j)

u1i′j′u2i′j′N
x
j ⟩ (99)

where

Nx
i/j = (−1)ix+iy ⟨f†2if1i + f†1if2i⟩ (100)
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are staggered, pseudo-spins along x, which are connected via a gauge string, and similarly for y components. We
write the correlator in terms of Majorana fermions as

Cx
ij =

∏

i′j′∈(i,j)

(−1)ix+iy+i′x+i′y ⟨(cx1icx2i + cy1ic
y
2i)u1i′j′u2i′j′(c

x
1jc

x
2j + cy1jc

y
2j)⟩ (101)

We next consider a similar correlator in the π-flux GS of Hη−ρ, (eq. 19 in the main text)

Dx
ij =(−1)ix+iy+ix′+iy′

〈
ηxi


 ∏

i′j′∈Cij

ργij


 ηxj

〉
. (102)

The correlator commutes with Wνp/p′ . It follows from the form of the GS of Hη−ρ that Dx
ij is finite for hx > 0 and

any i, j. We next perform a rotation on all of the spin (σ) DOF of the second layer as

ηxi → η̃xi =
1

4
(σx

1iσ
x
2i + σy

1iσ
y
2i)

ηyi → η̃yi =
1

4
(σy

1iσ
x
2i − σx

1iσ
y
2i)

ηzi → η̃zi =
1

4
(σz

1i − σz
2i). (103)

We introduce a Majorana representation for the rotated pseudo-spins as

η̃xi = (−1)ix+iyb41ib
4
2i(c

x
1ic

x
2i + cy1ic

y
2i)), (104)

as well as for the string

∏

i′j′∈Cij

ργij = b41ib
4
2ic

x
1ic

y
2ic

x
1ic

y
2i

∏

i′j′∈(i,j)

u1i′j′u2i′j′b
4
1jb

4
2jc

x
1jc

y
2jc

x
1jc

y
2j (105)

where we used ργij =
∏

ν τ
γ
νiτ

γ
νj and τγνi = b4νib

γ
νic

x
νic

y
νi. Substituting these in eq. 102, we obtain

Dx
ij =

∏

i′j′∈(i,j)

(−1)ix+iy+i′x+i′y ⟨(cx1icx2i + cy1ic
y
2i)u1i′j′u2i′j′(c

x
1jc

x
2j + cy1jc

y
2j)⟩ΨGS

. (106)

This expression is formally identical to Cx
ij .

X. TOPOLOGICAL DEGENERACY OF THE GROUND STATE OF Hη−ρ

In this section we show that the GS of Hη−ρ exhibits Z2 topological order for hx > 0, hz = 0 and Z2×Z2 topological
order for hz > 0, hx = 0.

A. Z2 topological order

For hx > 0, hz = 0, the GS of Hη−ρij has the form

|ΨGS⟩ =
∏

ν,p

1

4
(1−Wνp) (1−Wνp′) |η̃xx;ϕ0⟩+O

(
hx
g4

)
. (107)

where |η̃xx;ϕ0⟩ is the GS of the 2D Heisenberg model for finite hx, while ϕ0 is an orbital configuration with all
qγi = −1, which implies that it has uniform ργij = 1 bonds. Small corrections to this state occur because hx does not
commute with the flux operators Wνp/p′ .

The projection of |η̃xx;ϕ0⟩ onto the π-flux state in eq. 107 contains factors of the form WνpWνp′ , where p/p′ are in
the same unit cell. When operating on |η̃xx;ϕ0⟩ these preserve all pseudo-spin and ργij bonds. However, they change
the sign of all pairs of NN pairs of qγ ’s around the unit cell. To illustrate, the NN pair qz1 = −1, qzj = −1 is mapped
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onto qz1 = 1, qzj = 1, with ργij = 1 in both cases, and similarly for the remaining NN pairs. However, since these states
are obtained from the ϕ0 configuration via local changes in the set of q’s, they are not topologically distinct. The
WνpWνp′ operators are in this sense the analogs of plaquette operators in the toric code, while the signs of NN qγ ’s
can be used to define effective bonds.

We construct topologically distinct configurations by operating with

F x/y =
∏

i∈Cx/y

τ
x/y
1i . (108)

Here, the orbital operators τ
x/y
1i are applied on every site along non-contractible loops Cx/y, as illustrated in Supple-

mentary figure 5. F x/y commutes with both Hη−ρ and Wν,p/p′ , and has the effect of changing the signs of all NN q’s

along the loop. Note that τ
x/y
2i would have the same effect. Any state thus obtained is degenerate with |ΨGS⟩.

In order to capture the topology of the GS manifold, we introduce the Wilson loop operators

Ix/y =

′∏

i,j∈Cy/x

q
y/x
i qzj , (109)

where
∏′

denotes every other site on Cy/x (Supplementary figure 5). Since
[
Ix/y, Hη−ρ

]
= 0 and

[
Ix/y,Wνp/p′

]
= 0,

|ΨGS⟩ can be labeled by λx = λy = 1. More generally, the states

|ΨGS;λx, λy⟩ = (F x)
1+λx

2 (F y)
1+λy

2 |ΨGS⟩ . (110)

belong to four distinct topological sectors. The four-fold degeneracy is characteristic of Z2 topological order. This pro-
cedure exhausts the degeneracy of the GS manifold, since any non-local changes in the pseudo-spin configurations cost
finite energy for hx > 0. Similarly, changes in the ργ bonds are equivalent to the strings discussed in Supplementary
section VIII and are likewise gapped for hx > 0.

B. Z2 × Z2 topological order

The previous arguments for hx > 0, hz = 0 also hold for hz > 0, hx = 0. The Z2 degeneracy due to configurations
of the local orbital states qγ consistent with a given set of ργ bonds still holds. However, as shown in Supplementary
section VIII, non-contractible loops of flipped (ργij → −ργij) bonds becomes degenerate with |ΨGS⟩ in the infinite-size
limit. In order to account for this additional degeneracy, we can define the Wilson loop operators

I
x/y
A =

∏

i,j∈Cy/x

ργij , (111)

with eigenvalues λA,x/y = ±1. These commute with Hη−ρ and Wν,p/p′ . For any eigenvalues of Ix/y (eq. 109), we can
therefore distinguish four additional topologically distinct states

|ΨGS;λx, λy, λA,x, λA,y⟩ = (Lx)
1+λA,x

2 (Ly)
1+λA,y

2 |ΨGS, ;λx, λy⟩ . (112)

The operators

Lx/y =

′∏

i∈Cx/y

τ
x/y
i (113)

act along every other site on path Cx/y to create non-contractible loops of flipped ργ bonds. The GS thus exhibits a
sixteen-fold degeneracy on the torus, as consistent with a Z2 × Z2 topological order.


