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We study a minimal model involving two species of particles interacting via quorum-sensing rules.
Combining simulations of the microscopic model and linear stability analysis of the associated coarse-
grained field theory, we identify a mechanism for dynamical pattern formation that does not rely on the
standard route of intraspecies effective attractive interactions. Instead, our results reveal a highly dynamical
phase of chasing bands induced only by the combined effects of self-propulsion and nonreciprocity in the
interspecies couplings. Turning on self-attraction, we find that the system may phase separate into a
macroscopic domain of such chaotic chasing bands coexisting with a dilute gas. We show that the chaotic
dynamics of bands at the interfaces of this phase-separated phase results in anomalously slow coarsening.
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Active systems are driven out of equilibrium at the level
of their microscopic constituents. Since activity may arise
in various forms, including particle motility [1], local
generation of nonconservative forces [2,3] and torques
[4,5], growth [6], or sustained chemical reactions [7], the
active matter field is rapidly expanding in multiple direc-
tions [8]. Recently, the generation of interactions breaking
action-reaction symmetry [9–13] as a paradigm for activity
has received increasing attention. Such nonreciprocal
interactions occur in a variety of contexts, including
particles interacting through a nonequilibrium medium
[14–21], or via social forces [22–24].
Because of connections built with non-Hermitian phys-

ics [25,26], nonreciprocity has been argued to constitute a
generic route for the emergence of steady states breaking
time reversal symmetry (TRS) [10–12,18,27–30].
Examples include rotating chiral phases in flocking sys-
tems involving multiple species [12], or traveling patterns
in phase-separating mixtures [10,11]. The latter are
described by the nonreciprocal Cahn-Hilliard (NRCH)
model [10,11], which generalizes the Cahn-Hilliard theory
of phase separation [31] by including a nonequilibrium
chemical potential with antisymmetric couplings between
species. Importantly, the NRCH model predicts that pre-
conditions for the emergence of TRS broken phases are the
presence of intraspecies attraction that drives demixing, as

well as chasing interspecies interactions [10,11]. In addi-
tion to dynamical patterns, the similarity between the
NRCH model and reaction-diffusion equations [32,33]
has led to additional connections such as the presence of
Turing-like instabilities [27,34].
A model mechanism for self-organization in motile

active matter are quorum-sensing interactions. Quorum
sensing mediated by chemical signals is, for example,
known to drive swarming and pattern formation in bacterial
populations [35–37]. Collective aggregation was moreover
shown to arise in suspensions of light-activated colloids
whose motility is locally regulated by their density via
feedback control loops [23,38,39]. Often, quorum-sensing
interactions are modeled as a direct response of particle
motility to local density variations [40–42]. Despite their
simplicity, minimal quorum-sensing models are able to
capture complex collective behaviors [23,37]. A notable
example is the motility induced phase separation (MIPS),
whose origin is rooted in the effective attraction induced
by the self-inhibition of motility [40]. In addition, non-
reciprocal couplings naturally arise when multiple species
exhibit quorum sensing with asymmetric responses [17,43],
thus without resorting to explicit nonreciprocal pairwise
forces [44–46]. For strong nonreciprocity and in the phase
separation regime, related models were shown to lead to
TRS broken phases in qualitative agreement with the
picture provided by the NRCH model [16,17,43].
In this Letter, we study a binary model of quorum-

sensing self-propelled particles in two dimensions. Our
simulations reveal the presence of thin traveling bands even
in the absence of intraspecies couplings. Instead, and as
confirmed by the associated coarse-grained field theory,
they arise from a new mechanism relying only on self-
propulsion and chasing interactions. In large systems, these
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bands self-organize into a spatiotemporal chaotic phase that
we find to be involved in phase-separated configurations at
moderate self-attraction. We show that this phase-separated
phase coarsens with a scaling exponent distinct from that of
standard MIPS [47–50].
Description of the model.—We consider a dynamics

where the position ri and orientation ûi ¼ ðcos θi; sin θiÞ of
particle i from species S∈ fA; Bg evolve at time t accord-
ing to

ṙi;S ¼ vS½ρ̃A; ρ̃B�ûi;S; θ̇i;S ¼
ffiffiffiffiffiffiffiffi
2Dr

p
ξiðtÞ: ð1Þ

ξi is a Gaussian white noise with zero mean and unit
variance, while Dr denotes the corresponding rotational
diffusivity assumed equal for the two species. Because of
quorum sensing, the self-propulsion velocity vS in Eq. (1)
depends on the coarse-grained density fields ρ̃Sðr; tÞ
measured over a finite interaction scale R via a short-
ranged kernel ŵðrÞ, whose expression is given in
Appendix A. The linear stability analysis performed below
reveals that, approximating ρ̃Sðr; tÞ ≃ ρSðr; tÞ with
ρSðr; tÞ≡P

i δ½r − ri;SðtÞ�, the emergence of patterns from
the dynamics described by (1) is controlled by the dimen-
sionless couplings ηSS0 ðρA; ρBÞ≡ ρS∂ lnðvSÞ=∂ρS0 . For
ηSS0 < 0, a particle from species S moves slower in higher
S0 density regions, leading to an effective attraction via
motility inhibition. In turn, ηSS0 > 0 makes S particles
spend less time in regions of high S0 density, such that
motility activation amounts to an effective repulsion. The
sign of ηSS thus determines whether the effective interaction
between particles of same species S is attractive (repulsive),
as a result of the self-inhibition (self-activation) of their
motilities. For multiple species, nonreciprocity arises
whenever ρS0ηSS0 ≠ ρSηS0S, such that the dynamics (1)
cannot be coarse-grained to an effective equilibrium field

theory [43]. In particular, effective chasing interactions
between species A and B are achieved when ηABηBA < 0.
For simplicity, we consider vSðρA; ρBÞ ¼ v0LSAðρAÞ

LSBðρBÞ, where LSS0 ðxÞ > 0 is a logistic function such
that vS varies monotonously with ρA and ρB. The values of
the couplings ηSS0 can then be varied changing either the
values of the densities ρA;B, or the shape of the curves LSS0 .
For convenience, we define a reference value ρ0 such that
vSðρ0; ρ0Þ ¼ v0 while η0SS0 ≡ ηSS0 ðρ0; ρ0Þ is the value at
which jL0

SS0 j reaches its maximum. Rescaling space and
time, we set R ¼ 1 and v0 ¼ 1 so that the remaining control
parameters of the microscopic model are the mean particle
densities fρ̄Sg, the nominal couplings fη0SS0 g, and Dr. We
moreover define the Péclet number Pe≡ vBðρ̄A; ρ̄BÞ=Dr as
a measure of the self-propulsion strength, while the
parameter χ ≡ ηABðρ̄A; ρ̄BÞηBAðρ̄A; ρ̄BÞ is used to quantify
nonreciprocity. All simulations are performed in periodic
domains of size Lx × Ly, with total particle numbers
ranging from N ¼ 104 to 107. Additional details about
the microscopic model are given in Appendix A.
Traveling patterns induced by chasing interactions.—To

start with, we fix the mean particle densities ρ̄S ¼ ρ0, such
that the couplings ηSS0 evaluated at ρ̄A;B are given by η0SS0
and Pe ¼ v0=Dr. For Pe ≪ 1 or jχj ≪ 1, our observa-
tions are in line with predictions from the NRCH
model [10,11,27]. Namely, if either of η0AA or η0BB are
sufficiently negative, systems initialized in the homo-
geneous state are unstable. For χ > 0, this instability leads
to the phase separation of one of the two species, or
demixing. For negative χ and small systems, on the other
hand, nonreciprocity gives rise to the formation of system-
spanning traveling bands rich in either of the two species
and chasing each other [Fig. 1(a) and Supplemental Movie
(SMov) 1 [51] ]. As this TRS broken phase mainly relies on
the presence of two phase-separated domains whose
cohesion is maintained by self-inhibition, TRS can be

FIG. 1. (a)–(d) Representative simulation snapshots for strong [(a),(b)] and vanishing [(c),(d)] motility self-inhibition in the presence
of chasing interactions (χ < 0). The top (bottom) row shows the particles color-coded by their species (polarity orientation), while the
thick arrows indicate the traveling direction of the patterns. The enlargement in (a) illustrates how disordered configurations appear in
gray. The top captions give a graphical representation of the interaction rules with arrows (bars) denoting motility activation (inhibition).
Parameters: ρ̄A;B ¼ ρ0 ¼ 80, Pe ¼ 10, and Lx ¼ Ly ¼ 40. (e) VarðvÞ (see definition in the text) as function of χ and Pe in the vanishing
self-inhibition regime, triangles and crosses indicate points where traveling bands and the homogeneous phase are observed. The green
shaded region marks the domain of existence of SOI. (f) Typical linear stability diagram for χ < 0 and ρ̄A;B ¼ ρ0.
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restored when one or both species see their self-coupling
vanish, as shown in Fig. 1(b).
Strikingly, for χ < 0 and Pe and jχj large enough we find

traveling patterns arising even at weak or vanishing self-
attraction. These patterns take the form of thin chasing
bands that for small jχj and moderate system size self-
organize into a superposition of regular arrangements
traveling along different directions [Fig. 1(c) and SMov
1]. Such structure is however rather fragile such that
increasing jχj [Fig. 1(d)], or in presence of moderate
self-inhibition of motilities, it is destabilized and replaced
by a chaotic chasing bands (CCB) phase [Fig. 2(b)].
Contrary to the regime of strong motility self-inhibition,

the cohesion of the chasing bands here is ensured by the
combined effects of Pe and χ < 0. For weak or vanishing
self-attraction, traveling bands can only exist if particles
inside them move coherently over large distances, as
evidenced by the local polarization shown in the bottom
row of Figs. 1(c) and 1(d). This feature, which is absent in

strongly self-attracting mixtures [bottom row of Figs. 1(a)
and 1(b)], remarkably arises despite the absence of explicit
aligning interactions between particle velocities [Eq. (1)].
The residual particle flux to the outside of the bands
induced by rotational noise is then balanced by the effect
of nonreciprocal interspecies couplings. To understand this,
let us consider the case of Figs. 1(c) and 1(d) where species
A inhibits the motility of B particles and is activated by
them. A cluster of A particles traveling in the gas locally
slows down B particles, so that they aggregate at its rear. In
the case of vanishing self-attraction, B particles can then
follow the A cluster only when they move in the same
direction. Similarly, the motility activation of A particles
provoked by a B cluster leads them to reside at its front so
long as they move in the same direction. This emergent
noise rectification mechanism relying on chasing inter-
actions allows the AB cluster pair to continuously recruit
particles from the gas. To confirm this picture, we define
the system- and time-averaged speed variance VarðvÞ≡
hhjṙij2ii − hjṙiji2i it, which is nonzero only in the presence of
motility induced patterns. Scanning the ð−χ; PeÞ plane at
η0AA ¼ η0BB ¼ 0, Fig. 1(e) shows that the CCB phase—
whose onset is characterized by an abrupt growth of
VarðvÞ—is found when both self-propulsion and non-
reciprocity are sufficiently strong.
Mesoscopic description and linear stability analysis.—

To get a theoretical understanding of the onset of CCB, we
derived the coarse-grained description of the microscopic
model. The full derivation uses standard coarse-graining
techniques and is detailed in Appendix B. It leads to a pair
of equations for the noise-averaged particle density and
polarity. Linearizing these equations around their solution
with homogeneous densities ðρ̄A; ρ̄BÞ and vanishing polar-
ities, we find that its stability is determined by five
parameters: ηAA, ηBB, χ, Pe, and σv ≡ vA=vB, where vS
and ηSS0 are evaluated at ðρ̄A; ρ̄BÞ. Taking σv ¼ 1
(see Ref. [51] for a discussion of the general case leading
to similar results), the eigenvalue controlling the stability
is λðqÞ ¼ −ðq=2Þγ þ ðq=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 2μþ 2

ffiffiffi
α

pp
, where q

denotes the wave number of the perturbation while
γðqÞ≡ ðPeqÞ−1 þ Peq=16, μ≡ 1þ 1

2
ðηAA þ ηBBÞ, and

α≡ χ þ 1
4
ðηAA − ηBBÞ2.

For α > 0, λ is real as q → 0 and a long-wave stationary
instability (LSI) arises when μ <

ffiffiffi
α

p
, i.e., μ < 0 or

ð1þ ηAAÞð1þ ηBBÞ < χ. On the other hand, α ¼ 0 corre-
sponds to an exceptional point [10] such that for α < 0, the
imaginary part of λðqÞ is always nonzero, while its real part
ℜðλÞ becomes positive if and only if [51]

2μγ2ðqÞ þ α ¼ 2μ

�
1

Peq
þ Peq

16

�
2

þ α < 0: ð2Þ

For α < 0 and μ < 0 the condition (2) is always true down
to q ¼ 0, giving rise to a long-wave oscillatory instability
(LOI). The emergence of LSI and LOI are thus both mainly

FIG. 2. (a) Snapshots from particle-based simulations in the
composition plane in square domains of size Lx ¼ 40. The
regions of static phase separation are indicated by the dashed
lines as guides to the eye. Solid squares and dots respectively
mark the compositions used to analyze the profiles of Figs. 3(a)–
3(c) and coarsening in Fig. 3(e). Inset: the corresponding linear
stability diagram. (b)–(d) Simulations in square domains of size
Lx ¼ 160, each with the same composition as its top right inset
where Lx ¼ 40.
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controlled by the intraspecies couplings, such that these
instabilities may arise at arbitrary small jχj and their range
of existence is insensitive to Pe.
Equation (2) moreover shows that for α < 0 and μ > 0,

although ℜðλÞ is negative as q → 0, it may turn positive at
finite q when γ2ðqÞ < −α=2μ. As such a scenario can only
happen when λ is complex, it is associated to a short-wave
oscillatory instability (SOI). This is in contrast with the
NRCH model [10,11,27] or reaction-diffusion systems [52]
for which SOI is absent in binary mixtures. In the limit
ηAA ¼ ηBB ¼ 0 of vanishing self-couplings, the condition
for SOI reduces to χ < − 1

2
[dotted line in Fig. 1(e)],

while the lowest unstable wave number is given by
Pe2q2c ¼ −32ð1þ 4χ þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=2þ χÞχp Þ. Using the inter-
action range R ¼ 1 as a natural lower cutoff for the
admissible values of q−1c , we thus get a line in the
ðχ; PeÞ plane that defines the boundary of the instability
region shown in Fig. 1(e), and which qualitatively agrees
with the numerical simulations of the microscopic model.
We furthermore summarize the linear stability results for
χ < 0 in the diagram of Fig. 1(f) drawn in the ðηAA; ηBBÞ
plane, which confirms that SOI typically arises when both
species present weak or vanishing self-couplings, while its
range of existence increases with Pe.
CCB-gas phase coexistence.—As we now show, the

range of existence of CCB actually extends beyond that of
SOI, since it may correspond to one of the phases involved
in the phase-separation configurations following LOI. We
now fix η0AA ¼ η0BB ¼ −2, η0AB ¼ −η0BA ¼ 0.5, Dr ¼ 0.1,
and perform simulations of the microscopic model (1)
scanning the composition plane ðρ̄A; ρ̄BÞ.
The resulting phase diagram shown in Fig. 2(a) exhibits

four distinctive lobes encircled by black dashed lines where
static phase separation takes place [10], in qualitative
agreement with the location of LSI in the linear stability
diagram [blue regions in the inset of Fig. 2(a)]. Along
the diagonal ρ̄A ¼ ρ̄B marked by a white dashed line in
Fig. 2(a), the homogeneous phase becomes unstable
below densities ≈2ρ0 and is superseded by the CCB phase
[Fig. 2(b) and SMov 2] previously described. Further
decreasing the densities, we observe system-spanning
traveling bands for ρ̄B ≳ ρ̄A and rotating spirals for
ρ̄B ≲ ρ̄A. Examples of these patterns are shown in the
insets of Figs. 2(c) and 2(d) and SMov 2. Increasing the
system size, the CCB phase remains qualitatively
unchanged, as can be seen comparing the main panel
and inset of Fig. 2(b). On the other hand, both traveling
bands and spirals found at lower densities are replaced by a
macroscopic CCB domain coexisting with a dilute homo-
geneous gas [Figs. 2(c) and 2(d)]. Accordingly, the loca-
tions of phase-separated CCB domains qualitatively
correspond to regions of the composition plane where
LOI is found [marked in magenta in the inset of Fig. 2(a)].
The system-wide CCB phase, on the other hand, borders

the uniform high-density phase, in line with the location of
SOI highlighted in green in the inset of Fig. 2(a).
To further characterize the CCB-gas coexistence phase,

we performed simulations within this regime in a large
rectangular domain. This way, the CCB domain connects
with itself along the shortest dimension y, leading to a well-
defined interface [Fig. 3(d)]. The y- and time-averaged
density profiles shown in Fig. 3(a) indeed highlight two
bulk phases of nearly constant densities. The values taken
by hρA;Biy;t far away from the interfaces thus define a pair
of points in the composition plane that can be joined by a tie
line. Consistently with the usual picture of phase separa-
tion, shifting ðρ̄A; ρ̄BÞ along this tie line changes the relative
proportions of the gas and CCB phases while the corre-
sponding bulk densities are left unchanged.
TRS is however obviously broken at mesoscopic scales

in the CCB-gas coexistence phase, since chasing bands are
constantly created in the dense CCB domain and expelled
in the gas, where they quickly dissolve [Fig. 3(d) and SMov
3]. The outward mass flux from the chasing bands must
then be balanced by the diffusive flux from the resulting
excess particles in the gas, thereby maintaining the cohe-
sion of the CCB domain. The nontrivial structure of the
CCB-gas interface is also highlighted by the presence
of local polarization pointing toward the dilute regions
[Fig. 3(b)], at odds with the usual MIPS phenomeno-
logy [55,56]. We moreover note from Figs. 3(a) and 3(c)
that A particles accumulate at interfaces where their self-
propulsion speed is lowest, but move on average faster in
the dense CCB domain than in the dilute gas.
Remarkably, the nonequilibrium nature of the CCB-gas

phase coexistence also emerges over macroscopic scales, as

FIG. 3. (a)–(c) y- and time-averaged density (a), x component
of the polarity (b) and speed (c) profiles for both species at
various compositions along the tie line with Lx ¼ 6Ly ¼ 960.
(d) CCB-gas interface for the configuration corresponding to the
red curves in (a)–(c). (e) Typical domain size ζ evaluated from the
first moment of the structure factor [51] as function of time for
randomly initialized systems in the static phase separation (SPS),
CCB-gas phase coexistence, and pure CCB regimes. For each
curve in (a)–(c),(e), the corresponding composition is marked by
a symbol of the same color in Fig. 2(a).
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revealed by the anomalous coarsening behavior shown in
Fig. 3(f). Although in the regimes of pure CCB and static
phase separation the coarsening is arrested or follows the
Lifshitz-Slyozov t1=3 law [57] [green and blue symbols in
Fig. 3(f)], the late-time coarsening of phase-separated CCB
domains is characterized by an exponent ≈0.13 [magenta
symbols in Fig. 3(f)], significantly smaller than the 1

3
value

expected in passive systems [58] and for the coarsening of
dense MIPS domains [47–50,59]. We rationalize this result
by noting that larger CCB domains generate more bands—
and thus expel more mass into the surrounding gas—than
smaller domains, which may naturally slow down coars-
ening [59].
Using a minimal model including self-propulsion and

nonreciprocity, we have shown how the combination of
these two sources of activity leads to a chaotic chasing band
phase. Since it is involved in phase-separated configura-
tions at large nonreciprocity, this phase is moreover found
in a large portion of the phase diagram. Additionally,
although the corresponding phase-separated domains are
globally static, they still defy an equilibrium mapping as
evidenced by the observed abnormal coarsening behavior.
As they allow for the design of programmable quorum-
sensing motility responses, both genetically engineered E.
coli [61] and light-controlled microswimmers [38,62–64]
offer promising experimental platforms to observe this new
type of self-organized behavior.

We thank Xiaqing Shi and Hugues Chaté for their critical
reading of our manuscript. This work has received support
from the Max Planck School Matter to Life and the
MaxSynBio Consortium, which are jointly funded by the
Federal Ministry of Education and Research (BMBF) of
Germany, and the Max Planck Society.

Appendix A: Simulations of the microscopic model.—
Here, we give additional details on the microscopic
model (1) and discuss the underlying assumptions
behind its formulation. The Langevin equations (1) were
integrated using the Euler-Maruyama scheme with time
resolution Δt ¼ 0.1.
The local density fields ρ̃Sðr; tÞ entering the expression

of the quorum-sensing interaction in Eq. (1) were computed
as ρ̃Sðr; tÞ ¼

P
i ŵðjr − ri;SðtÞjÞ, with the linear weight

function

ŵðrÞ ¼
8<
:

3
πR2

�
1 − r

R

�
if r < R;

0 if r ≥ R;

that satisfies the normalization condition
R
R2 drŵðjrjÞ ¼ 1.

As mentioned in the main text, the dependency of the
particles’ self-propulsion speed with their density is mod-
eled as vSðρ̃A; ρ̃BÞ ¼ v0LSAðρ̃AÞLSBðρ̃BÞ with

LSS0 ðxÞ≡ 1þ κ tanh

�
η0SS0

κ

x − ρ0
ρ0

�
:

Therefore, the reference density value ρ0 satisfies
LSS0 ðρ0Þ ¼ 1 and ∂xLSS0 ðρ0Þ ¼ η0SS0 . Here, κ controls the
lower and upper limits of LSS0 ðxÞ. To prevent jamming of
particles at high densities, we set κ ¼ 0.7 so that the
minimum speed of species S is given by ≈0.09v0.
To keep the microscopic model minimal, we have

assumed a direct dependency of the particle motility in
the local density fields. We expect this approximation to be
well-verified for synthetic colloids controlled by optical
feedback loops, which allow for a fast motility response to
dynamical variations of the local density [23,38]. In the case
ofmicroorganisms communicating via chemical signals, the
limit of instantaneous quorum-sensing response requires
that the timescales associated with diffusion of chemicals
and the internal gene regulatory network are fast as com-
pared to the spatial dynamics of particles. Whether this
assumption is verified depends on the system of interest, but
the limit of fast quorum-sensing response should in general
qualitatively capture the relevant dynamics [37].
Another simplification used in the microscopic

model (1) consists in neglecting the short-range repulsive
interactions between particles. This assumption is well-
justified so long as the range of quorum-sensing inter-
actions R is much larger than the typical particles size σ.
In synthetic systems, R can be tuned arbitrarily, while
R ¼ 10σ was used in Ref. [23]. In the case of quorum
sensing regulated by chemicals, the scale R is set by the
typical distance a signaling molecule can diffuse before
being degraded. Estimates for the acyl-homoserine lactone
molecules that mediate the quorum-sensing interactions of
bacteria in Refs. [36,37] can reach a few millimeters [65],
thus several orders of magnitude larger then the typical size
of a bacterium.

Appendix B: The coarse-grained equations.—To
derive the field theory describing the binary mixture of
self-propelled particles with quorum-sensing interactions,
we follow the coarse-graining framework developed for
a single species [66]. As a starting point, we consider
the many-body probability distribution PðX; tÞ with
X ≡ fr1; r2;…; rN; θ1; θ2;…; θNg, and where N denotes
the total number of particles of the two species. From
the Langevin formulation (1), we get the statistically
equivalent Fokker-Planck equation

∂tP ¼ −
XN
i¼1

½∇ri · ðvsi ûðθiÞPÞ −Dr∂
2
θi
P�; ðB1Þ

where ûðθÞ ¼ ðcos θ; sin θÞ and si ¼ A or B denotes
the species of particle i. Without loss of generality,
we set si ¼ A for i ¼ 1; 2;…; NA and si ¼ B for i ¼
NA þ 1; NA þ 2;…; N with NA the total number of A
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particles. The one-particle probability densities fSðr; θ; tÞ
are obtained from P by integrating over all degrees of
freedom except that of one particle of species S. Hence,

we have fAðr1; θ1; tÞ≡ NA

�Q
N
i¼2

R
dri

R
2π
0 dθi

�
PðX; tÞ

while fB is defined in a similar way. Integrating
Eq. (B1) over the relevant coordinates, we thus
determine the dynamics of the A and B single-particle
distributions. For fA (the generalization to the species B
being straightforward), we obtain

∂tfAðr1; θ1; tÞ ¼ −∇r1 · ½GAðr1; θ1; tÞûðθ1ÞfAðr1; θ1; tÞ�
þDr∂

2
θ1
fAðr1; θ1; tÞ; ðB2Þ

where GAðr1; θ1; tÞ≡
�Q

N
k¼2

R
drk

�
vAðXrÞgAðXr; θ1; tÞ,

and we have used the shorthand notation Xr≡
fr1;…; rNg. The function gA is defined by NA

Q
N
k¼2R

2π
0 dθkPðX; tÞ≡ fAðr1; θ1; tÞgAðXr; θ1; tÞ. In general, the
quorum-sensing interaction term GA in (B2) depends on
the full many-body distribution. However, we now use
the fact that the particle speed is formally a function of
ρ̃A;BðXrÞ, which in the mean field limit can be expressed
in terms of the single particle densities:

ρ̃SðXrÞ ¼
X
j

ŵðjr1 − rjðtÞjÞδsj;S

≃
Z

dr0ŵðjr1 − r0jÞϕSðr0; tÞ≡ ϕ̃Sðr1; tÞ;

where the S particle density is formally defined as
ϕSðr; tÞ≡

R
2π
0 dθfSðr; θ; tÞ. We expect this approxi-

mation to be reasonably valid in sufficiently dense
systems. In the mean field limit considered here, the
function vA in the expression of GA thus only depends
on the position variable r1. Using that by definition�Q

N
k¼2

R
drk

�
gAðXr; θ1; tÞ ¼ 1, we therefore obtain the

following after dropping indices on the r and θ
variables:

∂tfS ¼ −∇ ·
h
vSðϕ̃A; ϕ̃BÞûðθÞfS

i
þDr∂

2
θfS: ðB3Þ

To simplify Eq. (B3) further, we use the local approxi-
mation ϕ̃SðrÞ ≈ ϕSðrÞ, such that vSðϕ̃A; ϕ̃BÞ ≈ vSðϕA;ϕBÞ.
Because of angular diffusion, we expect the

dynamics of the system to be well-captured over long
timescales by that of the low order orientational moments
of the distributions fA and fB. Therefore, we expand the
distribution fS in angular Fourier modes: fSðr; θ; tÞ ¼
ð2πÞ−1 P∞

k¼−∞ fk;Sðr; tÞ expð−ikθÞ. It is straightforward
to check that the first three modes of fS correspond to
the complex representation of the density ϕSðr; tÞ, polarity
pSðr; tÞ and nematic order QSðr; tÞ fields. For the derivation

below, it is convenient to work with complex notations for
which ûðθÞ ↔ eiθ. We therefore define the complex
gradient ▽≡ ∂x þ i∂y, and obtain from Eq. (B3)

∂tfk;S ¼ −
1

2
▽�½vSðϕA;ϕBÞfkþ1;S�

−
1

2
▽½vSðϕA;ϕBÞfk−1;S� −Drk2fk;S; ðB4Þ

where star denotes complex conjugate. The equation for the
kth angular mode of fS contains a linear damping term
−Drk2fk;S. Considering the long time and large scale
limits, we thus enslave the dynamics of the high order
modes to that of the slow ones. As the densities are the only
conserved fields, it is customary in this context to retain
only them as hydrodynamic fields, while enslaving higher
order modes [40]. Motivated by the presence of local
polarization in the CCB phase, here we instead retain both
ϕS and the polarity fields pSðr; tÞ. Namely, neglecting fk;S
for k ≥ 3, we get from (B4) closed equations for ϕS, f1;S,
and f2;S. Setting ∂tf2;S ¼ 0, we solve the equation for f2;S,
which leads to f2;S ¼ −ð8DrÞ−1▽ðvSf1;SÞ. Replacing this
expression in the equation for f1;S, we get after going back
to vector notations

∂tϕS ¼ −∇ · ðvSpSÞ; ðB5aÞ

∂tpS ¼ −
1

2
∇ðvSϕSÞ −DrpS þ

vS
16Dr

ΔðvSpSÞ

þ ð8DrÞ−1½∇ðvSpSÞ�ST ·∇vS; ðB5bÞ

where ½A�ST ≡ 1
2
½Aþ AT − ITrðAÞ� is the symmetric and

traceless part of the tensor A. Performing the linear stability
analysis of Eqs. (B5) around their homogeneous disordered
solution ϕS ¼ ρ̄S and pS ¼ 0, we obtain the results pre-
sented in the main text.
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