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We investigate the ability of simple diagnostics based on Lagrangian descriptor (LD) computations of initially
nearby orbits to detect chaos in conservative dynamical systems with phase space dimensionality higher than
two. In particular, we consider the recently introduced methods of the difference (Dn

L) and the ratio (RnL) of
the LDs of neighboring orbits, as well as a quantity (SnL) related to the finite-difference second spatial derivative
of the LDs, and use them to determine the chaotic or regular nature of ensembles of orbits of a prototypical
area-preserving map model, the 4-dimensional (4D) symplectic standard map. Using the distributions of the
indices’ values we determine appropriate thresholds to discriminate between regular and chaotic orbits, and
compare the obtained characterization against that achieved by the Smaller Alignment Index (SALI) method
of chaos detection, by recording the percentage agreement PA between the two classifications. We study the
influence of various factors on the performance of these indices, and show that the increase of the final number
of orbit iterations T and the order n of the indices (i.e. the dimensionality of the space where the considered
nearby orbits lie), as well as the decrease of the distance σ of neighboring orbits, increase the PA values
along with the required computational effort. Balancing between these two factors we find appropriate T , n
and σ values, which allow the efficient use of the Dn

L, RnL and SnL indices as short time and computationally
cheap chaos diagnostics achieving PA & 90%, with Dn

L and SnL having larger PA values than RnL. Our results
show that the three LDs-based indices perform better for systems with large percentages of chaotic orbits.
In addition, our findings clearly indicate the capability of LDs to efficiently identify chaos in systems whose
phase space is difficult to visualize (due to its high dimensionality), without knowing the variational equations
(tangent map) of continuous (discrete) time systems needed by traditional chaos indicators.

I. INTRODUCTION

Determining the nature of individual orbits as either
chaotic or regular, as well as the dynamics of ensembles
of orbits, is fundamental for understanding the behavior
of continuous and discrete time dynamical systems. To
this end, a variety of different techniques and indicators,
to either visualize the system’s phase space or to detect
chaotic orbits, have been developed over the course of
time.

The asymptotic measures introduced by Lyapunov1 to
characterize the growth or shrinking of small phase space
perturbations to orbits (often referred to as deviation
vectors) have been widely accepted as a standard tool
for this purpose. These quantities are commonly named
Lyapunov exponents (LEs). Following the formulation
of the multiplicative ergodic theorem by Oseledec2, a
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theoretical basis for the numerical computation of LEs
was presented3,4. The estimation of the maximum LE
(mLE) through the numerical computation of the finite-
time mLE (ftmLE), is nowadays one of the most com-
monly used chaos detection methods as the positivity of
the mLE of bounded orbits, which do not escape to in-
finity, indicates chaotic behavior (see for example5 and
references therein).

The slow convergence of the ftmLE to its limiting value
has necessitated the search for alternative, more efficient
indicators. Among these indicators are the so-called fast
Lyapunov Indicator (FLI)6 and its variants7, the Mean
Exponential Growth of Nearby Orbits (MEGNO)8, the
Smaller Alignment Index (SALI)9 and its extension, the
Generalized Alignment Index (GALI)10. These indica-
tors have certain advantages over the estimation of the
mLE as, in general, they manage to characterize orbits
as regular or chaotic faster and with less computational
effort, although they also rely on the time evolution of at
least one deviation vector.

One of the most successful methods among this set of
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new indicators is the SALI, which has been efficiently
used to study of chaoticity of several different systems,
such as accelerator models11,12, predator-prey popula-
tion maps13, Bose-Einstein condensates14, galactic po-
tentials15,16, as well as nuclear physics models17. The
interested reader is referred to the review18 for more de-
tails on this method and its applications.

A recently developed visualization technique for the
identification of phase space structures in continuous
time dynamical systems and discrete time iterative maps
is the method of Lagrangian descriptors (LDs)19–21. The
computation of LDs is based on the accumulation of some
positive scalar value along the path of individual orbits
to produce a scalar field on a grid of initial conditions.
From the gradient of this field the manifolds in both reg-
ular and chaotic regions can be identified as singular fea-
tures, following the theoretical discussions in22 and23 for
the discrete and continuous time settings respectively.
Initially applied to the study of ocean currents19,20, this
method has since been utilized to study the dynamics of
systems from a variety of different fields such as chemical
transition state theory24,25, molecular systems26,27, car-
diovascular flows28, and stochastic dynamical systems29.

In30 the characterization of regular motion by LDs was
considered, while in a recent work31 an indicator based
on the estimation of the second derivative of the LDs field
was used to discriminate between regular and chaotic mo-
tion in discrete and continuous systems. These works
paved the way for LDs to be used for not only a visual
inspection of the phase space, but also for determining
the chaotic nature of orbits. This was done in32, where
it was shown that indicators derived from LDs of nearby
orbits can be used to characterize the chaoticity of ensem-
bles of orbits with & 90% accuracy (in comparison with
the characterizations obtained by the SALI method) for
both the Hénon–Heiles33 system and the two-dimensional
(2D) standard map34. An advantage of LDs-based chaos
diagnostics over the more traditional above mentioned
chaos indicators is that the evolution of deviation vec-
tors is not required, which reduces the complexity of the
performed computations and simultaneously diminishes
the required CPU time.

In32 the introduced methods were applied to low-
dimensional systems having 2D phase spaces, which are
easily depicted. Here we extend that study by investi-
gating in detail the performance of these diagnostics in a
higher-dimensional setting, where the phase space’s visu-
alization becomes challenging, although methods like the
‘color and rotation’35,36 and the ‘phase space slices’37, as
well as approaches based on LDs38 have been used for
that purpose. In particular, we demonstrate how these
techniques can be used to identify orbits as regular or
chaotic within a certain accuracy, using as a test case
a 4D map, a higher-dimensional conservative dynamical
system of discrete time.

The rest of the paper is organized as follows. In Sect. II
we describe the numerical computation of the various
chaos diagnostics used in this investigation. In Sect. III,

we implement our techniques for studying the chaotic
behavior of the 4D standard map for different setups of
the system. Finally in Sect. IV, we discuss our findings
and summarize our conclusions.

II. NUMERICAL TECHNIQUES

In order to study the performance and efficiency of the
three quantities based on the LDs values of neighboring
orbits, which were presented in32, for systems of higher
dimensionality we consider here, as a test case of an area
preserving map, the 4D standard map39 obtained by cou-
pling two (identical in our implementation) 2D standard
maps

x′1 = x1 + x′2,

x′2 = x2 +
K

2π
sin(2πx1)− B

2π
sin
[
2π(x3 − x1)

]
,

x′3 = x3 + x′4,

x′4 = x4 +
K

2π
sin(2πx3)− B

2π
sin
[
2π(x1 − x3)

]
,

(mod 1)

(1)
with K and B being real parameters, and z =
(x′1, x

′
2, x
′
3, x
′
4) denoting the state vector of the map’s

coordinates after a single iteration. The parameter K
defines the nonlinearity strength of each one of the 2D
coupled maps, while B determines the strength of cou-
pling between the two 2D maps. All coordinates are given
(mod 1), so that 0 ≤ xi < 1, i = 1, 2, 3, 4. We note that
the number T of map’s iterations will also be referred to
as the (discrete) time of the system.

Small perturbations of tested orbits are key in de-
termining the regular or chaotic nature of these or-
bits. Such a perturbation defines the deviation vector
w = (δx1, δx2, δx3, δx4), whose time evolution is gov-
erned by the system’s tangent map given by

δx′1 = δx1 + δx′2,

δx′2 =
{
K cos(2πx1) +B cos

[
2π(x3 − x1)

]}
δx1

+ δx2 −B cos
[
2π(x3 − x1)

]
δx3,

δx′3 = δx3 + δx′4,

δx′4 = −B cos
[
2π(x1 − x3)

]
δx1

+
{
K cos(2πx3) +B cos

[
2π(x1 − x3)

]}
δx3 + δx4.

(2)
The mLE λ1 of an orbit is estimated through the com-

putation of the ftmLE

Λ(T ) =
1

T
ln

(
‖w(T )‖
‖w(0)‖

)
, (3)

as

λ1 = lim
T→∞

Λ(T ), (4)

with ‖ · ‖ denoting the usual Euclidean norm of a vector.
For a chaotic orbit, Λ eventually saturates to a positive
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value, whereas in the case of regular orbits Λ decreases
following the power law5

Λ(T ) ∝ ln(T )/T. (5)

In contrast to the estimation of the mLE, the com-
putation of the SALI depends on the evolution of two,
initially linearly independent, deviation vectors w1 and
w2. Then SALI(T ), which quantifies the alignment of
these two deviation vectors, is computed as

SALI(T ) = min
{
‖ŵ1(T ) + ŵ2(T )‖, ‖ŵ1(T )− ŵ2(T )‖

}
,

(6)
with

ŵk(T ) =
wk(T )

‖wk(T )‖
, k = 1, 2, (7)

being a vector of unit norm. For chaotic orbits, the two
deviation vectors will eventually be aligned to the direc-
tion related to the mLE and consequently the SALI will
follow an exponential decay to zero, with a rate depend-
ing on the values of the two largest LEs λ1 ≥ λ2. On
the other hand, for regular orbits in the phase space of a
4D symplectic map the SALI remains positive and prac-
tically constant. Thus, in summary, the behavior of the
SALI for orbits of the 4D standard map (1) is

SALI(T ) ∝

{
constant for regular orbits

e−(λ1−λ2)T for chaotic orbits
. (8)

In our study, following32, we exploit the ability of LDs
to capture the basic dynamical features of a system in
order to identify regular and chaotic motion. Let us first
recall that the “p-norm” definition of the LD for a dis-
crete map is given by

LD =

T−1∑
j=−T

N∑
i=1

∣∣∣z(i)j+1 − z
(i)
j

∣∣∣p , 0 < p ≤ 1, (9)

where i indexes the N elements of the state vector z [for
map (1) N = 4], and j counts the map’s iterations. Since
the LD definition (9) with p = 0.5 has been successfully
implemented in various studies (e.g.,40,41) and has shown
a remarkable ability in identifying phase space structures,
we will also set p = 0.5 for our investigations. We em-
phasize that, although in the formal definition (9) of the
LD the map is integrated both in the past (j starts at
j = −T ) and in the future (j goes up to j = T − 1), for
the purposes of our study the computation of the LDs
through only forward (or backward) iterations is suffi-
cient. More specifically, the presented results are solely
obtained through forward iterations.

Let us now discuss how we can identify the regular or
chaotic nature of an orbit with initial conditions (ICs) at
point z in the map’s phase space, based on the values of
the LDs of this orbit and of initially neighboring ones.
The ICs of these neighboring orbits can be seen as grid
points of a mesh in several spatial dimensions. In the case

of the 4D map (1) we can consider neighboring orbits to
an IC in nD spaces with 1 ≤ n ≤ 4. For n = 1 we
have two neighboring points of z on a line (1D space),
while for n = 2 the four nearest neighbors are located on
a grid in a 2D subspace of the 4D phase space. Thus,
considering ICs of orbits on a finite grid of an n(≥ 1)D
subspace of the N(≥ n)D phase space of a general ND
symplectic map, any non-boundary grid point z in this
subspace has 2n nearest neighbors

y±i = z± σ(i)e(i), i = 1, 2, . . . n, (10)

where e(i) is the ith unit vector of the usual basis in Rn,
and σ(i) is the distance between successive grid points in
this direction.

If we respectively denote by LD(z) and LD
(
y±i
)

the

LDs of orbits with ICs z and y±i we can define the three
diagnostics we use in our study, following32. More specif-
ically, the difference Dn

L of LDs of neighboring orbits at
z in an nD subspace is defined as

Dn
L(z) =

1

2n

n∑
i=1

∣∣LD(z)− LD(y+
i )
∣∣+
∣∣LD(z)− LD(y−i )

∣∣
LD(z)

,

(11)
while the ratio RnL is given by

RnL(z) =

∣∣∣∣∣1− 1

2n

n∑
i=1

LD(y+
i ) + LD(y−i )

LD(z)

∣∣∣∣∣ , (12)

with n also referred to as the order of the index. The last
indicator we use is related to the second spatial derivative
of the LD quantity. It was introduced in31, briefly studied
in32, and applied to celestial mechanics problems in42,
where it was denoted by the rather cumbersome notation
||∆LD||. Here we adopt the notation SnL to follow similar
conventions to the notations of Eqs. (11) and (12), as well
as to clearly indicate the dimensionality of the grid on
which this diagnostic is computed, and define the order
n index as

SnL(z) =
1

n

n∑
i=1

∣∣∣∣LD(y+
i )− 2LD(z) + LD(y−i )

(σ(i))2

∣∣∣∣ . (13)

We note that a difference between the definition of SnL
and of the ||∆LD|| index used in31,32,42 is that in (13)
the factor 1/n is introduced in order to compute a quan-
tity ‘per dimension’ of the space where the used ICs are,
similar to what is done in (11) and (12).

In order to demonstrate the basic behaviors of the two
chaos indicators [Λ (3), SALI (6)] and the three LDs-
based diagnostics [Dn

L (11), RnL (12), SnL (13)] we use in
our study, we compute them for two representative orbits,
one regular with ICs x1 = 0.6, x2 = 0.05, x3 = 0.54, x4 =
0.01 and one chaotic with ICs x1 = 0.2, x2 = 0.2, x3 =
0.54, x4 = 0.01, for the 4D map (1) with K = 1.5 and
B = 0.05. We note that for the three diagnostics based
on LDs computations we set n = 2, consider neighboring
orbits on a square grid in the (x1, x2) plane and compute
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the order 2 version of the indices. The projection of the
T = 2500 consequents of the regular (blue points) and
the chaotic orbit (orange points) on the plane (x1, x2)
are shown in Fig. 1(a). The points of the regular orbit
lie on a 4D stability island and create a regular, torus-
like structure. On the other hand, the consequents of
the chaotic orbit correspond to the scattered point in
Fig. 1(a).

In Figs. 1(b)-(f) we respectively plot the time evolution
of Λ, SALI, D2

L, R2
L and S2

L for the considered regular
(blue curves) and chaotic orbit (orange curves). From the
results of Fig. 1(b) we see that the ftmLE Λ of the reg-
ular orbit eventually decreases to zero proportionally to
ln(T )/T (dashed line), while for the chaotic orbit it satu-
rates to a positive value as expected. On the other hand,
the SALI [Fig. 1(c)] approaches a positive value for the
regular orbit while it tends exponentially fast to zero for
the chaotic one. We note that all computations through-
out this study are performed using double-precision ac-
curacy, thus we stop the time evolution of the SALI when
its values reach 10−16, i.e. the machine precision. From
Fig. 1(c) we see that the SALI of the chaotic orbit re-
quires only about T = 100 forwards iterations to reach
the 10−16 threshold, characterizing the orbit beyond any
doubt as chaotic as its SALI is practically zero.

From the results presented in Figs. 1(d)-(f) we see that
the values of D2

L, R2
L and S2

L of the regular orbit remain
well above the ones obtained for the chaotic one (apart
from some short initial time interval T . 200 for R2

L).
These clear differences between the values of the D2

L,
R2
L and S2

L diagnostics for regular and chaotic orbits are
observed generally and are not related to the particular
example orbits shown here. Thus, as was presented in32,
and will be discussed in detail in Sect. III, we can de-
fine appropriate threshold values for each one of these
three diagnostics to efficiently discriminate between reg-
ular and chaotic orbits. Nevertheless, it is important to
note that this distinction needs a minimum (rather small)
number of iterations in order to be clearly established, as
we see in Figs. 1(e) and (f).

III. NUMERICAL RESULTS

In this section we investigate in detail the ability of
the Dn

L, RnL and SnL indices to distinguish between regu-
lar and chaotic orbits in dynamical systems whose phase
space dimension is higher than two. As a representative
case of such a system we consider the prototypical 4D
standard map (1). In our study we investigate the influ-
ence of various factors on the ability of the indicators to
accurately characterize the chaoticity of orbits, like the
number of the performed map iterations, the extent of
the system’s chaoticity (i.e. the fraction of the chaotic
orbits), and the order of the indicators.

A. Dynamics on a 2D subspace

Extending the results presented in32 for dynamical sys-
tems with 2D phase spaces (in particular the Hénon-
Heiles Hamiltonian33 and the 2D standard map34) to the
4D map (1), we first investigate the performance of the
Dn
L, RnL and SnL indices in a 2D subspace of the map

for which we can easily obtain the direct visualization of
regular and chaotic regions. In particular, we consider a
grid of 1000 × 1000 equally spaced ICs in the subspace
(x1, x2) by setting x3 = 0.54 and x4 = 0.01, for K = 1.5
and B = 0.05. This arrangement sets the distance be-
tween immediate neighboring ICs to σ = 10−3 in both
directions on the (x1, x2) plane. The LDs of all these
orbits are computed for T = 103 forward iterations, and
from the obtained results we evaluate indicators Dn

L, RnL
and SnL for each IC. Since the considered ICs lie on a
2D plane, we compute the order n = 2 versions of the
three indicators. In Figs. 2(a)-(c), we present the result-
ing color plots of these computations, where ICs on the
(x1, x2) plane are colored according to their log10D

2
L,

log10R
2
L and log10 S

2
L values respectively. These plots

display similar characteristics, providing a clear qualita-
tive description of the structure of the phase space, with
regular regions (islands of stability) corresponding to ar-
eas of lower values and chaotic regions (chaotic sea) hav-
ing higher values, in accordance to what was found in32.

Although the color plots in Figs. 2(a)-(c) correctly cap-
ture the overall dynamical features of the system, our
main goal is to use the three indices for obtaining a quan-
titative identification of orbits as regular or chaotic. In
order to obtain an estimation of the chaos extent in the
studied 2D subspace of the map a threshold value needs
to be established for each index, so that orbits can be
characterized as chaotic or regular if they respectively re-
sult in index values above or below these thresholds. In
Figs. 2(d)-(f) we show the normalized distributions of the
logarithms of these three quantities, all of which clearly
show two peaks separated by a trough, which demarcates
ICs leading to regular (low values) and chaotic motion
(high values). Assuming that the minimum between the
two peaks provides a good threshold value for discrimi-
nating between regular and chaotic orbits, the following
values are obtained: log10D

2
L = −2.14, log10R

2
L = −2.85

and log10 S
2
L = 6.70, respectively denoted by orange ver-

tical, dashed lines in Figs. 2(d)-(f).

As was also observed in32 this approach does not nec-
essarily lead to the correct characterization of all or-
bits, with discrepancies mainly appearing at the edges
of stability islands. We investigate if this trend also per-
sists for the 4D standard map by comparing the char-
acterization obtained from the D2

L, R2
L and S2

L diag-
nostics against the one made by the SALI indicator for
T = 103 iterations. Noting that the SALI of regular
orbits will fluctuate around a positive, constant value,
while for chaotic orbits it will exponentially decrease to
zero [see Eq. (8) and Fig. 1(c)], we consider a threshold



5

FIG. 1. (a) The projection of a regular orbit (blue points) with ICs x1 = 0.6, x2 = 0.05, x3 = 0.54, x4 = 0.01, and a chaotic
orbit (orange points) with ICs x1 = 0.2, x2 = 0.2, x3 = 0.54, x4 = 0.01, of the 4D map (1) with K = 1.5 and B = 0.05 on the
(x1, x2) plane for T = 2500 forwards iterations of the map. Time evolution of (b) the Λ (3), (c) the SALI (6), (d) the D2

L (11),
(e) the R2

L (12), and (f) the S2
L (13) for the two orbits of (a). The D2

L, R2
L and S2

L are evaluated in the plane (x1, x2), with a
grid spacing σ = 10−3 in each direction. The dashed line in (b) denotes the function ln(T )/T (5).

value of log10 SALI = −8, so that an orbit is charac-
terized as regular if log10 SALI ≥ −8, and as chaotic if
log10 SALI < −8. The percentage agreement PA of the
characterization of the orbits of Fig. 2 obtained by the
three LDs-based diagnostics, with respect to the one ob-
tained by the SALI is PA ≈ 94.4%, PA ≈ 92.5% and
PA ≈ 94.5% for D2

L, R2
L and S2

L respectively.

In Figs. 2(g)-(i) we respectively show for the D2
L, R2

L
and S2

L indices the regions in the considered 2D subspace,
where the indicators fail to correctly identify (with re-
spect to the SALI categorization) the chaotic or regular
nature of orbits. In particular, blue points correspond to
regular (according to SALI) orbits which are falsely iden-
tified as chaotic by the D2

L, R2
L and S2

L indicators, while
red points denote orbits classified as chaotic by SALI,
which are incorrectly identified as regular. Although the
effectiveness of the three indicators in distinguishing be-
tween regular and chaotic orbits is clearly captured by the
very high agreement percentages (& 90%) with respect
to the SALI classification, the results of Figs. 2(g)-(i)
show that the large majority of incorrectly characterized
orbits are mainly located at the edges of regular islands
where sticky chaotic orbits exist, in agreement to what

was reported in32. Our results show that the D2
L indi-

cator falsely characterizes as regular many sticky chaotic
orbits at the borders of stability islands [red points in
Fig. 2(g)], while the use of R2

L and S2
L indices [Figs. 2(h),

(i)] results in a more or less similar chart of wrongly iden-
tified orbits, which again are mainly located at the board-
ers of stability islands. It is worth noting that S2

L per-
forms better than R2

L as it falsely characterizes as regular
fewer chaotic orbits in the large chaotic sea [i.e. there are
fewer red points seen in the chaotic portion of Fig. 2(i)
than in Fig. 2(h)].

B. Effect of the number of iterations

A key factor when studying chaotic systems is the in-
tegration time, or the number of iterations in the case
of the 4D map (1), required for indicators to correctly
characterize orbits as regular or chaotic. In general, too
few iterations do not allow for the exponential divergence
of nearby orbits observed in the case of chaotic motion
to lead to very large deviations, which in turn, would
make apparent the chaotic nature of the orbits. This is
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FIG. 2. Results obtained for orbits having their ICs on a 1000 × 1000 grid on the 2D subspace (x1, x2) with x3 = 0.54,
x4 = 0.01, of the 4D map (1) for K = 1.5 and B = 0.05, after T = 103 forward iterations. The ICs are colored according to
the orbits’ (a) log10D

2
L (11), (b) log10R

2
L (12), and (c) log10 S

2
L (13) values, using the color scales at the top of each panel.

Normalized distributions of the (d) log10D
2
L, (e) log10R

2
L and (f) log10 S

2
L values of the orbits considered in (a)-(c). The values

log10D
2
L = −2.14, log10R

2
L = −2.85 and log10 S

2
L = 6.70 are respectively denoted in (d), (e) and (f) by an orange vertical,

dashed line. The set of the considered ICs which are incorrectly characterized by, (g) the D2
L, (h) the R2

L, and (i) the S2
L index,

with blue points corresponding to regular orbits (according to the classification obtained by the SALI method for T = 103)
which are falsely identified as chaotic, and red points denoting chaotic orbits which are incorrectly identified as regular.

true not only for indicators based on neighboring orbits’
LDs but for any chaos indicator. On the other hand, too
many iterations will make the use of the considered in-
dicators less efficient as they will increase the required
computational time.

It is plausible to assume that the total number of itera-
tions required for the characterization of orbits as chaotic
or regular is directly related to the time it takes for the
distributions of the D2

L, R2
L and S2

L indices to clearly re-
veal two distinct peaks. When the two peaks in the dis-
tribution are well formed, a threshold value can be estab-
lished between them allowing the discrimination between
regular and chaotic orbits. Thus, in order to investigate
the effect of the number of iterations T on the behav-
ior of the LDs-based diagnostics we respectively plot in
Figs. 3(a)-(c) the normalized distributions of the loga-
rithms of the D2

L, R2
L and S2

L values for the ensemble

of orbits considered in Fig. 2. These distributions are
computed for different numbers of forward iterations T
of map (1), namely for T = 50 (blue curves), T = 100
(orange curves), T = 250 (green curves), T = 1000 (red
curves) and T = 2500 (purple curves). From the results
of these figures we see that the shape of the distribution
of the three diagnostics does not significantly change, al-
though in the case of S2

L [Fig. 3(c)] the distribution is
shifted towards larger log10 S

2
L values as T increases, and

that the distance between the peaks remains approxi-
mately constant. In addition, for larger T the height of
the trough between the two well formed peaks decreases,
allowing the more accurate characterization of the or-
bits’ nature as it becomes easier to identify a well-placed
threshold value between the two peaks. Nevertheless,
since we would like to use the D2

L, R2
L and S2

L indices
as a fast (i.e. based on low iteration numbers) chaos in-
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dicator, we can say that, for the cases considered here,
T = 1000 is sufficient to properly capture the overall
dynamics of the considered ensemble of orbits.

For completeness’ sake, we also present in Fig. 3 the
evolution of the normalized distributions of the two basic
chaos indicators we consider in our study, the ftmLE Λ
[Fig. 3(d)] and the SALI [Fig. 3(e)]. From Fig. 3(d) we
see that the distributions of the Λ values have a high,
sharp peak for log10 Λ & −1, which corresponds to the
system’s chaotic orbits for which Λ eventually saturates
to a positive value [see the orange curve in Fig. 1(b)].
In addition, we observe a second, smaller in this case,
peak corresponding to regular orbits, which propagates
to the left of Fig. 3(d), towards smaller log10 Λ values,
in agreement with Eq. (5) [also see the blue curve in
Fig. 1(b)]. The region between these two well formed
peaks corresponds to weakly chaotic orbits for which Λ
reaches positive but small values. On the other hand, the
distribution of the SALI values [Fig. 3(e)] develops very
fast, two well separated formations: a set of high positive
values (log10 SALI & −4), which corresponds to regular
orbits [see Eq. (8) and the blue curve in Fig. 1(c)], and a
high peak at log10 SALI ≈ −16 corresponding to chaotic
orbits whose SALI became practically zero reaching the
level of the computer accuracy (i.e. 10−16) due to the ex-
ponentially fast decrease of the index [see Eq. (8) and the
orange curve in Fig. 1(c)]. It is worth noting that even
for as few iterations as T = 250 [green curve in Fig. 1(c)]
the distribution of the SALI values is practically flat and
non-existing between the two well defined regions of small
(chaotic orbits) and large (regular orbits) log10 SALI val-
ues. This fast distinction between the two categories of
orbits is a main advantage of the SALI method, which
also allows the establishment of a well defined thresh-
old value for discriminating between regular and chaotic
orbits, which in our work is set to log10 SALI = 10−8.

From the results of Fig. 3 we see that the increase of
the number of iterations does not lead to a drastic im-
provement of the distinctive ability of the methods based
on neighboring orbits’ LDs, as the shape of their distribu-
tions eventually does not change significantly [Figs. 3(a)-
(c)] in contrast to what happens with the distributions
of the ftmLE and the SALI shown in Figs. 3(d) and 3(e).
Thus, only slight adjustments are required for the thresh-
old values of the D2

L and R2
L indices for the numbers of

iterations reported in Fig. 3. In contrast, a change in the
number of iterations for S2

L results in the increase of the
related threshold value. So, it is a good practice to check
the value distributions of the three LDs-based quanti-
ties D2

L, R2
L and S2

L, in order to determine the optimal
threshold values.

C. Effect of the overall chaos extent and grid spacing

Let us now study the effect of the system’s chaotic-
ity on the accuracy of the indices. Both the nonlinear-
ity parameter K and the coupling constant B of the 4D

map (1) control the system’s chaotic behavior, because,
in general, their increase leads to more extended chaos.
We investigated the performance of the three LDs-based
diagnostics for various K and B values and we present
here some representative results obtained by varying K,
while B is kept fixed. More specifically, in Figs. 4(a)-
(c), we show SALI color plots for respectively K = 0.75,
K = 1.1 and K = 1.5, and B = 0.05, computed for
a total of T = 2.5 × 104 forward iterations on a grid
of 1000 × 1000 evenly spaced ICs on the (x1, x2) plane
with x3 = 0.54 and x4 = 0.01. From these figures we
clearly see that the increase of K results in a substan-
tial increase in the number of chaotic orbits, as the area
of yellow-colored regions corresponding to very low SALI
values (which indicate chaos) increases. In fact, we find
the percentage PC of chaotic orbits to be PC ≈ 43.9%,
PC ≈ 69.8% and PC ≈ 79.6% respectively for K = 0.75,
K = 1.1 and K = 1.5, when the log10 SALI = −8 thresh-
old is used to discriminate between regular and chaotic
orbits.

We next investigate, for the three cases of Fig. 4, the
effect of the total number of map iterations T on the
ability of the LDs-based indices to correctly capture the
nature of orbits, which is quantified by their percent-
age agreement PA with the characterization obtained by
SALI for the same T . We note that here we consider the
order n = 2 indices D2

L, R2
L and S2

L, which are based on
LDs’ computations of neighboring orbits on the 2D plane
(x1, x2) defined by x3 = 0.54 and x4 = 0.01 [Figs. 4(a)-
(c)]. The PA is computed for ten different final itera-
tion numbers and the obtained results are presented in
Figs. 4(d)-(f). For each of the three considered K values
and the ten different final iteration numbers T an appro-
priate threshold value for discriminating between regular
and chaotic orbits is selected for every index following
the approach described in Sect. III B, while for the SALI
the threshold value log10 SALI = −8 is always used.

For K = 0.75 [Figs. 4(a) and 4(d)] the phase space
displays the smallest area of chaotic behavior among
the three cases we considered, and PA decreases as the
number of iterations increases. This is due to the large
number of sticky orbits at the edges of the many regu-
lar islands, whose weakly chaotic nature is revealed by
the SALI only after a rather high number of iterations.
Thus, initially, for small T values the SALI, as well as the
D2
L, R2

L and S2
L indices, wrongly characterize the sticky

orbits as regular, but since all these methods agree on
this assessment the related PA values in Fig. 4(d) are
large. For larger T values the SALI eventually man-
ages to identify the sticky obits as chaotic, but the LDs-
based indicators fail to do so, and consequently the PA
values decrease. This discrepancy is due to the known
difficulty of the D2

L, R2
L and S2

L indicators to correctly
characterize sticky orbits, which has been already seen
in Figs. 2(g)-(i). This limitation was also pointed out
in32. For K = 1.1 [Figs. 4(b) and 4(e)], the phase space’s
chaoticity increases and fewer sticky orbits are present
compared to the K = 0.75 case, and PA is observed
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FIG. 3. Normalized distributions of the logarithms of the (a) D2
L (11), (b) R2

L (12), (c) S2
L (13), (d) Λ (3), and (e) SALI (6),

values of the orbits considered in Fig. 2 for T = 50 (blue curves), T = 100 (orange curves), T = 250 (green curves), T = 1000
(red curves) and T = 2500 (purple curves) forward iterations of the 4D map (1).

to increase for large T values, steadily exhibiting values
& 90%. Similarly, for the highly chaotic case of K = 1.5
[Figs. 4(c) and 4(f)], for which the number of sticky or-
bits has been drastically reduced, as the extent of the
chaotic sea has grown, PA enlarges with growing T .

Our analysis shows again that the D2
L, R2

L and S2
L in-

dicators are less efficient at properly characterizing orbits
at the edges of regular regions. This becomes especially
problematic when the system’s phase space is occupied by
many stability islands and chaos is confined in very thin
strips between these islands, as is for example seen in the
case of Fig. 4(a). Furthermore, the results of Figs. 4(e)
and 4(f) show that the D2

L, R2
L and S2

L indices have sim-
ilar chaos diagnostic capabilities as in almost all studied
cases they achieve similar PA values for large enough T
numbers. In addition, taking also into account that we
want to use these indicators as fast diagnostics, we ob-
serve that (as was also seen in Sect. III B) T = 1000 is
a very good number for all indices to produces reliable
estimations of chaos extent, especially for the K = 1.1
and K = 1.5 cases [Figs. 4(e) and 4(f) respectively] for
which PA & 90%.

Having considered the effect of T on the chaos diag-
nostic accuracy of D2

L, R2
L and S2

L, let us now discuss
the effect of the grid spacing size σ on their performance.

For this purpose we respectively present in Figs. 4(g)-
(i) for K = 0.75, K = 1.1 and K = 1.5 the PA values
obtained by the three indicators at T = 103 for five dif-
ferent grid spacings on the (x1, x2) plane considered in
Figs. 4(a)-(c) in the range 10−4 ≤ σ ≤ 10−2. For each K
an increase in accuracy PA is seen as σ decreases, indicat-
ing that computations based on finer grid capture more
accurately the system’s dynamics. On the other hand,
the use of more grid point results in a significant increase
of the required computational time, something which is
not desirable for the implementation of the D2

L, R2
L and

S2
L indices as fast chaos diagnostics. Nevertheless, the

fact that the accuracy PA for σ = 10−4 is only slightly
better than the one obtained for σ = 10−3, suggests that
after some point the further decrease of the grid spacing
has only a moderate impact on the achieved accuracy.
Thus, a rather good choice for the grid spacing in our
study, balancing between the obtaining accuracy and the
required computational effort, is σ = 10−3.

The results of Fig. 4 clearly show that the extent of
chaos, as well as its structure in the phase space, sig-
nificantly influences the usefulness of the D2

L, R2
L and

S2
L indicators in characterizing the overall dynamics. In

particular, we should be cautious when these indices are
applied to systems for which we expect a small amount
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FIG. 4. Results obtained for orbits having their ICs on a 1000×1000 grid on the 2D subspace (x1, x2) with x3 = 0.54, x4 = 0.01,
of the 4D map (1) with B = 0.05 and [(a), (d), (g)] K = 0.75, [(b), (e), (h)] K = 1.1, [(c), (f), (i)] K = 1.5. In (a)-(c) the ICs
are colored according to the orbits’ log10 SALI value after T = 2.5 × 104 forward iterations using the color scales on the top
of each panel. (d)-(f) The percentage accuracy PA of the orbits correctly characterized by the D2

L (blue points), R2
L (orange

points) and S2
L (green points) with respect to the identification obtained by the SALI method for the same number of iterations

T , for the orbits respectively considered in (a)-(c). (g)-(i) The PA of orbits correctly characterized by the D2
L, R2

L and S2
L

(blue, orange and green points respectively) after T = 103 iterations for five different grid spacings σ on the (x1, x2) space of
(a)-(c) respectively. In all panels the D2

L, R2
L and S2

L indices are evaluated through computations of neighboring orbits’ LDs
on the 2D (x1, x2) plane. In (d)-(i) the dashed line connections are used to guide the eye.

of chaos. Although this is a limitation of the D2
L, R2

L and
S2
L indicators, it is worth noting that they still prove to

be highly accurate in their characterization of orbits for
systems with moderate or large PC values.

D. Global dynamics and the role of the order of the
LDs-based diagnostics

So far we computed the D2
L, R2

L and S2
L indices on 2D

subspaces of the 4D phase space of map (1). Now we
will examine what effect a change in the order n of the
three LDs-based indicators has on their performance by
considering not only their n = 2 versions. As the order n
is increased we are adding and processing more informa-
tion from the surroundings of a studied orbit, as we in-

clude in the evaluation of the Dn
L, RnL and SnL indices the

LD values of more neighboring orbits. Thus, we expect
that the obtained results will capture more accurately
the nature of the underlying dynamics. Unfortunately,
the increase of order n comes with the drawback of the
raised computational effort required to evaluate the LDs
of the additional grid points used for evaluating the Dn

L,
RnL and SnL indices.

The effect of order n on the distributions of the Dn
L, RnL

and SnL values is shown in Fig. 5 where these distributions
are plotted for orders n = 1 (blue curves), n = 2 (orange
curves), n = 3 (green curves) and n = 4 (red curves).
These distributions are obtained for the orbits consid-
ered in Fig. 2, whose ICs lie on the 2D subspace (x1, x2),
x3 = 0.54, x4 = 0.01 of the 4D map (1) with K = 1.5
and B = 0.05. In particular, for n = 1 neighboring orbits
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on the x1 direction are considered for the computation of
D1
L, R1

L and S1
L, while for n = 2 the nearby orbits are lo-

cated on the (x1, x2) plane. For the evaluation of the D3
L,

R3
L and S3

L indicators additional neighboring orbits with
variations in their x3 coordinates are considered, while
orbits with variations also in the x4 direction are used
for the calculation of the order n = 4 indices. We note
that in all cases the grid spacing between neighboring
orbits is σ = 10−3.

From the results of Fig. 5 we see that for the Dn
L

[Fig. 5(a)] and SnL distributions [Fig. 5(c)] the two ob-
served peaks increase in height as n grows, although their
positions do not change drastically, while at the same
time the trough between them is decreasing. Thus, defin-
ing a threshold value for discriminating between regular
and chaotic orbits becomes easier for larger n. It is also
worth noting that the position of the threshold value at
the minimum of the trough does not vary significantly
with the indices’ order, especially for n ≥ 2. Interest-
ingly, an increase in the order n does not seem to have
any effect on the shape of the distributions of the RnL as
shown in Fig. 5(b).

In order to gain a more general understanding on
how the percentage accuracy PA of the three indicators
changes with order n, and also to investigate the poten-
tial effect of the studied ensembles of orbits on the per-
formance of the indices, the orbit classification obtained
by each indicator for n = 1, 2, 3 and 4 is compared to the
SALI characterization for the same number of forward
iterations, T = 103, for six different sets of orbits. The
examined ensembles of ICs are defined on the 2D sub-
spaces (x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2, x4) and
(x3, x4) of the 4D map (1) with K = 1.5 and B = 0.05,
by considering a 1000 × 1000 evenly spaced grid of ICs
(so that the grid spacing is σ = 10−3), while the remain-
ing two variables are kept fixed at x1 = 0.6, x2 = 0.2,
x3 = 0.54, and x4 = 0.01, depending on the 2D subspace
under consideration. The accuracy of each of the indica-
tors Dn

L, RnL and SnL, is then calculated for 1 ≤ n ≤ 4 for
each set of ICs in the following way. For n = 1 the indices
are computed along the xi direction corresponding to the
smaller i index on the 2D subspace, for n = 2 along both
directions of the 2D subspace, while for n = 3 the xi
direction with the smaller i index among the ones not in-
cluded in the 2D subspace is also considered. Obviously,
for n = 4 all directions are included in the computations.
For example, in the case of the (x2, x3) subspace the used
ICs are on a 1000×1000 grid on the whole (x2, x3) plane,
i.e. 0 ≤ x2 < 1, 0 ≤ x3 < 1, with x1 = 0.6 and x4 = 0.01.
Then for n = 1 the three indicators are computed by
considering orbits along the x2 direction, for n = 2 along
both the x2 and x3 directions, and for n = 3 along the x1,
x2 and x3 directions. The performed studies in the sev-
eral subspaces, which cover a wide range of coordinate
orientations, and for all the possible orders of the Dn

L,
RnL and SnL indicators, ensure a global investigation of
the indices’ performance. The percentage PC of chaotic
orbits for the six considered ensembles, according to the

SALI classification for T = 103, are PC ≈ 72.4% for the
(x1, x2) case, PC ≈ 91.8% for (x1, x3), PC ≈ 89.6% for
(x1, x4), PC ≈ 82% for (x2, x3), PC ≈ 77.7% for (x2, x4)
and PC ≈ 84% for the (x3, x4) case.

In Fig. 6 we present the percentage accuracy PA re-
sults obtained by the Dn

L, RnL and SnL indices of order
1 ≤ n ≤ 4 for the six sets of considered ICs. From this
figure we see that the efficiency of the RnL index [Fig. 6(b)]
in correctly capturing the regular or chaotic nature of the
studied orbits does not practically depend on the order
n, as for all considered cases its PA does not change with
n. On the other hand, for the Dn

L [Fig. 6(a)] and the SnL
indices [Fig. 6(c)] we see a noticeable rise of PA when n is
increased from n = 1 to n = 2 (which is more significant
in the case of SnL), followed by a mild improvement as
n grows further. The main outcome of this analysis is
that n = 2 seems to be the optimal order for the three
indicators, as setting n > 2 does not result to significant
improvements of the PA values, which would justify the
associated increase in the required computational time.
We note that, due to the additional computations of LDs,
the evaluation of indices of order n = 3 (n = 4) approx-
imately requires three (six) times more computational
effort with respect to the n = 2 cases.

In Fig. 7 we see the percentage accuracy PA obtained
by the D2

L, R2
L and S2

L indices with respect to the per-
centage PC of chaotic orbits (obtained by the SALI
method) in the six considered sets of ICs. As expected,
a general increase in accuracy for the three indicators is
seen as the percentage of chaos grows, with the D2

L and
S2
L indices being more accurate than R2

L. This behav-
ior demonstrates again the fact that the three LDs-based
indices become more accurate for more chaotic sets of or-
bits, in accordance to the results discussed in Sect. III C
[Fig. 4].

As an additional example of the applicability of the
three LDs-based diagnostics for investigating the global
dynamics of map (1), we consider their implementation
on a 4D subspace of the system’s phase space for K = 1.5
and B = 0.05. In particular we consider the subspace de-
fined by 0.5 ≤ x1 < 0.6, 0 ≤ x2 < 0.1, 0 ≤ x3 < 1 and
0 ≤ x4 < 1, which corresponds to 1% of the total phase
space. From the so far performed analyses we know that
n = 2 is the optimal order for achieving an accurate
characterization of chaotic orbits and that LDs compu-
tations for T = 103 forward iterations are sufficient for
that purpose. Thus, we evaluate the D2

L, R2
L and S2

L
indices along two directions of the 4D subspace, and in
particular, along the x1 and x2 coordinates, by taking a
grid of 100× 100 points on the (x1, x2) space, which cor-
responds to a σ = 10−3 grid spacing in accordance to the
outcomes of Sect. III C. Furthermore, in order to get a
good representation of the whole considered 4D subspace,
without unnecessarily increasing the number of studied
ICs, we also regard a grid of 100×100 points along x3 and
x4. This arrangement results in a total of 108 ICs, with
PC ≈ 73% of them being chaotic according to their SALI
values at T = 103. The resultant distributions of the



11

FIG. 5. Normalized distributions of the (a) log10D
n
L (11), (b) log10R

n
L (12), and (c) log10 S

n
L, (13) values of the orbits considered

in Fig. 2 for orders n = 1 (blue curves), n = 2 (orange curves), n = 3 (green curves) and n = 4 (red curves). The Dn
L, Rn

L and
Sn
L indices are evaluated along the x1 direction for n = 1, the x1 and x2 directions for n = 2, the x1, x2 and x3 directions for
n = 3 and all coordinate directions for n = 4.

FIG. 6. The percentage accuracy PA obtained by the (a) Dn
L (11), (b) Rn

L (12), and (c) Sn
L (13) indices with respect to their

order n, for six different sets of ICs of the 4D map (1) with K = 1.5 and B = 0.05. The considered ensembles of orbits
are defined on the 2D subspaces (x1, x2) (blue points), (x1, x3) (orange points), (x1, x4) (green points), (x2, x3) (red points),
(x2, x4) (purple points) and (x3, x4) (brown points) by considering a 1000× 1000 grid of ICs, while the remaining two variables
are set to x1 = 0.6, x2 = 0.2, x3 = 0.54, and x4 = 0.01 depending on the 2D subspace under consideration. The results are
computed for T = 103 forward iterations, and the dashed line connections are used to guide the eye.

D2
L, R2

L and S2
L indices for this 4D subspace are shown

in Figs. 8(a)-(c) respectively, and have the same general
shape as those seen in Figs. 2(d)-(f), Figs. 3(a)-(c) and
Fig. 5, with two well-formed peaks corresponding to reg-
ular and chaotic orbits. The similarity of the obtained
distributions for all considered cases in this work clearly
indicates the generality of their shape, i.e. two peaks with
a trough in between, which defines the place of the in-
dices’ threshold value for identifying chaotic orbits. It
is worth noting that the exact location of this threshold
does not significantly alter the overall orbit characteriza-
tion. In order to make this point more clear, for each dis-
tribution of Fig. 8 we consider intervals for the location of
the corresponding thresholds in the trough between the
two peaks. These intervals are −2.65 ≤ log10D

2
L ≤ −2,

−3.2 ≤ log10R
2
L ≤ −2.8 and 4.3 ≤ log10 S

2
L ≤ 5.2 and

are denoted by the highlighted orange regions in each
panel of Fig. 8. Considering ten different evenly dis-
tributed threshold values in these intervals we found that
the accuracy PA of the characterization made by the D2

L,
R2
L and S2

L indices, in comparison to one achieved by the
SALI, was in the ranges 93.0% . PA . 94.9% for the D2

L
index, 91.8% . PA . 92.6% for the R2

L indicator, and
92.5% . PA . 94.7% for the S2

L method. These results
clearly illustrate that we can implement the D2

L, R2
L and

S2
L diagnostics to distinguish between regular and chaotic

orbits on a global scale in the phase space of the 4D map
(1), and that the selected threshold value does not have
a strong impact on the accuracy of this characterization.
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FIG. 7. The percentage accuracy PA of the (a) D2
L (11), (b)

R2
L (12), and (c) S2

L (13) indices for the six different sets of
ICs considered in Fig. 6, with respect to the percentage PC

of chaotic orbits evaluated obtained by the SALI method. In
all cases the related LDs and SALI values were calculated for
a total of T = 103 forward iterations.

IV. SUMMARY AND CONCLUSION

In this work, we investigated the ability of some sim-
ple quantities based on LDs computations to correctly
identify orbits as regular or chaotic. In particular, we
focused our attention on a conservative dynamical sys-
tem whose phase space dimensionality makes the direct
visualization of the dynamics a challenging task: the 4D
area preserving map (1), which is composed of two cou-
pled 2D standard maps. More specifically, the quantities
we considered were the difference Dn

L (11), and the ratio
RnL (12) of neighboring orbits’ LDs, as well as the SnL
index (13), which is related to the second spatial deriva-
tive of the LDs. The SnL index was initially presented in31

(in a slightly different formulation to the one used in our
study), while the Dn

L and RnL diagnostics were introduced
in32, where they were also applied to low-dimensional
conservative dynamical systems, namely the two degree
of freedom Hénon–Heiles Hamiltonian and the 2D stan-
dard map. Here, trying to investigate the applicability of
these indices to high-dimensional systems, we considered
a symplectic map having a 4D phase space. We empha-
size that all three indicators rely solely on computations
of forward in time LDs (although backward LD compu-
tations produce similar results) of initially neighboring
orbits, lying on n-dimensional spaces, with n referred to
as the order on each index.

Although color plots of the Dn
L, RnL and SnL indices

manage to correctly capture a qualitative picture of the
system’s dynamics [Figs. 2(a)-(c)], as also LDs them-
selves do, we showed that they can also, quite success-
fully, identify individual orbits as regular or chaotic, and
consequently quantify the system’s extent of chaos. Ac-
tually, in all studied setups the three LDs-based indices

managed to correctly reveal the regular or chaotic nature
of orbits with an agreement PA & 90% with respect to
the classification obtained by the SALI method. The im-
portance of this achievement becomes higher if we take
into account the fact that the evaluation of the these in-
dices depends only on the time evolution of orbits and
does not require the knowledge of the related variational
equations (in the case of continuous time systems) or the
corresponding tangent map (for discrete time maps) gov-
erning the evolution of small perturbations to the studied
orbits.

In order to use the three LDs-based quantities as
chaos diagnostics we defined appropriate threshold val-
ues from the distributions of the Dn

L, RnL and SnL indices
[Figs. 2(d)-(f)]. These thresholds were used to char-
acterize an orbit as regular (chaotic) if its index value
was below (above) the threshold. The determination
of these thresholds was facilitated by the general shape
of the distributions, which have two well defined peaks,
corresponding to chaotic (peak at higher index values)
and regular orbits (peak at lower values), separated by
a trough [Figs. 2(d)-(f), Fig. 5, and Fig. 8], where the
threshold was set. Typically this threshold was defined
at the distribution’s minimum in the trough [Figs. 2(d)-
(f)], but the obtained orbit classifications were not too
sensitive on the exact location of the threshold, as a vari-
ation of its value in the trough between the two peaks
changed PA by . 2% [Fig. 8].

Even though the general form of the Dn
L, RnL and SnL

distributions remained the same, their explicit shape and
consequently the location of the threshold value for each
index, depended on the number of iterations T of the
map for which the indices were computed [Figs. 3(a)-
(c)], as well as the order n [Fig. 5]. In general, the in-
crease of T and n resulted in more pronounced peaks
[with the exception of RnL whose distribution does not
seem to be affected by n; Fig. 5(b)], while at the same
time the trough’s height decreased making the determi-
nation of the threshold value easier, and the efficiency
of the indices higher. Indeed an increase of PA was ob-
served for various ensembles of studied orbits when T
[Figs. 4(e) and (f)] and n [Fig. 6] grew. On the other
hand, the increase of T and/or n led to longer compu-
tations, as orbits were followed for more iterations when
T grew, and the number of neighboring orbits, whose
LDs was needed for the indices’ evaluation, increased for
larger orders n. It is also worth noting that all distribu-
tions practically covered the same value intervals, with
the exception of the SnL which was shifted to higher in-
dex values when T increased [Fig. 3(c)]. Trying to find a
balance between the achieved accuracy PA in identifying
chaos and the overall required computational time, in or-
der to use the Dn

L, RnL and SnL indices as efficient, short
time chaos diagnostics, we showed that good choice for
the T and n variables are T = 1000 and n = 2. Another
factor which influenced the accuracy and the efficiency
of the three indicators was the initial phase space dis-
tance (grid spacing σ) between the neighboring orbits
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FIG. 8. Normalized distributions of the (a) log10D
2
L (11), (b) log10R

2
L (12), and (c) log10 S

2
L (13) values of orbits with ICs

in the intervals x1 ∈ [0.5, 0.6), x2 ∈ [0, 0.1), x3 ∈ [0, 1) and x4 ∈ [0, 1), for the 4D map (1) with K = 1.5 and B = 0.05, after
T = 103 forward iterations. In total 108 ICs were considered on a grid having 100 points in each coordinate range. The D2

L, R2
L

and S2
L indices are evaluated on a 100×100 grid along the x1 and x2 directions (which corresponds to a σ = 10−3 grid spacing).

Taking different threshold values in the highlighted orange regions [(a) −2.65 ≤ log10D
2
L ≤ −2, (b) −3.2 ≤ log10R

2
L ≤ −2.8

and (c) 4.3 ≤ log10 S
2
L ≤ 5.2] alters the indices’ percentage accuracy PA by about 2%.

for which LDs were computed. We showed that a finer
grid (smaller distances) led to more accurate results and
higher PA values [Figs. 4(g)-(i)], having at the same time
the obvious drawback of the increase of required compu-
tational effort as more orbits were evolved. Our analysis
indicated that a good balance between these two factors
was obtained for σ = 10−3.

We also explored the effect on the performance of the
three indicators of the system’s extent of chaos, i.e. the
fraction PC of chaotic orbits, as this was defined by the
SALI method. Our results showed that the indicators
perform better for systems with higher PC values. More
specifically, we found that the three diagnostics mainly
failed to correctly identify the nature of orbits located at
the edges of stability islands, where sticky chaotic orbits
exist [Figs. 2(g)-(i)]. Consequently, the efficiency of these
indices was decreased when the system’s phase space was
occupied by many stability islands of various sizes, having
narrow chaotic strips between them where many sticky
orbits resided [Figs. 4(a), (d) and (g)]. Nevertheless, even
in such cases, an appropriate selection of the computation
variables (in our case n = 2, T = 1000 and σ = 10−3)
led to good results with PA & 90%. The main outcome
of that investigation is that a fair amount of care should
be taken for application of these LDs-based indices to
systems where low levels of chaos are expected.

In summary, we found that, with respect to the vari-
ations of the distributions of the different indices (which
affect the determination of the threshold value for dis-
criminating between regular and chaotic orbits), the SnL
distributions were significantly affected (moved to higher
values) as T grew, although they more or less retained
their shape [Fig. 3(c)]. On the other extreme end, the RnL
distributions were not influenced by order n [Fig. 5(b)].
In all other cases we observed slight distribution vari-
ations with respect to T [Figs. 3(a) and (b)] and n

[Fig. 5(a) and (c)], which led to small (if any) changes in
the considered threshold values, that nevertheless did not
drastically affect the overall orbit classification [Fig. 8].

From the results presented in this study, it is apparent
that, in general, the Dn

L and SnL indicators performed bet-
ter than RnL as they achieved larger PA values [Figs. 4(d)-
(i) and 7]. Thus, if only one index is to be used for the
global investigation of the chaotic behavior of a model,
we recommend this indicator to be Dn

L or SnL, with, in
general, the latter being a preferable choice as it per-
formed slightly better with respect to the obtained PA
values [Figs. 4(d)-(i) and 7], although its threshold value
significantly varies with T [Fig. 3]. Nevertheless, once the
LDs have been computed for a tested ensemble of orbits,
evaluating any of the three indicators is a straightfor-
ward task. It is worth noting that although the results
obtained by the Dn

L and SnL indicators are not as pre-
cise as those achieved by standard chaos detection tech-
niques like the SALI, the computations needed for their
evaluation do not require the knowledge of the variational
equations or the construction of the related tangent map,
which simplifies the process of revealing the chaoticity of
orbits.

We emphasize that the generality of our outcomes is
supported by the fact that the presented results were ob-
tained for several sets of ICs located in various subspaces
of the map’s phase space, having different dimensions,
and for different parameter values. Our findings show
that tools based on LDs computations can be effectively
used as chaos diagnostic techniques also for conservative
dynamical systems of higher dimensions, extending and
completing in this way the results presented in32.



14

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known com-
peting financial interests or personal relationships that
could have appeared to influence the work reported in
this paper.

ACKNOWLEDGMENTS

A. N. acknowledges support from the University of
Cape Town (University Research Council, URC) post-
doctoral Fellowship grant and from the Oppenheimer
Memorial Trust (OMT). M. H. acknowledges support
by the National Research Foundation (NRF) of South
Africa (grant number 129630). M. K. and S .W. ac-
knowledge the financial support provided by the EPSRC
Grant No. EP/P021123/1. We thank the High Perfor-
mance Computing facility of the University of Cape Town
and the Centre for High Performance Computing43 of
South Africa for providing computational resources for
this project.

1A. M. Lyapunov, The general problem of the stability of motion,
International journal of control 55 (3) (1992) 531–534.

2V. I. Oseledec, A multiplicative ergodic theorem. Liapunov char-
acteristic number for dynamical systems, Trans. Moscow Math.
Soc. 19 (1968) 197–231.

3G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov
characteristic exponents for smooth dynamical systems and for
Hamiltonian systems; a method for computing all of them. Part
1: Theory, Meccanica 15 (1) (1980) 9–20.

4G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov
characteristic exponents for smooth dynamical systems and for
Hamiltonian systems; a method for computing all of them. Part
2: Numerical application, Meccanica 15 (1) (1980) 21–30.

5C. Skokos, The Lyapunov characteristic exponents and their com-
putation, Lecture Notes in Physics 790 (2010) 63–135.
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F. González-Montoya, M. Katsanikas, V. Krajňák, S. Naik,
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41M. Katsanikas, V. J. Garćıa-Garrido, M. Agaoglou, S. Wiggins,
Phase space analysis of the dynamics on a potential energy sur-
face with an entrance channel and two potential wells, Physical
Review E 102 (1) (2020).

42J. Daquin, C. Charalambous, Detection of separatrices and
chaotic seas based on orbit amplitudes (2022). arXiv:2212.

02200.
43https://www.chpc.ac.za.

http://arxiv.org/abs/2212.02200
http://arxiv.org/abs/2212.02200
https://www.chpc.ac.za

	Performance of chaos diagnostics based on Lagrangian descriptors. Application to the 4D standard map 
	Abstract
	I Introduction
	II Numerical techniques
	III Numerical Results
	A Dynamics on a 2D subspace
	B Effect of the number of iterations
	C Effect of the overall chaos extent and grid spacing
	D Global dynamics and the role of the order of the LDs-based diagnostics

	IV Summary and Conclusion
	 Declaration of competing interest
	 Acknowledgments


