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The application of in-field and aerial spectroscopy to assess

functional and phylogenetic variation in plants has led to novel

ecological insights and promises to support global assessments

of plant biodiversity. Understanding the influence of plant ge-

netic variation on reflectance spectra will help to harness this

potential for biodiversity monitoring and improve our under-

standing of why plants differ in their functional responses to

environmental change. Here, we use an unusually well-resolved

genetic mapping population in a wild plant, the coyote tobacco

Nicotiana attenuata, to associate genetic differences with differ-

ences in leaf spectra for plants in a field experiment in their

natural environment. We analyzed the leaf reflectance spec-

tra using FieldSpec 4 spectroradiometers on plants from 325

fully genotyped recombinant inbred lines (RILs) of N. attenu-
ata grown in a blocked and randomized common garden exper-

iment. We then tested three approaches to conducting Genome-

Wide Association Studies (GWAS) on spectral variants. We in-

troduce a new Hierarchical Spectral Clustering with Parallel

Analysis (HSC-PA) method which efficiently captured the vari-

ation in our high-dimensional dataset and allowed us to dis-

cover a novel association, between a locus on Chromosome 1

and the 445-499 nm spectral range, which corresponds to the

blue light absorption region of chlorophyll, indicating a genetic

basis for variation in photosynthetic efficiency. These associ-

ations lie in close proximity to candidate genes known to be

expressed in leaves and having annotated functions as methyl-

transferases, indicating possible underlying mechanisms gov-

erning these spectral differences. In contrast, an approach us-

ing well-established spectral indices related to photosynthesis,

reducing complex spectra to a few dimensionless numbers, was

not able to identify any robust associations, while an approach

treating single wavelengths as phenotypes identified the same

associations as HSC-PA but without the statistical power to pin-

point significant associations. The HSC-PA approach we de-

scribe here can support a comprehensive understanding of the

genetic determinants of leaf spectral variation which is data-

driven but human-interpretable, and lays a robust foundation

for future research in plant genetics and remote sensing appli-

cations.
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1. Introduction

Genetic diversity is essential for the survival and adapta-
tion of species to changing environmental conditions. Ra-
diation reflected, absorbed, and transmitted by plants con-

stitutes the basis for remote sensing of vegetation, com-
monly in the range from visible to infrared wavelengths
corresponding to solar radiation (Knipling, 1970; Thenk-
abail, Lyon and Huete, 2018). Remote sensing could rev-
olutionize the way we study genetic diversity by offering
non-invasive methods with the potential of repeated mea-
surement on large spatial scales (Madritch, Kingdon, Singh,
Mock, Lindroth and Townsend, 2014). Remote sensing tech-
nologies have not only facilitated the study of Earth’s sur-
face features, including vegetation, water bodies, and land
use patterns, but are also gaining applications in biodiver-
sity research. Wang and Gamon recently discussed concrete
ways in which remote sensing makes unique contributions
to monitoring plant biodiversity (Wang and Gamon, 2019).
For example, Féret and Asner showcased the capabilities of
high-fidelity imaging spectroscopy for mapping the diver-
sity of tropical forest canopies (Asner, Martin, Carranza-
Jiménez, Sinca, Tupayachi, Anderson and Martinez, 2014).
The Global Ecosystem Dynamics Investigation, as discussed
by Dubayah et al., leverages high-resolution laser ranging
to monitor forests and topography (Dubayah, Blair, Goetz,
Fatoyinbo, Hansen, Healey, Hofton, Hurtt, Kellner, Luthcke
et al., 2020). Although they do not capture the structural
variation of whole canopies, reflectance spectra from sin-
gle leaves, which can be captured with controlled lighting
and background from plants in field conditions, also offer
insights into plant physiology, stress responses, and genetic
variation, with recent studies establishing a correlation be-
tween genetic diversity and leaf reflectance spectra (Serbin,
Singh, McNeil, Kingdon and Townsend, 2014; Cavender-
Bares, Meireles, Couture, Kaproth, Kingdon, Singh, Serbin,
Center, Zuniga, Pilz et al., 2016; Wang, Gamon, Schweiger,
Cavender-Bares, Townsend, Zygielbaum and Kothari, 2018;
Asner, Martin, Anderson and Knapp, 2015; Czyż, Schmid,
Hueni, Eppinga, Schuman, Schneider, Guillén-Escribà and
Schaepman, 2023). We recently showed that genetically vari-
able plant populations are also spectrally more variable in
comparison to replicates of an inbred genotype grown under
either glasshouse or field conditions, while isogenic plants
differing primarily in their gene expression are spectrally
similar to replicates of the inbred genotype from which they
were derived (Li, Czyz, Halitschke, Baldwin, Schaepman and
Schuman, 2023a).

A Genome-Wide Association Study (GWAS) is a pow-
erful tool used to identify genetic variants associated with
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specific traits or diseases in populations. By examining
the entire genome, researchers can pinpoint specific genetic
markers that correlate with phenotypic variants. A primary
advantage of GWAS is that it requires no prior knowledge
of potential candidate genes and can be used for the dis-
covery of novel genetic associations (Visscher, Wray, Zhang,
Sklar, McCarthy, Brown and Yang, 2017). The correspond-
ing disadvantage of GWAS is that it does not provide causal
links and thus the mechanisms underlying statistical associ-
ations must be dissected and tested. A primary concern of
GWAS is the influence of population structure, which, if not
addressed, may produce misleading associations (Price, Pat-
terson, Plenge, Weinblatt, Shadick and Reich, 2006). Popu-
lation structure refers to the presence of subgroups within a
population that differ in allele frequencies due to shared an-
cestry. In GWAS, population structure can be confounding,
because genetic variants associated with the subgroup, rather
than the trait of interest, may result in false-positive associ-
ations. To mitigate this, various methods, such as principal
component analysis (PCA) and mixed linear models (Zhang,
Ersoz, Lai, Todhunter, Tiwari, Gore, Bradbury, Yu, Arnett,
Ordovas et al., 2010), are employed to correct for population
structure in GWAS analyses.

Nicotiana attenuata is a model wild plant for molecular
ecology native to the Great Basin Desert of the southwest-
ern USA. It is primarily found in large ephemeral popula-
tions following fires in sagebrush and pinyon-juniper ecosys-
tems. Its unique germination behavior is stimulated by cues
found in wood smoke and the removal of inhibitors from un-
burned litter, allowing it to thrive in post-fire environments
(Bahulikar, Stanculescu, Preston and Baldwin, 2004). Eco-
logically, N. attenuata is a compelling subject for its intricate
defense mechanisms against herbivores, its tissue-specific di-
urnal metabolic rhythms, and its ability to acclimate to vary-
ing environmental conditions, including high UVB radiation
(Glawe, Zavala, Kessler, Van Dam and Baldwin, 2003; Kim,
Yon, Gaquerel, Gulati and Baldwin, 2011; Li, Heiling, Bald-
win and Gaquerel, 2016; DINH, Galis and Baldwin, 2013).
Further, it offers unique opportunities for genetic research
due to a well-defined MAGIC (Multiparent Advanced Gener-
ation Inter-Cross) population (Ray, Li, Halitschke and Bald-
win, 2019; Ray, Halitschke, Gase, Leddy, Schuman, Rodde
and Baldwin, 2023). This design comprises 26 phenotypi-
cally and genetically differentiated parental lines (PLs) in-
tercrossed to produce 325 genetically mapped recombinant
inbred lines (RILs), allowing for the study of phenotype-
genotype associations without the significant influence of
population structure.

In this study, we harness the genetic diversity of the
MAGIC population to discern associations between genetic
variants and leaf spectral traits. Our sample comprises two
replicates of the 325 N. attenuata MAGIC RILs. Our ap-
proach advances the state of the art for discerning genetic
contributions to variation in complex spectral traits. We test
three ways of treating the spectral phenotype data: spectral
indices, which are single values derived from ratios of re-
flectance at specific wavelengths representing spectral fea-

tures; single wavelengths (SW), i.e., treating each wave-
length in the spectrum as a phenotype; and Hierarchical
Spectral Clustering with Parallel Analysis (HSC-PA), a new
data-driven dimension reduction approach, developed from a
method for the analysis of genetic associations with human
facial features (Claes, Roosenboom, White, Swigut, Sero, Li,
Lee, Zaidi, Mattern, Liebowitz et al., 2018; Sero, Zaidi, Li,
White, Zarzar, Marazita, Weinberg, Suetens, Vandermeulen,
Wagner et al., 2019), which accounts for correlations within
spectral data while retaining interpretable features. We as-
sociate the resulting phenotypic data with genotypes from
a pool of 183,942 SNPs using Genome-Wide Association
Study (GWAS) models based on the Genome Association
and Prediction Integrated Tool (GAPIT) version 3 (Wang
and Zhang, 2021). We avoid artifacts by incorporating im-
portant covariates such as maternal lineage and the number
of measured leaves, along with kinship. We employ a set
of GWAS models: General Linear Model (GLM), Mixed
Linear Model (MLM), Fixed and random model Circulating
Probability Unification (FarmCPU), and Bayesian informa-
tion and Linkage-disequilibrium Iteratively Nested Keyway
(BLINK), to assess the robustness of our findings. The re-
sulting Manhattan plots indicate genetic markers and patterns
associated with the spectral phenotypes under investigation,
which we then filter for significance using an empirically de-
rived threshold to account for multiple testing. Figure 1 pro-
vides a summary of the methodologies and tools employed in
this study. Our results show that HSC-PA, employed with an
appropriate GWAS model, is the most sensitive of the three
approaches for revealing genetic associations with spectral
variants. We interpret these associations using additional in-
formation from the annotated N. attenuata genome and tran-
scriptome and hypothesize that variation in specific methylat-
ing enzymes explains natural variation in photosynthetic ef-
ficiency as revealed by differences in how leaves reflect blue
light.

2. Materials and Methods

The methods employed in this study largely replicate those
detailed in our previous work. For a comprehensive descrip-
tion, readers are referred to (Li et al., 2023a). A brief sum-
mary is provided below for clarity.

2.1. Plant Material and Field Site Nicotiana attenuata is
a native tobacco species predominantly found in the south-
western United States. The field site for this research was lo-
cated at the Walnut Creek Center for Education and Research
(WCCER) in Prescott, Arizona, within the natural habitat of
N. attenuata. The MAGIC population of N. attenuata was de-
rived from the Utah (UT) accession, a 31st-generation inbred
line originally collected from the Desert Inn ranch in Wash-
ington County, Utah, USA. Other natural accessions used
in this study were detailed in a previous publication (Ray
et al., 2023). Germination and cultivation for the Arizona
field plantation were previously described in Li et al. (2023a).
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2.2 Generation of MAGIC RIL Population and DNA sequencing
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Fig. 1. Approaches and toolbox of this study.

2.2. Generation of MAGIC RIL Population and DNA se-

quencing To structure the genetic diversity in the MAGIC
RIL population, a crossing scheme was developed with 26
parental lines. This entailed five rounds of systematic inter-
crosses, ensuring that each offspring would have all 26
parental lines as ancestors. The first round involved diallelic
crossing of each of the 26 parental lines with each other, re-
sulting in an F1 or A- generation of 325 different crosses.
This process was meticulously detailed, with specific proce-
dures to prevent self-pollination and ensure accurate cross-
pollination. The subsequent rounds (B- to E-generations)
further diversified the genetic makeup of the offspring. By
the end of the fifth round, each plant had all 26 MAGIC
founders as parents. These systematic crosses were followed
by six generations of inbreeding to produce Recombinant In-
bred Lines (RILs) with approximately 99% homozygosity,
resulting in a MAGIC RIL population consisting of two repli-
cates of 325 RILs. For the sequencing of the 650 MAGIC
RILs, seedlings from the L1 and L2 generations were grown
in the GH, and the sequencing was conducted at Novogene
HK (Ray et al., 2023; Li et al., 2023a).

2.3. Equipment and optical measurement We employed
a FieldSpec 4 spectroradiometers (Analytical Spectral De-
vices, Inc., Malvern Panalytical) 18140 with a plant probe
(S/N 445) and leaf clip V2 attachments for measuring leaf
optical properties. The FieldSpec encompasses three detec-
tors, covering the visible and near-infrared to the shortwave
infrared range of electromagnetic radiation. The devices offer
a spectral resolution of 3 nm at 700 nm and 10 nm at 1400 and
2100 nm, and the FieldSpec system is radiometrically cali-
brated to provide measurements from which values for radi-
ance and subsequently reflectance can be derived for every
nanometer between 350 and 2500 nm.

Mature, hydrated, cut leaves harvested from comparable
positions of field-grown plants were measured in batches im-
mediately after each harvest, at their widest part, avoiding the
midvein, as described in (Li et al., 2023a). Each sample un-
derwent 20 scans under four conditions: white background

reference (WR), white background with leaf (WRL), black
background reference (BR), and black background with leaf
(BRL). All measurement procedures for the Arizona field
study were previously described (Li et al., 2023a).

2.4. Data processing Data processing was executed us-
ing R (R Core Team, 2023), primarily employing the spec-
trolab package (version 0.0.10) (Meireles, Schweiger and
Cavender-Bares, 2017). We employed a rigorous three-step
filtering approach to remove outliers from our dataset, as
previously described (Li et al., 2023a). Briefly, we ini-
tially conducted a visual inspection of different measurement
types, followed by the application of the Local Outlier Factor
(LOF) method for each type. A final visual check was per-
formed after calculating reflectance, ensuring the exclusion
of outliers that could significantly impact our analysis. The
spectral range analyzed spanned from 400-2500 nm, exclud-
ing the initial 50 nm (350-400 nm) due to high measurement
uncertainty (Petibon, Czyż, Ghielmetti, Hueni, Kneubühler,
Schaepman and Schuman, 2021). The calculated reflectance
(CR) of a sample was obtained from the mean of scans using
the following formula from (Miller, Steven and Demetriades-
Shah, 1992):

CR = (RW R ·RBRL ≠RBR ·RW RL)/(RW R ≠RBR) (1)

2.5. Genome-wide association studies (GWAS) With
this dataset, we tested three approaches to Genome-Wide
Association Study (GWAS) with calculated leaf reflectance
spectra.

2.5.1. Indices-GWAS This approach employs spectra to si-
multaneously assess multiple phenotypes defined by six com-
mon spectral indices that are widely recognized for their abil-
ity to characterize various vegetation traits. These indices
were chosen based on their sensitivity to specific vegetation
properties and their proven applicability in previous research,
as summarized in Table 1:
The background and significance of these indices are further
elaborated below:
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Table 1. Six Spectral Indices Used in Indices-GWAS

Index Formula Example of Validated Systems Citations

NDWI R865 ≠R1614/R865 +R1614 Crops, forests, wetlands, grasslands (Gao, 1996; Zhang and Zhou,
2019; Karthikeyan et al., 2020;
Huete, 2012; Adam et al., 2010; Gu
et al., 2007)

CIre R783/R704 ≠1 Crops, trees and vines, wetlands (Gitelson et al., 2001; Qian et al.,
2021; Gitelson et al., 2005, 2003;
DeLancey et al., 2019)

CCI R560 ≠R664/R560 +R664 Crops, trees, forests (Gamon et al., 2016; Dechant et al.,
2020; Grabska et al., 2019)

ARDSICab R750 ≠R730/R770 +R720 Crops (Wan et al., 2021)
ARDSICw R1360 ≠R1080/R1560 +R1240 Crops (Wan et al., 2021)
ARDSICm R2200 ≠R1640/R2240 +R1720 Crops (Wan et al., 2021)

1. Normalized Difference Water Index (NDWI ): NDWI
is used to assess vegetation water content. It is based
on the differential absorption of water in the near-
infrared and shortwave infrared regions of the spec-
trum. NDWI has been widely applied in remote sens-
ing to detect water stress in plants (Gao, 1996; Zhang
and Zhou, 2019).

2. Red-edge chlorophyll index (CIre): CIre is designed
to estimate vegetation chlorophyll content. The red-
edge region of the spectrum is sensitive to chlorophyll
concentration, making CIre a valuable index for assess-
ing plant vigor and growth (Gitelson et al., 2001; Qian
et al., 2021).

3. Chlorophyll Carotenoid Index (CCI ): CCI is sensitive
to carotenoid/chlorophyll ratio and was initially used to
track photosynthetic phenology (Gamon et al., 2016).

We additionally used three adjusted ratio of difference spec-
tral indices (ARDSI ), which are designed to reduce the dif-
ferences in estimates obtained for adaxial and abaxial leaf
surfaces (Wan et al., 2021), for assessing

4. vegetation chlorophyll content (Cab),

5. water content (Cw), and

6. dry matter content (Cm), which have been validated in
other plant species at both leaf and canopy levels.

2.5.2. Data-driven approaches The data-driven approach em-
ployed two different methods to identify genetic variants as-
sociated with leaf reflectance spectra (ranging from 400 to
2500 nm) in the RILs:

1. Single Wavelength GWAS (SW-GWAS): This ap-
proach treats each wavelength as a separate phenotype
and runs a GWAS on each wavelength. This allows
for the identification of genetic variants associated with
specific wavelengths of the leaf reflectance spectra.

2. Hierarchical Spectral Clustering with Parallel Analy-
sis GWAS (HSC-PA-GWAS): This approach, adapted

from a method for GWAS on human facial shapes
(Claes et al., 2018; Sero et al., 2019), reduces the di-
mensionality of the data by clustering the spectra into
segments based on their similarity. The first principal
component (PC) of each segment, which captures the
majority of the variation within the segment, was then
used as a phenotype for GWAS. The number of seg-
ments and the number of PCs to retain for each seg-
ment were determined using Parallel Analysis (PA), a
statistical method that compares the observed eigenval-
ues with those obtained from random data (Franklin,
Gibson, Robertson, Pohlmann and Fralish, 1995; Hay-
ton, Allen and Scarpello, 2004).

2.5.3. Software and setting A series of GWA studies were
conducted using the Genome Association and Prediction In-
tegrated Tool (GAPIT) version 3 (Wang and Zhang, 2021)
using the following models:

1. Generalized Linear Model (GLM) (Price et al., 2006):
A model that captures the linear relationship between
genetic markers and phenotypic traits using a flexible
generalization of ordinary linear regression that allows
for response variables that have error distribution mod-
els other than a normal distribution. GLM does not
incorporate kinship.

2. Mixed Linear Model (MLM) (Yu, Pressoir, Briggs,
Vroh Bi, Yamasaki, Doebley, McMullen, Gaut,
Nielsen, Holland et al., 2006): Extends the GLM by
incorporating both fixed effects of population structure
and random effects of kinship to control for spurious
associations.

3. Fixed and random model Circulating Probability
Unification (FarmCPU) (Liu, Huang, Fan, Buckler
and Zhang, 2016): Iteratively fits fixed and ran-
dom effects to improve the power and precision of
GWAS.FarmCPU eliminates the confounding effect of
kinship by utilizing a fixed-effect model. The kinship
derived from the associated markers is then used to se-
lect the associated markers using the maximum likeli-
hood method. This method effectively overcomes the
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3.1 Phenotypic analysis

problems of model overfitting that arise with stepwise
regression.

4. Bayesian information and Linkage-disequilibrium Iter-
atively Nested Keyway (BLINK) (Huang, Liu, Zhou,
Summers and Zhang, 2019): Iteratively incorporates
associated markers as covariates to eliminate their con-
nection to the cryptic relationship among individuals.
The associated markers are selected according to link-
age disequilibrium, optimized for Bayesian informa-
tion content, and reexamined across multiple tests to
reduce false negatives (Wang and Zhang, 2021).

Testing multiple methods rather than choosing one helps
to assess our association procedures. Different models have
varying strengths depending on the nature of the data and
the underlying genetic architecture of the trait being studied.
By employing a suite of models, we aimed to cross-validate
results and potentially uncover associations that might be
missed by a single model. For the indices-GWAS and
HSC-PA-GWAS, where the number of phenotypes was rel-
atively small, all four models were applied. However, for
the SW-GWAS, which involves 2101 phenotypes, running all
four models would be computationally intensive. Given the
promising higher statistical power of the BLINK model and
the encouraging results from the HSC-PA-GWAS, we opted
to exclusively use the BLINK model for the SW-GWAS.

We included the maternal line that generated each RIL
as a covariate in all models to account for potential mater-
nal effects, as suggested and done similarly in a previous
study (Joseph, Corwin, Li, Atwell and Kliebenstein, 2013;
Ray et al., 2023). We also included the number of measured
leaves as a covariate to control for potential effects of the
measurement, based on our previous study exploring some
non-biological effects where the number of measured leaves
was found to affect spectral regions that overlap with genetic
affected regions (Li et al., 2023a).

2.5.4. Adjustment for multiple testing and significance

thresholds In our analyses, we first employed an exploratory
threshold of p < 1 ◊ 10≠5 to screen and select a subset
of SNPs for further examination. P-values were also ad-
justed using a false discovery rate procedure (Benjamini
and Hochberg, 1995) to account for the multiple testing on
183,942 SNPs and were indicated as the FDR adjusted p-
values. Subsequently, to determine the statistically signif-
icant associations, we applied the Me� method (Nyholt,
2004) to calculate the number of real independent tests in
order to account for phenotypic correlation (testing multiple
phenotypes within an approach). We then calculated the sig-
nificance threshold as (0.05/Me� ). Any SNPs with FDR-
adjusted p-values below this threshold were considered to
have significant associations.

2.5.5. Selection of candidate genes To identify candidate
genes linked to the significant SNPs, we first extracted all
annotated genes within +/- 100 kb of the SNP from the N.

attenuata reference genome (Ray et al., 2023). We then used
the N. attenuata Data Hub (http://nadh.ice.mpg.de/NaDH/) to

filter out genes for which there was no evidence of transcript
accumulation in leaves under a variety of environmental con-
ditions. We used annotation information to identify genes
within this filtered list having pertinent functions.

3. Results

3.1. Phenotypic analysis

3.1.1. Spectral Characteristics of Leaves Our study focuses
on calculated leaf reflectance spectra spanning from 400 to
2500 nm, including the visible (VIS), near infrared (NIR),
and the shortwave infrared (SWIR) regions. This broad spec-
tral range captured variation among the RILs, shown in Fig-
ure 2 as an orange shaded region indicating the range of
reflectance spectra for all samples. The averaged spectral
signature across all lines, evident as a mean profile, exhib-
ited characteristic peaks and troughs, pointing to specific leaf
properties such as chlorophyll absorption and water content.
When assessing the variability across the samples using the
coefficient of variation (CV), we observed fluctuations ap-
proximately between 0.05 and 0.2. Interestingly, the near-
infrared (NIR) region showed more consistency in reflectance
values among the RILs, contrasting with greater variability in
the VIS and SWIR regions.

The distribution of six selected spectral indices 2.5.1,
encapsulating attributes like water content and chlorophyll
concentration, provided more specific information about leaf
physiology. The indices aiming to quantify differences in
chlorophyll A and B (ARDSI Cab) and dry matter con-
tent (ARDSI Cm) had the narrowest range of values, while
the chlorophyll index-red edge index (CIre) had the largest
range. The indices for leaf water content (ARDSI Cw),
chlorophyll and carotenoids (CCI ), and normalized differ-
ential water index (NDWI ) showed an intermediate range of
values.

Our subsequent application of the Hierarchical Spectral
Clustering with Parallel Analysis (HSC-PA) segmented the
spectra into 46 distinct patterns. The blank (NA) areas are
regions where further clustering was halted due to the reten-
tion of a singular Principal Component (PC) from a previous
level. This approach allowed for a finer granularity in the
spectral data representation while accounting for correlations
among wavelengths. The hierarchical clustering process con-
cluded at different levels, ranging from level 3 to level 8, in-
dicating the varying depths of spectral similarities among the
segments, and Table 2 shows the detailed spectral region and
potential associated features of the segment used in HSC-PA-
GWAS. Supplementary table 1 shows the spectral regions of
all 46 segments.

By visualizing the 24 segments that each retained only a
single PC, we were able to span the entire spectrum from 400
to 2500 nm. These segments, parsed into several interpretable
regions, were then used for HSC-PA-GWAS approach, offer-
ing invaluable phenotypic data for uncovering associations
with underlying genetic variations.
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Table 2. Spectral Ranges of Segments Used in GWAS with Potential Associated Features

Segment Spectral ranges Potentially associated physiological features

7 708-722 NIR: Leaf structure
8 723-735 NIR: Leaf structure
9 745-945, 1016-1128 NIR: Leaf structure
10 736-744, 946-1015, 1129-1143 NIR: Leaf structure
11 1312-1357 NIR: Water content
12 1144-1311 NIR: Leaf structure
16 1358-1383 NIR: Water content
18 1384-1385, 1592-1752 SWIR: Non-pigment organic composition (e.g. lignin, cellulose, starch, protein, sugar,

oil)
19 1525-1564 SWIR: Non-pigment organic composition (e.g. lignin, cellulose, starch, protein, sugar,

oil)
20 1386-1398, 1565-1591, 1753-1862 SWIR: Non-pigment organic composition (e.g. lignin, cellulose, starch, protein, sugar,

oil)
23 521-604, 696-707 VIS: Chlorophyll a, chlorophyll b, carotenoids, anthocyanins
27 445-499 VIS: Chlorophyll a, chlorophyll b, carotenoids, anthocyanins
28 500-520 VIS: Chlorophyll a, chlorophyll b, carotenoids, anthocyanins
29 648-690 VIS: Chlorophyll a, chlorophyll b, carotenoids, anthocyanins
30 605-647, 691-695 VIS: Chlorophyll a, chlorophyll b, carotenoids, anthocyanins
33 1400-1484 Water content
34 1485-1524 SWIR: Non-pigment organic composition (e.g. lignin, cellulose, starch, protein, sugar,

oil)
39 1399, 1863-1880, 2094-2310 NIR-SWIR: Leaf structure, non-pigment organic composition (e.g. lignin, cellulose,

starch, protein, sugar, oil)
41 2414-2500 SWIR: Water content
42 2311-2413 SWIR: Non-pigment organic composition (e.g. lignin, cellulose, starch, protein, sugar,

oil)
43 1894-2001 SWIR: Water content
44 1881-1893, 2002-2093 SWIR: Non-pigment organic composition (e.g. lignin, cellulose, starch, protein, sugar,

oil)
45 423-444 VIS: Chlorophyll a, chlorophyll b, carotenoids, anthocyanins
46 400-422 VIS: Chlorophyll a, chlorophyll b, carotenoids, anthocyanins
Note: The associated features are based on common findings (Jacquemoud and Ustin, 2019) and are intended to indicate physiological properties of leaves

known to affect the given spectral ranges. These interpretations are subject to various factors and should not be considered definitive. These do not include all
traits demonstrated to be associated with different spectral features; for example, N, P, and phenolic content are commonly associated with several features
across the spectrum based on partial least squares models (e.g. (Wang, Chlus, Geygan, Ye, Zheng, Singh, Couture, Cavender-Bares, Kruger and Townsend,

2020)).

3.1.2. Effective Number of Independent Tests (Me� ) To ac-
count for multiple testing due to the analysis of multiple phe-
notypes in our GWAS approaches, we determined the effec-
tive number of independent tests, denoted as Me� . This anal-
ysis aids in adjusting for the correlation among phenotypes,
providing a more accurate assessment of the significance of
associations. For the Indices-GWAS approach, which em-
ployed six distinct spectral indices, the effective number of
independent tests, Me� ind , was determined to be 5. In the
Single Wavelength GWAS (SW-GWAS) approach, the effec-
tive number, Me� sw , was notably higher at 1016. Lastly, for
the Hierarchical Spectral Clustering with Parallel Analysis
GWAS (HSC-PA-GWAS) approach, which clusters the spec-
tra based on similarity, the effective number, Me� hsc≠pa ,
was found to be 13, reflecting the reduced dimensionality
and the focus on major patterns of variation. These calcu-
lated Me� values are used to set a threshold for significant
associations as described in section 2.5.4.

3.2. SNP markers analysis The kinship relationships
among the RILs are visualized in Figure 3. Through a

heatmap, the genetic relatedness between individuals is pre-
sented. Most values in the histogram gravitate towards zero,
indicating a consistent and minimal genetic differentiation
among the samples. This uniform distribution of kinship val-
ues affirms the thorough genetic mapping of the parental lines
within the derived RILs from the MAGIC population and is
consistent with the results of no obvious clustering of PCA
of the RILs on the same samples (Ray et al., 2023).

Supplementary figure 1 provides additional analyses, in-
cluding frequency of heterozygosity of individual and mark-
ers (a) - (c), and linkage disequilibrium (LD) decay over dis-
tance (d) - (i). For individual samples (a), the histogram ex-
hibits a bell-like curve centered around 0.425 to 0.475. The
marker heterozygosity distribution (b) reveals a pronounced
peak in the initial bin at zero, emphasizing a certain number
of markers with no heterozygosity. Beyond this peak, the re-
maining distribution is left-skewed with a peak around 0.5
heterozygosity. The minor allele frequency (MAF) (c) shows
similar pattern, with a peak at around 0.25 - 0.3, and a smaller
peak at 0. Continuing with the LD decay over distance, (d)
illustrates the relationship between R and markers, where the
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Fig. 2. Spectra as phenotypes. (a) Leaf reflectance spectra for all Recombinant Inbred Lines (RILs) examined in this study. The orange shaded region illustrates the range
of spectra, with the dashed orange line depicting the mean reflectance across all samples. The black dotted line represents the coefficient of variation for the entire sample
set. (b) Distribution of the six spectral indices utilized in the Indices-GWAS approach. (c) Results from the Hierarchical Spectral Clustering with Parallel Analysis (HSC-PA). A
total of 46 segments, differentiated by color, emerged from the clustering. Regions left blank (NA) signify segments that retained one Principal Component (PC) in the prior
level, halting further clustering. (d) Presentation of the 24 segments, shaped as example spectra, each maintaining one retained Principal Component (PC). Spanning the
entire spectrum from 400 to 2500 nm, these segments served as phenotypes in the HSC-PA-GWAS approach to pinpoint associations with genetic variances.

majority of points are concentrated in the range of -0.25 to
0.8. Figure (e) presents a bell-shaped frequency distribution
for R, with a noticeable peak at 0 and a clear higher density
on the right side. Figure (f) depicts the relationship between
R and distance in kilobases (kb), showing a balanced distri-
bution on both sides of the R=0 line, with most points at a
distance of 0 kb. Figure (g) displays the distribution of dis-
tances across markers, revealing a dense cluster of points at
distances between 0-1 kb that gradually becomes sparser as
the distance increases. Figure (h) shows the frequency distri-
bution for distances in kb, with a strong peak in the 0-1 kb
bin. Figure (i) outlines the decay of LD as a function of dis-
tance in kb, with a smoothed curve indicating a rapid decay
till around 0.2 kb.

3.3. Genome-Wide Association Studies (GWAS) Re-

sults

3.3.1. Indices-GWAS results A series of GWAS analyses
were conducted to uncover potential genetic associations
with six spectral indices: NDWI , CCI , CIre, ARDSI Cab,
ARDSI Cw , and ARDSI Cm . Four models were employed
in the analysis: GLM, MLM, FarmCPU, and BLINK. The
Manhattan plot, presented in Figure 4a, showcases the asso-
ciations between the SNPs and the 6 indices using different
models. Several genomic regions displayed distinct associa-
tions, as signified by the ≠ log10(p-values). An exploratory
threshold, defined at 1◊10≠5 (denoted by the green horizon-
tal line), was adopted to shortlist SNPs for a detailed exami-
nation.

In Figure 4b, each of the 6 indices is plotted against

the SNPs that exceeded the exploratory threshold. The gra-
dient color scale indicates the association’s intensity, with
deeper hues signifying more significant p-values. This rep-
resentation furnishes a concise overview of the genomic re-
gions strongly correlated with each spectral index. In to-
tal, 19 SNPs exhibited p-values less than 1 ◊ 10≠5: six
with CCI , five with ARDSI Cw , three each with NDWI
and ARDSI Cm , and one each with CIre and ARDSI Cab.
The index CCI displayed the associations with the lowest
p-values across the board. Thus, CCI was chosen as a rep-
resentative example for the QQ plot in Figure 4c. This plot
serves as a diagnostic tool for the GWAS results. Each model
is represented by a unique color: red for GLM, yellow for
MLM, green for FarmCPU, and blue for BLINK. In this ex-
ample, the BLINK, FarmCPU, and GLM methods all yielded
nearly identical results. The alignment of the observed points
with the diagonal line indicates that the GWAS results are
mostly consistent with the expectations under the null hy-
pothesis. However, deviations can pinpoint regions with
stronger genetic signals. The significance level adjusted by
Me� is 0.01, and none of the SNPs surpassed this threshold.

3.3.2. SW-GWAS and HSC-PA-GWAS results In the SW-
GWAS analysis, the BLINK model was used to investigate
the genetic correlations with 2101 spectral wavelengths span-
ning from 400 to 2500 nm. Figure 5 highlights the genetic as-
sociations for the spectral wavelength at 1160 nm, which dis-
played the strongest association among all phenotypes, serv-
ing as a representative example. The diagnostic QQ plot for
this wavelength is also presented in Figure 5c. Figure 5b of-
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Fig. 3. A heatmap of the kinship matrix indicating the relationship between individuals.

fers an in-depth depiction of associations that exceeded the
exploratory threshold. The X-axis signifies the spectral wave-
lengths, while the Y-axis indicates the associated SNPs, pro-
viding a holistic view of the spectral regions correlated with
each SNP. A total of 48 SNPs are displayed, with the ma-
jority linked to one or multiple continuous spectral regions.
This overlap indicates the high correlation inherent in the leaf
reflectance spectra data, underscoring the necessity of meth-
ods accounting for these correlations. The associations span
nearly the entire spectral range and are distributed across al-
most all chromosomes. The significance level, adjusted by
Me� , stands at 4.92◊10≠5. Notably, no SNP met this strin-
gent threshold.

In the HSC-PA-GWAS, we once again utilized the four
models—GLM, MLM, FarmCPU, and BLINK—to probe the
genetic associations across 24 delineated segments. The
Manhattan plot in Figure 6a summarizes all of these results.
Delving deeper, Figure 6b shows the associations that sur-
passed our exploratory threshold of 1 ◊ 10≠5. A total of
34 SNP associations distributed over 23 segments emerged
from the analysis, all of which were also found in the SW-
GWAS. Focusing on segment associations obscures spectral
information, and so Figure 6c maps these associations back
to their corresponding spectral wavelengths for better inter-
pretation. This visualization facilitates the identification of
specific spectral regions linked to each SNP, enhancing our
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Fig. 4. Indices-GWAS results. (a) Manhattan plot showcasing the≠ log10(p-values) of SNP associations for the six indices across various models. The horizontal line
signifies a significance threshold of 1 ◊ 10≠5, which is used to select associations to generate figure (b). (b) Visualization of associations that have p-values less than
1 ◊ 10≠5. The x-axis enumerates the six indices, while the y-axis displays the corresponding associated SNPs. The gradient red color scale represents the FDR˙adjusted
p-values. (c) QQ plot contrasting the observed versus the expected ≠ log10(p-values) for the GWAS analysis on the CCI index. The diagonal line represents the expected
distribution under the null hypothesis. The different color schemes depict the models used: red for GLM, yellow for MLM, green for FarmCPU, and blue for BLINK.

comprehension of the associations. It is noteworthy that these
associations span a range of chromosomal regions, indicating
a complex genetic basis of the studied traits. The signifi-
cance level, after adjusting for Me� , is set at 3.85 ◊ 10≠3.
A singular association, the SNP chr1 156565900 with Seg-
ment 27 (445-499 nm), surpassed this threshold. The QQ plot
dedicated to Segment 27, as depicted in Figure 6d, serves a
dual purpose of validation and diagnostic assessment. Figure
6e delves into the phenotypic distribution of this significant
marker (chr1 156565900) affiliated with Segment 27. In this
distribution, the numbers 0, 1, and 2 represent homozygous
alleles as the reference, heterozygous alleles, and homozy-
gous alternative alleles, respectively. The majority of the
RILs display heterozygous alleles at this site, as evidenced
by the greater number of points in classes 1 and 2. A clear
difference in the mean values of these three classes is evident

in the boxplot, warranting further investigation to understand
the underlying genetic framework.

To further elucidate the genetic association indicated
by HSC-PA-GWAS, we searched for potential candidate
genes within a +/- 100 kb window surrounding the SNP
chr1 156565900. This led to the identification of two genes
of interest: Niat3g 07150 and Niat3g 07151 (more anno-
tation information can be found in supplementary table 2).
The former, Niat3g 07150, is annotated as a serine hydrox-
ymethyltransferase (SHMT). SHMT plays a pivotal role in
one-carbon metabolism, catalyzing the reversible conver-
sion of serine and tetrahydrofolate (THF) to glycine and
5,10-methylene-THF (Ravanel, Cherest, Jabrin, Grunwald,
Surdin-Kerjan, Douce and Rébeillé, 2001). This enzymatic
reaction is integral to various cellular processes, including
nucleotide synthesis and amino acid homeostasis (Hanson
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Fig. 5. SW-GWAS results. (a) Manhattan plot showcasing the≠ log10(p-values) of SNP associations with BLINK for wavelength 1160 as a representative example due
to its strongest association. The horizontal line signifies a significance threshold of 1 ◊ 10≠5, which is used to select associations to generate figure (b). (b) Visualization
of associations that have p-values less than 1 ◊ 10≠5. The x-axis represents the spectral wavelengths from 400 to 2500 nm, while the y-axis displays the corresponding
associated SNPs. The gradient red color scale represents the FDR˙adjusted p-values. (c) QQ plot contrasting the observed versus the expected ≠ log10(p-values) for the
GWAS analysis on the wavelength 1160. The diagonal line represents the expected distribution under the null hypothesis. The blue color scheme highlights the BLINK model
used for the analysis.

and Roje, 2001). In plants, SHMT has been implicated in
photorespiration, where it facilitates the recycling of carbon
skeletons (Somerville and Ogren, 1981). The latter gene,
Niat3g 07151, is characterized by a Methyltransf 11 domain.
Proteins with this domain are typically involved in methyla-
tion as a post-translational modification that modulates pro-
tein function (Bannister and Kouzarides, 2011). Methylation

processes are crucial for myriad cellular activities, ranging
from gene expression regulation to protein-protein interac-
tions (Law and Jacobsen, 2010). The presence of this domain
suggests that Niat3g 07151 might be involved in such regu-
latory mechanisms, although its specific role in N. attenuata

remains to be elucidated.
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4.1 HSC-PA-GWAS for discovering genetic associations with spectral variation
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Fig. 6. HSC-PA-GWAS results. (a) Manhattan plot illustrating the genetic associations for the 24 segments using the four models: GLM, MLM, FarmCPU, and BLINK.
The horizontal green line represents the exploratory threshold ≠ log10(p-values). (b) Detailed visualization of associations that surpass the exploratory threshold. The
X-axis enumerates the 24 segments, while the Y-axis displays the corresponding associated SNPs. (c) An alternative representation of the associations from (b) with the
X-axis showcasing the spectral wavelengths, providing insights into the specific spectral regions of the associations. (d) QQ plot highlighting the observed versus expected
≠ log10(p-values) for GWAS analysis on Segment 27, the segment that meets the stringent significance threshold. (e) Phenotypic distribution for the significant marker
(chr1˙156565900) in association with Segment 27. 0 represent a homozygous allele from the reference, 1 a heterozygous allele, and 2 a homozygous alternative allele.

4. Discussion

4.1. HSC-PA-GWAS for discovering genetic associa-

tions with spectral variation Understanding the genetic
foundation of leaf spectral diversity will facilitate advances
in biodiversity monitoring and phenotyping, and determin-
ing appropriate approaches to handle complex, information-
rich spectral phenotypes is a critical step. Although Single-
Wavelength GWAS (SW-GWAS) proved beneficial in certain
circumstances and was straightforward as a starting point,
the high dimensionality of spectral data renders this approach

very low-power, and it is not accurate to treat every individual
wavelength as an independent variable. Common dimension-
ality reduction approaches such as PCA, when applied to re-
flectance spectra, can yield complex components that cannot
be simply interpreted in terms of either spectral features or
biology (see e.g. PCA loadings in (Li et al., 2023a)). Com-
mon approaches from trait-based analyses such as varimax
rotation (Weigelt, Mommer, Andraczek, Iversen, Bergmann,
Bruelheide, Freschet, Guerrero-Ramı́rez, Kattge, Kuyper,
Laughlin, Meier, van der Plas, Poorter, Roumet, van Ruijven,
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Sabatini, Semchenko, Sweeney, Valverde-Barrantes, York
and McCormack, 2023) are not straightforward to apply, be-
cause spectra are continuous and features commonly have
multiple influences, and thus cannot be simply divided into
discrete traits on which alignment could be conducted. Spec-
tral indices, a well-established approach to ”extract” traits
from spectra, retain only a small portion of the total infor-
mation in leaf reflectance spectra. It is important to note
that the interpretation of these indices can differ based on
species and other factors, and require validation by compari-
son with the target traits measured by other methods. (Given
that the study of spectral-genetic associations is still in its
nascent stages, we included a GWAS on commonly used in-
dices to support initial interpretations, but we do not interpret
them directly in terms of biochemical or water content.) Par-
tial least squares regression (PLSR) is commonly used as an
alternative to spectral indices for deriving data-driven trait
associations with features across entire reflectance spectra,
but requires orthogonal measurements of the targeted traits
to determine associations (e.g.Wang et al. (2020)). Here,
we developed HSC-PA-GWAS as a new approach that re-
tains the information in spectra in a biologically interpretable
form without losing meaningful information, and without re-
quiring an a priori decision to target specific traits, while
maintaining sufficient statistical power to identify potentially
meaningful significant associations.

The Hierarchical Spectral Clustering with Parallel Anal-
ysis (HSC-PA) GWAS method introduced in this study stands
out for its combination of sensitivity and statistical power
when handling spectral phenotypes. Associations identi-
fied using HSC-PA-GWAS were consistent with the Single-
Wavelength GWAS (SW-GWAS) method, as every SNP
identified by HSC-PA-GWAS was also detected by SW-
GWAS. However, the HSC-PA method surpasses SW-GWAS
in several key aspects. One of its strengths is its ability to
reduce data dimensionality while accounting for phenotypic
correlations within spectra, by transforming multiple corre-
lated wavelengths into a single value, typically represented
by the first principal component. This not only mitigates
the challenges of multiple testing and correlated phenotypic
data but also increases statistical power. By aggregating in-
formation across multiple wavelengths, the HSC-PA method
offers a more comprehensive and potentially more accurate
representation of the underlying traits with its ability to dis-
cover the correlation structure among wavelengths from data.
The resulting genetic associations are likely more informa-
tive than those discovered when parsing spectra into either
indices, which cannot encompass all wavelengths influenced
by an underlying trait; or single wavelengths, which do not
behave independently. Comparing the HSC-PA method with
established methods, such as an approach combining par-
tial least squares regression (PLSR) and linear regression
(Verrelst, Malenovskỳ, Van der Tol, Camps-Valls, Gastellu-
Etchegorry, Lewis, North and Moreno, 2019), indicates that
HSC-PA has an advantage in at least two ways: support-
ing human interpretation of data-derived spectral features and
thus genetic associations, and allowing for experimental de-

signs aimed at discovering associations with novel trait vari-
ation or where there are limitations on producing appropriate
validation datasets required for representing traits via PLSR.
Verrelst and colleagues (Verrelst et al., 2019) also empha-
sized the importance of nonparametric regression and ma-
chine learning methods, like the Kernel Ridge Regression
(KRR) and Gaussian Processes Regression (GPR), for their
ability to capture nonlinear relationships in spectral data.
These methods, while powerful, often require careful tuning
and can be computationally intensive. In contrast, the HSC-
PA method offers a data-driven yet human-interpretable ap-
proach. As discussed in studies on human facial shapes, from
which the HSC-PA method was adapted (Claes et al., 2018),
this methodological shift allows for a transition from a global
to a local understanding of spectral variation, and a holistic
view of its genetic basis.

4.2. Ecological significance of findings in N. attenuata

The discovery of a significant association between the SNP
chr1 156565900 and Segment 27 (445-499 nm) in the HSC-
PA-GWAS is an important finding from our study. This spec-
tral range, 445-499 nm, encompasses key regions of the light
spectrum absorbed by chlorophyll, the primary pigment in-
volved in photosynthesis, and by cryptochrome photorecep-
tors. Chlorophyll predominantly absorbs light in the blue
(430-450 nm) and red (640-680 nm) regions (Katz, 1973;
Taiz, Zeiger, Møller, Murphy et al., 2015), with the blue
range overlapping with our identified segment. The reported
action spectrum for plant cryptochrome is around 365-550
nm with peak activity in response to light at 450 nm (Ah-
mad, Grancher, Heil, Black, Giovani, Galland and Lardemer,
2002; Li, Wang, Yu, Liu, Yang, Zhao, Liu, Tan, Klejnot,
Zhong et al., 2011).

Two interesting candidate genes were identified within
100 kb of this SNP. Niat3g 07150, annotated as a ser-
ine hydroxymethyltransferase, catalyzes an important step
in photorespiration, a process intricately linked with photo-
synthesis (Florio, di Salvo, Vivoli and Contestabile, 2011).
Photorespiration is essential for plants, especially under
conditions where the concentration of carbon dioxide is
low (Dusenge, Duarte and Way, 2019). The enzyme ser-
ine hydroxymethyltransferase converts serine to glycine,
a process crucial for the photorespiration-mediated regen-
eration of ribulose-1,5-bisphosphate, the substrate for the
carbon-fixing enzyme ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (RuBisCO), thereby facilitating photosyn-
thesis (McFadden, 1980; Moreno, Martı́n and Castresana,
2005). This enzyme has been found to have decreased ac-
tivity in the progression from C3 to C4 photosynthesis, in-
dicating its significant role in the photorespiratory pathway
(Ku, Wu, Dai, Scott, Chu and Edwards, 1991). Moreover,
studies have shown that mutations affecting this enzyme can
have detrimental effects on photorespiration and photosyn-
thesis, particularly under conditions promoting photorespi-
ration (Somerville and Ogren, 1980). The second candi-
date gene, Niat3g 07151, annotated as a methyltransf 11
domain-containing protein, may be involved in various plant
metabolic processes. While its direct link to photosynthe-
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4.3 Advantages of the MAGIC design for discovering genetic associations

sis or spectral absorption is not immediately evident, methyl-
transferases function in diverse biological processes includ-
ing gene expression, protein function, and metabolic reac-
tions (Sarabi and Naghibalhossaini, 2015; Rao, 2020). Inter-
estingly, lines of N. attenuata knocked down in RuBPCase
activase (RCA) expression were shown to have elevated jas-
monate methyltransferase (JMT) activity: these plants accu-
mulated greater amounts of methyl jasmonate than wild-type
N. attenuata plants, resulting in jasmonoyl-isoleucine (JA-
Ile) deficiency and reduced defense responses to herbivory
(Mitra and Baldwin, 2014). The RCA knockdown lines also
displayed 20% lower C assimilation and ca. 20-40% lower
photosynthetic rates, and reduced growth in comparison to
the wild-type (Mitra and Baldwin, 2008).

In the context of N. attenuata, a wild plant that has
evolved myriad strategies to cope with its natural environ-
ment, understanding the genetic basis of spectral variation
can provide insights into its adaptive mechanisms. The as-
sociation of the SNP with a spectral range crucial for pho-
tosynthesis and blue light sensing might hint at evolutionary
pressures that have shaped the genetic makeup of this species,
optimizing its photosynthetic efficiency and, by extension, its
survival in its native habitat.

4.3. Advantages of the MAGIC design for discov-

ering genetic associations The Multi-parent Advanced
Generation Inter-Cross (MAGIC) design has emerged as a
powerful tool in the realm of genetic association studies,
particularly in Genome-Wide Association Studies (GWAS)
(Bandillo, Raghavan, Muyco, Sevilla, Lobina, Dilla-Ermita,
Tung, McCouch, Thomson, Mauleon et al., 2013; Mackay,
Bansept-Basler, Barber, Bentley, Cockram, Gosman, Green-
land, Horsnell, Howells, O’Sullivan et al., 2014; Sannemann,
Huang, Mathew and Léon, 2015; Huynh, Ehlers, Huang,
Muñoz-Amatriaı́n, Lonardi, Santos, Ndeve, Batieno, Boukar,
Cisse et al., 2018). The generation of these intricate ge-
netic mapping populations represents a substantial invest-
ment, but they are an important precision tool to comple-
ment ecological studies of population genetic variation. The
unique structure of MAGIC populations offers several advan-
tages over traditional biparental genetic mapping populations
or the analysis of natural populations.

1. Mitigation of population structure: one of the primary
challenges in GWAS is the confounding effect of pop-
ulation structure, which can lead to spurious associ-
ations. In the context of our study, the heatmap of
kinship, as depicted in Figure 3d, showcases an even
pattern without discernible clusters. This uniformity
indicates the absence of population structure, a testa-
ment to the strength of the MAGIC design. By in-
tercrossing multiple founder lines over several gener-
ations, MAGIC populations effectively dilute the pop-
ulation structure, reducing the risk of false positives in
association studies.

2. Increased genetic diversity: MAGIC populations amal-
gamate the genetic diversity from multiple parental

lines. This increased diversity ensures a broader repre-
sentation of alleles, enhancing the resolution of GWAS
and increasing the chances of identifying rare or novel
alleles associated with traits of interest.

3. More recombination events: due to the multiple rounds
of intercrossing, MAGIC populations experience a
higher number of recombination events compared to
biparental crosses. This leads to finer mapping of
quantitative trait loci (QTL), allowing for more precise
identification of genomic regions associated with traits.

4. Controlled parental environment: conducting multi-
generational breeding under controlled conditions in a
MAGIC design allows environmental variables to be
kept consistent among all lines throughout the breed-
ing process, allowing for a clearer interpretation of
genotype-phenotype associations in light of possible
epigenetic effects.

5. Flexibility in analysis: the diverse genetic backgrounds
in MAGIC populations allow for both linkage and as-
sociation analyses, offering flexibility in genetic map-
ping approaches.

4.4. Limitations and outlook One of the primary limita-
tions of our study lies in the phenotypic interpretation for bi-
ological meanings specific to the samples we used. The six
spectral indices we selected are derived from existing litera-
ture and have not been validated in N. attenuata generally, or
for this dataset. Without chemical or other analyses to specif-
ically quantify the constituents represented in the indices,
such as chlorophyll, our interpretations remain speculative.
Moreover, while the HSC-PA-GWAS approach has identified
potential candidate genes, any influence of these genes on the
traits of interest remains to be verified, e.g. through the gen-
eration and testing of knock-out, knock-down, and overex-
pression lines.

One noteworthy aspect of our study is the unexpect-
edly high levels of heterozygosity (mean at around 0.5, see
supplementary figure 1 (a)) observed in the dataset. While
the low-pass sequencing (0.5x coverage) of the RILs (Ray
et al., 2023) in our study could be a contributing factor to
the underestimation of homozygosity, it is important to con-
sider the role of residual heterozygosity and heterozygote
hotspots. Drawing parallels from maize, a study by Liu et al.
(Liu, Liu, Li, Pan, Liu, Yang, Yan and Xiao, 2018) identified
specific genomic regions, known as residual heterozygosity
(RH) hotspots, that are more prone to maintaining heterozy-
gosity. These hotspots are often subject to selection during
the development of maize populations, suggesting that they
may confer some adaptive or agronomic advantages. The
presence of such RH hotspots in our study species, N. atten-

uata, could similarly indicate regions of the genome that are
under selective pressure, possibly due to their role in adaptive
traits such as photosynthetic efficiency or stress tolerance. In
light of these considerations, future studies employing higher
sequencing depth could provide a more accurate estimation
of homozygosity and heterozygosity in N. attenuata. Such
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efforts would be invaluable for dissecting the genetic archi-
tecture underlying these observations and for validating the
robustness of our GWAS findings.

In this study, we have utilized the GAPIT3 tool for
GWAS, which is widely recognized as a robust approach.
However, we acknowledge that the potential of novel compu-
tational GWAS methodologies are not fully captured in this
tool. For example, GAPIT3 typically focuses on results for
individual SNPs. Approaches allowing for pleiotropy have
the potential to increase the power, sensitivity, and meaning
of GWAS, similarly as the HSC-PA approach allowed us to
obtain more phenotypic information by accounting for cor-
relations in spectral data. As the field of genetics continues
to evolve, it is conceivable that advanced techniques, such
as machine learning and deep learning (Libbrecht and Noble,
2015; Wu, Karhade, Pillai, Jiang, Huang, Li, Cho, Roach, Li
and Divaris, 2021), could offer more meaningful insights into
genetic associations. Previous studies have used random for-
est models to allow for more complex and interactive effects
of individual genetic variants on binary and even multivari-
ate phenotypes, although the interpretation of “significance”
in associations is not as straightforward with these mod-
els (Brieuc, Waters, Drinan and Naish, 2018; Wang, Goh,
Wong, Montana and the Alzheimer’s Disease Neuroimaging
Initiative, 2013). Recently, Saha and colleagues described
the “Epi-MEIF” approach using conditional inference forests
in place of false discovery rates to allow for locus interac-
tions (epistasis) in the genetic control of complex phenotypes
(Saha, Perrin, Röder, Brun and Spinelli, 2022). This may
provide a more informed way to delineate significant associ-
ations while accounting for testing of multiple loci, and still
allowing for continued use of well-established “single-locus”
association models such as those implemented in GAPIT.

Looking forward, there is great potential for deepening
our understanding of leaf spectral data using the N. atten-

uata system. More than 400 transgenic lines and two ge-
netic mapping populations, including the MAGIC popula-
tion used here, were developed over decades spent develop-
ing this system. As a model system for chemical ecology,
metabolomes and transcriptomes from inbred lines of N. at-

tenuata, including some of the genotypes used in the MAGIC
population, have been extensively characterized under a va-
riety of environmental conditions and in response to differ-
ent stressors and could support interpretation of the spectral
data and help to connect to plausible genetic mechanisms. A
recently published transcriptional and metabolomic charac-
terization of MAGIC parental lines before and after differ-
ent types of experimental herbivory, coupled with investiga-
tions of the MAGIC RILs and targeted knock-downs under
field and glasshouse conditions, recently identified regula-
tory mechanisms that may buffer trade-offs and permit plants
flexibility in the evolution of growth and defense strategies
Ray et al. (2023). This is consistent with the outcome of
our analysis, which, perhaps surprisingly, indicates relatively
large variance in photosynthetic traits among the wild geno-
types contributing to the N. attenuata MAGIC population, as
discussed previously (Li et al., 2023a). Thus, while photo-

synthesis is a trait so conserved among plants that it is almost
definitive (with the exception of the few parasitic plants that
no longer depend on photosynthesis for energy), and is asso-
ciated with broadly conserved leaf spectral features related to
pigment absorbance (Meireles, Cavender-Bares, Townsend,
Ustin, Gamon, Schweiger, Schaepman, Asner, Martin, Singh,
Schrodt, Chlus and O’Meara, 2020), its expression neverthe-
less varies substantially even within a single plant species in
the context of growth and defense strategies. This variation,
likely mediated by variants of regulatory genes embedded in
coexpression networks Ray et al. (2023), may lend differ-
ent genotypes a competitive advantage under changing envi-
ronmental conditions. The significant associations identified
here thus indicate genotype and phenotype targets for novel
and interesting in-depth functional studies that could help us
to better understand plant survival strategies. A combina-
tion of natural variants, genetic modification, and laboratory
assays, such as gene expression analyses (Schena, Shalon,
Davis and Brown, 1995), protein-protein interactions (Fields
and Song, 1989) and chromatin immunoprecipitation assays
(Solomon, Larsen and Varshavsky, 1988), comprise the gold
standard for functional testing and validation of discovered
genetic associations. At this stage, the associations reported
here represent hypotheses that should be subjected to these
tests.

The broader implications of our research extend beyond
its immediate findings. Unraveling the genetic basis of leaf
spectral properties has far-reaching implications and could
for example revolutionize plant biodiversity monitoring, eco-
physiology, and adaptation research, and help to identify
genotypes resilient to stresses associated with global change.
Our study sets the stage for future research aimed at deci-
phering these links by presenting a widely applicable new
method for data-driven discovery of associations which can
be integrated with existing and novel tools to discover ge-
netic associations and move from association to causation or
prediction.

5. Conclusions

We tested several spectral data treatments and GWAS ap-
proaches to decipher the relationship between genetic vari-
ation and leaf spectral properties in a genetic mapping pop-
ulation of the ecological model plant N. attenuata in a field
experiment. We examined calculated leaf reflectance spectra
from 400 to 2500 nm, characterized more and less variable
spectral regions, and linked these to features indicative of
leaf composition and function. To tackle the high dimension-
ality and correlation structure inherent in spectral data, we
developed the Hierarchical Spectral Clustering with Parallel
Analysis (HSC-PA) method, which proved to be more sen-
sitive than working with either spectral indices or individual
wavelengths. Resulting associations overlapped with results
obtained from a “brute-force” Single-Wavelength GWAS
(SW-GWAS) approach and provided greater statistical power
while maintaining interpretable spectral features even with
reduced dimensionality, and accounting for internal correla-
tions in the spectral data. The HSC-PA approach has advan-
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tages for discovering candidate genetic associations in com-
parison to other data dimensionality reduction methods such
as PCA, because it yields more interpretable features, as well
as in comparison to other data-driven feature discovery meth-
ods such as PLSR, because it does not require independent
measurements to be made on all traits of interest to allow
feature discovery.

The identification of a significant correlation within the
445-499 nm spectral range, overlapping with the region of
blue light absorption by chlorophyll and encompassing the
activation spectrum for cryptochrome photoreceptors, indi-
cated a locus which could be related to photosynthetic ef-
ficiency and perhaps management of growth and defense
strategies, which have been shown to vary in distinct yet com-
plex ways in the pioneer species N. attenuata (Ray et al.,
2023). The significantly associated SNP is situated near the
Niat3g 07150 gene, which is annotated as a serine hydrox-
ymethyltransferase: an enzyme which plays a crucial role in
photorespiration, a process intimately linked with photosyn-
thesis. Another nearby gene, Niat3g 07151, which possesses
a methyltransf 11 domain, is an additional interesting can-
didate for explaining the apparent influence of this locus on
leaf spectral characteristics. The causal relationship of these
candidates to variation in leaf blue light reflectance, if any,
requires further testing. It would be interesting if the foliar
reflectance of blue light could thus be linked to plant growth
and defense strategies through mechanisms not directly re-
lated to leaf chlorophyll content.

This study introduces a method and framework that can
be broadly applied to attain deeper understanding of the ge-
netic underpinnings of leaf spectral properties. The associa-
tions identified here using an advanced genetic toolset built
for a native plant, and studied in a field environment within
the plant’s natural range, have the potential to advance our
understanding of the genetic mechanisms underlying photo-
synthetic efficacy and related growth and defense strategies
in plants, and could support new insights in the application
of remote sensing to biodiversity assessment.

6. Data and Code Availability

All plant lines are available from the Max Planck Insti-
tute for Chemical Ecology. The spectral measurement data
underlying the results presented in this paper are avail-
able as a published dataset (Li, Czyż, Halitschke, Bald-
win, Schaepman and Schuman, 2023b). The MAGIC par-
ents and RIL WGS are available under BioProject id PR-
JNA907539 (Ray et al., 2022). All processed spectral data,
genotypes data, and codes are provided at the GitHub repos-
itory: https://github.com/licheng1221/Association-study-of-
genetic-variation-and-spectroscopic-imaging-variant
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Saha, S., Perrin, L., Röder, L., Brun, C., Spinelli, L., 2022. Epi-MEIF:
detecting higher order epistatic interactions for complex traits using
mixed effect conditional inference forests. Nucleic Acids Research
50, e114. URL: https://doi.org/10.1093/nar/gkac715,
doi:10.1093/nar/gkac715.

Sannemann, W., Huang, B.E., Mathew, B., Léon, J., 2015. Multi-parent
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