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Viscous flows through pipes and channels are steady and ordered until, with increasing velocity,
the laminar motion catastrophically breaks down and gives way to turbulence. How this apparently
discontinuous change from low- to high-dimensional motion can be rationalized within the framework
of the Navier–Stokes equations is not well understood. Exploiting geometrical properties of transitional
channel flow we trace turbulence to far lower Reynolds numbers (Re) than previously possible and
identify the complete path that reversibly links fully turbulent motion to an invariant solution. This
precursor of turbulence destabilizes rapidly with Re, and the accompanying explosive increase in
attractor dimension effectively marks the transition between deterministic and de facto stochastic
dynamics.

The origin of turbulence in pipe and channel flows has
been debated for over a century. In recent years much
effort has been dedicated to link the formation of tur-
bulence to simple invariant solutions of the governing
Navier–Stokes equations (periodic orbits, equilibria and
traveling waves), which are commonly referred to as exact
coherent structures (ECS) [1, 2]. ECSs are suggested as
building blocks of the turbulent dynamics [3–7]. How-
ever, efforts to directly link specific ECSs to the turbulent
state, let alone to identify a reversible path connecting
the two, have remained so far unsuccessful. While specific
ECSs have been identified as starting points of bifurcation
sequences into chaos [8–12], the traceable path in param-
eter space towards turbulence in all these cases ends at a
boundary crisis [13]. At this point the attractor ceases to
exist, giving way to short-lived transient chaos. Although
a sufficiently fast ramp up in Re will prevent relaminar-
ization and lead to turbulence, strictly, this only shows
that the chosen route leads to the basin of attraction of
turbulence [14]. It does not necessarily prove, however,
that the turbulent state originates from the specific ECSs,
e.g. via a sequence of bifurcations. An unambiguous way
to determine its roots would require starting directly from
the turbulent state and tracing it quasi-statically down
to its origin, a path prohibited by the aforementioned
relaminarization barrier.

This situation is markedly different from simpler tran-
sition scenarios encountered e.g. in supercritical Taylor–
Couette flow and Rayleigh–Bénard convection. In such
cases a linear instability of the base flow gives rise to a
primary vortex state, which is the starting point of the
bifurcation sequence leading to chaotic and eventually
high-dimensional, turbulent motion. In particular, sig-
natures of the primary vortex state tend to persist and
can be detected in turbulent flow fields at values of Re
several orders of magnitude larger than the instability
threshold [15]. Hence, the role of the primary state and
the connection with the subsequent dynamics is without
question.

The purpose of the present study is to unambiguously
identify the equivalent of the primary vortex state in
aforementioned linearly stable flows, i.e. to determine
the precursor turbulence originates from for channel flow.
While given the transient nature of turbulence this may
appear unfeasible, we show that by bypassing the regime
of fully localized turbulent structures, turbulence can be
traced beyond the transient regime all the way to its origin.
The reverse path towards fully turbulent flow extends
across a considerable Re range. However, surprisingly,
stochasticity arises directly at the outset of this route,
when the dimension increases explosively across a minute
variation in parameter.

Turbulence is space-filling at sufficiently large Re (Re
is based here on the half-gap h, the kinematic viscosity
and the laminar centerline velocity). At lower velocities
turbulence becomes spatio-temporally intermittent (STI)
and tends to organize in stripes interspersed with laminar
regions [16–19]. Below Re ≈ 650 [20] stripes are short-
lived. Under standard circumstances this transient nature
prevents continuation of turbulence towards lower Re (see
Fig. 1 top row) and prohibits further insights into its
dynamical origin.

In an attempt to circumvent this problem, we carry out
direct numerical simulations in a domain that, on the one
hand, is sufficiently large to capture generic turbulence
at high Re and, on the other hand, is of the minimal size
to capture turbulent stripes of a prescribed angle. Such
minimal flow units for stripes [21] make use of the freedom
to choose the orientation of the computational domain in
the periodic directions. In our case we selected a tilt angle
of 45 degrees with respect to the streamwise direction.
Owing to the periodic boundary conditions stripes align at
this prescribed angle (see Fig. 1 bottom row for examples).
This choice of a 45 degree angle is motivated by channel
experiments where the same orientation is observed for
stripes close to the onset of turbulence [17]. The selected
domain size, as in [22], is 10× 40 (Lx × Lz) in units of h.
The incompressible Navier–Stokes equations are advanced
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FIG. 1. Sketch of the Re descent in a tilted domain vs. large
non-tilted domains. Shown are wall-normal velocity (v) con-
tours (range limited from v = −0.1 in blue to v = 0.1 in red)
in the midplane for various values of Re. Flow is from left to
right. Dashed rectangles indicate the size and orientation of
the tilted domain. (Bottom row images) 10× 40 sized tilted
domain investigated in this work. (Top row images) 100× 100
crops from non-tilted domains (display scale is half that of
bottom row images).

in time using a standard spectral method in a three-
dimensional domain with periodic boundary conditions
in the plane and no-slip at the walls, with constant mass
flux [23–25].

The simulations started from a fully turbulent flow
field at Re = 4200 (corresponding to a friction Reynolds
number of Reτ = 180 [26]). Re was subsequently reduced
in several steps down to RefullSTI := 1500, where turbu-
lence becomes patterned [27] (see Table I for a list of
transitions encountered for decreasing Re). From here
the descent was continued in small steps, allowing the
flow to settle for 500 advective time units (ratio of h
by the laminar centerline velocity) between consecutive
steps. Below Re = 900 the step size was set to ∆Re = 2.
Typical adjustments of the turbulent flow occur within
less than 100 advective time units. Once Re falls below
ReSTI

trans ≈ 650, and in agreement with the aforementioned
experimental observations[20] stripes are found to de-
cay. However, in the present case lifetimes remain much
larger and typically exceed several thousand advective
time units. In agreement with these recent experiments
we hence propose that ReSTI

trans ≈ 650 is close to the point
above which turbulence in extended domains (large Lz)
first becomes sustained. In our tilted domain simulations
lifetimes below this threshold remain sufficiently long for
turbulence to reach what can be considered a statistically
quasi-steady state.

As shown in the Supplemental Movie [27], the thereby
stabilized stripe is followed far below ReSTI

trans, a regime
previously inaccessible in experiments and simulations.
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FIG. 2. Stripe turbulence during the Re descent. (a) Time-
averaged perturbation kinetic energy E vs. Re. Annotations
refer to the respective dynamics encountered as Re is decreased.
(b) (E⊥, E∥) phase portraits of the instantaneous dynamics at
various Re demonstrating some of the dynamics annotated in
(a), with zoomed-in panels for (c) the torus at Re = 407 and
(d) the periodic orbit at Re = 402. E⊥ is the kinetic energy
associated with the wall-normal component (v) of perturbation
velocity u, E⊥ =

∫
V
v2/2 dV , and E the perturbation kinetic

energy, E =
∫
V
u · u/2 dV , where V is the computational

domain. E∥ = E − E⊥ is the kinetic energy associated with
the in-plane components of perturbation velocity.

With decreasing Re the perturbation kinetic energy of the
stripe reduces (see Fig. 2(a)), nevertheless fluctuations
remain large and the flow is strongly chaotic even for Re
as low as 450. For lower Re, as attested by the phase
portrait of the dynamics in Fig. 2(b), fluctuations reduce
fast in amplitude and the state space region explored by
the chaotic dynamics shrinks substantially. Eventually,
the dynamics ceases to be chaotic (Rechaostorus ) and instead
becomes quasiperiodic: the trajectory evolves on a 2-torus
in state space (Fig. 2(c)), and below RetorusPO becomes
periodic (see Fig. 2(d) and the Supplemental Movie [27]).
The previously turbulent stripe hence simplifies to an
exact coherent structure (Fig. 1). Despite its dynamical
simplicity, the key spatial features, such as streamwise
localization, characteristic spacing of streaks and vortices,
associated large-scale flow parallel to the interface [28],
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TABLE I. List of Reynolds numbers, at which the dynamics
changes qualitatively. The second column specifies the dynam-
ics observed below the given Re in simulations in the 10× 40
sized tilted domain. Subscripts refer to the observations below
the given Re whereas superscripts refer to the observations
above.

Name Value Observations below Re

RefullSTI ≈ 1500 Spatio-temporal intermittency

ReSTI
trans ≈ 650 Transient chaos

Retranschaos ≈ 420 Sustained chaos

Rechaostorus 412.8 Quasiperiodicity

RetorusPO 403.2 Periodic orbitsa

a See SM [27] for a table continued beyond this point.

have been preserved all along this reduction in Re. As
we further discuss in the SM, the periodic orbit (PO) can
be continued [25, 29] to even lower Re. It is shown to
originate from a lower branch traveling wave, an edge state
previously identified in [17, 30]. To probe the robustness
of this transition scenario, we repeated the descent in a
much larger (10 × 120) domain and observed the same
bifurcation sequence. A notable aspect of the above Re
reduction is the sudden decrease of the attractor size at
the final stages of the approach to the PO: the energy
fluctuations displayed by the turbulent stripe at Re = 450
(Fig. 2(b)) are more than two orders of magnitude larger
than those of the PO at Re = 402 (Fig. 2(d)).

To obtain a better understanding of the emergence of
turbulence, we take the PO as the starting point and
investigate how the dynamics unfolds in the reverse di-
rection, i.e. with increasing Re. To this end we analyze
time series of the perturbation kinetic energy E. The
method assumes the knowledge of consecutive values
E0, E1, . . . , En−1, sampled every ∆t. We first monitor
the Hurst exponent H(Re) associated with this time se-
ries of length n. H quantifies the correlation of a signal,
and is defined as the exponent in the scaling relation

E(R/S) ∼ nH , n → ∞ , (1)

where R is the range of the first n cumulative deviations
from the mean, S the sum of the first n standard devi-
ations, and E stands for the expected value [31]. The
quantity D = 2−H is interpreted as a fractal dimension,
namely that of the related signal [32]. As shown in Fig. 3,
the stochastic limit of H = 1/2 is already observed for
a time horizon of 100 advective units at Re = 438, i.e.
in the transient regime far below the onset of sustained
turbulence [20]. This testifies that, for time horizons
larger than 100 advective time units, the time series is
indistinguishable from a purely stochastic signal. O(100)
advective time units match the typical time for localized
turbulent structures to lose their memory after being cre-
ated from a disturbance [33] (this timescale is also referred

101 102 103 104
t

102

103

R
/S

Re = 413
Re = 414
Re = 438
t0.5

FIG. 3. R/S vs. time in log-log scale, the slope of which
defines the Hurst exponent (H). For Re = 438, a slope of 1/2
is approached after 100 advective time units. H = 1/2 is
expected for stochastic time series.

to as t0 in lifetimes studies [34]).
As a further estimation of the trend towards stochas-

ticity, we compute another fractal dimension, the corre-
lation dimension D2 of the full turbulent set, using the
Grassberger–Procaccia algorithm [35, 36]. For any integer
m > 0 and any real ε > 0, Cm(ε) is defined by

Cm(ε) = lim
n→∞

1

n2

n∑
(j,k)

Θ(ε− ||sj − sk||m) , (2)

where sk = (Ek−(m−1)τ , . . . , Ek−τ , Ek) is a delay vector
in the m-dimensional embedded space, || · ||m a norm
in that space, and Θ the Heaviside function. τ > 0 is
a finite time delay expressed in Eq. (2) in units of the
sampling time ∆t (in practice τ = 60 advective time
units, close to the correlation time). Cm counts temporal
near-recurrences in the m-dimensional embedded space.
The dimension D2 is fitted as the exponent, for large m,
in the scaling relation

Cm(ε) ∼ εD2 , ε → 0 . (3)

The amount of uncorrelated data necessary for the esti-
mation of D2 rises exponentially with its value [37], which
in practice limits computations to values below 10. D2

is computed here starting from the PO at Re = 395 up
to Retranschaos = 420 deeper into the chaotic regime (blue
squares in Fig. 4).

Fig. 4 shows D2 as a function of Re/Recr, where Recr
stands for the onset of chaotic dynamics. For channel
flow, Recr is identical to Rechaostorus = 412.8. Temporal chaos
develops at a rapid pace: exceeding Recr by just over 1%
causes the dimension to quadruple. This rapid increase is
consistent with the high dimension estimated for turbulent
channel flows for larger Re [38]. For comparison we show
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FIG. 4. Correlation dimension D2 vs. Re. Blue squares are
computed from time series of plane channel flow. Orange
circles are from the turbulent Taylor–Couette flow experiments
in Ref. [39]. Recr denotes the onset of chaos.

the classical case of the supercritical transition in Taylor–
Couette flow [39] (orange circles in Fig. 4) where even a
50% increase above Recr results in only a doubling of the
dimension.

The explosive dimension increase encountered in chan-
nel flow sharply limits the forecasting horizon directly at
the onset of chaos, and decorrelates the fast turbulent
internal dynamics of stripes from slow processes such as
their proliferation and decay [40–42]. Moreover, the Hurst
exponent of 1/2 marks such slow processes as stochastic
random events, a key requirement for the statistical nature
of the percolation phase transition [43–46] encountered
at higher Re in many shear flows.

Hydrodynamic stability concepts developed more than
a century ago allowed for the identification of the first
bifurcation to a non-trivial vortex state [47], and with it
the starting point for the supercritical route to turbulence
in linearly unstable flows. Finding corresponding flow
states for the much more volatile transition characteristic
of most flows of practical relevance, such as pipe and chan-
nel flows, has proven far more difficult. Exploiting that
the statistics of turbulence are generic and independent
of the numerical domain at sufficiently high Re (see SM
[27]), we selected a domain that stabilizes stripes in the
transitional regime of channel flow. The stripe solutions
identified in this configuration are spatially periodic in
the stripe direction and hence differ from the doubly local-
ized stripes observed in experiments close to the critical
point. It is likely that doubly localized stripe solutions
[48, 49] bifurcate from the ECS presented in this study.
However, the continuous route from turbulence to ECSs
identified here can only be established by bypassing the
doubly localized stripe regime, in which flows unavoid-
ably relaminarize (as illustrated in Fig. 1). Although the
tilted domain may appear specific, the two states shown

to be dynamically connected, i.e. the periodic orbit and
fully turbulent flow, are generic to the classic channel
flow problem and entirely independent of this particular
choice.

A striking feature of the route towards turbulence is the
abruptness of the dimension change directly at the onset
of chaos, long before turbulence is observable in experi-
ments. This steep dimension increase marks the border
up to which deterministic concepts are suitable whereas
above statistical mechanics descriptions become more ap-
propriate, setting the stage for the non-equilibrium phase
transition [40, 43] encountered at larger Re.
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Supplemental Material

COORDINATES

In order to capture the long time dynamics of a turbulent stripe at a relatively lower cost, we used the tilted domain
trick first used in plane Couette flow and later adapted to plane Poiseuille flow [21]. Fig. S1 illustrates this tilted
domain: the small tilted box drawn on the stripe within the large periodic domain shows the configuration of the
tilted axes (x, z), by convention Lz > Lx. We non-dimensionalize space with the half-gap length h, and center the
wall-normal coordinate y on the midplane, therefore y ∈ [−1, 1]. The tilted box is rotated counter-clockwise by θ
with respect to streamwise direction such that its short side (the x axis) becomes parallel to the turbulent stripe.
The relation between the unit vectors of the two coordinate systems, (x′, z′), parallel to the streamwise and spanwise
directions respectively, and (x, z), parallel to the short and long sides of the tilted periodic domain respectively, is then

ex′ = cos θex − sin θez ,

ez′ = sin θex + cos θez .
(S1)

In our simulations we time evolve the perturbation velocity u which is the difference of the total velocity field
U from the laminar solution. We use the value of streamwise component of the laminar solution at the midplane,
Ulaminar(0) · ex′ , as the velocity scale. Therefore u = U − (1 − y2)ex′ . We refer to the projections of perturbation
velocity onto the directions defined in Eq. (S1) with primed letters for the streamwise perturbation velocity u′ = u · ex′

and spanwise perturbation velocity w′ = u · ez′ , and with non-primed letters for the directions of the simulation
domain u = u · ex and w = u · ez. The wall-normal component is the same in both cases, v′ = v = u · ey.

Later we present visualizations of streamwise vorticity,

ω′ = (∇′ × u) · ex′ =
∂w′

∂y′
− ∂v′

∂z′
, (S2)

for which one needs to know how the derivative ∂/∂z′ transforms:

∂

∂z′
= sin θ

∂

∂x
+ cos θ

∂

∂z
. (S3)
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FIG. S1. Illustration of the tilted domain. Colors show the wall-normal velocity (v) contours (range limited from v = −0.1
in blue to v = 0.1 in red) in the midplane. (a) Large non-tilted periodic domain (sized 400× 400, here zoomed-in to an area
of 250× 250), with an isolated turbulent stripe Re = 660. The dashed box, tilted by θ = 45◦ with respect to the streamwise
direction, describes the 10× 40 sized periodic tilted domain used in our simulations and its axes (x, z). The arrow shows the
streamwise direction ex′ . (b) Narrow periodic tilted domain (sized 10× 40) used in our simulations, with a turbulent stripe at
Re = 660.

INVARIANT SOLUTIONS

Here we provide some visualizations of the invariant solutions we found in the 10 × 40 domain, the spectral
discretization of which assumes 96 × 256 Fourier modes in the plane and 49 collocation points in the wall-normal
direction. The solutions were converged with the implementation of the Newton–Krylov algorithm [29] in Channelflow
[25]. Fig. S2 shows traveling waves: solutions u that obey u(t, x, y, z) = u(t+ T, x− cxT, y, z − czT ) for all T and
specific phase velocities cx and cz. Figs. S3 and S4 show (unstable and stable, respectively) periodic orbits: solutions
u that obey u(t, x, y, z) = u(t+ T, x− σx, y, z − σz) for specific T and shifts σx and σz. T is called the period when
it is the minimum positive value that fulfills this relation, any integer multiple of the period with corresponding shifts
also fulfills this relation. We computed the stability of these solutions using the Arnoldi iteration implemented in
Channelflow [25].

The periodic orbits found in the Re descent are ‘relative’ periodic orbits: their shifts σx and σz as defined above are
nonzero. They are stable, albeit in a narrow Re window only, and develop unstable directions at lower Re (RePO

uPO = 393,
see Table SI for a list of transition points encountered for decreasing Re, including the regime down RePO

uPO). Despite
turning unstable, the periodic orbit can still be tracked further using a Newton–Krylov algorithm [25, 29] and is found
to bifurcate from a traveling wave (TW) at ReuPO

TW = 387.6. This unstable traveling wave, an edge state previously
identified in [17, 30], again has the form of a localized stripe. The TW can equally be tracked to lower Re and it finally
disappears in a saddle-node bifurcation (ReTW

lam = 370.6), below which we could not identify any invariant solution and
observed laminar Poiseuille flow only. Unlike most studies restricted to symmetry subspaces [8, 9], in the present case
it is not the upper but the lower branch TW that gives rise to chaos.
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FIG. S2. Traveling waves at Re (a,b) 371, (c,d) 380 and (e,f) 387. Left column: Contours of wall-normal velocity (v) at the
midplane, range limited from v = −0.1 in blue to v = 0.1 in red. Right column: Isosurfaces of 0.5min /maxu′ (blue/red) and
0.5min /maxω′ (purple/green). The arrow shows the streamwise direction ex′ .
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FIG. S3. Unstable periodic orbits at Re (a,b) 388.2, (c,d) 390.1, (e,f) 391.8. Left column: Contours of wall-normal velocity (v)
at the midplane, range limited from v = −0.1 in blue to v = 0.1 in red. Right column: Isosurfaces of 0.5min /maxu′ (blue/red)
and 0.5min /maxω′ (purple/green). The arrow shows the streamwise direction ex′ .
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FIG. S4. Stable periodic orbits at Re (a,b) 395, (c,d) 398.6, (e,f) 401.7. Left column: Contours of wall-normal velocity (v) at
the midplane, range limited from v = −0.1 in blue to v = 0.1 in red. Right column: Isosurfaces of 0.5min /maxu′ (blue/red)
and 0.5min /maxω′ (purple/green). The arrow shows the streamwise direction ex′ .
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TABLE SI. Named Reynolds numbers and observations below the given Re in simulations in the 10× 40 sized tilted domain, an
extended version of Table I. Subscripts refer to the observations below the given Re whereas superscripts refer to the observations
above.

Name Value Observations below Re

RefullSTI ≈ 1500 Spatio-temporal intermittency

ReSTI
trans ≈ 650 Transient chaos

Retranschaos ≈ 420 Sustained chaos

Rechaostorus 412.8 Quasiperiodicity

RetorusPO 403.2 Stable periodic orbits

RePO
uPO 393 Unstable periodic orbits

ReuPO
TW 387.6 Traveling waves

ReTW
lam 370.6 Laminar flow

THE CASE OF Lz = 120

In order to confirm that the bifurcation sequence we observed (Fig. 2) is not specific to the domain size we chose, we
tripled the domain size in Lz and studied the bifurcation sequence observed in a periodic domain of size 10× 120. The
spectral discretization of this larger domain assumes 96× 768 Fourier modes in the plane and 49 collocation points in
the wall-normal direction.

The analysis of the correlation dimension D2 (Eq. (3)) is costly as we discussed in the Letter. In this three times
larger domain we did not calculate it. However, we observed the same qualitative sequence seen in the 10× 40 domain.
As we decreased Re, starting from a turbulent stripe at Re = 700, we saw: transient chaos, sustained chaos, tori, and
stable periodic orbits. See Fig. S5 for a plot of the perturbation kinetic energy during this descent and Table SII for a
list of the transition points. We note that while the specific values of Re where transitions happen are different between
the two domains, the transitions and their order are the same. While we did continue the stable periodic orbits further
towards lower Re and found unstable periodic orbits, we did not wait for the continuation to get to its limit. The
continuation process gets slower, and therefore costlier, as Re gets nearer to a bifurcation point. We expect from
Fig. S5 that the unstable periodic orbits should again bifurcate from a traveling wave at lower Re. In order to identify
the traveling waves, we instead ran a bisection algorithm at higher Re and continued the thereby found traveling wave
down in Re with arclength continuation. The bisection algorithm is also implemented in Channelflow [25].

380 390 400 410
Re

1.4

1.6

1.8

2.0

2.2

E

Chaotic
attractor

2-torus

Periodic orbit

Traveling wave

Transient
turbulent
stripe

FIG. S5. Time-averaged perturbation kinetic energy E vs. Re during the descent in the 10× 120 domain. Annotations refer to
the respective dynamics encountered as Re is decreased. Larger-domain counterpart of Fig. 2(a).
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TABLE SII. Named Reynolds numbers and observations below the given Re in simulations in the 10× 120 sized tilted domain.
Subscripts refer to the observations below the given Re whereas superscripts refer to the observations above. Larger domain
counterpart of Table SI.

Name Value Observations below Re

Retranschaos ≈ 413 Sustained chaos

Rechaostorus 408.8 Quasiperiodicity

RetorusPO 393 Stable periodic orbits

RePO
uPO 387 Unstable periodic orbits

ReuPO
TW ≈ 383.5 Travelling waves

SIMULATIONS OF A FULLY TURBULENT FLOW, Re = 4200

We simulated turbulence at values of Re higher than where sustained turbulent stripes are found in order to have a
complete path in Re between invariant solutions at low Re and fully turbulent flow at higher Re. In particular, we
started at Re = 4200, following the fully-resolved simulations of Ref. [26] (at Reτ = 180, see Eq. (S12)) in a non-tilted
domain of size 4π× 2π (L′

x ×L′
z) which was discretized with 192× 129 Fourier modes in the plane and 129 collocation

points in the wall-normal direction.
In order to have an illustrative visualization (Fig. 1) with an isolated turbulent stripe in addition to a stripe in our

tilted domain, we ran a non-tilted Re = 4200 simulation in a square domain of size 50 cos 45◦ × 50 cos 45◦ ≈ 35.4× 35.4
(L′

x × L′
z), the rectangle of minimal size that fits a 45 degree tilted 10× 40 rectangle. We discretized this domain with

540× 900 Fourier modes in the plane and 135 collocation points in the wall-normal direction.
As a basic check that turbulence in the small tilted box (10× 40, at Re = 4200, discretized with 180× 720 Fourier

modes in the plane and 135 collocation points in the wall-normal direction) is comparable to turbulence in the larger,
non-tilted box (35.4× 35.4), we computed velocity fluctuations around the mean,

u2
rms(y) =

1

tf − ti

∫ tf

ti

dt
1

LxLz

∫ Lx

0

∫ Lz

0

dxdz {[u(t, x, y, z)− ⟨u⟩(y)] · ex′}2 ,

v2rms(y) =
1

tf − ti

∫ tf

ti

dt
1

LxLz

∫ Lx

0

∫ Lz

0

dxdz {[u(t, x, y, z)− ⟨u⟩(y)] · ey}2 ,

w2
rms(y) =

1

tf − ti

∫ tf

ti

dt
1

LxLz

∫ Lx

0

∫ Lz

0

dxdz {[u(t, x, y, z)− ⟨u⟩(y)] · ez′}2 ,

(S4)

and plotted these fluctuations as a function of the distance to the wall in units of the viscous length (Eq. (S10)), see
Fig. S6. Note that as an exception we withheld the primes above the streamwise/spanwise components u′/w′ for
clarity. The resulting curves of the two domains agree with each other, as well as with the corresponding results of
Ref. [26], Figure 6(b) therein.

Computing these velocity fluctuations requires one to first calculate the mean velocity,

⟨u⟩(y) = 1

(tf − ti)

∫ tf

ti

dt
1

LxLz

∫ Lx

0

∫ Lz

0

dxdz u(t, x, y, z) , (S5)

for which we took a ≈ 13h/uτ long (uτ is the friction velocity, Eq. (S8)) trajectory each in both the non-tilted domain
and the tilted domain. From the mean velocity, one can compute the wall-shear stress,

τw = ρν
d⟨U⟩ · ex′

dy

∣∣∣∣
y=−h

, (S6)

where U is the total velocity. Written in terms of the perturbation velocity u and non-dimensionalized in terms of the
half-gap h, kinematic viscosity ν, density ρ and laminar centerline velocity, this equation gives

τ⋆w =
2

Re
+

1

Re

d⟨u⟩ · ex′

dy

∣∣∣∣
y=−1

, (S7)
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FIG. S6. Time-averaged root-mean-squared velocity fluctuations (Eq. (S4)) at Re = 4200 normalized with wall-shear velocity
(uτ , Eq. (S8)) as a function of the distance to the wall in wall units (δν): top/blue line is for streamwise, middle/orange is for
spanwise, and bottom/green line is for wall-normal velocity fluctuations. Solid transparent lines are for the 10× 40 sized tilted
domain, dashed lines are for the 35.4× 35.4 sized non-tilted domain. Figure 6(b) of Ref. [26] plots the same quantities at the
same Reτ = 180 (Eq. (S12)) in a smaller, 4π × 2π sized non-tilted domain.

where ⋆ denotes that the variable is non-dimensionalized. Using the wall-shear stress τw, one can further define a new
velocity scale, called the friction velocity,

uτ =

√
τw
ρ

, (S8)

which in non-dimensional form is

u⋆
τ =

√
τ⋆w . (S9)

Additionally, one can define a new length scale, called the viscous length,

δv = ν

√
ρ

τw
=

ν

uτ
, (S10)

which in non-dimensional form is

δ⋆ν = 1/(u⋆
τRe) . (S11)

This defines the “inner units”: y+ in Fig. S6 is the distance to the wall in units of the viscous length δν .
The friction velocity can be used to define the friction Reynolds number,

Reτ =
uτh

ν
=

h

δν
, (S12)

which can also be given in terms of the non-dimensionalized friction velocity and the “outer units” Reynolds number
Re used everywhere else in this work,

Reτ = u⋆
τRe . (S13)

Note that as u⋆
τ itself is dependent on Re, this equation does not imply a proportionality between Reτ and Re.
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