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Abstract
The recent advancements in the field of Artificial Intelligence (AI) translated to an
increased adoption of AI technology in the humanities, which is often challenged
by the limited amount of annotated data, as well as its heterogeneity. Despite the
scarcity of data it has become common practice to design increasingly complex AI
models, usually at the expense of human readability, explainability, and trust. This in
turn has led to an increased need for tools to help humanities scholars better explain
and validate their models as well as their hypotheses. In this paper, we discuss the
importance of employing Explainable AI (XAI) methods within the humanities to
gain insights into historical processes as well as ensure model reproducibility and a
trustworthy scientific result. To drive our point, we present several representative case
studies from the Sphaera project where we analyze a large, well-curated corpus of
early modern textbooks using an AI model, and rely on the XAI explanatory outputs
to generate historical insights concerning their visual content. More specifically, we
show that XAI can be used as a partner when investigating debated subjects in the
history of science, such as what strategies were used in the early modern period to
showcase mathematical instruments and machines.
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1 Introduction

Recent years have witnessed a great amount of research articles dedicated to the
use of Artificial Intelligence (AI) in the humanities, focusing on Natural Language
Processing (NLP) and Computer Vision (CV) approaches dealing with historical texts
and artifacts.

Such approaches tackled numerous problems such as historical document layout
analysis and information extraction, printed and handwritten text recognition, as well
as text reconstruction and restoration in historical documents.

Document LayoutAnalysis (DLA) is an active field of researchwith numerous com-
petitions (Gao et al., 2017; Simistira et al., 2017; Clausner et al., 2019; Yepes et al.,
2021) regularly evaluating new approaches. DLA has relied heavily on AI methods,
with transformers1 assuming control of the field (Huang et al., 2022). In historical
document layout analysis in particular, e.g., in Xu et al. (2018), the authors relied
on a Multi-Task Fully Convolutional Network (FCN) to segment highly unstructured
manuscript and printed-text pages into multiple semantically relevant groups (e.g.,
marginalia, main text, and comments), while Ravichandra et al. (2022) opts for an
object-detection based approach relying on the YOLO model (Redmon et al., 2015).
Others have recognized the value of extracting images from historical documents
due to their importance in transmitting the information and ideas contained in the
texts, leading to approaches such as the FCN networks presented in Monnier and
Aubry (2020) and the object detection-based methodologies applied to specific cor-
pora adopted by Dutta et al. (2021); Büttner et al. (2022) from techniques like YOLO
(Redmon et al., 2015), U-Net (Ronneberger et al., 2015), or Faster R-CNN (Ren et al.,
2016). By getting closer to the textual content of these documents, numerous AI-based
approaches for optical character recognition (OCR) and handwritten text recognition
(HTR) have been proposed, with deep learning-based approaches (Jaderberg et al.,
2016) setting new standards. More advanced deep learning techniques rely on Recur-
rent Neural Networks (RNN) (Tsochatzidis et al., 2021; Fischer, 2020; Puigcerver,
2017) and Gated-CNNS (Kang et al., 2020; de Sousa Neto et al., 2020; Bluche &
Messina, 2017); most recently, transformer-based architectures have set new bench-
marks (Wick et al., 2021; Li et al., 2021; Ströbel et al., 2022). Beyond OCR and
HTR tasks, AI approaches are emerging as a leading method in text restoration and
reconstruction, which is vital when working with often fragmentary historical data.
In Assael et al. (2019), the authors focused on Greek inscriptions and proposed a
sequence-to-sequence RNN model which they called Pythia, and which was later fol-
lowed by a transformer-based architecture (Assael et al., 2022) called Ithaka which is
able to restore, date, and attribute Greek inscriptions. Continuing with the subject of
ancient languages, Latin was addressed in Bamman and Burns (2020), who proposed
Latin-BERT, a pre-trained BERT model (Devlin et al., 2018) on a large corpus of
Latin texts aimed at text restoration tasks. While numerous approaches for OCR/HTR
and text reconstruction tackle different languages (e.g., Akkadian (Lazar et al., 2021;

1 Transformers are a type of machine learning model that employs self-attention mechanisms to solve a
wide array of tasks.
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Fetaya et al., 2020), hieroglyphs (Barucci et al., 2021), etc.), the analysis of historical
texts is heavily biased towards Ancient Greek and Latin (Sommerschield et al., 2023).

While the above only scratches the surface of AI approaches in the humanities, it
offers a comprehensive overview of the different research tracks in the field which
appear to be adopting, and adapting, AI approaches. However, the use of Explainable
AI (XAI) for insight generation remains in its infancy despite calls for a closer inte-
gration of DH and XAI approaches (Berry, 2020; Díaz-Rodríguez & Pisoni, 2020;
Huggett, 2021). The term XAI refers to the field of AI research that is dedicated
to the generation of explanations with regard to the increasingly complex machine
learning models (Montavon et al., 2018; Samek et al., 2019, 2021; Holzinger et al.,
2022) and is crucial in numerous domains to ensure model safety, robustness, and
resilience to data drift. They may also reveal useful correlations in the data as well as
ensure that the model results are understood by domain experts (Samek et al., 2021;
Lapuschkin et al., 2019; Kamath &Liu, 2021). This field opened the door to numerous
impactful contributions across an array of knowledge areas. Such contributions have
left a mark for instance on medical imaging (Holzinger et al., 2019; Binder et al.,
2021; van der Velden et al., 2022). In Zhang et al. (2019), the authors proposed an
explainable model proposing human-like pathological diagnostics, while Hofmann
et al. (2022); Müller and Hofmann (2023) used XAI methods to highlight the most
relevant brain features that contribute to “brain age” which is considered a brain health
biomarker. XAI methods are also heavily used in meteorological studies where their
scope is to better understand the radar images (Ebert-Uphoff &Hilburn, 2020), as well
as validate and interpret models and generate insight into specific phenomena such
as tornadoes (McGovern et al., 2019). In chemistry, XAI is often applied on graph
structures (Schütt et al., 2019; Schnake et al., 2022; Jiménez-Luna et al., 2020), as in
Preuer et al. (2019) who applied XAI methods to highlight the specific substructures
of molecules relevant for novel drug discovery. The above represent a small subset of
the fields where XAI has had an impact on model validation and insight generation;
for a more detailed review of XAI methods and applications see Samek et al. (2021);
Samek (2023).

In contrast to the extensive work on XAI in the above-mentioned fields, XAI appli-
cations in the humanities remain limited to a few isolated cases. In Pawlowicz and
Downum (2021), the authors trained a classifier to distinguish between multiple pot-
tery types of the Tusayan White Ware in use around northern Arizona between AD
825–1300. The different types of pottery feature similar designs, which prompted
the authors to rely on Grad-CAM2 Selvaraju et al. (2020) to generate interpretable
explanatory outputs to investigate which areas of these images had the highest saliency
in assigning a pottery type to a particular artifact (Pawlowicz & Downum, 2021). In
the domain of art history, Offert (2018) highlights the benefits of using feature visu-
alizations generated by a trained machine learning algorithm for digital art historians.
Through the use of these features, the assessment of an artwork by an art historian

2 Grad-CAM computes explanations by weighting and pooling activation maps at a selected layer using
the gradient of the prediction score backpropagated to this layer. This results in coarse localization maps
that highlight the important image regions.
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would combine both the original artwork and its model representations, enriching the
available data for the interpretative process (Offert, 2018). Similarly, Bell and Offert
(2021) showcases a workflow that integrates explanations–using Grad-CAM–to help
domain experts identify different painting styles under difficult conditions (e.g., similar
painting styles). In this case, by training a convolutional neural network to distinguish
between the different styles of painting, the authors were able to hone in on a spe-
cific region that was relevant for the classification based on the explanatory heatmap3.
Such region of the painting is where the hands are displayed (Bell & Offert, 2021). In
a similar manner, XAI methods are now being used in art forgery forensics (Ji et al.,
2021).

The above applications of XAI in the humanities rely mostly on region activation
maps, often on the application of Grad-CAM which returns a relatively broad region
heatmap describing the model decision. While such approaches open the door to gen-
eral model explanations, they often miss the mark in providing detailed explanations
that can be interpreted by a domain expert. We argue that a domain expert needs
a fine-grained level of explanation to formulate and test hypotheses and show that a
pixel-level relevance scores generated by Layer-wise Relevance Propagation4 (LRP)
(Montavon et al., 2019) could be used for this end.

At this stage, amore theoretical definition of explanation is warranted. In this paper,
we refer to explanation in a teleological, post-hoc mode that has become common in
the computational realm (Berry, 2021). A teleological mode of explanation aims to
understand the neural network model’s behavior and provide us with clues to interpret
the features and correlations within the input data that in turn lead to a certain output.
This means that our explanation is directly dependent on the goal that the system (in
this case the neural network) is trying to achieve and indirectly on the data used to
train the model.

The explanatory outputs of such an explanation system need to satisfy important
criteria in order to serve as the foundation for a sound human-machine interaction,
which are: “explanations should be faithful and sufficient” and “explanations should
be humanly interpretable” (Samek et al., 2021).

The first criterion is satisfied when the explanation accurately describes the model
behavior (Lopes et al., 2023), which can be assessed by removing highly relevant
features (highlighted by the XAI model) from the input and observing whether this
leads to high decay in the network predictions. A rapid decay of the network pre-
diction score after removing highly relevant features indicates that the explanation is
a faithful representation of the model’s processing (Samek et al., 2017). Satisfying
the second criterion is often challenging, as a concise and clear definition of human
interpretability is difficult to achieve. Human interpretations are often contrastive,
selective, influenced by social contexts, and commonly do not rely on probabilities
(Miller, 2019). Additionally, these interpretationsmight vary based on the downstream
task, depending on the social sample, domain knowledge, and the output type (Sub-
ramanian et al., 1992; Huysmans et al., 2011; Miller, 2019). We pay special attention

3 A heatmap is an image highlighting the areas of the input that most strongly influence themodel’s decision
4 A technique used to understand the contribution of each neuron in the network by propagating relevance
backwards through a trained network

123



Explainability and transparency in the realm of digital...

to the type of produced explanatory outputs as they are the basis of domain expert-
formulated historical hypotheses. As such, explanations intended to be analyzed by
domain experts need to be more detailed, and thus more complex, than those provided
to laypersons who only might be comfortable with simpler explanatory output. The
complexity of an interpretation can be quantified by the file size of the information
carried by its heatmap. In this case, a smaller heatmap file (providing image region
scale heatmaps) is likely to be easily interpretable by the layperson (Narayanan et al.,
2018), while a complex explanatory output (providing pixel scale heatmaps) is likely
more adequate for a domain expert. A comparison of different explanatory output
complexity is presented in Samek et al. (2021), where LRP (Monnier & Aubry, 2020)
returns faithful, and complex explanatory outputs on a pixel level, highly suitable for
a domain expert.

To drive our point, we present a novel approach to historical image analysis that
harnesses the explanatory outputs provided by our XAI model (see Section 3), and
thus enables correlations to be revealed within a curated dataset of early modern
printed illustrations (see Fig. 1). Such correlations enable domain experts, in this case
historians, to better understand and analyze the content of the dataset at a pixel level.
By looking at the insights generated by XAI method, we instrumentally choose a
typical question in the frame of material history of science and technology of the
early modern period, namely to provide a definition of early modern mathematical
instruments. Such a research question, which is developed along the lines of three
case studies, is instrumentally used to display the effectiveness of our approach. In
this process, we treat the AI model as a helping hand or research companion–in line
with similar approaches in medical AI (Klauschen et al., 2018; Ratti, 2022) and cyber

Fig. 1 Diagram representing a simplified overview of our proposed workflow for a historian XAI research
companion (see the Appendices A and B for a technical rundown of the workflow). The workflow starts
by the collection of curated and annotated data by the domain expert (a), which is then used to train a
neural network (b), in this case, a VGG-16 network. Once trained, the model is able to provide an accurate
prediction (c). We rely on this trained network to generate pixel level heatmaps (d) showing which pixels
contributed to the classification prediction result in (b) and (c). This heatmap (d) is then read by the domain
expert in order to generate, validate, and investigate historical hypotheses based on the curated data (a)
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analysis (Holder & Wang, 2021)–that provides suggestions and reveals interesting
data correlations that might have been overlooked by the domain expert.

This approach breaks with a general trend in the humanities to “simply” use AI to
classify, and generally speaking, to automatically assign labels to humanities dataset
elements, and fill a much needed research gap by elevating the human-machine inter-
action from one that is mainly operationally driven–such as the use of the machine
as a supporting tool for domain experts–to one in which machine and human-expert
interact via a common visual interpretation channel to produce interpretative historical
results.

2 Dataset

The robust application of machine learning approaches typically requires a large
amount of labeled data to ensure that our explanations are trustworthy, as well as gen-
eralizable. To meet this criterion, we rely on the Sphaera dataset, created in the frame
of the project “The Sphere: Knowledge System Evolution and the Shared Identity of
Europe” (https://sphaera.mpiwg-berlin.mpg.de), which contains data andmetadata on
over 350 early modern textbooks based on the Tractatus de Sphaera by Johannes de
Sacrobosco (–1256). Electronic copies of these books are available via the project’s
database, comprising over 70,000 pages, 23,000 of which contain visual elements.
These visual elements were collected both manually and with the help of neural net-
works (Büttner et al., 2022). The Sphaera dataset is stored in a large knowledge graph
modeled according to the CIDOC-CRM standards (Bekiari et al., 2021), where infor-
mation about the editions, as well as fine-grained information about their content is
stored (Kräutli & Valleriani, 2018; El-Hajj et al., 2022).

For the purpose of this paper, and to accomplish our aim to train a neural network
capable of correctly classifying pages containing illustrations displaying a math-
ematical instrument, we initially collected a total of 2,879 pages containing such
illustrations, whose labels were carefully studied as part of a PhD dissertation within
the Sphere project by Shlomi (2023). In addition to the pages containing illustrations
of mathematical instruments, we collected 3,000 pages that do not contain any illus-
trations and which serve as a contrast signal to guide the model to learn class-specific
instrument features. With such a binary dataset, our neural network, which is based
on VGG-16 (Simonyan & Zisserman, 2015) and further described in Section 3.1,
could successfully distinguish pages containing illustrations of a mathematical instru-
ment from those with no illustrations. We applied the same method in Section 3 on
this model, however, the generated explanations we received were not constructive in
helping us understand the underlying features that represent a mathematical instru-
ment because the model was simply learning the feature associated with the presence
of an illustration vs. non-illustration. To gain further insights into what really defines
a mathematical instrument, we created a richer dataset that encouraged our model to
learn more discriminative features within these illustrations, which consequently led
to more specific insights.

To accomplish this, we added two additional classes to our dataset. The first includes
images of pages containing scientific illustrations that do not directly denote any
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material object, such as an instrument, but rather have a descriptive or explanatory
function in reference to the subject matter, in this case astronomical phenomena. These
scientific illustrations, similarly to those representing mathematical instruments, were
recovered from the Sphaera dataset. The second added class refers to illustrations of
material objects, namely those which one can refer to as machines. This data was
collected from Branca (1629); Zonca (1607); Ramelli (1588); Besson (1595) using
CorDeep (https://cordeep.mpiwg-berlin.mpg.de), a web service designed to extract
and classify visual elements from historical documents (Büttner et al., 2022). In total,
the dataset contains 5,879 pages distributed across the four classes, as shown in Table
1; each class is represented by a single sample in Fig. 2.

3 Methods

In this section, we introduce the methods used for data processing and model training.
Further assuming a successfully trained model, we describe how the layer-wise rele-
vance propagation (LRP) (Bach et al., 2015; Montavon et al., 2019) approach is used
to extract explanations for each data point. A detailed explanation of the LRP rules is
provided in Appendix A.

3.1 Neural network training

Given the comparably limited number of annotated training data available, as well
as the large hetereogenity of the historical pages, we use the pretrained VGG-16
(Simonyan & Zisserman, 2015) convolutional neural network architecture to extract
feature representations. This encoder consists of five convolutional blocks, each fol-
lowed by a max-pooling layer with kernel size 2 × 2. Convolutional layers use 3 × 3
filter kernels sizes and ReLU activation functions. The resulting representations from
the pretrained VGG-16model are then used for the classification block, which consists
of fully connected convolutional layers and a final softmax layer that predicts class
probability for each of the four classes.

To address the hetereogenity of the input data, we standardize the pages using min-
max normalization, apply thresholding using the 10% and 90% quantiles of the pixel
value distribution and scale each image in proportion to a reference height or width
of 800 pixels depending on its orientation using bilinear interpolation. These steps
ensure that sufficiently high image quality is maintained while reducing variation in

Table 1 Distribution of image
samples used across the four
different classes

Class Count

Mathematical Instruments 657

Scientific Illustrations 1870

Machines 352

Other 3000
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Fig. 2 For each of the four classes - mathematical instruments, scientific illustrations, machines, and other
- one example has been chosen to describe the general features of each respective class. Figure a) displays a
typical early modern machine, in this case a structure that holds a gear-wheel, activated by a vertical gear-
drum that turns the big wheel on the left. Figure b) is a scientific illustration that demonstrates the sphericity
of the planet Earth by showing the reader its empirical proof, namely the fact that two observers on a ship–
one at the top of the mast and one below on the gangway of the hull–would discover the castle, toward which
they are navigating at different times, the one on the mast earlier than the other. Figure c) displays a typical
page with no illustration that still contains other graphical layout features of an early modern textbook.
Figure d) displays a common mathematical instrument, namely an armillary sphere which is a mechanical
miniaturized reproduction of the geocentric cosmos. Figure a) from Branca (1629, p. 30), courtesy of the
Library of the Max Planck Institute for the History of Science, Berlin. Figure b) from Sacrobosco (1547,
Sign. B-2), Bayerische Staatsbibliothek, urn:nbn:de:bvb:12-bsb10173470-0. Figure c) from Piccolomini
(1553, p. 17), courtesy of the Library of the Max Planck Institute for the History of Science, Berlin. Figure
d) from Barozzi (1607, p. 104), Biblioteca Digital Hispánica, PID bdh0000001287

scan resolution, background texture, as well as colorization, brightness, and contrast
(see Appendix B for details).

During optimization, we use 80% of the data for training the classification head
parameters using the Adam optimizer (Kingma & Ba, 2015) and an initial learning
rate of 0.001, which decays every seven epochs with gamma set to 0.1 and a batch size
of 1 to allow for different page sizes and orientations. The resulting test set accuracy is
0.96 with class-wise F1 scores ranging from 0.89 for instruments to 1.0 for machines.

3.2 Layer-wise relevance propagation

We apply LRP (Bach et al., 2015) to attribute the predictions of our trained neural
network to the input features (i.e., pixels). More specifically, by feeding a given input
image to the network and denoting by y the resulting value of the output neuron for a
given class, say instrument, LRP generates a collection of scores R1, R2, . . . , R#pixels
identifying the contribution of each pixel to the output value y. This collection of
scores can be represented as a heatmap in which the blue color indicates pixels that
contribute negatively to the given class (i.e. are in contradiction with it), and red color
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indicates pixels that contribute positively (i.e. support it). Because there are four classes
in our dataset (other, mathematical instruments, machines, scientific illustrations), we
generate four heatmaps for each image indicating pixels that support/contradict the
respective class (see Fig. 4).

Technically, LRP pixel-wise scores are computed in an iterative fashion aiming to
“invert” the nonlinear function implemented by the deep neural network. LRP starts
at the output of the network with the predicted value y. The value y is then redis-
tributed backwards in the network, layer after layer, by means of propagation rules
(see Appendix A). LRP propagation rules are designed so that (1) neurons that are
locally relevant (contribute strongly to the next layer) must receive more relevance
than locally irrelevant neurons, and (2) quantities being redistributed must be con-
served locally in the network, similar to water flowing through a network of pipes or
a current traversing an electrical circuit. A variety of LRP rules implementing these
two requirements have been proposed and they address different types of neurons and
or levels of nonlinearity at each layer (Montavon et al., 2019). In practice, these rules
are selected in a way that the resulting explanation faithfully reflects the true decision
strategy of the neural network model and remains at the same time easily readable for
the human-expert. In our experiments, we apply at each layer the same LRP rules as
in Eberle et al. (2022).

4 Three case studies and the quest for early modernmathematical
instruments

By applying themethod fromSection 3 on the dataset described in Section 2, we obtain
a treasure trove of information about the image pixels with the highest contributions
to the learning task. In the following section, the model explanations are discussed in
reference to the predefined classes in Section 2 (excluding the category “other”), and
therefore subdividing the argument into three case studies. Due to the complexity of
the LRP explanations, interpretations are usually formulated by domain experts, who
in our case are historians of early modern science.

4.1 The historical research question

On an abstract level, mathematical instruments of the early modern period are defined
as measuring, computational, or demonstrating objects that embody mathematical
knowledge. A historical overview can be found in Bennett (1987) and Bennett (2011).
In the framework of the Sphaera corpus,mathematical instruments are those ordinarily
used to measure time, as well as terrestrial or celestial angular distances. However, this
abstract definition does not help us generate a concrete definition of a mathematical
object that aims to answer how these objects were built and operated in the early
modern period. The vagueness of the abstract definition becomes very evident when
acknowledging that all of the illustrations in Fig. 3 show devices belonging to the same
broad class of mathematical instruments.
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Fig. 3 Paradigmatic selection of early modern mathematical instruments. a) armillary sphere, b) globe, c)
Jacob’s Staff, d) universal sundial, e) universal meridian, f) quadrant. a) fromSacrobosco andClavius (1585,
Title page), courtesy of the Library of the Max Planck Institute for the History of Science, Berlin. b) from
da Firenze (1537, Sign. H-II-7), Österreichische Nationalbibliothek, http://data.onb.ac.at/rep/10B4373E. c)
from Schreckenfuchs et al. (1569, p. 285), Bayerische Staatsbibliothek, urn:nbn:de:bvb:12-bsb10141204-0.
d) from Finé (1551, p. 18), courtesy of the Library of the Max Planck Institute for the History of Science,
Berlin. e) from Cortés (1556, fol. XLVII v), Biblioteca Digital Hispánica, PID bdh0000254979. f) from
Finé (1587, p. 32), courtesy of the Library of the Max Planck Institute for the History of Science, Berlin

Some of the instruments in Fig. 3, like the armillary sphere (Fig. 3a) and the globe
(Fig. 3b), are mechanical reproductions of objects or layouts of objects that existed
(or were believed to exist) in reality. The armillary sphere represents the geocentric
cosmos, while the globe represents the Earth with additional features. In the first
case, the armillary sphere includes a series of scales on its movable elements, thus
allowing its user to determine the length of the solar day at any latitude throughout
the year. Armillary spheres can also be more complex, for instance, when a planetary
model is built-in so as to allow the determination of the position of all main celestial
bodies at any given day and time. Armillary spheres are multipurpose mathematical
instruments and, in addition, they also have a high pedagogical value as they intend
to mechanically represent and visualize the constitution of the cosmos. The globe has
very similar features. It is usually equipped with scales (though this example does not
show them); it has movable parts; and, in this case, it clearly displays a geographic
coordinate system, which at that time was considered the projection of the cosmos
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coordinate system onto the planet (cosmography). This last feature finally enabled
the calculation of terrestrial distances. Adding the distribution of landmass and water
surfaces allowed the globe to become a representation of Earth, and because of this,
this instrument also had high pedagogical value. Figure 3b shows a relatively poor
example of such representation, as the continents are simply shown by placing their
names at the appropriate locations.

The Jacob’s staff is a distinct instrument (Fig. 3c). It does not represent anything
found in nature, but is rather a purely functional device. Its function is to measure
terrestrial distances from the point at which the observer (instrument’s user) is posi-
tioned. It works on the basis of simple triangulation techniques where the two pivots
at its base are movable in order to change the length of the triangle’s base. The user
would look through the center of that base and direct the staff toward the point whose
distance from the observer is thenmeasured. No scales and numerical values are added
to this instrument. The length of the base between the movable pivots could be mea-
sured after observation, for instance by means of a ruler. It is hard to state what the
qualitative difference is between the Jacob’s staff on one hand and the globe and the
armillary sphere on the other, but both groups of objects are considered mathematical
instruments.

When it comes to time measurement, the universal sundial (Fig. 3d) and the uni-
versal meridian (Fig. 3e), which is also a sundial, are considered to be purely time
measurement instruments. The diffusion of the mechanical clock and the correspond-
ing division of the day into 24 equal hours began in the thirteenth century. However,
the traditional division of the day according to the variable length of solar day and
night, and therefore to the variable length of hours during the year as depending on
the latitude, was still highly relevant in the early modern period for multiple reasons.
The increased mobility during the early modern period increased the demand for sun-
dials that could be operated at different latitudes. While the second case (Fig. 3e) is
visually closer to our current understanding of a clock since the values are displayed
in circular form, the first case (Fig. 3d) has a different purpose. In fact, this illustration
does not really represent an instrument, but rather a display cabinet for different types
of sundials.

Finally, the quadrant shown in Fig. 3f is common, especially within the Sphaera
corpus, due to its function in the frame of astronomic observations. This type of
instrument was mostly used to measure the angular height of celestial bodies over the
horizon by placing it close to one’s eye and pointing it towards the celestial body. The
plumb line would then show the angle in degrees or hours and therefore the angular
distance between the celestial body and the horizon. It shows scales with values and
therefore is a kind of mathematical instrument that, qualitatively, belongs to the group
of measuring instruments to which also the universal meridian belongs, and to a lesser
extent, the globe and the armillary sphere (Fig. 3e).

It is clear from these short descriptions that a global and unique definition of math-
ematical instruments able to describe the different functions that such instruments
perform and embody is difficult to establish. This situation in turn highlights the need
to take a step back and think of an overarching definition, if only within the field of
early modern astronomy.
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In order to reach this new definition ofmathematical instrument, we propose a novel
approach that combines a) the insights revealed by using XAI methods applied to an
AI model trained with these illustrations and b) the knowledge of expert historians.

4.2 Case study 1: mathematical instruments

Looking at the correctly classified instances of mathematical instruments (95%), we
are immediately drawn by the LRP results to the finely graduated elements (scales and
their values) of the mathematical instruments whose pixels appear to be most relevant
for the correct classification.Thesefinely graduated elements appear to bekey elements
in guiding our model to identify this class: they dominate the majority of the classified
image results and are invariant to the numerous shapes, designs, and representations of
these instruments within the pages of the different editions of textbooks. Examples of
this finding are numerous. The quadrants displayed above (Fig. 3f) and the universal
meridian (Fig. 3e), for instance, show this feature very clearly (Figs. 4 and 5).

In the cases where our model fails to recognize amathematical instrument or falsely
classifies something else as a mathematical instrument, the LRP result reveals insights
into the causes of this misclassification. For example, the false positive in Fig. 6
shows the classification of the image as a mathematical instrument, while in fact this
is a scientific illustration. This particular scientific illustration is designed to explain
that the earth has a round shape, which is shown by the fact that sunrise is earlier in
eastern locations on earth than in western locations. While this scientific illustration
reproduces natural phenomena, it is also enriched by a densely graduated ring along
the orbit of the sun in order to show the hourly divisions. In this case, it is clear that
the model focused on the finely graduated orbital rings using this as the basis for its
classification of this illustration as a mathematical instrument.

Considering the already discussed Jakob’s staff in Fig. 3c, it becomes clear why this
instrument is also misclassified as a machine. The heatmap shows that pixels repre-
senting mechanical elements (e.g. the pivots) are highly relevant for the classification
results (Fig. 7) and, by comparison, it is possible to infer that this misclassification is
due to the absence of detectable scales and/or numerical values, i.e. the omission of
the most relevant pixels for the mathematical instrument class. As mentioned above,
it is known that a graduated ruler is needed to measure the distance between the two
pivots at the base of the instrument. Had this ruler been present in this illustration,

Fig. 4 Heatmaps of Fig. 3f detecting the relevant elements of a quadrant (red pixels are those that contribute
positively to the class in question; blue pixels are those that contribute negatively to the class in question)
and classifying it as a mathematical instrument
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Fig. 5 Heatmap of Fig. 3e detecting the relevant elements of a universal meridian (red pixels are those that
contribute positively to the class in question; blue pixels are those that contribute negatively to the class in
question) and classifying it as a mathematical instrument

perhaps the classification result would have been correct (i.e., as part of the mathemat-
ical instrument class). The lack of graduated element has led to a false negative for this
mathematical instrument. This result emphasizes that within the Sphaera corpus, the
representation of an instrument, at least from the perspective of the model, is highly
related to it having a finely graduated element.

In addition to the graduated scales, some elements of the object’s materiality and
morphology, such as the bases on which these instruments stand, played an important
role in guiding the model toward a correct classification result as shown in Fig. 5. The
displayed materiality is not a feature that concerns solely mathematical instruments
and its meaning is best understood after considering the machine class in the following
section.

4.3 Case study 2: machines

The Jacob’s staff case demonstrated that the absence of the most relevant features,
in this case, graduated scales, can quickly lead to a misclassification. This is one of

Fig. 6 Scientific illustration showing the dependence between the position of the observer on the spherical
Earth and the times of sunset and sunrise. The illustration is misclassified as an instrument and the heatmap
shows that this is due to the presence of a scale around the illustration which displays the hours (red pixels
are those that contribute positively to the class in question; blue pixels are those that contribute negatively
to the class in question)
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Fig. 7 Heatmap of Fig. 3c in which the Jacob’s staff is misclassified as a machine. The heatmap highlights
the mechanical feature of the instrument related to its movable parts and, by comparing it with other cases,
it is possible to infer that the misclassification is also due to the lack of a scale with values (red pixels are
those that contribute positively to the class in question; blue pixels are those that contribute negatively to
the class in question)

the main reasons why the training set was enriched to include objects (machines) that
are functionally and semantically distinct from mathematical instruments and clearly
represent a distinct category.

The classic definition of an earlymodernmachine is that of an object that enables the
accomplishment of a task bymeans of the efficient performance of amechanical device
and thus lowering the need of human resources and/or reducing the time required for
its performance. This definition is too general, and does not allow us to hone in on
what constitutes a machine in our training set.

Our trained model was able to perfectly classify the machines in our dataset, and by
looking at theLRPexplanatory outputs,wewere able to deduce that themost influential
elements driving the correct classification of a machine-class within our dataset are
the pixels representing aspects of the mechanical apparatus on the one hand, and
the presence of a structured environment on the other. If a machine is analyzed in a
representation that depicts it in its natural or semi-natural context, then the mechanical
apparatus is activated. Figure 8a shows a machine to raise water from wells, operated
by a man who interacts with a series of mechanical cranks and gear-wheels, which
in turn drive the hydraulic apparatus with its dual pump. The LRP heatmaps (Figs.
8b and c) show that the pixels representing the underground section of this machine
illustration are the most relevant for our model to generate a correct classification;
more specifically, these pixels are those that represent the hydraulic apparatus.

Further investigation, however, shows that the proper mechanical apparatus (pul-
leys, gear wheels, handles, etc.) is less determinant than one would expect. For
example, a machine for striking gold medals is examined in Fig. 9a. This machine
is activated by a pneumatic device (labeled G and M on the right side of Fig. 9a) that
channels hot air and fumes from a fire to activate a mechanical contrivance (K at the
top right). This in turn moves three further mechanical elements, each comprising
a gear-drum and a gear-wheel. This drivetrain finally activates a press made of two
drums on whose surface the forms for the gold (in shape of medals) are engraved
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Fig. 8 a) Machine to raise water fromwells. From Ramelli (1588, p. 9v), courtesy of the Library of theMax
Planck Institute for the History of Science, Berlin; b) and c) heatmaps that highlight the hydraulic apparatus
of the machine as the reason for its correct classification (red pixels are those that contribute positively to
the class in question; blue pixels are those that contribute negatively to the class in question)

(A, E, D, and the operator V). This machine produces medals in series and is more
efficient than the traditional method also represented here by the blacksmith (T at the
bottom-center). Unlike Fig. 8, the most relevant pixels in Figs. 9b and c do not strictly
refer to the mechanical elements that play a direct role in the transmission of forces,
but rather to the scaffolding and poles that hold these mechanical elements together.
This feature, which is often observed in the heatmaps, is difficult to interpret but a
plausible reason is that most of the mechanical elements are circular, namely they have

Fig. 9 a) Machine to strike gold medals. From Branca (1629, p. 2), courtesy of the Library of the Max
Planck Institute for the History of Science, Berlin; b) and c) heatmaps of a) that highlight the scaffolding
and the poles that hold the mechanical elements together, rather than the mechanical elements themselves
(red pixels are those that contribute positively to the class in question; blue pixels are those that contribute
negatively to the class in question)
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a common characteristic withmany further instances of other classes, be it instruments
or scientific illustrations, as it will be discussed in detail in the next case study.

There are also misclassifications with respect to the early modern machine class
such as the case presented in Fig. 10a. This is a lathe equipped with a semicircular
blade which is rotated by means of a handle. Material (wood or stone) roughly spher-
ical in shape is placed inside this machine, which then refines the object’s shape (by
cutting the excess) to produce an almost perfect spherical shape. The example of the
lathe machine is inserted in the historical sources analyzed here because it was used to
furnish an operational, almost material definition of what a sphere is: the fundamental
geometric concept to understand the cosmos and the working of the machina mundi.
For this reason, this machine is printed numerous times in the Sphaera corpus. The
multiple instances of this machine appearing in our dataset were consistently classified
as mathematical instruments. This misclassification is due to numerous reasons and
can be explained as follows. While this machine shows strong “materiality” aspects,
highlighted by the realistic footstands, it does not present any cogs, wheels, levers,
or poles, which are typical of the machine class like in Fig. 9a. This leads the model
to incorrectly classify this machine as a mathematical instrument. However, looking
at Section 4.2, we can see that the main characteristic of mathematical instruments
appears to be graduated elements, which this particular image lacks. We can conclude
here that while graduated and mechanical elements played a major role in the classi-
fication of both mathematical instruments and machines respectively, the materiality
of the represented object plays a secondary yet important role in defining these two
abovementioned classes. As will be shown in Section 5, the issue at stake here is the
concept of “materiality” as it needs further analytical qualifications.

4.4 Case study 3: scientific illustrations

The books used in this study feature many illustrations, but only a fraction of these
represent a mathematical instrument or a machine; the other images vary between
diagrammatic representations ofmathematical concepts and schematic representations
of the movements and geometrical constellations of celestial bodies, such as the orbit

Fig. 10 a) Lathemachine. FromSacrobosco andMelanchthon (1545, Sign. B-ii-1), courtesy of the Libraries
of the University of Oklahoma; b) and c) heatmaps of a) that misclassify the lathe as an instrument due
to the presence of a footstand, which is also typical for instruments, and, upon further comparison, also
because of the absence of an evident mechanical apparatus (red pixels are those that contribute positively
to the class in question; blue pixels are those that contribute negatively to the class in question)
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of the moon or the positions of the planets during a solar eclipse. Together, these
images constitute the category referred to here as scientific illustrations. However, due
to the heterogeneity of these illustrations, the LRP results rarely offer any insight into
what constitutes a scientific illustration. By looking at the LRP results of scientific
illustrations with respect to other classes, it is possible to gain insights into what does
not constitute the illustration of a mathematical instrument or a machine.

In the example shown in Fig. 11a, the model correctly predicted that this is a
scientific illustration. By looking at its prediction with respect to the machine class
shown in Figs. 11b and c, it is possible to infer that the presence of multiple circles
negatively contributes to the classification of a machine. This observation is validated
bymultiple other scientific illustrations andmight be helpful in understanding why the
often circular mechanical elements of the drivetrains of machines are not particularly
relevant for the classification of machines and, above all, why graduated scales are
relevant for the classification of instruments. The reason probably lies in the common
feature of “circularity” of elements found in these images.

Finally, there are many misclassifications also among the scientific illustrations.
A typical example is the illustration frequently used to demonstrate the sphericity of
the Earth (Fig. 2b). This, as many other cases, shows that, when the illustration is
particularly rich and moves toward artistic expression, the model misclassifies them
as other pages, namely pages that are not supposed to contain visual elements (Fig.
12). The example shows that the lack of linearity in the drawing is associated with
other features that are typical of a page with no visual elements, an issue for which
there is currently no feasible explanation.

Fig. 11 a) Scientific illustration representing, from outside to inside, the empyrean, the spheres of the
prime mobile, the firmament, the seven planets, the elements and the Earth at the center. From Sacrobosco
and Glogów (1513, Sign. A-iiii-7), Regensburg, Staatliche Bibliothek, urn:nbn:de:bvb:12-bsb11110894-
9; b) and c) heatmaps of a) that allow us to infer why circular shapes cannot be relevant for the correct
classification of machines (red pixels are those that contribute positively to the class in question; blue pixels
are those that contribute negatively to the class in question)
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Fig. 12 Heatmap showing how particularly rich scientific illustrations, as in the case of Fig. 2b, are mis-
classified as other page (red pixels are those that contribute positively to the class in question; blue pixels
are those that contribute negatively to the class in question)

5 Discussion

The take-home definitions so far regarding illustrations within the studied corpus read
as follows: a mathematical instrument is an object with a graduated scale; a machine is
an object with frames and scaffolding that hold together mechanical elements; scien-
tific illustrations are characterized by circular elements. TheseXAI assisted definitions
are heavily influenced by the subject of the collection of historical sources analyzed
here, namely university textbooks used to teach geocentric astronomy.

A number of cases shown in Figs. 7, 10 and 12, demonstrate that the results achieved
are not entirely satisfactory. To express this positively, our interactionwith the explana-
tory output of the XAI model enabled us to identify a different interpretative layer or,
more precisely, it revealed that an additional interpretative layer which was initially
ignored, is more relevant than initially expected, as described in the following.

The goal of the presented historical research was to provide a definition of early
modern mathematical instruments. These illustrations within our corpus often rep-
resented real objects; however, only a small fraction of these objects survives today.
Museumcollections contain some of these objects, but their number is limited, no com-
plete dataset has been created, and, most importantly, even if such a dataset existed,
it would not cover the myriad of instruments that populated the early modern period.
Faced with this situation, historians of science and technology rely, as in the case of
this work, on representations of such objects. These are abundant in the numerous
preserved historical textual sources. The massive digitization efforts of the last twenty
years, moreover, have made them largely and easily accessible.

Historians of science and technology interested in research questions similar to the
ones proposed in this paper (see Section 4.1) often encounter the same issue of ambigu-
ous definitions. What are the defining features of a specific class of images within a
corpus? Are general class definitions a sufficient criteria to distinguish between class
instances? What are the most important features that describe a class?

As shown in Section 4, the explanatory output of our XAI model can act as an
intermediate layer, distorting our classical perception of the images in question, and
guiding us toward specific pixel groups within images to help redefine or reshape our
definitions of the selected classes. Of course, explanatory output ambiguity is present
in this case too, as demonstrated in Fig. 10, highlighting the need for a continuous
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human-machine interaction to reach the desired objective. In otherwords, the heatmaps
showwhat can be considered as the machine’s “definition.” Thus, the heatmaps enable
us to compare the human definitions with those of the machine, and to accordingly
reconsider and potentially define them.

In fact, the definitions we–and other researchers–often try to seek are not those
of the machines and instruments themselves, but those of their representations: the
conceptual ideas in the minds of the actors of the early modern period who designed,
drew, and cut the woodblocks used for their printing. In other terms, what we are inves-
tigating here is the result of a reality abstraction exercise by the authors, publishers,
printers, and woodcutters, which eventually resulted in these preserved illustrations.

This process offered a degree of freedom but also a restraining condition that the
material object itself cannot offer and does not provide, respectively. First of all, the
represented object, such as a machine or an instrument did not have to exist. It could
be the illustrated design of a new instrument, namely just a mental exercise. From
this perspective, the analysis looks at what elements made a printed illustration a
mathematical instrument illustration. Second, even in the cases where the represented
object existed, there may no longer be a physical counterpart. In other words, in many
cases, there is no extant artifact that enables us to compare the real physical instrument
with its representation in the Sphaera dataset, meaning that abstractions are often not
verifiable. This condition, combined with the high variability of instrument types and
the consequent low number of images per specimen, makes working with this kind of
datasets quite challenging. The degree of abstraction used in the illustrations of the
studied corpus often required using a specific visual language, or visual conventions,
to represent the objects in question. In this case, the use of the XAI explanatory
output allowed us to better investigate these abstractions and grasp some of the visual
conventions, which revealed interesting historical insights about the thought process
of the early modern actors.

In this respect, the analysis highlights the most relevant image features as viewed
by our trained model while considering not only the technical knowledge of the
earlymodern actors in representingmachines, mathematical instruments and scientific
illustrations, as well as diagrammatic and decorative illustrations, but also how they
imagined them. We refer to this feature as “visual conventions.”

Thefirst discoverable convention is related tomateriality. As shownby the heatmap
of the Universal meridian (Fig. 5c), the foot-stand of the instrument is an important
element for this classification. This aspect is not only demonstrated by many similar
heatmaps but also by the misclassification of the lathe as an instrument (Fig. 10). The
feature of materiality in these cases conveys the message that these instruments either
existed or could have existed.

The concept of “materiality” as used until now needs to be further distinguished
into a closely related category, namely a second relevant visual convention, here called
environment. This term refers to elements inserted in the image that show the sur-
rounding context in which an instrument or machine could be found. Instruments
such as the globe (Fig. 3b) or the cabinet (Fig. 3d) display a naturalistic environment.
Heatmaps show an activation of the environment especially in reference to the repre-
sentations of machines. These are often represented within a rich environment, which
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often includes individuals operating these machines, as well as animals (e.g. oxen)
and surrounding architecture.

A close look at the heatmap of the hydraulic machine (Fig. 8), for instance, shows
that some tiles on the left play a relevant role. This feature is particularly evident
in most of the machine representations, as shown also in the mill displayed in Fig.
13. The heatmap shows that, besides those machine, components that display the
actual mechanical elements, stairs, windows, and, partially, even human beings act as
determinants for its correct classification (Fig. 13).

The numerous cases displaying this feature show that the model is guided toward
a machine class prediction based on the presence of regularly spaced lines, often
denoting floor or roof tiles or blocks of stone in wall construction, among others.
This aspect reveals important insights into the thought process of the historical actors
involved, who clearly chose to represent machines, not only in a rich environment, but
also in one where the reader of these books could estimate the size of the machine by
easily comparing it to familiar objects such as tiles or stone blocks.

Thefinal convention,which in this case is not highlighted by the activation displayed
in the heatmaps, could be referred to as proportion. Many images, especially of the
scientific illustrations class, and to some extent those of the instruments and machines,
such as the globe (Fig. 3b) and the lathe (Fig. 10a), show a lack of proportionality
among the represented elements. For instance, the lack of proportion between the globe
and the tree at the bottom of the image or the lathe and soldiers below it. Such over-
proportionality of elements is probably due to pedagogical intentions of the historical
actors.

Misclassifications and the examination of their LRP heatmaps can shed further light
on visual language and its evolution. For example, Fig. 6 shows a scientific illustration

Fig. 13 a) Mechanical mill represented in its architectural context. From Besson (1595, Sign. H-iii-1),
courtesy of the Library of the Max Planck Institute for the History of Science, Berlin; b) and c): heatmaps
of a) showing that besides those machine components that display the actual mechanical elements, stairs,
windows, and, partially, even human beings act as determinants for its classification as a machine (red pixels
are those that contribute positively to the class in question; blue pixels are those that contribute negatively
to the class in question)
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that was misclassified as an instrument because it included a scale. The visual struc-
ture of this image, without the scale, is typical for explaining the sphericity of Earth
with different sunrise and sunset times at multiple locations. The “addition” of a scale
to the typical illustration shows a conscious employment of the visual convention of
mathematical instruments in a scientific illustration. This addition makes the illustra-
tion look more like an instrument, and thus relates the represented content with the
practice of exact measurements. It can be understood as a visual statement reflecting
larger processes of mathematization of scientific and cosmological knowledge as well
as changes in the practical and pedagogical orientation of the content (Oosterhoff,
2018).

5.1 Definitions, visual language, and training set

Taking into account the additional layer of visual language conventions of the historical
actors encourages a reconsideration of the initial definitions. The examination of the
LRP heatmaps showed that the full image was taken into consideration by the model
and the results were based on different, distinct, visual aspects within the image. We
were thus faced with the need to strongly consider the similarity between instruments
and their contemporary illustrations. We understood that we could benefit from art-
historical knowledge about visual language and in turn contribute to that field by
revealing and defining visual conventions through large corpora.

The examination of the heatmaps points to elements that identify the different
kinds of illustrations. The illustration of a mathematical instrument can be considered
to be an object with a graduated scale that is represented by elements indicating its
materiality and denoting that they exist or could exist. A machine illustration depicts
an object with a structure that holds together mechanical elements and is represented
within a realistic environment to convey additional information, such as its size or how
it works. Unlike scientific illustrations, the representations of machines do not contain
simple symmetric or concentric shapes, which implies that machines were portrayed
as complex systems, without resorting to abstraction and simplification.

If we consider the results of this project to be the “discovery” of visual language
conventions, and not the definition of what a mathematical instrument is, we can use
LRP heatmaps to study both the evolution of visual language itself as well as the
history of mathematical instruments. Visual conventions are structures or symbols
that are widely used, and can thus be better “exposed” with the use of large corpora
rather than a more traditional and manual examination of single sources. Although
they do not necessarily represent objects that in fact existed, such conventions may
reflect common knowledge used in printed books of the period and is thus meaningful
in the study of the knowledge tradition.

Beyond the study of visual language for itself, the analysis of the XAI explana-
tory output for the study of mathematical instruments highlighted that the analysis of
historical sources requires the consideration of all intrepretational layers or, in other
terms, that both the form and substance of the images need to be considered at the
same time for this kind of research. Considering the visual language can be a tool for
better defining and studying mathematical instruments through the database.
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The initial training set conceived for this investigation was not designed to cover all
aspects the XAI analysis can highlight. Our research has shown that the introduction
of XAI in the frame of historical research requires the generation of a transparent
workflowdictating the principles to create training sets able to cover all interpretational
layers and all their specific aspects and potentialities. In this sense, working with the
explanatory output of an AI model can require multiple iterations, refining the data
selection criteria and research questions at every step.

Attempts have been made to discuss the different aspects of “data modeling” in
the field of computational history. This term can be used in a very broad and general
sense to address ways in which historical information is organized in order to apply
systematic, computational, or quantitativemethods. Some of these attempts emphasize
a semiotic approach that highlights the variety of types of similarities between objects
(historical source or idea) and their representations (either representations of single
objects or of relations between historical objects or ideas) (Kralemann & Lattmann,
2023; Ciula & Eide, 2016; Flanders & Jannidis, 2023). In the context of this research,
we have seen that it is crucial to consider and strictly define whether the object falls
under the definition of mathematical instruments or of scientific illustrations and the
visual conventions they include. Furthermore, we had to also consider the nature
of the relationship and similarity between the two. Thus, this research demonstrates
the importance of a semiotic discussion in the process of building a training set,
database, and research questions based on them. In other terms, the construction of
the dataset itself should have included a discussion of the semiotic relation between
the instrument and image and, therefore, an interpretation of the statistical results of
such classification of images must include a consideration of visual language factors
that inherently influence the activation of statistical tools.

6 Conclusion

We applied a XAI approach, more precisely an LRP approach to our classification
model in order to explain how and why it classifies the illustrations of our corpus.
We intentionally trained our model based on a specific, curated, dataset with carefully
chosen classes in order to help us gain insights concerning our initial research question,
namely what is an early modern mathematical instrument and, as our research shows,
what differentiates it from an early modern machine and an early modern abstract
scientific illustration. While we were able to achieve interpretable and useful results,
we were also faced with unexpected outputs that obliged us to reevaluate our class
definitions. As we are using illustrations of instruments and machines, XAI has shown
us that we need to consider not only the proper content of those illustrations but also
the visual conventions used by the historical actors to produce them. We have learned,
through the interaction between the domain-experts’ analysis and the explanatory
model, which visual conventions were actually used. To put it emphatically, the XAI
companion, our new team member, assumed the role of an art historian.

Many features of this research are characteristic of approaches that are common in
the field of digital humanities, or more specifically digital history. The contribution
is clearly the result of a group effort that relies on combining historical and machine

123



Explainability and transparency in the realm of digital...

learning expertise. It provides a case study in an open and exploratorymanner, describ-
ing the research undertaken in terms of a journey (including steps that did not yield
the intended results), rather than presenting definitive findings. Moreover, the paper
is informed by the idea of advancing a relatively new computational method and
contributing to an evolving field. In terms of the historical research, it constitutes a
proposal for a novel approach for analyzing historical sources, in particular scientific
images.

Less characteristic, perhaps, is the fact that the focus is neither on the results
of the applied computational method (images classified in a certain way), nor on
a discussion of the applicability of the method, as is often the case in the digital
humanities and digital history respectively. Instead, XAI–the method for analyzing
the corpus’ images–is used to create an interactive dialogue: between algorithmic
classification and the historians involved. It is this dialogue that finally provides the
basis for a nuanced discussion of the different types of scientific images contained in
the corpus.

As shown, XAI makes transparent what specific features the ML model based its
classification decisions on; the black box is thus, at least partially, opened. On the one
hand, this means that the classification results are not taken at face value (in order to
move on to the next step of the process). Rather, their very purpose is to be examined,
reviewed, and questioned. Which part of the image led the model to choose the clas-
sification “instrument” and not “machine”? From the very beginning, the researchers’
attitudes toward themodel’s decisions are therefore interrogative, perhaps even critical.
On the other hand, the close observation made possible by applying XAI may provide
further insights into the historical material. The larger question behind the endeavor
is thus what historians can learn from engaging with the logic behind the model’s
decisions. In many cases, following and studying this logic will mean confronting
a different kind of logic. In this particular case, historians using a XAI companion
(who were trained in a certain way) were led to areas or elements of the images that
they would not necessarily have considered relevant for classifying beforehand. The
model’s classification mechanisms thus become an element of discovery and–in com-
bination with the historians’ knowledge–a potential source for knowledge production.
One could thus argue that XAI has the potential to alter the conventions of observa-
tion and in doing so may provide a new readability of the images, a readability that
constitutes an interplay between machine logic and the historian’s rationale.

However,XAI’s potential for discovery is limited and remains, as pointedout earlier,
teleological. It will only ever provide explanations for decisions it has been instructed
to make. Data remain capta, taken not given, to use Johanna Drucker’s definition,
whether XAI is used to make its decisions transparent or not (Drucker, 2011). As
always in data-driven research, the data must therefore be chosen carefully, and its
selection and effect on the application of XAI must be taken into consideration when
studying its decisions.

Nevertheless, this contribution shows that engaging with the interrogative approach
engendered by XAI and taking its classification decisions as a productive “derivation
of the eye,” can produce a differentway of seeing and thus provide a newperspective on
the classification of historical sources. In fact, the presented approach is not limited to
earlymodern illustrations but can provide relevant insights (depending on the quality of
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the dataset used) in numeroushumanitiesfields.One can envision that such an approach
mayhelp identifyminute stylistic changes in artifacts such as statues or pottery, identify
variations in motifs or ornaments transmitted over centuries, or precisely highlight
artist styles as initially proposed by Bell and Offert (2021). Finally, the interrogative
approach to machine-generated results may shift the overall perception of decisions
made by AI, or, on a broader scale, change the way digital humanities scholars think
about computational methods and infrastructures in general. This holds great potential
for the discipline and would enable a criticality that is already visible in the many self-
reflexive, theory-driven digital humanities approaches developed in recent years.

Appendix A: Explainable AI

The field of Explainable AI (XAI) aims to develop techniques that reveal what data
patterns contribute the most to the prediction of a given machine learning model. This
is necessary since most widely used modern ML models are typically composed of
several, complex processing steps (or layers) that result in a highly nonlinear pre-
diction. In contrast to linear models, for which the importance of a specific feature
can be directly observed from the value of its activation score, for nonlinear methods
specific methods to analyze the models processing are needed (Samek et al., 2019,
2021; Holzinger et al., 2022).

Most commonly used models, e.g. convolutional neural networks, graph neural
networks and recurrent neural networks, are not interpretable by design and hence
post-hoc explanations are used to compute explanations and gain insight into the
inner model processing.

Layer-wise relevance propagation

To decompose the prediction of a typically complex deep neural network, the
framework of Layer-wise relevance propagation (LRP) offers methods to compute
explanations by highlighting relevant features in the data (Bach et al., 2015; Mon-
tavon et al., 2018, 2017).

Given some set of features x p in input x (x p in this work here denotes pixels),
we aim to identify relevance scores Rp that reveal which features have contributed
most positively (Rp > 0) or negatively (Rp < 0) to the model prediction f (x ).
The resulting heatmap R thus provides a human-interpretable, intuitive way to better
understand which features the model focuses on to make a specific prediction.
We denote the relevance from neurons k at layer l + 1 as R(l+1)

k .
Then, the lower level relevance at neuron j can be computed by summing over

received messages R(l,l+1)
j←k from neurons k in the higher layer l + 1:

R(l)
j =

∑

k

R(l,l+1)
j←k . (1)
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The relevance message is generally proportional to the ratio defined by quantities q jk ,
which is the contribution of neuron j to the activation of neuron k and the relevance
observed R(l+1)

k :

R(l)
j←k = q jk∑

j q jk
· R(l+1)

k . (2)

Finally, the full relevance of neuron j is computed by pooling over all incoming
messages R j = ∑

k R j←k .
Depending on the network type, layer index, and neuron type, different propagation

rules have been proposed to compute q jk (a summary of different rules can be found
in Montavon et al. (2019)). Here, we focus on the LRP-γ rule that favors positive over
negative contributions, and which is given by:

R(l)
j←k = a j · (w jk + γw+

jk)∑
j a j · (w jk + γw+

jk)
· R(l+1)

k , (3)

with lower-level neuron activation a j , the weight w jk between neuron j and k and
parameter γ , which controls the preference of positive contributions using the rectified
weightw+

jk . This rule has been shown to offer a robust way to compute relevance redis-
tribution by reducing gradient noise and generally more stable gradients (Montavon
et al., 2019).

Appendix B: Experimental details

Data

For our case studies, we consider three classes of interest “mathematical instrument”,
“machine” and “scientific illustration”. These are selected by domain experts and
labeled accordingly. To facilitate this process, illustrations are extracted from full
book pages using the automated image segmentation pipeline CorDeep (Büttner et al.,
2022). A web service to extract visual elements from various input types including
PDF and common image file formats is accessible via https://cordeep.mpiwg-berlin.
mpg.de/.

In addition, we include a contrast class (“other”) that serves as an additional training
signal to guide themodel in focusing on class-specific features that describe our classes
of interest instead of identifying spurious correlations, e.g., always predicting the class
“mathematical instrument” with high confidence when there is a specific symbol in
the top right corner that by chance occurs many times on our training samples for
‘mathematical instrument’ but which is overall not specific to the depicted object.

Data processing

To allow the ML model to focus on the extraction of task-related features, in a first
step, we standardize the considered source material via binarization of the images.
We normalize each image using min-max normalization and apply a percentile filter
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at 0.8, utilizing the 10th and 90th percentiles of the pixel value distribution as cutoff
values. This binarization process addresses various issues such as color heterogeneity,
different page background textures, aswell as contrast and brightness variations among
the images.

We further use a reference value of 800 pixels to scale images in proportion to their
original width and height using bilinear interpolation. The resulting data is finally sep-
arated into train/test splits (80/20%) for the subsequent model training and evaluation.

Model and optimization

We utilize a standard pretrained VGG-16 model that was originally trained to separate
between 1,000 classes of natural images of objects (Simonyan & Zisserman, 2015).
We replace the last linear layer with one that has as many output neurons as there are
classes, which corresponds to four in our case. To predict these four distinct classes
with high accuracy, we finetune the parameters of the final classification layer using the
training dataset. During optimization,weminimize the cross-entropy loss between true
and predicted labels using the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 1e−3, stepwise learning rate decay every sevens epochs by a factor of 0.1 for a
maximal number of 25 training epochs. We use a batch size of 1 to allow for different
page sizes and orientations, and measure a test set accuracy of 0.96 with class-wise
F1 scores ranging from 0.89 for ‘mathematical instruments’ to 1.0 for ‘machines’.

To gain insight into which features the model uses to make its predictions, we will
next compute LRP explanations.

Explanations

We use the LRP-γ propagation rule (Montavon et al., 2019), set γ = 0 for the classi-
fication layers and γ = [0.5, 0.25, 0.1, 0.0] for layers 2-10, 11-17, 18-24 and 25-31,
respectively. To handle the input image domain appropriately, we apply the zB-rule
(Montavon et al., 2017) at the first layer. We perform the LRP explanation procedure
for each of the four classes by explaining the predicted evidence of each class.

For visualization of the relevance heatmaps, we assign blue for negative relevance
scores and red for positive scores. Color intensity is controlled by an opacity parameter
α in the range between 0 and 1. We set α to be proportional to the absolute maximal
relevance value of any of the four heatmaps. Further resources including demonstra-
tions and tutorials regarding the implementation of LRP can be accessed via http://
heatmapping.org/.
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