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ABSTRACT

Optimizing shapes and topology of physical devices is crucial for both scientific and technological
advancements, given its wide-ranging implications across numerous industries and research areas.
Innovations in shape and topology optimization have been seen across a wide range of fields, notably
structural mechanics, fluid mechanics, and photonics. Gradient-based inverse design techniques have
been particularly successful for photonic and optical problems, resulting in integrated, miniaturized
hardware that has set new standards in device performance. To calculate the gradients, there are
typically two approaches: implementing specialized solvers using automatic differentiation or de-
riving analytical solutions for gradient calculation and adjoint sources by hand. In this work, we
propose a middle ground and present a hybrid approach that leverages and enables the benefits of
automatic differentiation and machine learning frameworks for handling gradient derivation while
using existing, proven solvers for numerical solutions. Utilizing the adjoint method, we turn existing
numerical solvers differentiable and seamlessly integrate them into an automatic differentiation frame-
work. Further, this enables users to integrate the optimization environment with machine learning
applications which could lead to better photonic design workflows. We illustrate the approach through
two distinct examples: optimizing the Purcell factor of a magnetic dipole in the vicinity of an optical
nanocavity and enhancing the light extraction efficiency of a µLED.

Keywords Shape optimization · Adjoint method · Automatic differentiation · Gradient-based optimization · Light
extraction efficiency · Nanophotonic devices · Finite-difference time-domain (FDTD) · Outcoupling structures

1 Introduction

Optimization is a crucial aspect in the development of structural devices that dictate the physical properties of waves
and fields in order to yield higher performance compared to those created using traditional approaches. The application
domain for optimization for light is vast and rapidly evolving [1], encompassing numerous techniques that modify
parameters or geometries based on specific update algorithms. Generally, physical systems subject to optimization
do not exhibit a convex loss landscape, resulting in inherent limitations when seeking global optima. Consequently,
most optimization algorithms can be categorized as either global or local optimization. Global optimization techniques
for photonic optimization include evolutionary algorithms [2] and Bayesian optimization techniques [3, 4]. Although
global optima are typically preferred over local optima, these algorithms face significant limitations regarding their
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applicability. For instance, Bayesian optimization becomes increasingly expensive for large problems with many
parameters and data points [5]. Similarly, evolutionary algorithms are often sample-inefficient and unsuitable for
computationally expensive evaluations. Emerging machine-learning approaches offer new possibilities for global
optimization and have demonstrated promising results in photonic optimization applications [6, 7, 8, 9, 10]. However,
they cannot overcome the fundamental issue of the curse of dimensionality [11]. Conversely, identifying local optima
in high-dimensional problems is much more manageable than obtaining a global minimum [12], as evidenced by the
vast number of neural network parameters being optimized during training for deep learning and machine learning [13].
By utilizing gradient-based optimization and adaptive stepsize methods such as ADAM [14] or line-search [15], it is
feasible to optimize numerous parameters simultaneously and achieve a local optimum. Gradient-based optimization is
often applied in numerical optimization algorithms for device parameter, shape, or topology optimization, which is
commonly referred to as inverse design [16, 17, 18, 19, 20]. To employ gradient-based optimization, it is essential to
compute the gradients of the desired function with respect to a loss or target value. This computation can be challenging,
as the loss often depends on the solution of the system of equations governing the underlying physical problem. The
adjoint method [21, 22] allows for obtaining analytical gradients by deriving adjoint equations, which can then be
manually integrated into numerical solvers and update equations for the geometry parameters [23, 18, 17, 24, 25].
However, this approach can be tedious and problem-specific, requiring new derivations for different physical settings or
optimization targets. Automatic differentiation (AD) offers an alternative by automating the complex and elaborate
process of deriving gradients [26]. With AD, one only needs to implement the forward function, provide a suitable
parameterization, define functions for solving the governing partial differential equation (PDE), postprocess the PDE
solution, and define the target/loss function. Although implementing functions for the postprocessing and the loss is
typically straightforward, obtaining gradients of a physical solution for a PDE can be challenging with AD, especially
when established numerical solvers do not support it. Consequently, an end-to-end approach using AD requires
implementing a new solver directly within the AD framework to derive the PDE solution and perform backpropagation
[27, 28, 29, 30]. This task can be impractical since migrating an existing, validated physical model to an AD solver and
framework poses significant work overhead.

In this work, we propose a "hybrid approach" that merges the benefits of automatic differentiation (AD) with the
applicability of the adjoint equation to established solvers. By utilizing analytically derived results from previous
works on the physical adjoint problem, we directly integrate established numerical solvers into an AD framework.
Importantly, the internal workings of the numerical solver must not be accessible to the user. Hence, we consider the
adjoint computation to be an atomic step in the computational graph of the AD framework. This combination creates an
end-to-end AD-enabled process incorporating established numerical solvers. The solvers are then seamlessly integrated
into the computational graph of the AD framework, effectively rendering them auto-differentiable for the optimization.
This approach allows users to leverage the functionality and efficiency of modern AD frameworks while selecting the
optimal numerical solver for their specific problem, regardless of AD compatibility1.

We demonstrate the application of AD integration by performing shape optimization on two distinct photonic problems
of scientific and engineering interest. In the first example, we aim to enhance the Purcell factor of a photonic nanocavity
by deforming the cavity geometry. In the second example, we apply shape optimization to the outcoupling structure of
a µLED. In both cases, we implement the analytically derived equations for the shape gradient into PyTorch, while
utilizing PyTorch-provided functionality for postprocessing and loss calculations [33].

2 Combining the adjoint method with autodifferentiation

A general optimization problem for photonic applications is the overarching goal to achieve the highest possible value
of a physical property. The problem is typically described by a partial differential equation (PDE) A that governs
the dynamics. Here, we consider only linear PDEs for brevity, but in general, the dynamics could also encompass
non-linear equations or be described by an eigenvalue problem [21]. With a set of geometrical design parameters
p, the solution u of the physical system is given by the equation Apu = bp where bp denotes source terms. The
system under consideration is embedded in a simulation region D on which the solution is computed. A figure of
merit or loss J(u) must also be defined which evaluates the solution of the physical system given by the parameters
p. Typically, this loss functional is given by an integral over the computational domain J =

∫
D u(s)ds or a sum over

discrete physical properties of the solution. The optimization problem is formulated by minp J(up) such that Apu = bp.
Typical examples are increasing the quality factor of a cavity, focusing the emission of light into a particular solid
angle, or increasing the Purcell effect for an emitter [34, 2]. The problem of computing the optical characteristics for a
given task is usually tackled by employing various numerical solvers such as rigorous coupled wave analysis (RCWA),
finite difference time domain (FDTD), finite-difference frequency-domain (FDFD), or finite element method (FEM).

1It is crucial for the solver to provide an interface that enables loading external geometries or parameters, and sources, as well as
exporting numerical solutions, which typically is a supported functionality [31, 32].
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Depending on the type of problem, the approximations and discretizations performed by the software are particularly
useful for a specific problem. As a result, many specialized types of solvers and software solutions exist today. However,
the situation is usually not as straightforward as choosing a set of parameters that can be applied to the PDE and then be
evaluated directly. For more complex problems, geometry generation and postprocessing of the raw solution of the PDE
require additional work on top of finding the solution. The evaluation of the design of an optimization process can be
separated into the following steps: the geometry definition Figure 1a), the numerical simulation of the physical problem
(Figure 1b)), the postprocessing of the results (Figure 1c)), and the evaluation by a loss functional (Figure 1d)).

Optimizing a large set of parameters p by gradient-based optimization requires the gradient of the loss functional with
respect to the design parameters δJ(u). Obtaining gradients of a loss functional J with respect to the input parameters
p is difficult at first glance since it involves computing the variation of the loss functional with respect to all input
parameters. This would lead to a computational complexity that scales linearly with the number of input parameters. For
large problems, this poses a heavy computational burden. Fortunately, the computational complexity can be improved
to a constant dependency on the input parameters by either employing the adjoint method or using (backward mode)
automatic differentiation to compute the parameter gradients. Both approaches are elucidated and combined in the
following.

2.1 Automatic differentiation

Backward mode automatic differentiation or backpropagation is the idea of applying the chain rule algorithmically
to a numerically executed computation. The gradient is separated into atomic computations for which the derivatives
are known analytically. For a simple computation y = f(g(x)), the chain rule gives the derivative of y with respect
to x as ∂y

∂x = ∂f
∂g

∂g
∂x . The functions f and g can now be differentiated individually and the analytical solution of the

respective derivative reused whenever the functions appear again. For arbitrarily big computations, it suffices to separate
the computation into individual function applications and keeping track of the order in which all functions have been
applied. This concept is known as the computational graph. Consider a complicated computational graph J = fG(p)
that represents solving the linear PDE of the aforementioned physical system Apu = bp and computing the loss of the
system J(u). Computing ∂J(u)

∂p is then reduced to tracing back the individual steps of the computational graph from
the loss J to the parameters p and chaining the respective derivatives of the intermediate function applications. To
distinguish which part of the computation is executed, any mathematical function of the AD framework provides a
forward and a backward method. The normal function evaluation is applied when the forward method is invoked since
the computational graph is traversed in the forward direction from the input to the loss. The derivative is computed by
the backward method which receives the gradient information in backward order starting from the loss and propagating
to the input values. Automatic differentiation is straightforward to use and many scientific AD frameworks are readily
available such as Jax, PyTorch, Hips/autograd, and more [35, 33, 36, 37, 38]. The drawback of using AD frameworks for
optimization is that the numerical solver for the PDE must support automatic differentiation and create a computational
graph during the numerical solution for u. Although this is a rapidly evolving field and a number of solvers employing
automatic differentiation have been developed [28, 27, 30], many popular choices and industry-standard solvers do not
support AD [31, 32].

2.2 Adjoint Method

On the other hand, adjoint methods approach the gradient derivation from the manual side. Here, we briefly recall
the basis of the adjoint method [21, 23, 18]. Consider again a system governed by the linear PDE Apu = bp
with loss functional J . The functional derivative of J(u) can be expressed by dJ

dp = ∂J
∂p + ∂J

∂u
∂u
∂p . The term ∂u

∂p

exhibits the undesired effect of linear scaling of the computational cost with the number of input parameters p if it is
evaluated via finite differences. However, this term can be expressed by taking the derivative of the PDE wrt. to p
∂Au
∂p −

∂b
∂p = ∂A

∂p u+A∂u
∂p −

∂b
∂p = 0 which is than rearranged to

∂u

∂p
= A−1

(
∂b

∂p
− ∂A

∂p
u

)
. (1)

Putting everything together, we are given an equation that splits into three parts - the derivative of the loss with respect
to the parameter, the s.c. adjoint solution and the forward solution:

dJ(u)
dp

=
∂J

∂p
+

(
∂J

∂u
A−1

)
︸ ︷︷ ︸
adjoint solution

(
∂b

∂p
− ∂A

∂p
u

)
︸ ︷︷ ︸

forward solution

. (2)
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Here, the name adjoint solution derives from the reformulation of the left side of Equation 2 to A†v = ∂J
∂u where v is

the solution of this adjoint PDE. For many linear PDE, the adjoint system equations A† are straightforward to derive.
The boundary terms are given by the sensitivity of the loss functional with respect to the solution of the original PDE.
The right side of Equation 2 is then comprised of the solution u and the sensitivity of the system matrix A and boundary
conditions of the original PDE. The adjoint method is appealing due to its generality. It is applicable to physical
optimization problems in many settings, also outside of photonics. In particular, it is possible to compute the forward
and adjoint solution with many different types of numerical solvers as long as the adjoint system equations can be used
by the solver. However, it poses an analytical overhead before the optimization since the derivation of the required
equations is done by hand. Especially for complicated problems where the system equations have a complicated
dependency on the parameters in ∂A

∂p and ∂b
∂p or if the loss functional involves lengthy and tedious postprocessing

J = f ◦ g ◦ h . . . the adjoint method becomes impractical.

2.3 Integrating the adjoint method into automatic differentiation

Interestingly, the advantages and disadvantages of AD and the adjoint method seem to complement each other. While
the adjoint method is difficult to use but generally compatible with most numerical solvers, AD is easy to use but only
applicable by using appropriate solvers. Here, we show how to combine both methods and leverage the advantages of
each other to cancel their disadvantages.

The key idea is to incorporate the adjoint method directly into the computational graph of the AD framework. This
integration provides the benefit of the AD framework’s flexibility without the necessity of rewriting efficient numerical
solvers. In order to integrate the adjoint method into the backward calculation of an AD framework, we need to
identify the appropriate terms in the derivation. Fortunately, the forward and adjoint solution derivation is similar
to the distinction between the forward and backward methods for AD. The forward method should receive the input
parameters p that determine the system equations Ap and source terms bp and return the solution of the PDE u back to
the computational graph. During gradient computation, we crucially depend on the input from the backward methods to
receive the adjoint source ∂J

∂u with which the adjoint solution v can be computed. In the backward method, we should
therefore receive gradient information from the loss function and any other postprocessing steps that were computed
from the forward solution u. Then the adjoint solution and the forward solution are multiplied (Equation 2) and the
solution is returned back to the computational graph for further processing back to the root of the parameters. The
remaining terms ∂A

∂p and ∂b
∂p depend on the discretization of the solver and the applied optimization scheme and must be

treated accordingly if they are not part of the AD framework.

There are two popular schemes that are mostly used for the geometric optimization of photonics - topology and shape
optimization. In topology optimization, the entire distribution of material is considered to change point-wise throughout
the optimization domain. In shape optimization, the boundary ∂Ω of a shape Ω is continuously deformed but the shape
remains connected during the deformation. Importantly, the approaches require different treatments of the gradients. We
will focus on shape optimization in the following but similar steps can be applied for topology optimization [39]. The
optimization target must be reformulated slightly since in shape optimization the target is to optimize over the possible
geometrical shapes instead of the parameters. A shape Ω is a connected region within the computational domain
D ⊂ Rn with fixed optical material properties. The PDE can then be solved on D which yields solution uΩ ∈ Rk. A
loss functional J is then applied to evaluate the solution. Shape optimization derives how to deform the boundary of the
shape Ω to improve the loss J(uΩ) =

∫
D dsuΩ. By taking the variation of the loss functional to first order, we obtain

[23, 20, 40]

δJΩ(δΩ) =

∫
∂Ω

ds δΩ n̂ (c1 − c2)uΩvΩ =

∫
∂Ω

ds δΩ n̂ VΩ(s). (3)

δΩ denotes the variation of the shape which is equivalent to a test function in functional analysis. At iteration i, the
variation deforms the shape Ωi+1 = (1+ δΩ)(Ωi). n̂ denotes the normal vector on the boundary, and VΩ(s) denotes
the s.c. sensitivity field (also known as gradient field [17] or velocity field [41]). Since our goal is to minimize the loss
functional, we see that this can be achieved by setting the geometry deformation to δΩ = −n̂ VΩ(s). Then, the loss
functional is guaranteed to decrease to first order in every iteration. The sensitivity field acts on the shape as a vector
field that drags the boundary along the direction of the vector field [42, 41].

The forward and adjoint solutions uΩ and vΩ are directly inserted in the shape gradient. c1 and c2 are parameters of
the computational domain inside and outside of the shape Ω. For photonic optimization, the parameters are given by
the relative electric permittivity εi for the parallel component of the electric fields in u and v and 1/εi for the normal
component [17].

In many interesting scenarios, the functional J(uΩ) has a complicated dependence on the solution from the post-
processing and the shape has parameter dependencies. Generally, this postprocessing dependence is described by a
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function f : Rk × D 7→ F , where F is a vector space, usually chosen to be Rm. The postprocessing, which can
be arbitrarily complicated, acts on the solution uΩ before integrating the result of the postprocessing J(f(uΩ(p))) =∫
F dy f(uΩ(p)) to obtain the loss J . An example of such a postprocessing function is the farfield transformation that

is used in subsection 3.2 that projects the boundary values of the solution uΩ from the 2D computational domain D
on a linear farfield [43]. The chain rule for functionals [44, 45] for chaining functionals with ordinary differentiable
functions allows us to separate the postprocessing and the geometry definition from the shape gradients

δJΩ(δΩ) =

∫
∂Ω

ds δΩ n̂ VΩ(p)(s)
∂Ω(p)

∂p
. (4)

The functional derivative can then be written as

δJΩ
δp

= n̂ (c1 − c2)uΩ

(
∂J

∂f

∂f

∂uΩ(p)
A−1

)
︸ ︷︷ ︸

vΩ

∂Ω(p)

∂p
. (5)

Here, we see again how to employ automatic differentiation on the adjoint source computation for the adjoint solution
vΩ and then continue with the backpropagation of the shape. For illustrative purposes, the process is also depicted in
Figure 1.

2.4 Software considerations

On a practical level, integrating the adjoint method into an AD framework and thus making AD compatible with conven-
tional solvers boils down to implementing a differentiable simulation function that receives a numerical representation
of the geometry boundary ∂Ω. The differentiable simulation is shown in pseudocode in subsection 5.2. Boundary
support points that give rise to the shape Ω are an ideal representation since they easily integrate with numerical AD
frameworks. Here, we focus only on 2D shapes but this can be extended to 3D by modifying the equations appropriately.
The differentiable simulation method starts by initializing the simulation by evaluating the geometry support points.
Then, the solution of the simulation is computed and returned to the AD framework. The AD framework then undertakes
the postprocessing of the solution, along with the evaluation of the loss functional. Taking the derivative of the loss
functional up to the adjoint simulation is handled by the AD framework using backpropagation. Crucially, the AD
framework returns the adjoint source ∂J

∂u , see Figure 1e-f), which is usually derived manually in former applications
[17, 25, 18, 23].

The adjoint source is then passed to the backward method of the differentiable simulation function as the gradient input,
shown in Figure 1g). It initializes the adjoint simulation and computes the adjoint solution v, which is particularly easy
for Maxwell’s equations with linear materials due to their time-reversal properties [18]. For the Maxwell equations, the
adjoint system is given by A†vΩ = TAT vΩ = ∂J

∂u with T , the time reversal operator. Then, computing the adjoint
solution can be done by solving ATvΩ = T ∂J

∂u .

Taking the derivative of a function often involves retaining the results from the forward function evaluation. In the case
of the adjoint method, most importantly the solution uΩ but it is useful to also save the boundary reference and other
additional parameters for the solver. Since AD frameworks are often required to store the solution of the forward pass,
the framework provides the functionality to store intermediate results which are necessary for the gradient calculation
during backpropagation. Together with the forward solution, the backward method computes the sensitivity field for the
given geometry with the shape calculus shown in Equation 5 [46, 23, 18].

The sensitivity field will act as a gradient by deforming the geometry since δΩ will decrease the loss functional to
first order. The movement of the boundary is projected on the normal since the tangential movement of the boundary
has no influence on the loss functional which is shown in Equation 5. We need to take into account that the geometry
is represented by boundary support points where movement of the support points drags the connecting edge along.
The edge displacement must be carefully taken into account which is detailed in subsection 5.1. The support point
sensitivities are interpreted as the support point gradients and returned by the backward method. The AD framework
continues with the backpropagation to the geometry parameters p. In this way, it is particularly straightforward to create
parameterized geometries which, for example, serve to introduce geometry constraints that ensure favorable properties
such as manufacturability. To illustrate the core functionality of the differentiable simulation function we present it in
pseudo-code in subsection 5.2.

Finally, the shape can be updated via an optimizer depicted in Figure 1h). The optimizer uses the computed gradients in
order to update the shape parameters with a stepsize estimated by the selected algorithm. Many different approaches
exist and exhibit advantages and disadvantages. The simplest optimizer is gradient descent where the parameters are
updated based on a stepsize η selected at the start following the rule pi+1 = pi ± η∇p. However, many more refined

5



A PREPRINT - 02/10/2023

Ω

∂Ω

𝒟∂𝒟 

Ω

∂Ω

𝒟∂𝒟

Ω

∂Ω

𝒟∂𝒟

Ω

∂Ω

𝒟∂𝒟

Forward

Backward

Adjoint method

Ω

𝒟∂𝒟

(𝟙+δΩ)Ω

∂((𝟙+δΩ)Ω)

𝒟∂𝒟

∂Ω

Iterate

ShapeSimulationPostprocessingLoss

∂𝒟

∂Ω

Ω

𝒟

∂𝒟

∂Ω

Ω

𝒟

Naturally autodifferentiable

Loss 

derivative
∂J

∂f

Postprocessing

derivative

∂f

∂uΩ

Adjoint 

simulation

∂uΩ

∂Ω

Shape 

gradient
∂Ω
∂p

ℱ ℱ

ℱ ℱ

a)b)c)d)

h)g)f )e)

Figure 1: Overview of a typical geometry optimization problem. a) The optimization starts with a parametrized initial shape Ω(p)
within a computational domain D. b) Then, the physical problem is solved using a numerical solver with the source
distribution appropriate for the problem at hand. c) Next, the physical solution is evaluated in the domain or on its
boundary and transformed during postprocessing, for example by projecting a recorded near field to the far field or
selecting different waveguide modes. d) Finally, the result from postprocessing is evaluated and integrated by a loss
functional J . e-f) Differentiating the loss functional up to the solution from the numerical solver is easy due to automatic
differentiation (AD). g) However, it becomes more difficult to obtain gradients for the simulation parameters from the
simulation solution since many numerical simulations do not provide AD or it is not efficient to use. Taking the derivative
with respect to the shape parameters is therefore difficult. By combining AD with the adjoint method, backpropagation
computes the gradients up to the solution from the solver at which point the adjoint method is employed to continue with
the gradient computation and passes the gradients further to the shape parameters. Computing the gradient of a given
shape is then reduced to backpropagating through the computational graph of the AD framework, which is equivalent to
backpropagation through the simulation itself by means of the adjoint method. h) Finally, the gradient of the shape is
evaluated by AD, and the shape parameters are updated by an optimization algorithm. Then the next iteration begins with
the updated shape.

techniques exist such as quasi-newton methods [15] that estimate the hessian iteratively with gradient information or
moment estimation methods such as ADAM [14] which approximate first and/or second-order moments of the stepsize.

3 Application examples

To showcase the integration of a conventional simulation into an AD framework, we apply it to two different problems
of current interest. In the first example, we enhance the spontaneous emission rate for an optical nanocavity while in the
second example, we increase the farfield intensity distribution within a given solid angle by optimizing the outcoupling
structure of a 2D µLED.

3.1 Purcell effect optimization

In the example shown in Figure 2, we aim to increase the spontaneous emission rate for an optical nanocavity. Increasing
the spontaneous emission rate is a research problem both for inverse design [47, 48] and classical approaches [49].
More precisely, our goal is to increase the Purcell factor, which is proportional to the time-averaged poynting vector on
the boundary of the domain max P

P0
= max

∫
∂D n̂Re

[
EΩ ×H†

Ω

]
/2 ds where P0 is the dipole emission in free space,

6
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c) Shape gradients on the initial 
    geometry of the torus.

d) Shape gradients on the boundary 
    of the deformed torus.
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Figure 2: Overview of the gradient descent optimization results for the enhancement of the Purcell factor in a torus nanocavity.
a) depicts the initial torus geometry. The dipole emitter sits in the center of the torus at r⃗ = (0, 0)T . The refractive
index of the torus has a value of n = 3.5 + 0i. The blue contour represents the deformable boundary which is subject
to optimization. The optimized torus geometry after 150 iterations is shown in b). Geometry deformations during
optimization led to a loss reduction, as demonstrated in e). The loss exhibits a steady decline throughout the optimization
process with slight oscillations which emerge if large parts of the boundary are close to a local minimum. For this
optimization, we chose the negative Purcell factor for the loss with gradient descent. After the optimization, the Purcell
factor was increased by about ×220. The deformations are computed via the adjoint method, see section 2. The sensitivity
field is shown in d) together with the shape gradients that are obtained by evaluating the sensitivity field on the boundary
of the deformable geometry.

which is used for normalization while n̂ denotes the boundary normals and EΩ and HΩ denote electric and magnetic
fields on the boundary Ω. We employ the FDTD solver from Lumerical [31] to obtain the electric and magnetic field
solutions for the selected wavelength of 600nm. For simplicity and to reduce the simulation time, we consider a 2D
problem that is infinitely extended in the z-direction. In the center of the simulation domain, we place a magnetic dipole
emitter with the magnetic current oriented in the x-direction and surround it with a torus structure with a real refractive
index of n = 3.5. Both the inner and the outer torus boundary, shown in Figure 2-, are subject to optimization but are
represented by a tensor of an AD framework. In the presented case, we employ PyTorch as AD framework. For the
update scheme, we employ simple gradient descent but chose a physically inspired step size on a length scale for which
we expected a change of the Purcell factor. We also decrease the step size proportionally to the Purcell factor. The
optimization shows converging behavior after 150 iterations, in which the Purcell factor increased to P

P0
≈ 83 starting

from P
P0
≈ 0.4, which is in the range of expected improvement. Since we use a simple gradient update scheme, the

presented solution is highly dependent on the initial geometry and is potentially far away from a global maximum for
the Purcell factor. The optimization also results in a dumbbell shape around the dipole which has been observed in
other works, too [49, 50, 47, 51, 48].

3.2 Shape optimization for spatially distributed dipole emission of a µLED

In the example shown in Figure 3, our primary objective is to enhance the farfield emission of a µLED (nanoscale
light-emitting diode) within a specific solid angle, denoted as Γ, also known as LEE (light extraction efficiency). The
field of µLED development is rapidly advancing, attracting substantial research interest and holding considerable
industrial relevance [52, 53, 54, 55]. The targeted optimization can be mathematically represented by the function

7
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maxΩ LEEΓ = maxΩ PΓ/P0 = maxΩ
1
P0

∫
Γ

∫
Λ
Re

[
EΩ, Farfield ×H†

Ω, Farfield

]
/2 dΓdλ. LEDs exhibit incoherent dipole

emissions that originate from all over the quantum well region. To approximate this emission behavior, we distribute
dipole emitters over the quantum well and compute the average emitted intensity within the solid angle Γ and normalize
with respect to the injected power P0 into the simulation. By solving the emission problem for each individual dipole,
we can account for the incoherent nature of the µLED’s emission. To simplify the problem and reduce computational
time, we adopt a two-dimensional FDTD model. The wavelength range of interest for this example is from 600 to 650
nanometers (Λ = [600, 650] nm). The initial µLED model is depicted in Figure 3a). The µLED features a gold substrate
passivated with a thin layer of silicon dioxide and a semiconductor material composed of gallium nitride, which is
connected to the gold substrate via a thin layer of indium tin oxide. The quantum well region is made up of indium
gallium phosphide. To enhance the light extraction efficiency within the solid angle Γ, we deform the upper boundary
of the µLED’s top side, referred to as the outcoupling structure, which consists of gallium nitride. The emission then
radiates into the air.
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a) 2D model of the µLED structure before (left) and after the optimization (right)

b) Comparison of the mean farfields before (left plot) and after (right plot) the µLED optimization 
     process, demonstrating the increase in emission intensity within the solid angle 𝛤 over a range 
     of wavelengths (𝛬 = [600, 650] nm).

d) Plot of the loss function
    during the 30 iterations of the
    gradient descent optimization. 
    We employ a physically 
    inspired stepsize of a 
    maximum deformation of 
    2nm and decay the stepsize 
    after 5, 10 and 20 iterations to 
    1nm, 0.5nm and 0.1nm 
    respectively. We also increase 
    the FDTD mesh resolution 
    when decaying the step size.

c) Mean sensitivity field over the entire computational domain at the beginning (left) and at the end (right) of the optimization. The blue
    line indicates the deformable boundary with mirror symmetry at the y-axis. Indicated in gray are the shape gradients on the boundary 
    countour. The shape is updated in the opposite direction of the gradients to minimize the loss to first order. The shape gradients are 
    smoothed locally by sliding a gaussian kernel over the boundary. The oscillating gradients after the optimization vary on a lengthscale 
    which is smoothed out by the kernel.

Figure 3: Illustration of the µLED optimization process: a) presents the initial model, where dipole emitters are distributed within
the quantum well region (green). The averaged farfield emission of the initial µLED and LEE into solid angle Γ = 25◦

is shown on the left plot of b). For reference, b) also displays the farfield for a range of individual wavelengths and
the total LEE. Using the adjoint method with shape calculus section 2 we obtain the averaged sensitivity field over
the entire domain, which is shown in c). By following the direction of the steepest descent and updating the boundary
geometry according to the shape gradients for 30 iterations, we deform the boundary and decrease the loss over the
optimization duration, see d). To avoid obtaining a shape with very small features, we smooth the gradients locally over
the deformable boundary. At the end of the optimization, the outcoupling structure of the µLED is shown in a) on the right.
The corresponding farfield for the optimized µLED shown on the right in b) experiences a reshaping with an improvement
of the overall LEE directed into Γ of ∆LEE±25 = 0.0428 and a total LEE improvement of ∆LEE±90 = 0.0315.

To enable the use of automatic differentiation, we represent the outcoupling structure geometry with a PyTorch tensor.
The differentiable simulation receives a reference to this boundary representation and creates an STL file from the
tensor that is imported to the solver after each iteration. Furthermore, the projection of the fields on the boundary of
the µLED are projected into the farfield by a PyTorch implementation of the equivalence principle in order to use AD

8
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for the postprocessing [43]. Employing a standard gradient descent optimization technique, we run the optimization
for 30 iterations. During the optimization, the outcoupling structure is continuously deformed following the mean
sensitivity field computed by the adjoint method. The shape gradients and mean sensitivity field for the initial and
final structure are shown in Figure 3 a) in the left and right figure respectively. The boundary approximation of the
outcoupling structure is much finer than the mesh size of the solver, thus we interpolate the field solution to obtain
smooth field values on the boundary. For optimization stability, we decay the stepsize after 5, 10, and 20 iterations from
2nm to 1nm, 0.5nm, and 0.1nm. By increasing the mesh resolution, after 10 and 20 iterations, we make sure to resolve
the geometry changes sufficiently when the stepsize becomes small. To avoid creating small features on the outcoupling
structure boundary, we smooth the shape gradients locally by sliding a Gaussian kernel over the boundary. Therefore,
the standard deviation of the kernel controls the size of the features. This explains the oscillating gradients on the
boundary after the optimization ( see Figure 3 c) plot on the right), which are smoothed out after applying the Gaussian
kernel. The final optimized µLED structure is presented in Figure 3 a), while the loss throughout the optimization
process is depicted in Figure 3 d). As the main objective is proportional to the farfield intensity within the solid angle Γ,
we also provide the mean farfield at both the beginning and end of the optimization in Figure 3 b). Additionally, we
show the farfield intensity for a range of wavelengths. After the optimization, the averaged farfield is focused in the
target solid angle Γ, and the LEEΓ is increased by 0.0428, an improvement of 63.01% compared to the initial farfield.

4 Conclusion

In this work, we have presented an general approach to include existing numerical solvers into an automatic differentia-
tion framework to simplify and make the optimization of photonic structures faster and more convenient, particularly
with existing models and solvers. To this end, the adjoint method is the key to implementing the forward and backward
methods for automatic differentiation which allows us to make conventional solvers end-to-end auto-differentiable.
Due to our focus on continuous geometries, we presented the optimization in the context of shape optimization and
computed shape gradients on geometry boundaries which enable gradient-based optimization algorithms to improve the
optical characteristics of the geometry with respect to the loss function. Generally, the approach is also suitable for
topology optimization.

We demonstrate the approach with two different physical problems, optimizing an optical nanocavity to increase the
spontaneous emission rate and optimizing the outcoupling structure of a µLED to increase the light extraction efficiency
into a solid angle in the farfield. For both cases, we show a significant reduction of the loss while employing Lumerical
FDTD to solve the Maxwell equations.

Two key advantages of employing automatic differentiation (AD) for numerical optimization are parallelized mul-
tiphysics optimization and compatibility with machine learning. By integrating various physics solvers into AD,
conducting joint optimization (e.g., thermal and optical optimization) becomes considerably more straightforward.
Integrating the adjoint method into AD frameworks could also facilitate the development of novel AI applications for
designing and optimizing optical devices.
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[48] Jesse Lu and Jelena Vučković. Inverse design of nanophotonic structures using complementary convex optimization.

Opt. Express, 18(4):3793–3804, Feb 2010.
[49] Sandro Mignuzzi, Stefano Vezzoli, Simon A. R. Horsley, William L. Barnes, Stefan A. Maier, and Riccardo

Sapienza. Nanoscale design of the local density of optical states. Nano Letters, 19(3):1613–1617, 2019. PMID:
30786717.

[50] Fengwen Wang and Ole Sigmund. Optimization of photonic crystal cavities. In 2017 International Conference on
Numerical Simulation of Optoelectronic Devices (NUSOD), pages 39–40, 2017.

[51] Omer Yesilyurt, Zhaxylyk A. Kudyshev, Alexandra Boltasseva, Vladimir M. Shalaev, and Alexander V. Kildishev.
Efficient topology-optimized couplers for on-chip single-photon sources. ACS Photonics, 8(10):3061–3068, 2021.

[52] Panpan Li, Hongjian Li, Yifan Yao, Norleakvisoth Lim, Matthew Wong, Mike Iza, Michael J. Gordon, James S.
Speck, Shuji Nakamura, and Steven P. DenBaars. Significant quantum efficiency enhancement of ingan red
micro-light-emitting diodes with a peak external quantum efficiency of up to 6%. ACS Photonics, 0(0):null, 2023.

[53] Panpan Li, Aurelien David, Hongjian Li, Haojun Zhang, Cheyenne Lynsky, Yunxuan Yang, Mike Iza, James S.
Speck, Shuji Nakamura, and Steven P. DenBaars. High-temperature electroluminescence properties of InGaN red
40x40 µm² micro-light-emitting diodes with a peak external quantum efficiency of 3.2%. Applied Physics Letters,
119(23), 12 2021. 231101.

11

https://nannos.gitlab.io/license.html
https://www.lumerical.com/products/stack/
https://www.comsol.com/
https://juliadiff.org/
https://autodiff.github.io/


A PREPRINT - 02/10/2023

[54] Tetsuya Taki and Martin Strassburg. Visible leds: More than efficient light. ECS Journal of Solid State Science
and Technology, 9(1):015017, nov 2019.

[55] Haejun Chung. Computational upper-limit of directional light emission in nano-led via inverse design. Opt.
Express, 30(6):9008–9020, Mar 2022.

5 Appendix

5.1 Support Points behavior

The representation of the shape with support points is quite important for the gradient computation. The shape of the
discretized geometries are deformed by dragging the support points following the gradients. First of all, the gradient in
shape optimization is only meaningful in direction of the normal of the boundary. The gradient direction is therefore a
weighted combination of the normal vectors of the two adjacent edges to the support points. Furthermore, depending on
the density of the support points, one can not simply evaluate the sensitivity field on the support points position xni

directly since the sensitivity field can vary between support points. Moving an individual support point leads to moving
the edge between the previous support point xni−1

and the next support point xni+1
see Figure 4. The influence of a

small displacement of an individual support point ni on the variation of the loss functional can be computed by [17]

δni =

∫ xni

xni−1

dx
x− xni−1

xni

n̂VΩ(x)−
∫ xni+1

xni

dx
x− xni

xni+1

n̂VΩ(x). (6)

ni‐1

ni

ni+1

Figure 4: Edge movement for a displacement of an individual support point. The edge moves much further close to the support point
ni than close to the adjacent support points. For a small displacement of support point ni, the variation of the support
point is given by Equation 6.

5.2 Pseudo-code for the differentiable simulation function

The forward and backward methods seamlessly integrate into the computational graph of the chosen autograd framework
where using forward and backward is often the naming convention. The inputs to the forward are necessary to specify
the boundary conditions for the numerical solution. For Lumerical, this would mean activating the forward sources
for the forward calculation and activating the adjoint sources for the backward calculation. After the simulation, the
numerical solution from the simulation is collected and passed to the next function in the computational graph. After
calling backward on the loss value and backpropagating up to the differentiable simulation, the adjoint simulation is
initialized with the adjoint sources and the given shape. Note that the time reversal operation which is performed on the
gradient input and the adjoint solution. The forward and adjoint solutions are then used to compute the sensitivity field
[23]. c1 and c2 are constants, which depend on the permeability of the materials inside and outside of the boundary.
Finally, the sensitivity field is evaluated on the boundary and projected on the boundary normal. These values then
represent the gradients on the shape which are returned from to the computational graph.
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Algorithm 1 Pseudocode for a differentiable simulation autograd function for automatic differentiation to derive shape
gradients via the adjoint method.

1: class DIFFERENTIABLESIMULATION(AUTOGRAD)
2:
3: function FORWARD(self, simulation, forward_source, c1, c2, shape)
4: self.store← simulation
5: self.store← c1, c2
6: self.store← shape
7: simulation← forward_Source
8: simulation← shape
9: u← simulation.run()

10: self.store← u
11: return u
12:
13: function BACKWARD(self, grad_input)
14: simulation← self.store
15: shape← self.store
16: adjoint_source← time_reverse(grad_input)
17: simulation← adjoint_source
18: simulation← shape
19: v← simulation.run()
20: u← self.store
21: c1, c2← self.store
22: sensitivity_field← u, v, c1, c2
23: V_Omega← sensitivity_field(shape)
24: normals← shape
25: gradients← normals · V_Omega
26: return gradients
27: end class
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