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Abstract
In molecular biology, just as in many other fields of science, data often come in the form of matrices or 
contingency tables with many observations (rows) for a set of variables (columns). While projection 
methods like principal component analysis or correspondence analysis (CA) can be applied for obtaining an 
overview of such data, in cases where the matrix is very large the associated loss of information upon 
projection into two or three dimensions may be dramatic. However, when the set of variables can be 
grouped into clusters, this opens up a new angle on the data. We focus on the question of which 
observations are associated to a cluster and distinguish it from other clusters. CA employs a geometry 
geared towards answering this question. We exploit this feature in order to introduce Association 
Plots for visualizing cluster-specific observations in complex data. Regardless of the data matrix 
dimensionality Association Plots are two-dimensional and depict the observations associated to a cluster of 
variables. We demonstrate our method on two small data sets and then use it to study a challenging 
genomic data set comprising >10,000 samples. We show that Association Plots can clearly highlight those 
observations which characterise a cluster of variables.
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1 Introduction
A fundamental question in genomic data analysis is the following: Given a cluster of samples (var
iables), which genes (observations) are characteristically highly expressed in these samples, i.e. are 
associated to these samples? Approaches to this question occur in many forms, be it as biclustering 
(Pontes et al., 2015; Tanay et al., 2002) or in the search for marker genes. While for small data sets 
answering this question is fairly easy, for data sets with a higher number of samples the situation is 
more complex and poses a significant challenge to analysis and visualisation methods currently 
available.

Although methods such as principal component analysis (PCA) have been successfully em
ployed for many years, they have serious limitations when applied to large and complex data 
sets. For such data, the first two or three principal components may explain only a small fraction 
of the total variance, often well below 5% of the total variance. This renders the low-dimensional 
representation, obtained after projection, effectively pointless due to the massive loss of informa
tion. We are faced with the challenge of visualising information from higher dimensions.

In this work, we focus on the analysis and visualisation of a large data set in the presence of a 
known clustering of variables. This is a realistic setting since clustering has become a routine step 
in data analysis, or, in many cases, a clustering is imposed naturally by the structure of the data. 
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Given a cluster, we will define an Association Plot, which can visualise the cluster-specific gene sets 
in a manner independent of the size of the data set. Association Plots are derived from correspond
ence analysis (CA) (Benzécri, 1973; Greenacre, 2017, 1984), itself a data projection technique 
closely related to PCA. In CA, the joint embedding of observations (rows) and variables (columns) 
from a data matrix in one space conveys information as to the association between variables and 
observations. We take advantage of this CA property for our definition of Association Plots. The 
Association Plot is planar, although it is not a projection, and it stays two-dimensional even when 
representing very high-dimensional data.

This article is organised as follows. First, we will introduce the formalism behind CA and 
Association Plots. Two example data sets, one simulated and one from economics, will serve to 
illustrate the new visualisation. Subsequently, we will introduce denoising based on singular value 
decomposition (SVD) and address statistical and scoring issues about the visual patterns one ob
serves. Lastly, we will use the new method to study a very large and difficult to interpret gene ex
pression data set.

2 Contingency tables and association
We assume that data are given in the form of a matrix with non-negative entries. The methods we 
are going to use have traditionally been applied to contingency tables, which contain count data 
and are therefore also integer valued. For our purposes, it suffices that the entries of the matrix are 
non-negative but not necessarily integer. In terms of application, we think, e.g. of gene-expression 
values determined using the RNA-seq technology (Wang et al., 2009). A row corresponds to a 
gene’s expression values, while a column corresponds to the biological sample in which the meas
urement was performed. Like with any contingency table, we will look at row frequencies and col
umn frequencies, and compare observed frequencies in a matrix cell with the cell’s expected 
frequency.

Our particular question pertains to the associations between rows and columns, or between 
rows and a cluster of columns. For a mathematical definition of association, we follow the logic 
of contingency tables, where the likelihood ratio for the entry in cell (i, j) (the entry in the ith 
row and jth column) to be a product of chance would be pij

eij
, the observed frequency in the 

cell divided by the expected frequency. When this ratio is close to 1, we have little reason to 
believe that there is an association, whereas a large ratio hints at an association between the 
row and the column. Subtracting 1 from the ratio we can write this as pij−eij

eij
, which will be 

near 0 in the absence of an association. We call this quantity the ‘association ratio’ and abbre
viate it as a(i, j).

Since we are also interested in the association between an observation and a cluster of variables, 
we proceed to add up the association ratio for the respective cells of the matrix. Let C, |C| = K be a 
cluster of K variables j1, . . . , jK which behave similarly. We extend the notation to clusters by de
fining

a(i, C) :=
1
K

􏽘K

l=1

a(i, jl) 

and call this the association ratio of the observation with the cluster C.

3 A rehash of CA
CA is a projection method for visually representing a data matrix in a high-dimensional space. 
While it was originally intended for analysis of contingency tables, Gower et al., 2011, p. 290, 
state that ‘the elements of X [the data matrix] may contain any non-negative values’. Unlike 
PCA, CA does not submit the data matrix itself to a singular value decomposition, but the ‘ob
ject of interest’ is the matrix of Pearson residuals derived from the data matrix. CA is computed 
in the following steps. Let M be a matrix with G rows and C columns. By mgc, we denote a value 
in the gth row and cth column, and by m++ the grand total of M. One calculates an observed 
proportion matrix P with elements pgc = mgc/m++ and uses this for calculating row and column 
masses. The gth row mass, pg+, is defined as the sum across the gth row, and the cth column mass, 
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p+c , as the sum of all values in the cth column of P. With the expected proportions egc = pg+∗p+c 

Pearson residuals fgc = (pgc − egc)/
��
e
√

gc are computed. For comparison to contingency tables, 
note that the sum of the squares of all Pearson residuals, multiplied by the grand total m++ 
(Greenacre & Blasius, 1994, (3.2.12)) would form the χ2 statistic.

In analogy to PCA, it is now this matrix F = (fgc) that gets submitted to singular value decom
position, factoring it into the product of three matrices: F = USVT . S is a diagonal matrix and its 
diagonal elements, scc, are known as singular values of F. Furthermore, the matrices U (with ele
ments ugc) and V (with elements vgc) contain left- and right-singular vectors, respectively, which 
are represented by the columns. From the left and right singular vectors coordinates of points 
for rows and columns in an high-dimensional space are computed. The coordinates of ν(g) depict
ing the gth row are defined as ν(g)

n = ugn/
��
p
√

g+∗snn, for n = 1, . . . , m, where m = min (G, C) − 1 
(Greenacre, 2017, (A.8)). The coordinates of ω(c) representing the cth column are given by ω(c)

n = 
vcn/

��
p
√

+c (Greenacre, 2017, (A.7)). In the literature (Greenacre, 2017), this choice of scaling is 
called ‘asymmetric’, with the rows represented in ‘principal coordinates’ and the columns in 
‘standard coordinates’.

It is a key feature of CA that one can interpret the joint map of points for rows, the ν’s, and 
columns, the ω’s, in the same space. The (full) dimension of this space will be min (G, C) − 1, 
which above we called m, (Greenacre, 2017, p. 203) and both sets of points can be thought of 
as elements of Rm. We will refer to this space as the CA space. Traditionally, one visualises only 
the first 2 or 3 dimensions and calls this a biplot. In the examples below we will, where mean
ingful, also depict the two-dimensional biplot, although only for illustration purposes. The fo
cus of our exposition, however, is on large data sets where too much information would be lost 
upon projection into two dimensions. Instead of ‘explained variance’ that is used in PCA, CA 
speaks of ‘inertia’. Inertia is the sum of the squares of the elements of the matrix F, or in other 
words, the χ2 statistic divided by the grand total m++ (Greenacre, 2017, p. 28). Just like the 
explained variance in PCA, inertia gets approximated increasingly better with increasing num
ber of dimensions used.

The geometry of the Association Plots to be defined below rests on two key features of CA: 

• A column point can be expressed as a weighted sum of row points, where the weights 
are related to the contribution of the rows to the particular column in P. This is 
Greenacre’s transition equation (Greenacre, 2017, (A.16)). It is the reason for the clus
tering of similar rows (observations) and similar columns (variables), respectively, in CA 
space.

• What is even more important for our application is that the inner product of ith row- and jth 

column-vector approximates the respective association ratio, i.e.

a(i, j) = 〈ν(i), ω(j)〉 + ϵ 

where in the m-dimensional CA space the error term ϵ = 0. This is Greenacre’s reconstitu
tion formula (Greenacre, 2017, formula (13.5) or (A.14)), and it is a consequence of the 
SVD which was used to compute the coordinates. It pertains directly to our goal of de
scribing association in geometrical terms: Due to the inner product, the row-vectors (ob
servations) that are associated to a column-vector (variables) lie in the direction of that 
column; the more aligned the two are, and the longer the vectors, the higher the associ
ation. When a low-dimensional projection is permissible, this feature is usually clearly 
visible.

Note that the reconstitution formula also allows for generalisation to clusters: 
row-points that are associated to a cluster of columns (variables) lie in the direction of these 
(clustered) variables. Since the inner product is bilinear, it also means that the association 
ratio sums nicely over groups of observations or clusters of variables. This will be utilised 
below.
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4 Association Plots
A cluster of variables C = j1, . . . , jK can be represented by the centroid of its variable vectors ω(jl), 
l = 1 . . . K in CA space. We call this centroid 􏿻X:

􏿻X :=
1
K

􏽘K

l=1

ω(jl) 

Due to linearity, we can see the average association ratio also in the inner product between an ob
servation and the vector from the origin to this centroid. Let 􏿻r be an observation-vector in CA 
space representing row r of the data. Then, we can express the association between r and the clus
ter C as:

a(r, C) =
1
K

􏽘K

l=1

〈r, ω(jl)〉 + ϵ = 〈􏿻r, 􏿻X〉 + ϵ 

This is a trivial consequence of the reconstitution formula and the definitions from above.
This observation forms the basis for a simple two-dimensional visualisation of the high- 

dimensional information. The inner product is determined by the length of 􏿻r, |􏿻r |, the length of 
􏿻X, |􏿻X|, and the angle between the two vectors. We call the angle ϕ(􏿻r ), or just ϕ where the context 
is clear. In this notation, the inner product from above can be written as

〈􏿻r, 􏿻X〉 = |􏿻r | |􏿻X| cos (ϕ(􏿻r )) 

Therefore, it makes sense to introduce a two-dimensional representation where the x-axis corre
sponds to the direction of the centroid vector, and we represent 􏿻r by the following x- and 
y-coordinates:

x(􏿻r ) := |􏿻r | cos (ϕ(􏿻r ))

y(􏿻r ) := |􏿻r | sin (ϕ(􏿻r )) 

Clearly, |􏿻r | cos (ϕ(􏿻r )) is the length of the projection of 􏿻r onto 􏿻X, or 〈􏿻r, 􏿻X
|􏿻X|

〉, and |􏿻r | sin (ϕ(􏿻r )) is the 

length of the orthogonal distance of 􏿻r to 􏿻X, or 􏿻r − x(􏿻r )
|􏿻X|
􏿻X

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌. Also, |􏿻r | is equal to the length of the 

vector (x(􏿻r ), y(􏿻r ))T . We define the Association Plot for cluster C as the two-dimensional plot where 
each observation-vector 􏿻r in CA space is represented by these two-dimensional points (x(􏿻r ), y(􏿻r )).

Introducing X̃ as the two-dimensional vector

|􏿻X|
0

􏼒 􏼓

=: X̃ 

we can ascertain the conservation of the inner products, and with it the association ratio, between 
CA space and Association Plot:

a(r, C) = 〈􏿻r, 􏿻X〉 + ϵ = |􏿻r | cos (ϕ)|􏿻X| + ϵ = 〈 |􏿻r | cos (ϕ)
y(􏿻r)

􏼒 􏼓

, |
􏿻X|
0

􏼒 􏼓

〉 + ϵ = 〈 x(􏿻r )
y(􏿻r)

􏼒 􏼓

, X̃〉 + ϵ.

This demonstrates that the association ratio can be seen both as an inner product in the 
m-dimensional CA space as well as an inner product in the two-dimensional Association Plot. 
When the full m dimensions are used for the vectors 􏿻r and 􏿻X, the error term ϵ will be 0. In 
Section 7, we will propose to use fewer dimensions than m, actually relying on the approximation.
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From this simple line of algebra above, one also notes that y(􏿻r ) gets multiplied with 0. This 
means that the inner product, and with it the association ratio between observation and cluster, 
is constant along vertical lines in the Association Plot. Intuitively, this is due to the fact that by def
inition the association ratio a(r, C) calculated for a given cluster of variables is not influenced by 
other variables or clusters in the data, which might also attract an observation. The angle ϕ con
tributes information because the less competition there is for an observation from other clusters, 
the smaller will be ϕ, whereas when an observation is shared also by other clusters, this will be re
flected in a larger ϕ. This will be visible in the example below, and will be studied further in the 
section on significance of the visual patterns.

To aid interpretation, one can also embed samples into the Association Plot using the same co
ordinate system of projection length onto the centroid vector vs. orthogonal distance to it. The ex
amples to follow will illustrate that closely clustered sample points in an Association Plot indicate a 
coherent cluster, while widely spread out points indicate a heterogeneous cluster. When one sus
pects that two clusters are close to each other, one can also display their respective positions in the 
Association Plot to check on the proximity between clusters. This will be done for the 
Genotype-Tissue Expression (GTEx) data in Section 9.

5 Demonstration of Association Plots on two simple data sets
While the ideas laid out here are really meant for the analysis of very large data sets, we want to 
first show in two simple examples how Association Plots work. We will start with a simulated data 
set and then proceed to employment data from the International Labor Organization.

We generated a simulated data set of 100 rows (observations) and 15 columns (variables). The 
15 variables fall into 5 clusters of 3 variables each. This was generated using the function make_ 
blobs from the Python library scikit-learn (Pedregosa et al., 2011) which can be used for generat
ing isotropic Gaussian point clouds for clustering (see Section 10). The clusters are clearly visible 
upon projection into a two-dimensional correspondence analysis biplot (Figure 1), in which the 
observations (small circles) span the space between the five clusters of variables (crosses).

Figure 1. Two-dimensional correspondence analysis projection of the simulated data. The projection arranges the 
cluster members in proximity to each other. Observations pointing toward Clusters 1, 2, and 4 are recognisable, 
while a direction toward Cluster 3 or 5 is not visible in this two-dimensional projection.
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We aim at delineating the observations associated to a given cluster. As described in Section 3
(reconstitution formula), in CA, space the observations characteristic for a given cluster of varia
bles will be located in the direction of this cluster. Therefore, in the two-dimensional CA projection 
of the simulated data the observations which are located in the direction of Cluster 1 (red crosses) 
are expected to be associated to this cluster. In the CA biplot the observations located in the dir
ection towards Cluster 1 are easy to see because the planar projection happens to nicely resolve 
this.

Alternatively, the observations associated to Cluster 1 can be visualised in the Association Plot 
for this cluster (Figure 2a). In this plot, one can observe that all three variables belonging to Cluster 
1 are clearly separated from the other variables and the observations associated to Cluster 1 are 
located in the right part of the plot. This selection of observations is confirmed in Figure 2b where 
one can see that the 10 observations located most to the right (red circles in Figure 2b) are indeed 
highly over-represented in Cluster 1 in comparison to the remaining clusters.

(a) (b)

(c) (d)

Figure 2. Identification of observations associated to a given cluster from the simulated data using Association 
Plots. (a–c) Association Plots were generated for (a) Cluster 1 and (c) Cluster 3 of variables using four 
correspondence analysis dimensions. 10 observations with the highest association for a given cluster (according the 
generated Association Plot) are located furthest to the right and highlighted in color ((a) red and (c) green). (b, d) 
Over-representation of 10 detected observations associated to (b) Cluster 1 or (d) Cluster 3.
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The challenge, however, lies in delineating the observations associated to clusters which are not 
as nicely visible in the low-dimensional biplot as Cluster 1. For example, identification of obser
vations associated to Cluster 3 (dark green crosses) from the simulated data is not possible based 
on the two-dimensional data projection. The Association Plot generated for Cluster 3 (Figure 2c) 
reveals a set of observations associated to this cluster, which can again be confirmed in a box plot 
of the observations (Figure 2d).

Our second illustrative example is a real data set and therefore not as ‘clean’ as the simulated 
data. It comes from the International Labour Organization and describes people’s sector of em
ployment in 233 countries (International Labour Organization, 2020). Employment sectors are 
agricultural sector, industry sector, services sector, or unemployed. Data are further divided ac
cording to gender (m/f) and year (2000, 2005, 2010, and 2015). This results in a matrix with 
233 rows for the countries and 32 columns for employment category, gender, and year. For ex
ample, the column ‘industry, female, 2005’ would represent the percentage of female labour force 
of a given country that was employed in industry in 2005. Details on the data set can be found in 
Section 10.

Data categories are ‘agriculture’, ‘industry’, ‘services’, and ‘unemployed’, further refined by gen
der. These form homogeneous groups in the data which is easily confirmed by visual inspection of 
the two-dimensional CA projection (Figure 3). The year from which the data comes seems to have 
a lesser influence - at least in the 2D projection.

The blue dots in the biplot represent the countries and their location within the plot provides a 
clue on the employment profile of that country in 2000–2015. For example, countries in which a 
high percentage of the labour force was employed in the agricultural sector are located towards the 
agricultural sector cluster. Based on this, it is possible to identify countries which were the employ
ment leaders in the agricultural sector. This is a simple application of the interpretation of the di
rections as discussed with the reconstitution formula. However, the clusters for industry and 
services lie very close to each other in the 2D projection, and it is hard to discern whether there 
are countries specifically associated to either of the two categories.

Figure 3. Two-dimensional correspondence analysis projection of the employment data. The projection allows 
discerning four main clusters: ‘agriculture sector’, ‘services sector’, ‘industry sector’, and ‘unemployed’. Each of 
these clusters contains data points from 4 years (2000, 2005, 2010, and 2015). The location of the countries, 
represented in the biplot by points, implies their employment profiles in the years 2000–2015.
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Finding out which countries are the leaders in, say, the services sector is made possible by the 
respective Association Plot (Figure 4a). In the figure, one can clearly see that the service category 
(represented by yellow crosses) is separated from the other employment clusters (black crosses). 
The yellow crosses are in turn divided into two groups, which correspond to the male and female 
data. The countries with the highest percentage of labour force employed in the services are located 
towards the right part of the plot. Starting from right, the leaders are: Hong Kong, Luxembourg, 
Guam, and Kuwait followed by Macao, Saudi Arabia, Brunei Darussalam, Singapore, 
Netherlands, and the UK. Representative barplots for some of these countries are given in 
Figure 4b–e. The countries with the lowest percentage of the labour force employed in services 
are on the opposite side of the Association Plot (Burundi, Ruanda, Central African Republic, 
Niger, and Rwanda). The Association Plot visualises this information while it would be invisible 
in the low-dimensional projection. The Association Plot for the industry cluster (Online 
Supplementary Material, Figure S1) actually indicates a lack of countries exclusively associated 
to industry. This is represented by a clear distance between industry categories and countries, as 
well as by the lack of a tail of points extending toward the cluster members in the Association 
Plot generated for the services sector.

6 Dimensions: noise reduction rather than projection into two or three 
dimensions
Traditionally, both PCA and CA are performed with the goal of depicting the information either in 
the plane or, possibly, in three dimensions. Where this implies a large loss of information, the SVD 
can still provide for noise reduction by cancelling the dimensions that belong to the small singular 
values. This is common practice in the analysis of large data sets. Employing this mechanism im
plies a projection into a still high-dimensional subspace, which cannot be visualised but at least 
maintains the relevant information in the data.

(a)

(c) (d) (e)

(b)

Figure 4. Association Plot for services sector. (a) The Association Plot was generated from the employment data 
using eight correspondence analysis dimensions. The countries with the highest percentage of population 
employed in the services sector (yellow crosses, on the right side) are located towards the right part of the plot. The 
names of four example leader countries are shown. The countries with the lowest proportion of population 
employed in services are located towards the left part of the plot, in the direction of other employment sectors (black 
crosses, on the left side). (b–e) Employment profiles of the example leaders in services sector: (b) Kuwait, (c) 
Argentina, (d) Singapore, and (e) Luxembourg. The presented barplots illustrate the percentages of female and male 
population in given country employed in different sectors in the years 2000–2015.
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For our purposes, we adopt this procedure for noise reduction in the CA space, i.e. before 
computing Association Plots. The estimation of the number of dimensions that should be re
tained, can be based on e.g. the number of clusters in the investigated data, or can be done com
putationally be analysing the scree plot, i.e. the plot showing the sorted singular values from 
largest to smallest. We draw on the ‘elbow rule’ (Ciampi et al., 2005) which is based on a scree 
plot for original and randomised data. A randomised data matrix is generated by permuting 
the values for each variable separately. Subsequently, CA is applied to the resulting matrix 
and a vector of sorted randomised singular values is calculated. After repeating these steps 
multiple times, we compute an average of the first singular values, the second singular values, 
etc. The number of dimensions to retain is then chosen as the intersection point between the 
actual singular values and the average of the random singular values. See Online 
Supplementary Material, Figure S4 for an example.

When data happen to fall nicely into clusters, the number of dimensions to be retained should 
roughly reflect the number of clusters in the data. For example, the Association Plot in the employ
ment example above was computed for eight dimensions. However, many papers have been writ
ten on the problem of selection of the right number of singular values (see the literature on spectral 
clustering, e.g. Von Luxburg, 2007; Zelnik-Manor & Perona, 2005). Luckily, visual inspection 
shows that the Association Plot is fairly robust with respect to the precise choice of dimension 
for the computation. An example is shown in Online Supplementary Material, Figure S2, where 
Association Plots were calculated for the GTEx example (see below) based on 37, 96, or 225 di
mensions kept from the CA. These numbers were obtained using three different approaches for 
selecting optimal number of dimensions (Ciampi et al., 2005; Greenacre & Blasius, 1994) and 
which are described in Section 10. Inspection of the cluster-specific gene sets shows large overlaps 
across these choices.

7 Statistical significance and scoring of visual patterns
In the examples above, we have interpreted the association of an observation r to a cluster of 
variables by how large its x-value x(r) is in the Association Plot for this cluster. The reasoning is 
that x(r) is proportional to the association ratio with the length of the cluster centroid vector as 
proportionality factor: a(r, C) = |􏿻r | cos (ϕ)|􏿻X| = x(􏿻r )|􏿻X|. Thus, we first focus on estimating the 
statistical significance for x(r), i.e. how far to the right a point lies in the Association Plot. 
Furthermore, we are typically looking at large numbers of observations such that a multiple 
test correction is necessary. To this end, we will also estimate FDR q-values (Storey & 
Tibshirani, 2003).

We estimate an empirical null distribution for x(r) from permuted data. Following the SAM 
(Significance Analysis of Microarrays) method (Tusher et al., 2001), we randomly permute obser
vations within each row of the data matrix. This can be repeated to generate larger samples for the 
null distribution. Applying CA alone to such randomised data would lead to a dense, roughly el
lipsoidal cloud of observation points around the origin. For a random Association Plot, however, 
it does not suffice to randomise the data, but one also needs to define a random cluster of variables 
in order to orient the Association Plot in the direction of the cluster centroid. Additionally, we have 
observed that the cardinality of the cluster also influences the appearance of a random Association 
Plot. Therefore, in the generation of a null distribution for x(r) in an Association Plot we also emu
late the cluster size of the real Association Plot.

Using the randomly generated data, we can read off the empirical p-values for the x(r)-values of 
a real data set. The false discovery rate (FDR, Benjamini & Hochberg, 1995) is defined as the ex
pectation of the ratio of false positives (FD) over the rejected hypotheses (SD, like in ‘Significant’). 
Storey and Tibshirani (Storey & Tibshirani, 2003) introduce the ratio itself as the q-value assigned 
to the level of a particular observation.

In order to estimate FD, we need to estimate what part of the data points comes from the null. 
Storey and Tibshirani (2003) proceed via the uniformity of p-values under a distributional law in 
order to estimate the proportion of true positives. In the absence of a distributional law, one uses 
empirical estimates stemming from the comparison of a (random) control experiment with the real 
experiment (see e.g. Zhang et al., 2008). In our problem, we have the Association Plot to give us a 
very clear picture of the true positive points. When plotting the randomised points, one observes a 
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V-shaped cloud of points, which is the Association Plot’s view on the dense cloud of points around 
the origin in CA space. See Figure 5a for an example. The width of the ‘V’ provides information as 
to the area occupied by chance, to the right of which true positives are found in the real data. In 
order to count the number of true positives, we determine the angle of the ray delineating the ‘V’ 
towards the right. Therefore, for each point from Figure 5a we first compute the angle between a 
given point and the x-axis. The smoothed histogram of the computed angles, presented in 
Figure 5b and computed using the R function density, allows then for the choice of a threshold 
on the angle α. One can, e.g. choose the line delineating 1% of the points to the right of the V which 
in the example of the figure would imply a slope of 68.8◦. Points to the right of this line we count as 
true positives. Of course, this is a slight overestimate but in practice we see that the number of true 
positives by far outweighs possible null points from this rule.

Based on the above reasoning, we can estimate the number of true positives and thus also the 
number of points stemming from the null distribution. Following Storey and Tibshirani 
(2003), we call this latter number m0 and estimate the expected number of false positives above 
t, E(FD(t)), as m0 ∗pval(t). t takes the x-values of the data points to the right side of the 
Association Plot and pval(t) denotes the empirical p-value. E(SD(t)) is just the number of points 
with x(r) above the particular level t. The q-values E(FD(t))/E(SD(t)) may occasionally increase 
as t increases. As a remedy, (Storey & Tibshirani, 2003), use the quantity q̂ where such a larger 
q-value is substituted by the prior (small) one. This q̂ is what we report together with the 
p-values. See Table 1 for an example output showing for the most significant measurements 
x(r), p-value, and q̂.

When focusing on the association ratio and x(r), we do not account for the (valuable) infor
mation conveyed by the y-axis y(r) of a point in the Association Plot. Points near the x-axis, i.e. 
with y(r) small, are more specific to the chosen cluster, while a large y(r) indicates that other 
clusters also compete for a point. Thus, besides the association ratio we also propose a second, 
heuristic statistic denoted Sα. Among points of equal x(r), this statistic is intended to give pref
erence to the points with smaller y(r). For the definition, we again draw on the shape of the ran
dom point cloud as described above. With the delineating line of angle α defined by the same 

(a) (b)

Figure 5. Scoring system of candidate genes. (a) Association Plot generated from randomised Genotype-Tissue 
Expression data for a ‘pseudo’-cluster comprising 600 samples. For each point the angle between a given point and 
the x-axis was calculated. 1% of points with the lowest angle determines the α threshold, which will be further used 
for calculating the gene scores Sα in the original data. More information on the Genotype-Tissue Expression data is 
presented in Section 8. We use this example as a base for computing the Sα scores in the Association Plot for the 
heart tissue from Figure 7a. (b) Estimated density of the points upon varying the angle from 0 to 180◦. In this 
example, the threshold of 1% resulted in α = 68.8◦.
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Table 1. Statistical significance of genes from the Association Plot generated for the heart cluster from the GTEx 
data.

Gene name x(r) p-value q̂

BMP10 4.43 8E−05 0.038

MYL7 4.38 8E−05 0.038

NPPB 4.30 8E−05 0.038

NPPA 4.27 8E−05 0.038

MYL4 4.20 8E−05 0.038

AC093642.6 4.15 8E−05 0.038

MYBPC3 4.08 8E−05 0.038

TNNI3 4.04 8E−05 0.038

AC018464.3 4.03 8E−05 0.038

MYH6 3.99 0.0001 0.038

TNNT2 3.98 0.0001 0.038

RP3-527G5.1 3.94 0.0001 0.038

RP11-532N4.2 3.92 0.0001 0.038

RP11-264A11.1 3.90 0.0001 0.038

SBK2 3.78 0.00012 0.039

TECRL 3.72 0.00016 0.039

ACTC1 3.67 0.00016 0.039

NKX2-5 3.62 0.00016 0.039

ANKRD1 3.46 0.00016 0.039

LINC00881 3.43 0.00016 0.039

MYBPHL 3.43 0.00016 0.039

NMRK2 3.07 0.00018 0.040

NPY6R 2.96 0.00018 0.040

MIR208B 2.90 0.00022 0.042

RP11-480G7.1 2.89 0.00022 0.042

RP11-432J24.5 2.83 0.00022 0.042

RP11-245G13.2 2.71 0.00022 0.042

CSRP3 2.68 0.00024 0.042

MYOZ2 2.68 0.00024 0.042

MYL3 2.44 0.00028 0.046

XIRP1 2.43 0.00028 0.046

FABP3 2.30 0.00034 0.054

HSPB3 2.19 0.00038 0.058

…

…

NEBL 1.47 0.00102 0.093

…

…

ATP5B 0.19 0.02526 0.725

…

…
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criteria, the heuristic scoring function Sα(x, y) for an individual point (x, y) in the Association 
Plot is defined as:

Sα(x, y) = x −
y

tan α
.

Sα is 0 along the delineating line of degree α which the simulation yielded and which in Figure 5a is 
annotated with ‘Sα = 0’. The scoring function Sα is designed such that parallels to this line consti
tute level lines of increasing Sα as they shift to the right (see Figure 5a). This serves the purpose of 
giving higher scores to points further towards the right, while at the same time decreasing the 
scores as one moves upward. With this choice of Sα one can distinguish among observations which 
otherwise would have the same association ratio with respect to a cluster. The data analysis below 
will illustrate and support this choice of the scoring function Sα.

8 Analysing the GTEx data
The ‘GTEx’ data (Melé et al., 2015) is a very large data set comprising 11,688 tissue samples gen
erated by RNA-seq from 30 human tissues collected from different donors (see Methods for GTEx 
data processing and Online Supplementary Material, Table S1 for number of samples per tissue). 
Each column contains one of many replicates for each tissue. The tissue information provides a 
natural clustering of the columns, and we interpret each tissue as one cluster. The rows of the ma
trix correspond to the genes whose expression levels were measured, of which we use the 5,000 
genes with the largest variance across columns of the chi-square component matrix. Altogether 
the matrix has a size of 5,000 × 11,688. Several aspects of the data have been analysed in the pub
lications of the GTEx consortium (see e.g. Melé et al., 2015) or in conjunction with specialised 
methods development (see, e.g. Dey et al., 2017). The question we address is ‘Which genes are as
sociated to a certain tissue?’. In biology, this corresponds to the search for so-called marker genes 
for a tissue.

We first conducted CA and projected the data into a three-dimensional subspace. The three di
mensions of this projection together explain only ca. 24% of the inertia in this data set. The plot is 
clearly organised around the three directions for the tissues: pancreas, blood, and pituitary gland 
(Figure 6a). Genes that are located in one of these three directions are known to be specifically ex
pressed in the tissue represented by the given direction. Alternatively, to delineate all genes specific 
for the given tissue one can generate an Association Plot. In Figure 6b, we present the Association 
Plot computed for the cluster of pancreas samples. Pancreas is the tissue which is clearly separated 
from other tissues in the three-dimensional projection of the data, and thus, the Association Plot 
for pancreas (Figure 6b) contains no surprise: Many genes point to the right, in the direction of the 
pancreas centroid. We provide a zoom into the right tail of the plot. This clearly shows a set of 
pancreas-specific genes, of which we coloured in red the known pancreas marker genes as deter
mined by the Human Protein Atlas (Uhlén et al., 2015).

The real challenge, however, lies in the invisibility of the remaining 27 tissues in the 
3D-projection. These tissues cannot be distinguished from each other since they form a dense 
cloud around the origin of the coordinate system. Consequently, it is also impossible in the 
3D-projection to identify marker genes for these tissues. Yet, any of these ‘invisible’ tissues can 
be analysed using an Association Plot to extract further tissue-specific information. Figure 6c de
picts the Association Plot generated for the liver samples. Again, a zoom into the right tail of the 
plot shows numerous genes, a subset of which are known as liver-specific marker genes as given by 
the Human Protein Atlas (Uhlén et al., 2015). One can in principle go through the tissues in this 
manner and for each of them generate one Association Plot which will highlight genes located in 
the direction of the given tissue cluster in the CA space, and thus, whose expression is character
istic for this tissue. As another representative example heart-specific genes are shown in the 
Association Plot generated for the heart cluster (Figure 6d).

Until this point, we have only focused on the associations between genes and a cluster of samples 
revealed by Association Plots. However, in addition to this, Association Plots can also provide in
formation on the similarities between clusters. Although in the GTEx data, we can distinguish 

1034                                                                                                                              Gralinska and Vingron
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/72/4/1023/7192360 by M
ax-Planck-Institut für m

olekulare G
enetik user on 05 O

ctober 2023

http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad039#supplementary-data


30 clusters representing 30 distinct tissues, between some of these clusters we expect to find gene 
expression similarities. For instance, due to their biological identities, tissue pairs such as nerve 
and brain, or muscle and heart are expected to share the characteristic expression of a higher 
amount of genes than with the remaining tissues.

(a) (b)

(c) (d)

Figure 6. Applying correspondence analysis to Genotype-Tissue Expression data. (a) Classical correspondence 
analysis projection into 3D subspace, which allows discerning three different tissues (pancreas, blood, and pituitary). 
Other tissues remain lumped in the centre of the observed structure. Association Plots enable obtaining further 
tissue-specific information. (b–d) The Association Plots were generated based on the first 96 correspondence 
analysis dimensions and can be used for delineating pancreas- (b), liver- (c), and heart-specific (d) genes. Such genes 
are located in the right bottom part of the plot. Red colour indicates marker genes from Human Protein Atlas for a 
given tissue. The presented Association Plots serve as examples. Each tissue can be inspected separately and 
respective marker genes can be visualised.
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The similarity between muscle and heart is visible in the Association Plot for muscle (Online 
Supplementary Material, Figure S3a). There, many heart samples (red crosses) point towards the 
muscle samples (orange crosses), which indicates an overlap between the gene expression profiles 
of these two tissues. The remaining 28 tissues are located in the left part of the plot and are well sep
arated. We also highlighted the lung samples (green crosses) which are not expected to show any simi
larity to muscle. Indeed, lung samples are isolated from the muscle samples and are located in the left 
part of the plot. Similarly, nerve and brain share many genes, and in the Association Plot for nerve 
samples (Online Supplementary Material, Figure S3b) the brain samples (dark pink crosses) also point 
towards the right. This visualises that in CA space there is a small angle between the brain samples and 
the nerve samples, and thus they are closer to each other than to the remaining samples.

When studying any Association Plot, one also faces the question of which points to call associ
ated to the cluster. Here, we can apply the significance considerations from Section 7. Table 1 lists 
the p-values and q̂-values for points in the Association Plot for heart. It is apparent that the points 
from the zoomed-in insert in Figure 6d are significant even after multiple test correction. A q̂-value 
cutoff of 0.1 accepts points far further to the left than the ones shown in the insert as exemplified by 
the gene NEBL. This gene is also highlighted in Figure 7a.

The score Sα allows to further distinguish among genes of equal x(r) but at different distance to 
the x-axis. Figure 7a shows the heart-specific genes coloured by the Sα value. The angle α is taken 
from the randomised GTEx data, which is the data set displayed in Figure 5. For more details on 
data randomisation and the Sα score calculation, see Section 7. The ranking of genes provided by 
the colour code is a rather intuitive ranking. Some examples of the actual distribution of gene ex
pression values over the tissues are shown in Figure 7b and provide an intuition for the associa
tions depicted in these ranked Association Plots.

The Association Plots for the GTEx data were computed based on the first 96 dimensions of the 
CA space, as determined by the elbow rule (see Online Supplementary Material, Figure S4 for the 
elbow plot). Online Supplementary Material, Figure S2 shows the very similar images for 37, 96, 
and 225 dimensions.

(a) (b)

Figure 7. Heart-specific genes coloured by their Sα values. (a) Association Plot was generated for heart samples 
from Genotype-Tissue Expression data using 96 correspondence analysis dimensions. The colour of a gene (circle) 
refers to its Sα value. The higher the Sα value, the higher the specificity of the given gene for heart samples. (b) 
Boxplots illustrating the expression of five example genes (MYBPC3, LINC00881, NPPB, NEBL, and ATP5B) across 
30 tissues. The boxplots generated for genes with high Sα values clearly show their upregulation in the heart tissue 
in comparison to other tissues. When comparing the expression profiles of the five highlighted genes, MYBPC3 
shows the highest upregulation in the heart tissue, whereas ATP5B the lowest.
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9 Discussion
Motivated mostly by biological questions, we developed and presented here a novel visualisation 
method, Association Plots, to study cluster-specific genes in a contingency table. As a generic data 
visualisation method, Association Plots do not make particular distributional assumptions as 
would be commonly made in the field of gene expression. For example, the widely used 
DESeq2 (Love et al., 2014) program for determining differentially expressed genes assumes that 
replicate data follow a negative binomial distribution. In this context, we rather see Association 
Plots as a visualisation tool and do not claim the same statistical rigour as the specialised methods.

One problem in the statistical treatment of Association Plots is the difficulty in defining an ap
propriate null distribution. We have approached the question by row-wise randomisation of the 
data matrix combined with assuming an arbitrarily defined cluster of the same size as the cluster 
under study. We think that this is a reasonable approach to the problem, but further research on 
null models that involve clusters may be needed in the future.

Generally, data sets organised in the form of a matrix or contingency table are ubiquitous, and 
today their size and complexity can be intimidating. Cluster information is also frequently avail
able, be it a natural clustering stemming from the nature of the data, or a computed one. With large 
data, a traditional exploratory visualisation method like, e.g. PCA, may provide little help, where
as Association Plots offer the capability to visualise and interact with the sets of rows (or observa
tions) that are associated to a cluster of columns (or variables). Association Plots can provide 
intuitive visualisation in a manner only dependent on the clusters to be studied but independent 
of the size of the data set. Dimension reduction is applied merely for the purpose of noise reduction 
and not to a degree where the visualisation would cancel significant amounts of information from 
the data.

At the heart of our method lies the geometry of the CA biplot, where the direction from the ori
gin towards a column/variable allows for an interpretation in terms of row–column association. 
This gives rise to the representation of rows by orthogonal distance to this direction vector. 
What is visualised is essentially a cone from the origin centred on a column or a cluster centroid. 
This makes the geometry of CA a necessary prerequisite for Association Plots.

An aspect often overlooked in data analysis methods is whether a method will indicate 
that its assumptions are not met. Association Plots can also reveal that a given cluster of var
iables is in fact not a coherent cluster. In this case, the typical structure of observations 
pointing in the direction of the cluster centroid in CA space will be dispersed, and, as a con
sequence, the right tail in the Association Plot generated for this cluster will be short and not 
clearly visible anymore. Flagging the violation of a clustering assumptions is a desirable fea
ture of our method.

We believe that the viewpoint on data analysis described opens up many further interesting 
questions. Most prominently, we plan to study the connection between Association Plots and bi
clustering (Pontes et al., 2015; Tanay et al., 2002). Also the connection to spectral clustering (Von 
Luxburg, 2007; Zelnik-Manor & Perona, 2005) mentioned above seems worth pursuing.

10 Data and methods
10.1 Employment data
The employment data set was downloaded on 06 November 2020 from Ilostat database 
(International Labour Organization, 2020). The data describes sectors of employment in 233 
countries and groups of countries. In the example presented in this study, we focused on the 
data from years 2000, 2005, 2010, and 2015, from the eight following category types: ‘employ
ment in agriculture, female’, ‘employment in agriculture, male’, ‘employment in services, female’, 
‘employment in services, male’, ‘employment in industry, female’, ‘employment in industry, male’, 
‘unemployment, female’, and ‘unemployment, male’. Additionally, to obtain the percentages of 
total female or male labour force employed in three different sectors the data from the employment 
categories were multiplied by the factor 1 − x/100, where x describes the percentage of the labour 
force for given year and gender, which was unemployed (data read from categories ‘unemploy
ment, female’ or ‘unemployment, male’. At the end, the resulting matrix of 233 rows and 32 col
umns was submitted to CA and the analysis was done using eight CA dimensions.
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10.2 Simulated data
The simulated data from Section 5 was generated using the function make_blobs from the Python 
library scikit-learn (Pedregosa et al., 2011). We chose five 100-dimensional Gaussians, each 
specified through its centre and standard deviation. The large number of 100 features was 
chosen for illustrating the arrangement of observations in the CA plot. From those Gaussians 
we had the function generate three samples from each cluster. The centres were chosen far enough 
in the all-positive quadrant of 100-dimensional space such that with a selected standard deviation 
of 0.3 all generated samples contained only positive values. The following parameters were used:
n_samples=15, n_features=100, cluster_std=.3, centers=[(1,5,4,3,5,5,6,6,4,4,4,4,4,4,2,2,2,2,2, 
2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

(3,10,4,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,6,6,4,4,4,4,4,4,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1),

(2,5,10,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,6,6,4,4,4,4,4, 
4,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1),

(3,1,4,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,5,5,6,6,4,4,4,4,4,4,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1),

(2,8,4,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,6,6,4,4,4,4,4,4,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1, 
1,1,1)]

This simple setup already serves well to illustrate the importance of directions and associations 
between variables and observations in interpretation of CA plots. Finally, CA was applied to the 
transpose of the resulting matrix.

10.3 GTEx data
RNA-seq data of postmortem non-disease human tissues was retrieved from GTEx Portal 
(Carithers et al., 2015). The files ’GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_ 
tpm.gct.gz’ containing gene TPM values and ’GTEx_v7_Annotations_SampleAttributesDS.txt’ 
containing sample annotations (both files available from https://gtexportal.org/home/datasets) 
were downloaded on 03 July 2019. A detailed description of data processing procedures is avail
able from https://gtexportal.org/home/documentationPage.

CA was computed using a subset of 5,000 genes with the highest variance across 11,688 col
umns of the chi-square component matrix, which was calculated based on the input gene expres
sion matrix. For generating the Association Plots in Figure 6, the first 96 CA dimensions (number 
obtained using the elbow rule) were considered. Sα scores and p-values shown in Table 1 were 
computed based on the randomised data obtained from 10 permutations.

10.4 Approaches for selecting optimal number of CA dimensions
The step of generating an Association Plot for a chosen set of samples is preceded by dimension 
reduction of the data for the purpose of noise reduction. To this end, one needs to set a number 
of smaller singular values to 0 and reconstruct the original data. We have implemented three ap
proaches from the literature for determining the number of dimensions that should be retained:

The implemented methods are: 

1. The ‘average rule’ retains those dimensions that explain more inertia than one dimension on 
average (Greenacre & Blasius, 1994).

2. The ‘80% rule’ retains the minimum number of dimensions, which in total account for more 
than 80% of total inertia (Greenacre & Blasius, 1994).

3. The ‘elbow rule’ is based on scree plots of randomised data. The dimension is read off from 
the point where the actual scree plot of the data enters the band of randomised singular values 
(Ciampi et al., 2005).
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In the GTEx data example, these approaches resulted in 225, 37, and 96 dimensions, respectively, 
and the Association Plots generated using these three numbers of dimensions are shown in Online 
Supplementary Material, Figure S2.
10.5 Human tissue marker genes
For validation of the Association Plots generated for GTEx data, the lists of genes with the highest 
levels of enriched expression in liver, heart, and pancreas were obtained on 18 March 2019 from 
the Human Protein Atlas (Uhlén et al., 2015), available from http://v18.proteinatlas.org.

10.6 Software package ‘APL’ and code availability
The code to produce Association Plots is written (mostly) in R using shiny library (Chang et al., 
2019) and is available from the GitHub repository https://github.com/elagralinska/APL. Only 
the SVD routine (torch.svd) is taken from the Python3 torch package and gets called from the 
R code. The software not only displays Association Plots but also allows for interactive explor
ation of the plots and supports enrichment analysis of genes.

10.7 Data availability
GTEx data are available under https://gtexportal.org/home/datasets). The files ’GTEx_Analysis_ 
2016-01-15_v7_RNASeQCv1.1.8_gene_tpm.gct.gz’ and ’GTEx_v7_Annotations_SampleAttributes 
DS.txt’ were downloaded on 03 July 2019. The employment data are available in Ilostat database 
(International Labour Organization, 2020) and was downloaded on 06 November 2020.
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