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This work lays the foundation to accurately describe ground-state properties in multimode pho-
tonic environments and highlights the importance of the mass renormalization procedure for ab
initio quantum electrodynamics simulations. We first demonstrate this for free particles, where the
energy dispersion is employed to determine the mass of the particles. We then show how the mul-
timode photon field influences various ground and excited-state properties of atomic and molecular
systems. For instance, we observe the enhancement of localization for the atomic system, and the
modification of the potential energy surfaces of the molecular dimer due to photon-mediated long-
range interactions. These phenomena get enhanced under strong light-matter coupling in a cavity
environment and become relevant for the emerging field of polaritonic chemistry. We conclude by
demonstrating how non-trivial ground-state effects due to the multimode field can be accurately
captured by approximations that are simple and numerically feasible even for realistic systems.

I. INTRODUCTION

In recent years, a multitude of seminal experi-
mental and theoretical breakthroughs involving atoms,
molecules, and solids embedded in photonic structures
have ushered in the rapidly developing fields of polari-
tonic chemistry [1–3] and cavity quantum materials [4–
6]. The common and important aspect of these fields
is the capability of modifying or controlling the proper-
ties of matter in an unprecedented way by coupling it
strongly to the vacuum modes of a photonic structure.
Some examples of the experimental and theoretical works
include the possibility of building polariton lasers [7],
control photochemical reactions [8, 9] and energy trans-
fer [10–12], enhancement of harmonic generation from
polaritonic states [13–16], modification of ground-state
chemical reactions via vibrational strong coupling [17–
19], or cavity-control of condensed matter properties [20–
26]. Also, the coupled light-matter system can be tuned
to exhibit significantly different properties even at room
temperature [27, 28]. The variety of these different ef-
fects (which is by no means a comprehensive list) shows
the complexity that results from a strongly coupled light-
matter system. It is clear that the theoretical description
of these effects is far from trivial as it requires knowledge
and methods ranging from materials science, quantum
chemistry, quantum optics and many-body physics.

The theoretical tools employed to explain the exper-
imental results are commonly quantum optical models
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(e.g., Tavis-Cummings or Dicke-model) [29, 30], and
only recently first-principles approaches for coupled light-
matter systems have been developed [31–34]. These ap-
proaches, often formulated for a continuum of photonic
modes, commonly make the few- or even single-effective-
mode approximation in practice [35, 36]. While this ap-
proximation is often well-justified, there are many effects
that need a multi-mode description [3]. Examples in-
clude radiative dissipation and finite-lifetime effects, such
as the Purcell effect [37], dispersive forces (Casimir and
van der Walls forces) [38] or renormalization effects such
as the Lamb-shift [39]. In the case of quantum optical
models many multi-mode effects have been studied in de-
tail [40–42], yet due to the reduced nature of the matter
degrees of freedom (an apriori reduction to a few effec-
tive levels), renormalization and its connection with bare
matter quantities has been studied less. For the case
of first-principles methods, however, it has been pointed
out that the necessary renormalization of the masses of
the charged particles can have a strong effect [3, 43].
Given the fact that the electromagnetic environment in
a cavity is drastically different than free space, because
the photon density of states, electromagnetic spectrum
and light-matter coupling are modified, it becomes nec-
essary to investigate how multimode renormalization ef-
fects in the cavity emerge under strong coupling. Having
in mind the recent successes in experimentally modifying
chemical reactions and material properties, these effects
could be part of the solution to the conundrum of how
photon-field fluctuations can influence atoms, molecules
and solid-state systems. In order to quantify the effects
on equilibrium states, a non-perturbative investigation
that solves the coupled light-matter problem exactly is
needed.

Such a study is, however, far from trivial and we need
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to make some initial assumptions to make it tractable.
Firstly, since we are mainly interested in the effect of
optical wavelengths on bound-state systems, we make
the long-wavelength approximation (also called dipole-
approximation or optical limit [43, 44]). This is the com-
mon standard in most cases of polaritonic chemistry and
material sciences [1, 4, 5]. In this case the connection
between the necessary regularization of the light-matter
interaction, which in its simplest form is merely a cutoff
at some highest energy, and the bare mass of low-energy
quantum-electrodynamics (QED) [43] is known analyti-
cally from perturbation theory [45]. This (together with
choosing different gauges) allows us to verify the accuracy
of our numerical simulations when going from free par-
ticles to bound-state systems. Secondly, in order to rep-
resent the continuum of modes numerically, we require a
dense sampling of the relevant energy range. For a non-
perturbative simulation this becomes exceptionally de-
manding for three-dimensions. We will therefore restrict
to a one-dimensional continuum of modes and respective
atomic and molecular models [42, 46, 47]. We will com-
ment on the range of validity of these two assumptions
and on the implications of our results for general situa-
tions later.

Having set the stage, we in the following first dis-
cuss free-space mass-renormalization in non-perturabtive
QED. This introduces the concept of a bare mass in
a way that is most closely connected to the common
renormalization procedure of perturbative QED [45, 48].
We demonstrate how the mass renormalization proce-
dure introduces the experimentally observable renormal-
ized mass and correctly obtains the energy dispersion
from a quantum mechanics calculation. Going beyond
this standard setting we then show how the continuum
of modes influences the ground state of atomic and molec-
ular systems. Interestingly we find that the renormalized
(effective) mass approximation, as employed in matter-
only quantum mechanics, shows relatively strong devi-
ations from the full multi-mode simulations. The dis-
crepancies become more pronounced when going to the
molecular case. These results highlight an important
feature of multimode light-matter interaction for bound
matter systems were the lower-lying modes of the sam-
pled electromagnetic continuum couples strongly and in-
fluences equilibrium properties when compared to the
higher-lying modes. We then show how modifying the
electromagnetic vacuum by, e.g., an optical cavity, can af-
fect the ground state properties of atomic and molecular
systems. For the atomic model we find that the ground
state density of the electron gets an enhancement of local-
ization due to the interaction with the multimode cavity
field. For the molecular H2 model we observe the modi-
fication of the ground state PES due to cavity-mediated
long-range interactions. These results are important for
the emerging field of polaritonic chemistry and could po-
tentially guide future developments in the cavity control
of chemistry. Finally we demonstrate how many of the
counter-intuitive and non-trivial ground-state effects can

be captured by a specifically-chosen effective few-mode
or dipole-self-energy approximation. These approxima-
tions allow to capture multi-mode induced ground-state
modifications in realistic material systems.

II. THEORETICAL FRAMEWORK

We start by presenting the non-relativistic limit of
QED to describe the interaction of the electrons, photons
and nuclei. This description of the coupled light-matter
system considers transverse fields with wavelengths that
are substantially larger than the matter system so that
the long-wavelength limit [44] is applicable. In this non-
relativistic setting, the dynamics of the coupled system is
described by the velocity (momentum) form of the Pauli-
Fierz Hamiltonian [43, 49]:

ĤV =

Ne∑
l=1

1

2m

(
−iℏ∇rl −

|e|
c
Â

)2

+
1

2

Ne∑
l ̸=j

w(|r̂l − r̂j |)

+

Nn∑
l=1

1

2Ml

(
−iℏ∇Rl

+
Zl|e|
c

Â

)2

+
1

2

Nn∑
l ̸=j

ZlZjw(|R̂l − R̂j |) +
Np∑
α=1

ℏωα

(
â†αâα + 1

2

)
−

Ne∑
l=1

Nn∑
j=1

Zjw(|r̂l − R̂j |), (1)

where the positive parameters m and Ml are the bare
masses of the Ne electrons and Nn nuclei, respectively.
The electrons and nuclei are respectively described by the
coordinates, r̂l and R̂l, and w is the longitudinal inter-
action between the charged particles. In free space and
in three dimensions it is the usual Coulomb interaction
w(|r̂− r̂′|) = e2/4πε0|r̂− r̂′|. The energy of the quantized
electromagnetic field is given in terms of the photon cre-
ation â†α and annihilation âα operators with associated
mode frequency ωα for each mode α of an arbitrarily
large but finite number of photon modes Np. The vec-

tor potential is Â =
∑Np

α=1 cλα

√
ℏ/2ωα

(
âα + â†α

)
where

λα =
√
1/ϵ0Vαeα is the coupling parameter and Vα is

the mode volume of the mode α. The collective index
α ≡ (ks) is used denote the photon wavevector and the
two transversal polarization directions s = 1, 2. We note
that when sampling the photon modes, we cannot go to
arbitrary high photon momenta |k| → ∞, otherwise the
Pauli-Fierz Hamiltonian in the long-wavelength approx-
imation will be ill-defined [43]. This mathematical fact
is quite easy to understand on physical grounds, since
arbitrarily high momenta directly contradict the basic
assumption of the long-wavelength approximation. Any
microscopic length scale would be resolved with arbitrar-
ily high frequencies. To circumvent this, the contribu-
tions of the photon continuum needs to be regularized
by introducing an ultraviolet cutoff [43, 45].
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It is important to note that the coupled light-matter
system can be studied using the unitary equivalent form
of Eq. (1) [49], the so-called length form of the Pauli-Fierz
Hamiltonian given as:

ĤL = − ℏ2

2m

Ne∑
l=1

∇2
rl
−

Nn∑
l=1

ℏ2

2Ml
∇2

Rl
+

1

2

Ne∑
l ̸=j

w(|r̂l − r̂j |)

+
1

2

Nn∑
l ̸=j

ZlZjw(|R̂l − R̂j |)−
Ne∑
l=1

Nn∑
j=1

Zjw(|r̂l − R̂j |)

+
1

2

M∑
α=1

[
p̂2α + ω2

α

(
q̂α−

λα

ωα
· µ̂
)2
]
, (2)

where the total dipole is µ̂ = −
∑Ne

l=1 |e| r̂l+
∑Nn

l=1 ZleR̂l,

q̂α is the displacement coordinate and p̂α = −iℏ ∂
∂q̂α

its

conjugate momentum. We can define new creation and
annihilation operators also for the length gauge, but we
note that they are not the original photonic operators as
defined above in the velocity gauge but are mixed light-
matter objects [49, 50]. The explicit interaction of the
matter degrees of freedom with the photons as in Eqs. (1)
and (2), requires that we work with the bare masses. The
reason being that the masses in Eqs. (1) and (2) are not
the observable (or physical) mass that is used in standard
quantum mechanics. By quantum mechanics we are re-
ferring to the dynamics of only interacting electrons and
nuclei described by the Hamiltonian

ĤQM = − ℏ2

2me

Ne∑
l=1

∇2
rl
−

Nn∑
l=1

ℏ2

2Mn,l
∇2

Rl

+
1

2

Ne∑
l ̸=j

w(|r̂l − r̂j |) +
1

2

Nn∑
l ̸=j

ZlZjw(|R̂l − R̂j |)

−
Ne∑
l=1

Nn∑
j=1

Zjw(|r̂l − R̂j |) , (3)

where me and Mn,l are the renormalized or observable
masses of the electrons and nuclei, respectively. In the
quantum mechanics setting, the observable mass of the
particles is derived from non-relativistic QED by tracing
out the photon degrees and including their contributions
mpt andMl,pt approximately in me andMn,l. This leads
to a relation between the bare and the observable masses
of the form [43, 45, 51]

me = m+mpt , (4)

Mn,l =Ml +Mpt,l . (5)

The photon-induced masses mpt and Mpt,l are inter-
preted respectively as the masses acquired by the elec-
trons and nuclei due to the interaction with the photon
field [51], and the bare masses m and Ml are chosen to
represent the contribution from the matter degrees that
depends on how the electromagnetic modes decay for
increasing photon frequencies [45]. In the following we

want to investigate the influence of the bare masses on
important properties of atomic and molecular systems,
specifically if we change the environment due to an op-
tical cavity. But before we do so, let us consider how
commonly the bare and the observable masses are re-
lated [43, 45, 51].

III. FREE PARTICLES COUPLED TO THE
ELECTROMAGNETIC CONTINUUM

To elucidate how non-relativistic QED and quantum
mechanics are commonly related we consider the disper-
sion relation of free charged particles. We will use the
case of free electrons in the following, but note that we
can merely replace the charges and bare masses in the
different formulas and also find the corresponding forms
for the nuclei. We describe the free electrons coupled to
the modes from Eq. (1) by dropping all the terms of the
nuclei and its coupling to the photon field as well as set-
ting the longitudinal interactions w to zero. Employing
periodic boundary conditions for electrons, the electronic
eigenstates are plane waves and the exact, nonperturba-
tive spectrum of the non-interacting electrons was found
analytically in Ref. [52] and is given by

Ek(Np) =
ℏ2

2m

 Ne∑
j=1

k2
j −

1

Ne

Np∑
α=1

ω2
d

Ω2
α

(ẽα ·K)2


+

Np∑
α=1

ℏΩα

(
nα +

1

2

)
, (6)

where Ωα and ẽα are the new normal modes and the
new polarization vectors, the diamagnetic frequency of
the system is defined as ωd =

√
Nee2/ϵ0mVα and K =∑Ne

j=1 kj is the sum of all electronic momenta. To ob-
tain the quantum mechanics eigenspectrum for the non-
interacting free electron gas from Eq. (6), we can subsume
the contributions of the photonic degrees and its interac-
tion with the electronic system into the observable mass
and express the eigenspectrum defined in Eq. (6) as

Ek =
ℏ2

2me

Ne∑
j=1

k2
j . (7)

In non-relativistic QED, the observable mass for free elec-
trons is defined via the energy dispersion of the electrons
around k = 0 and is given by the formula [53, 54]:

me =

[
1

ℏ2
∂2Ek(Np)

∂k2
i

]−1

. (8)

Next, applying Eq. (8) to Eq. (6) we obtain the renor-
malized mass for the free electron gas given by

me =
m

1− g(Np)
where g(Np) =

1

Ne

Np∑
α=1

ω2
d

Ω2
α

(ẽα · ei)2.

(9)
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We note that i = x, y, z and g(Np) is the total multimode
coupling to the electromagnetic field. Equation (9) pro-
vides an analytic expression of the connection between
the bare mass m and observable mass me from a non-
perturbative description. In the case that we consider
a locally isotropic and homogeneous density of modes,
such as in free space, where ωk = c|kn|, kn = 2π|n|/L
for n ∈ Z0 and Vα = V = L3 the full quantization vol-
ume, we can connect to well-known results from renor-
malization theory [43]. The cutoff (or some other form
of regularization) is needed to avoid the divergence of
the observable mass, which for a single electron in three
dimensions is found to be at exceedingly high energies
corresponding to the energetic regime of quantum chro-
modynamics (QCD) [52]. It is important to mention that
in the case were we consider a one-dimensional coupling
between the free electrons and the full free-space pho-
ton continuum, the multi-mode coupling g(Np) to the
photon modes approaches unity, g(Np) → 1, resulting
to a diverging me [52]. To tame the diverging me in
renormalization theory, the bare mass m becomes cutoff-
dependent and is promoted into m(Np) such that to ex-
actly cancel the diverging term 1/(1 − g(Np)). For that
purpose one takes m(Np) = me(1 − g(Np)) where me is
the measured observable electron mass. In addition we
would like to highlight that, strictly speaking, in a gen-
eral, non-isotropic photonic environment the observable
mass would become direction dependent, as can be seen
from Eq. (8). We will, however, in the following consider
one-dimensional models and hence will ignore this subtle
yet important point, and only comment on it at the end
of this work. In the following we will use adapted units
(a.u.) such that e = (4πϵ0)

−1 = ℏ = m = 1. These
units are not atomic units since we choose the bare elec-
tronic mass m to be equal to one, and hence the units
are adapted to the cutoff/scale of the model.

Now, we will consider a situation of a free electron re-
stricted to one dimension interacting with a discretized
electromagnetic continuum. From this model, we want to
demonstrate the working principles of the mass renormal-
ization procedure and from this, obtain the observable
mass of the interacting light-matter system in our cor-
responding quantum mechanics model. We will consider
only the photon modes with polarization along the di-
mension the free particle is allowed to move. We choose
the discretized photon continuum such that the range
of its frequencies cover the desired energy range of the
free electron and bound matter systems (discussed in
Sec. IV). In this case, we introduce a lower and upper en-
ergy cutoffs which are respectively, 0.01 a.u. and 0.5 a.u.
The upper cutoff is well within the validity of the dipole
approximation. The lower cutoff is needed to treat the
matter and the light sector consistently. Although non-
perturbative NRQED has no infra-red divergence [43],
the consistent treatment of the ω → 0 needs extra care
and we discuss this in a little more detail at the end of
this section. Here we choose the lower cutoff in agreement
with the matter grid by having l = 2π/kmin. We sam-

FIG. 1. (a) The energy dispersion of a free electron in the
NRQED setting when coupled to 200 photon modes and the
corresponding QM case where the renormalized mass me is
used. Both settings show a quantitative agreement and we
note this holds for different coupling strengths. (b) A com-
parison of the energy dispersion of NRQED for different λ’s
where the dispersion relation is less confined for increasing λ.

ple the one-dimensional electromagnetic continuum by
including explicitly 200 photon modes with equidistant
energy spacing per mode of 0.00246 a.u. (see App. A for
details on the photon continuum). This specified con-
tinuum of modes describes the local photonic density of
states that we consider for the light-matter coupled sys-
tem. In this setting of the coupled light-matter system,
we compute the dispersion relations of Eq. (6), what we
term as results from non-relativistic quantum electrody-
namics (NRQED), and the dispersion relations of Eq. (7),
what we call results from quantum mechanics (QM).
To obtain the dispersion relation of the QM setting

requires that we perform a mass renormalization which
accounts for the interaction between the free electron and
the photon continuum. This procedure involves comput-
ing the observable mass as given in Eq. (8). In Fig. (1a),
we show a comparison of the energy dispersion obtained
from the NRQED and QM settings. We clearly find that
the NRQED spectrum agrees quantitatively with the QM
spectrum which highlights a clear connection between the
non-relativistic QED and the quantum mechanics setting
when the photonic degrees are traced out and included
in the renormalized mass. The results at the same time
demonstrates the validity and working principles of the
mass renormalization procedure in the long-wavelength
approximation. For the different coupling parameters λ,
which for larger values indicate a stronger interaction
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FIG. 2. The dependence of the renormalized mass on the cou-
pling parameter λ and number of photon modes Np. For fixed
coupling and increasing number of modes the mass slowly di-
verges. For fixed number of modes and increasing coupling,
the mass is shown to increase.

with the photonic continuum, we find that the energy
dispersion becomes less confined as shown in Fig. (1b).
This is as a result of the photon-induced mass mpt as the
free particle interacts with the photon field. Table (I)
shows the physical masses for different λ and from which
the photon-induced mass mpt can be deduced according
to Eq. (4).

Coupling parameter, λ Renormalized mass, me

0.0019 1.1683661411

0.0012 1.0673464565

0.0009 1.0336732282

TABLE I. The values of the renormalized mass me obtained
from Eq. (9) for different coupling strengths λ when coupled
to 200 photon modes. The value of the bare mass used is
m = 1.

In Fig. (2) we show how the observable mass depends
on the coupling parameter λ and the number of photon
modes Np (i.e. increasing photonic density of states and
energy cutoff). We find that for a fixed coupling (e.g.,
λ = 0.0020) and increasing number of photon modes
the observable mass increases and is expected to diverge
when g(Np) → 1 if the full continuum of photonic modes
is spanned. On the other hand, for a fixed number of
modes (e.g., Np = 200) and increasing coupling, the ob-
servable mass is shown to increase.

At this point it is important to highlight, that even in
one dimension, the perturbative correction to the free-
particle dispersion due the photon field is infrared di-
vergent. The multimode coupling to second order per-

turbation theory has no upper bound (see Appendix B)
and due to this, the perturbative correction becomes ar-
bitrarily negative and leads to an instability as the par-
ticle dispersion from positive turns negative. Thus, per-
turbation theory violates the boundedness of the Pauli-
Fierz Hamiltonian from below [43, 49]. In contrast, the
non-perturbative multimode coupling from the exact so-
lution has an upper bound and it does not exceed unity,
g(Np) ≤ 1 (see Appendix B). Thus, the non-perturbative
dispersion of the free particle is always positive and thus
the system remains stable [52]. This point highlights
the importance of non-perturbative treatments of light-
matter coupled systems. At the same time hints towards
the idea proposed by Van Hove [55] that divergences in
quantum field theory might be not be a generic propery
but only due to perturbation theory.
Let us finally remark on the lower (infrared) cutoff and

the consistency between light and matter. As is clear
from the gauge coupling prescription the fields are di-
rectly related to the matter wave functions [3]. So the
matter grid determines which modes are possible. While
we here have considered free particles, and the size of L is
somewhat arbitrary, we aim at considering bound-state
systems, for which the dipole approximation is designed
for. So the size of the simulation box is chosen such that
all the relevant observables for the bound-state are well
converged. The free-space case is numerically very in-
structive to understand that a mismatch between light
and matter basis set leads to unphysical results. For
instance, allowing for modes that are much smaller in
energy than the minimal momentum eigenstate of mat-
ter results in a wrong dispersion relation that becomes
flat (see App. C for an example). This again shows that
length-scales do matter in QED, even if in the math-
ematically exact theory no divergence is found for soft
photons [43].

IV. THE BOUND MATTER SYSTEM
COUPLED TO THE ELECTROMAGNETIC

CONTINUUM

The previous section considered the case of a free
charged particle interacting with a discretized continuum
of isotropic photonic modes. We will now consider the
case of a bound matter system interacting with the same
discretized continuum of modes and investigate some ef-
fects the photon modes have on several physical proper-
ties of the coupled system. For our investigation of the
bound system, we chose to work with the length form of
the Pauli-Fierz Hamiltonian given by Eq. (2). A prac-
tical advantage of the length gauge Hamiltonian is that
for a real-space description of the bound matter system,
the spectrum converges faster as opposed to the veloc-
ity gauge due to the different bilinear light-matter inter-
action terms of the different gauges [56, 57]. For this
reason, we choose to work with the length gauge Hamil-
tonian in the following. It is crucial to mention that the
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relation between the bare mass m and the observable
mass me is the same in both gauges. The energy disper-
sion of the free electron in the length-gauge has exactly
the same form as the one obtained in the velocity gauge.
We demonstrate this fact for the single particle case in
App. C. At this point we would like to emphasize that
to obtain the free particle dispersion in the length-gauge
the dipole self-energy is absolutely crucial. Without the
dipole self-energy there is no translationally invariant di-
rection in the electron-photon configuration space, i.e.,
translational invariance is broken [49]. As a consequence
the free particle energy dispersion cannot be obtained
at all. This makes evident the importance of the dipole
self-energy for the mass renormalization procedure.

To obtain physical observables of the coupled light-
matter system, we solve the stationary eigenvalue prob-
lem Ĥ|Ψn⟩ = En|Ψn⟩ of the Pauli-Fierz Hamiltonian of
Eq. (2) and the quantum mechanics setting of Eq. (3)
numerically exact and compare the results. In the QM
setting for the bound systems, the contributions due to
the interaction with a discretized continuum is accounted
for by using the observbale mass obtained in Tab. (I) for
the different couplings. We will consider two examples,
the first being an atomic system and the other a molec-
ular system that both interact with the electromagnetic
continuum.

A. The atomic light-matter system

An important quantity of a matter system is the
ground-state density as it describes the localization prop-
erties of matter. We investigate this property for the case
of a one-dimensional atomic model (see App. D for the
details of the model) coupled to the electromagnetic con-
tinuum. The atomic system interacts with the discretized
continuum of photon modes discussed in Sec. III. For this
setting of the coupled light-matter system, we compute
the ground-state electron density and make a comparison
between the NRQED and QM settings. In the setting of
a bound system, we expect to obtain a good quantitative
agreement between NRQED and QM as in the free elec-
tron case in Sec. III. However, we find that this is not the
case as illustrated in Fig. (3) for the different light-matter
coupling strengths. Instead, we find that the results from
QM deviates from NRQED as the system in its ground-
state becomes more bound as indicated by the increased
amplitude and shrinking of the width of the density pro-
file. In this setting of a bound system interacting with a
continuum, it is interesting to find that the mass renor-
malization procedure that gives the QM setting does not
agree with the NRQED results.

The reason for this deviation is that by introducing a
binding potential the localized electronic states do not
couple equally to all the modes of the discretized elec-
tromagnetic continuum as opposed to the free space case
studied above. Since the energy dispersion of Fig. (1)
is actually an excited state property, it probes a larger

FIG. 3. A comparison of the electronic ground-state density
between between the NRQED and QM settings for a bound
electron coupled to 200 photon modes. Panels (a-c) show the
comparison for different coupling strengths λ where the QM
results deviate from NRQED due to how the bound system
interacts with the descretized photonic continuum.

part of the photonic continuum of modes. Hence, the re-
sulting observable mass obtained from Eq. (8) (see values
in Tab. (I)) includes a large contribution from the high-
lying modes of the electromagnetic continuum. There-
fore, using this renormalized mass in Eq. (3) leads to
the deviations seen in Fig. (3). This is elucidated clearly
in the second point were we illustrate how the different
photon modes interact with the atomic system by com-
puting the mean photon occupation per photon mode
defined in the velocity gauge as nα = ⟨Ψ0|n̂α|Ψ0⟩ where
n̂α = â†αâα and |Ψ0⟩ is the correlated electron-photon
ground-state. For different light-matter couplings λ, we
show in Fig. (4) the mean photon occupation for the low-
est lying 20 of the 200 photon modes. Clearly, the lower
lying photon modes have more photon occupation as they
interact more with the atomic system when compared to
the high-lying modes. Also, we find that the stronger
the coupling λ the higher the photon occupation and the
decreasing trend of photon occupation for higher lying
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FIG. 4. The photon occupation of the electron-photon
ground-state for the atomic system coupled to a discretized
continuum sampled with Np = 200 photon modes. Only the
occupations of the first 20 low lying photon modes are shown
where the lowest modes couple strongly and the occupation
increases with the coupling strength. Each bar represents the
contribution of each photon mode to the photon occupation.

photon frequencies applies for the different λ’s. From
these results we can deduce that ground-state properties
will saturate with increasing photon modes with higher
frequencies (i.e., increasing photonic cutoff).

To demonstrate this, we compute the integrated
ground-state electron density difference defined as
∆n =

∫
dx|n(x) − n′(x)| where n(x) and n′(x) are the

densities of two different settings. Since NRQED is the
reference result, we compute this quantity for NRQED
and QM for increasing number of modes (increasing
cutoff) from 10 to 200 modes in steps of 10 modes and
increasing coupling λ. This comparison is shown in
Fig. (5a) where we find that “NRQED−QM” (density
of NRQED minus QM) saturate for increasing photon
modes for the different couplings. From the results
of Figs. (3) and (5a), we also infer that the atomic
system becomes more bound (increased localization)
for increasing photon modes (photonic cutoff energy).
A conclusion that can be drawn from the results of
Figs. (4) and (5a) is that for the bound system not all
photon modes are equally important since the effect of
coupling to the ground-state becomes smaller for higher
photon frequencies. This implies that the bound system
saturates faster than the free particle as a function of the
number of modes Np. It is interesting to highlight that
the multimode coupling g(Np) for different light-matter
coupling have a similar dependence on the number of
photon modes as the integrated ground-state density up
to a multiplicative prefactor as shown in Fig. (5b). We
would like to mention that the enhanced localization as
a result of mass renormalization, has been reported even

FIG. 5. (a) The integrated ground-state density difference
∆n between the NRQED and QM settings when coupled to
different photon modes in the range 10 to 200 and increas-
ing coupling λ. (b) The dependence of the multimode mode
coupling on the photon number of photon modes for different
light-matter coupling.

with a single cavity mode for a many-particle system
in a harmonic trap [58]. In this case the localization
phenomenon was significantly enhanced due to the
collective coupling of the system and cavity-mediated
interactions. A further important point to make here is
that, as opposed to the free-space case, where Eq. (9)
shows that a finite cutoff/regularization needs to be
kept, for ground states, even in the long-wavelength
approximation NRQED might be cutoff-independent for
a fixed bare mass value.

1. Impact of Mass Renormalization on excited-state
properties

We have so far considered only ground-state prop-
erties for the atomic system interacting with the dis-
cretized electromagnetic continuum. Now, we focus on
excited-state properties of this coupled system. One com-
mon quantity which is normally computed is the ab-
sorption spectrum of the system which we determined
here by computing the dipole strength function S(ω) =∑

n 2ωn|⟨Ψ0|x̂|Ψn⟩|2δ(ω − ωn) where x̂ is the electronic
dipole operator of the one-dimensional atomic system.
For this quantity, we make a comparison for the different
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FIG. 6. The absorption spectrum of the NRQED setting with-
out applying an artificial broadening and the corresponding
fitted spectrum with Wigner-Weisskopf (WW) theory (ma-
genta) with a Lorentzian broadening of ℏγ = 0.0034 a.u. The
same broadening and WW theory is employed to obtain the
absorption spectrum of the QM setting (red).

settings of NRQED and QM as shown in Fig. (6) where
we employ Wigner-Weisskopf theory to fit the NRQED
results and subsequently obtain the spectrum of the QM
setting. Similar to the ground-state results, we find that
the QM deviates from NRQED in peak position. The
reason for this can be partly attributed to how the dis-
cretized continuum of modes interact with the atomic
system and affect ground-state properties such that a
transition from the ground-state to the first excited state
leads to this deviation. We expect that for higher-lying
excitations in the absorption spectrum, the NRQED and
QM settings should agree since the excited states become
more delocalized and should probe a large part of the con-
tinuum as in the free electron case discussed above. A
noticeable difference is that the absorption peak of QM is
red-shifted in the spectrum relative to NRQED. From the
analytic expression of the energies of the atomic system
given in Eq. (D3), we deduce that for a larger mass (i.e.
the observable mass), the energies become more negative
(strongly bound) which causes the red shift relative to
NRQED peak. In passing, we note that for a more dense
sampling of the discretized continuum of modes as done
in Refs. [59–61], we will obtain a smooth Lorenztian pro-
file for the NRQED case that naturally occurs due to the
continuum of modes.

B. The molecular light-matter system

We now investigate how molecular properties are af-
fected when a molecular system interacts with the dis-
cretized continuum of photon modes. As a molecular

FIG. 7. A comparison of the ground-state PoPESs showing a
deviation between the QM and NRQED results. The PoPES
for NRQED is the case when coupled to 50 photon modes
and QM uses the observable mass due to the same photonic
density of states.

system, we consider a one-dimensional model of a hydro-
gen molecule (see App. E for details) that interacts with
the discretized continuum of photon modes discussed in
Sec. III. For the calculations of the molecular light-matter
system, we couple the molecule to the lowest 50 photon
modes since they are the most important for bound sys-
tems as discussed above. A common and widely stud-
ied property of a molecule is its potential energy sur-
face (PES) which describes the relationship between the
molecular geometry, for example, the relative positions of
the participating atoms, and the molecular energy. For
the case of coupled light-matter systems we have simi-
lar objects. Since we have three natural subsystems, i.e.,
nuclei, electrons and photons, we can perform the Born-
Huang expansion that underlies the PES concept in dif-
ferent ways. In our case, where the frequency range is
chosen to affect the electronic degrees of freedom (as we
show in the SI, the basic frequency of the nuclear degrees
of freedom is ωe ≈ 0.02 a.u. which is within the lower fre-
quencies of the sampled continuum), we can use a group-
ing of the photonic degrees of freedom with the electronic
ones. This leads to polaritonic PES (PoPES) [62], where
the nuclei (in our case indicated by the internuclear sep-
aration R) feel the photonic continuum of modes via the
changes in the PoPES.

We now show in Fig. (7) the ground-state PoPES for
the different settings, were the QM result deviates from
the NRQED result. This result is similar to the atomic
light-matter system discussed above were the lower-lying
modes of the continuum couple strongly compared to the
higher-lying modes which causes the deviation when the
calculated renormalized mass (in Tab. (I)) is used in the
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QM setting. To support this, we show in Fig. (17) that
the ground-state density of NRQED and QM, were we
find that the QM result shows that the molecular system
at the equilibrium position becomes more bound com-
pared to the NRQED result similar to the atomic light-
matter results in Fig. (3a). We note that we have re-
moved the vacuum contribution of the zero-point energy
due to the 50 photon modes from the PoPES of NRQED.
That means, we have normal-ordered and discarded an
overall constant energy contribution.

FIG. 8. The photon-mode-dependent dissociation energy
plotted as function of photon modes for the NRQED and QM
settings. The NRQED setting indicates that it is increasing
difficult to break a bond for increasing Np while QM shows
the opposite behavior.

Another important information that can be obtained
from Fig. (7) is the bond dissociation energy De of the
molecule. The results on how the dissociation energy of
the H2 molecule changes with increasing photonic energy
cutoff (number of photon modes) is shown in Fig. (8).
For up to 70 photon modes, the photon-mode-dependent
dissociation energy for NRQED and QM has an opposite
behavior. For NRQED the dissociation energy increases
with increasing energy cutoff which implies that it is more
difficult to break a chemical bond when the molecule is
made to interact strongly with the electromagnetic con-
tinuum while QM shows the opposite behavior. Just as
in the atomic light-matter system, a similar conclusion
can be drawn for the molecular case were we note that
not all photon modes are equally important. Thus, the
effect of coupling to the ground-state becomes smaller for
higher photon frequencies which leads to differences with
the QM setting due to the renormalized mass obtained
from the free electron light-matter setting.

As we have seen, the PoPES is changed due to the
interaction with the photon modes. To quantify the ef-
fect of the modes on the nuclear degrees further we next
consider the change in vibrational frequencies in the H2

FIG. 9. A comparison of the harmonic-approximated fre-
quency of the ground-state PoPES between NRQED and QM
as a function of the number of photon modes Np. The approx-
imated harmonic frequency for Np = 0 is ωe = 0.020455 a.u.

molecule. Since we have chosen a Born-Huang grouping
of the electrons with the photons, the effect of the many
modes is mediated via the changes in the PoPES. We note
that for free interacting protons coupled to the electro-
magnetic continuum, we obtain an analogous dispersion
energy as in Eq. (6) with a diamagnetic frequency that is
dependent on the nuclear charge. From the energy dis-
persion the renormalized proton mass can be obtained
and with this we can investigate how the nuclear degrees
are influenced due to coupling to the electromagnetic con-
tinuum in a QM setting. In Fig. (9) we show the results of
the harmonic-approximated vibrational frequency depen-
dence on the sampled photon continuum (see App. F for
details). We find for NRQED that the approximate har-
monic vibrational frequency increases with the number
of photon modes indicating that the nuclear degrees of
the ground-state PoPES becomes more bound while the
QM setting shows the opposite behavior. The behavior
of the approximate harmonic frequency is reminiscent of
the dissociation energy in Fig. (8) since it is proportional
to the square-root of De. We can thus conclude that
the nuclear degrees of freedom are influenced in a similar
way to the electronic degrees where only the lower-lying
photon modes play a significant role.
In addition, the fact that the PES of the H2 molecule

is modified indicates that the photon field modifies the
long-range interactions between the atomic dimer. The
intuition that the mediated forces are of long-range na-
ture is due to the fact that if we fit the PESs, with and
without coupling to the photon field, we find that the
defining parameters (De, a, and ωe) of the Morse model
are modified when the molecule is coupled to light. The
Morse model effectively describes the long-range interac-
tions between the pair of atoms, which are responsible
for the formation of the molecule. Thus, it becomes ev-
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ident that the photon field makes an impact on these
long-range interactions.

C. Cavity-modifications of the ground state

In this section we focus on how enhancing the cou-
pling between the bound matter system and the elec-
tromagnetic continuum can lead to the modification of
ground-state properties. There are several methods by
which the coupling to the electromagnetic continuum can
be enhanced, e.g., using a planar cavity as a photonic
structure. Here, we distinguish two settings how the dis-
cretized photon continuum interacts with matter. The
first setting is the reference “free-space” case were the
discretized continuum is weakly coupled to matter and
we chose λ = 0.0009 to designate the free-space coupling.
In the second setting, the discretized continuum can be
made to strongly interact with matter as realized within
planar optical cavities by decreasing the mode volume
to enhance the coupling. In this cavity setup, we en-
hance the coupling to the discretized continuum by in-
creasing the coupling parameter λ = 0.0012, 0.0019. As
we learned from the Sec. III, we need to have the mat-
ter and the photonic degrees of freedom to be consistent.
We therefore only consider the photonic density of states
in the relevant frequency range, where there are matter
states that can be affected by the photons. We do not
consider how the photonic density of states is changed
outside of this frequency range, from where the extra
density of states is taken from. We will investigate the
properties only in the NRQED setting.

In Fig. (10), we show the results of the atomic and
molecular light-matter systems for the free space and the
cavity settings. For the atomic system in Fig. (10a), we
compute the difference between the ground-state density
δn(x) of the free space case (λ = 0.0009) and when we en-
hance the coupling to the discretized continuum with cav-
ity with couplings (λ = 0.0012, 0.0019). Although rela-
tively small, we find that there are cavity-induced modifi-
cations of the ground-state density (i.e. atomic system is
more bound) when we change the photonic continuum us-
ing a cavity. For the molecular light-matter in Fig. (10b),
we show the photon-mode-dependent dissociation energy
of the ground-state PoPES where we find that it becomes
more difficult to break a chemical bond when the cavity
mode enhances the coupling to discretized continuum.
These results highlights that ground-state properties of
bound systems can be modified when the coupling to the
photonic continuum is enhanced, for example, using an
optical cavity.

FIG. 10. (a) The ground-state density difference δn(x) be-
tween the cavity and free space case for two cases (blue:
“0.0019 − 0.0009”) and (orange: “0.0012 − 0.0009”). (b) A
comparison of the photon-mode-dependnet dissociation en-
ergy for different light-matter coupling.

V. APPROXIMATION STRATEGIES FOR
MULTI-MODE GROUND-STATE

MODIFICATIONS

The effects that we have found for our simple models
are expected to arise in realistic systems when the elec-
tromagnetic continuum of modes interact with a bound
matter system. A non-perturbative simulation of this
setting becomes computationally demanding especially
when including explicitly the electromagnetic continuum.
Here, we present different ways to capture approximately
the effects that arises due to the coupling to the contin-
uum which can be considered a prerequisite for making
relevant predictions in practice.

A. Quantum mechanics with a self-polarization
contribution

In the first approach, the approximation is applied to
the length gauge Hamiltonian by keeping only the self-
polarization term of the transverse contributions of the
Hamiltonian. As we will show, this is particularly valid
for ground-state properties of the coupled system, were
we can drop the bilinear light-matter interaction term
since for the most part, it affects more the excited state
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FIG. 11. (a) The ground-state electron density of the atomic
system for NRQED compared to that of the bQM+DSE ap-
proximation when coupled to 200 photon modes. The results
are quantitatively the same with ∆n = 1.8×10−5. (b) A sim-
ilar quantitative agreement between NRQED and the single
mode approximations for the atomic ground-state density.

properties of the coupled system. In this approximation,
we will drop all the terms of Eq. (2) that have explicit
dependence on the displacement coordinate q̂α and conju-
gate momentum p̂α to obtain the bare quantum mechan-
ics including the dipole-self energy (bQM+DSE) Hamil-
tonian given as follows

ĤbQM+DSE = ĤbQM +
1

2

Np∑
α=1

(λα · µ̂)2 , (10)

where the transversal contribution from the electromag-
netic field are only accounted for using the dipole self-
polarization term (last term of Eq. (10). Here, we de-

note the ĤbQM the bare quantum mechanics Hamilto-
nian where the bare mass is used instead of the renor-
malized mass since we are still coupling to the electro-
magnetic field via the DSE term. This approximation
becomes reasonable once we have ⟨λα · µ̂⟩ = 0 and thus
due to the zero field condition also ⟨q̂α⟩ = 0. Else we
need to keep the contributions of the displacement field
to exactly cancel the polarization field [50, 63]. We will
apply this approximation to the bound light-matter sys-
tems where in the case of the atomic system, we compare
the electronic ground-state density from the NRQED set-
ting to the bQM+DSE. For the molecular system, we

compare the ground-state PES from the NRQED to the
bQM+DSE settings.
For the atomic light-matter system, we show in

Fig. (11a) a comparison of the results obtained for
the ground-state electron densities of NRQED and
bQM+DSE when the atomic system is coupled to 200
photon modes. We find that on the plotted scale, they
are quantitatively the same and we obtain an integrated
ground-state density difference between the two cases of
∆n = 1.8 × 10−5. When we vary the photon modes
included in the computation of the ground-state, we ob-
tain a result that is quantitatively the same to the red
plot of Fig. (5). This result demonstrates that includ-
ing the transversal contribution of the electromagnetic
field only with DSE term is capable of describing the
ground-state properties in non-resonant light-matter in-
teractions. Next, for the molecular light-matter system
we consider the case when the molecule is coupled to
the lowest 50 of the 200 photon modes. In Fig. (12a)
we show a comparison between the ground-state PES of
the bQM+DSE and NRQED where both are shown to
agree quantitatively. The result demonstrates that the
bQM+DSE approximation is sufficient for describing also
molecular light-matter properties in the ground-state of
the coupled system.

B. Effective Single Mode Description

In the second approach, the approximation we de-
scribe is widely applied in polaritonic chemistry and cav-
ity quantum materials [4–6], were we make the usual as-
sumption that we can describe the multimode cavity by
one effective photon mode. After making this approxima-
tion, one usually computes ground-state or excited-state
properties of the strongly coupled light-matter system.
Here, we will apply such an approximation in two differ-
ent ways. For the first approach, we select only one of
the 200 photon modes and couple to the bound system as
described by Eq. (2). Out of the 200 modes, we choose
the Np = 1, i.e., the lowest frequency mode with cav-
ity frequency ωα=1 =0.01 a.u. and coupling λ = 0.0019
which is the strongly coupled mode as shown in Fig. (4).
In the second approach, we take an average of the en-
tire sampled photon modes to obtain one effective mode.
For example, the case were 200 modes are sampled, the
effective cavity frequency is ωeff = 0.255 a.u. and the
corresponding average over the light-matter parameter is
λ = λeff = 0.0019. For the atomic system, we look at
ground-state properties of the two approaches by com-
puting the electronic ground-state density of the atomic
system and for the molecular system we look at the dis-
sociation energy of the ground-state PES.
Starting with the atomic light-matter system, in

Fig. (12b) we show for the ground-state density how the
two approaches compare to the NRQED including 200
photon modes. We find that the (NRQED: Np = 1) and
(NRQED: eff) are quantitatively the same when com-
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FIG. 12. (a) The ground-state PES when coupled to 50 pho-
ton modes for NRQED which agrees quantitatively with the
bQM+DSE approximation. (b) A comparison of the same
NRQED ground-state PES to the effective one mode approx-
imations with the same quantitative agreement.

pared to NRQED. Also, for the molecular light-matter in-
teracting system, we find in Fig. (11b) the same quantita-
tive agreement for both single mode approximation when
compared to the ground-state PES of NRQED. These re-
sults demonstrate that modeling the multi-mode cavity
with one effective mode can capture ground-state effects
of a multi-mode photonic cavity which is of practical im-
portance when working with realistic systems interacting
with a continuum of modes.

VI. SUMMARY, CONCLUSION AND
OUTLOOK

We have investigated non-perturbatively how the
coupling to a continuum of modes leads to mass-
renormalization effects in ab initio QED. Starting with
the free charged particles interacting with a photonic con-
tinuum of modes, we demonstrated the free-space mass
renormalization procedure and highlighted how it con-
nects two levels of theory (QM and NRQED) by the en-
ergy dispersion. We showed how the experimentally ob-
servable mass depends on the number of photon modes
(local photonic density of states) and increasing light-
matter interaction strength. For a non-perturbative mass

renormalization of a bound system coupled to light, we
found that the NRQED and QM settings do not agree for
both its equilibrium and excited-state properties. This
occurs because the bound system interacts differently
with the electromagnetic continuum as opposed to the
free particle case. That is, out of the sampled dis-
cretized continuum only a few of the lowest lying pho-
ton modes play a significant role when interacting with
a bound system. Finally, we demonstrated how approxi-
mations like the effective few-mode or dipole-self-energy
approximation can capture non-trivial ground-state ef-
fects. Specifically, we showed for the ground-state den-
sity and PES of the respective atomic and molecular sys-
tems quantitative agreements with the numerically ex-
act results. While these considerations were restricted
to simple one-dimensional model of NRQED, we expect
that similar mass-renormalization effects are ubiquitous
in light-matter interactions. Understanding these inher-
ently non-perturbative effects could help us to get a fur-
ther theoretical control-knob on the properties of matter
in photonic environments. Besides this more practically
relevant implications, the obtained theoretical insights
could provide a different viewpoint on the renormaliza-
tion effects that show up in interacting quantum field
theories.

In this work we have considered a simple one-
dimensional model setup of NRQED. Naturally the ques-
tion arises, whether similar effects will be found in real
three dimensional ab initio systems. Based on the pre-
vious section, where we have shown that one can re-
cover qualitatively similar results with simple bQM+DSE
or single-mode approximations, it seems obvious that
these effects will be found also for realistic systems.
The bQM+DSE and few-mode simulations can nowa-
days be done routinely [59]. The main difference when
going to three dimensions will be the anisotropy of the
renormalized masses. The cavity breaks the simple free-
space symmetries and it will be interesting how these
symmetry-breaking can influence real systems. The
renormalization effects will also change if we go beyond
the long-wavelength approximation. Although in free-
space there is a fundamental difference between minimal-
coupling and the long-wavelength approximation, i.e.,
dipole approximation is not non-perturbatively renor-
malizable and for the full Pauli-Fierz Hamiltonian it
might be possible similar to the Nelson model [43, 64],
the saturation effect for bound states might point to-
wards a very similar behavior of the long-wavelength and
the minimal-coupling situation. Also, based on the suc-
cess of the dipole approximation for bound systems, it
seems reasonable to assume that in such cases the dif-
ferences are commonly small. Clearly, there are many
cases where one expects stark differences, such as due to
self-organization in a cavity or when large momenta are
transferred between light and matter. Overall we believe,
however, that the obtained model results are a very good
indicator when similar effects will appear in real ab initio
systems.
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Appendix A: Numerical Details

We outline the numerical details to treat the coupled
matter-photon system. First, for the matter Hamilto-
nian of the one-dimensional atomic system, we represent
the single bound electron on a uniform real-space grid of
Nx = 3000 grid points with grid spacing ∆x = 0.0707
a.u. while applying an eighth-order finite-difference
scheme for the momentum operator and Laplacian. Next,
we perform an exact diagonalization of the Hamiltonian
and obtain the spectrum of the system (converged eigen-
energies Ei and eigen-states |ψi⟩). Now, using the com-

pleteness relation
∑∞

i=1 |ψi⟩⟨ψi| = 1̂, the operators of the
matter system can be expressed as [65]

ĤM =
∑
i=1

Ei|ψi⟩⟨ψi|, p̂ =
∑
i=1

∑
j=1

⟨ψi|p̂|ψj⟩|ψi⟩⟨ψj |,

R̂ =
∑
i=1

∑
j=1

⟨ψi|R̂|ψj⟩|ψi⟩⟨ψj |,

where the indices i, j runs over the number of matter
states considered. We consider Ns = 10 lowest energy
states to couple to the electromagnetic field. For the
photonic subsystem, each photon mode is represented in
a basis of Fock number states. In order to be able to treat
the discretized photonic continuum numerically exact,
we sample Np = 200 photon modes where we truncate
the Fock space and consider only the vacuum state, the
Np one-photon states, and the (N2

p +Np)/2 two-photon
states as in Ref. [42]. This implies the dimension of the
photonic continuum is 1 + Np + (N2

p + Np)/2 = 20301.
Coupling to Ns = 10 lowest energy states of the atomic
system give a matter-photon dimension of 10× 20301 =
203010.

For the hydrogen molecule (H2) in 1D, we used a grid
(0, 9] au for the internuclear separation with a uniform
grid spacing ∆R = 0.1 a.u. For the electron coordinates
(x̂1 and x̂2), we represent both electrons on a uniform
real-space grid of Nx1

= Nx2
= 200 grid points with

grid spacing ∆x1 = ∆x2 = 0.35 a.u. We perform exact
numerical diagonalizations to obtain the spectrum. We

couple to the discrete photonic continuum as described
above.

Appendix B: Perturbative and Exact Free Particle
Dispersion and Continuum Behaviors

In this section we compute the free particle dispersion
in 1D perturbatively and we compare to the exact non-
perturbative solution. Following Ref. [51] the first non-
trivial correction to the free particle dispersion in three
dimensions is

∆E =
e2

m2

∑
p′,k,α

ℏeα(k) · eα(k)
2ϵ0c|k|V

⟨ϕp|pi|ϕp′⟩⟨ϕp′ |pj |ϕp⟩
p2/2m− p′2/2m− ℏc|k|

.

(B1)

In our effective one-dimensional model the polarization
vectors are all parallel and the correction to the energy
dispersion simplifies

∆E =
e2

m2

∑
p′,k

ℏ
2ϵ0c|k|V

⟨ϕp|p|ϕp′⟩⟨ϕp′ |p|ϕp⟩
p2/2m− p′2/2m− ℏc|k|

. (B2)

Then, we use the property for the plane waves
⟨ϕp|p|ϕp′⟩ = pδpp′ , we sum over p′ and we find

∆E = −p2 e2

m2c2
1

2ϵ0V

∑
k

1

k2
. (B3)

To perform then the summation over all photonic mo-
menta k we promote the sum into an integral by taking
the thermodynamic limit. For this purpose we write the
mode volume as V = AL and we have

∆E = −p2 e2

m2c2
1

4πϵ0A

∫ Λu

Λl

dk

k2
, (B4)

where Λu and Λl are the limits of integration. After the
integration we find

∆E = − p2

2m

e2

2mπϵ0A

(
1

Λl
− 1

Λu

)
= − p2

2m
g(Λu,Λl).

(B5)

From the expression of the multimode coupling constant
g(Λu,Λl) it is clear that the perturbative correction is not
divergent in the ultraviolet (UV) since the limit Λu → ∞
can be taken safely and the term 1/Λu goes to zero. This
can be understood from Fig. 13 where we plot the per-
turbative coupling g(Λu,Λl) normalized by the prefactor
e2/2mπϵ0A and for a fixed lower cutoff Λl. The coupling
constant increases rapidly and asymptotically reaches a

fixed value which is e2

2mπϵ0A
1
Λl

which means that the per-
turbative multimode coupling converges with the UV cut-
off Λu. However, the perturbative coupling diverges if the
lower cutoff is taken to zero,

lim
Λl→0

g(Λu,Λl) → ∞ . (B6)
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This implies that the perturbative coupling is divergent
in the infrared (IR) part of the electromagnetic spectrum.
As a consequence the perturbative correction to the free
particle dispersion ∆E becomes arbitrarily negative and
thus the perturbative computation leads to an instability
as the particle dispersion from positive turns negative.
Thus, perturbation theory violates the boundedness of
the Pauli-Fierz Hamiltonian from below and the pertur-
bative free particle spectrum no longer has a minimum.

In contrast to the perturbative computation, the phys-
ical picture emerging from the non-perturbative solution
of the free particle is different [52]. In Fig. 14 we plot
the exact non-perturbative multimode coupling constant
g(Np) as a function of the number of photon modes Np as
given from Eq. (6). We see that g(Np) has effectively the
same dependence with respect to the amount of photon
modes as the perturbative coupling g(Λu,Λl) with re-
spect to the upper cutoff Λu. They both increase rapidly
and then reach a plateau. However, with the respect to
the lower photonic cutoff their behaviors are drastically
different. The non-perturbative coupling constant g(Np)
has an upper bound and never exceeds 1, even for very
large values of the ratio ωd/ω = 10, 15. We note that ω
here denotes the lowest frequency considered in the pho-
tonic spectrum. From Fig. 14 it is clear that if we fix
ωd then for arbitrarily small ω the multimode coupling
can reach unity but never exceeds it. In contrast to the
perturbative coupling, the exact coupling never diverges
and as consequence the free particle dispersion is sta-
ble (positive) and always well defined. This is decisive
and fundamental difference between perturbation theory
and the exact solution which highlights the importance
of non-perturbative treatment of the light-matter inter-
action.

The fact that the exact coupling does not diverge even
for lowest mode going to zero, ω → 0, can be understood
from the single-mode case (Np = 1) where g(1) is given
analytically [52],

g(1) =
ω2
d

ω2 + ω2
d

. (B7)

In one dimension the diamagnetic frequency is ω2
d =

e2/(meϵ0L), and the lowest mode for periodic boundary
conditions is ω = 2πc/L. Taking the size of the system
to infinity L → ∞ then ω2 ∼ 1/L2 goes faster to zero
than ω2

d ∼ 1/L and consequently g(1) → 1.
Finally, it is important to mention that despite the

fact that the free particle dispersion is always well de-
fined and the coupling bounded, the observable mass
me = m/(1− g(Np)) as defined in Eq. (8) diverges when
g(Np) → 1. To tame the diverging me in renormaliza-
tion theory, the bare mass m becomes cutoff-dependent
and is promoted into m(Np) such that to exactly cancel
the diverging term 1/(1− g(Np)). For that purpose one
takes m(Np) = me(1− g(Np)) where me is the measured
physical electron mass. An important feature of our non-
perturbative formula for the mass renormzalization is
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FIG. 13. Normalized perturbative light-matter coupling
g(Λu,Λl) for different values of the lower cutoff Λl. The cou-
pling constant increases rapidly and asymptotically reaches a
fixed value which is inversely proportional to the lower cutoff
Λl. For Λl → 0 the perturbative coupling diverges.
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FIG. 14. Non-perturbative multimode coupling g(Np) as ob-
tained from the exact solution for the free particle in Eq. (6)
as a function of the number of photon modes Np, for differ-
ent values of the ratio ωd/ω. The coupling constant increases
rapidly and asymptotically reaches a plateau. The value of
the plateau depends on the ratio ωd/ω but it never goes be-
yond unity.

that the bare masses is always positive m(Np) ≥ 0 be-
cause the total coupling g(Np) ≤ 1 has an upper bound.

Appendix C: Free Electron in the Length Gauge

In this appendix we provide the solution for single free
particle coupled to one photon mode in the length gauge.
Our purpose is to show that the renormalized disper-
sion of the electron in velocity and length gauges is the
same. The Hamiltonian of one electron interacting with
one photon mode in the length gauge is [49]

ĤL =
p̂2

2m
+

1

2

[
p̂2 + ω2

(
q̂− eλ

ω
· r̂
)2
]
, (C1)
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We choose the polarization of the mode to be in the x
direction, λ = λex, and in one spatial dimension we have

ĤL = − ℏ2

2m

∂2

∂x2
− ℏ2

2

∂2

∂q2
+
ω2

2

(
q − λ

ω
x

)2

, (C2)

First we perform the scaling transformation x̄ = eλx/ω
and we introduce the parameter m̄ = mω2/λ2

ĤL = − ℏ2

2m̄

∂2

∂x̄2
− ℏ2

2

∂2

∂q2
+
ω2

2
(q − x̄)

2
. (C3)

The Hamiltonian can be solved by going into the mixed
coordinates

w =
m̄x̄+ q

m̄+ 1
and u = q − x̄, (C4)

where it takes the simple form

ĤL = − ℏ2

2(m̄+ 1)

∂2

∂w2
− (m̄+ 1)ℏ2

2m̄

∂2

∂u2
+
ω2

2
u2. (C5)

In the above Hamiltonian we have a freely propagat-
ing polaritonic mode along the w coordinate and har-
monically confined mode along the u coordinate. The
w-dependent eigenfunctions are plane waves fkw

(w) =
eikww while the eigenfunctions of the u mode are Her-
mite functions Φn(u). Then, the energy spectrum of the
system is

Ekw,n =
ℏ2k2w
m̄+ 1

+ ℏω̃
(
n+

1

2

)
. (C6)

We note that the coordinates w and u are independent as
they mutually commute [∂w, ∂u] = [∂w, u] = [∂u, w] = 0.
Comparing now the spectrum above of the free electron in
the length gauge to the one derived in the velocity gauge
given in Eq. (6) we see that they are not exactly the
same. The length gauge spectrum Ekw,n depends on the
polaritonic quantum number kw while the spectrum in
the velocity gauge on the quantum number kx. Naturally,
the question that arises is: How are kx and kw related?
To figure this out we will use the relation between the

differential operators of ∂x and ∂w. From the chain rule
and neglecting the contribution of the photonic coordi-
nate q we have

∂

∂w
=
∂x̄

∂w

∂x

∂x̄

∂

∂x
=
ω

λ

∂

∂x
=⇒ kw =

ω

λ
kx. (C7)

Substituting the relation above into Eq. (C6) we find for
the length gauge spectrum

Ekx,n =
ℏ2k2x
2m

(
1− ω2

d

ω̃2

)
+ ℏω̃

(
n+

1

2

)
. (C8)

The above result reproduces precisely the single-particle
dispersion coupled to a single photon mode obtained in
the velocity gauge in Ref. [52]. This shows that the same

free particle dispersion and the corresponding renormal-
ized mass can be consistently obtained from both gauges.
We now revisit the issue of a mismatch between light

and matter if both systems are not chosen consistently.
To illustrate this, we keep a fixed length scale for the
free particle as done in Sec. III and also keep the same
sampling of 200 photon modes with cutoffs 0.01 and 0.5
au. We now sample a different discretized continuum
with 200 photon modes but with cutoffs 0.001 and 0.05
au. Here, the upper cutoff is much lower than the en-
ergy of the first excitation of the free particle. For both
continua, the coupling of the photon modes to the free
particle is fixed to λ = 0.0019. A comparison of the en-
ergy dispersion is shown in Fig. (15) where we find that
the NRQED case with the upper cutoff (0.05 au) is off
from the NRQED case with upper cutoff (0.5 au). The
reason for this mismatch is that the photonic modes are
all excited before the first electronic state can be pop-
ulated making the matter degrees less important in the
coupled system. This result shows that choosing length-
scales consistently is very important in QED.

FIG. 15. A comparison of the energy dispersion between
two different sampling of the discretized photonic continuum.
NRQED is the result presented in Fig. (1a) and NRQED (off)
is the case where the upper cutoff is 0.05 au.

Appendix D: Model of a one-dimensional atom

The one-dimensional atomic system we consider fea-
tures a single electron bound by a potential V (x). The
quantum mechanical Hamiltonian describing this system
is given by

Ĥatom = − ℏ2

2me

∂2

∂x2
+ V (x) . (D1)
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Here we choose as binding potential in Eq. (D1) a poten-
tial of the form

V (x) = − e2

4πϵ0

v0

cosh2(k0x)
, (D2)

where v0 and k0 are parameters that control the depth
of the potential. For a single electron in the binding po-
tential, the analytic spectrum of Eq. (D1) is given as [46]

En = −ℏ2k20
8me

(√
1 +

8mev0ke
ℏ2k20

− (1 + 2n)

)2

, (D3)

where the quantum numbers are n ∈ N and ke = e2/4πϵ0.
The number of bound states can be controlled using v0
and k0. For our calculations we choose v0 = 10 and
k0 = 0.05 which gives us 10 bound states of interest.
We use the analytic results to benchmark our numerical
implementation which agree perfectly.

Appendix E: Model of a one-dimensional H2

molecule

Our example of a molecular system considers the model
for the H2 molecule where the motion of all particles is re-
stricted to one spatial dimension and the center-of-mass
motion of the molecule can be separated off [47, 66, 67].
The relevant coordinates of this model are the internu-
clear separation, R, and the electronic coordinates, x1
and x2. The Hamiltonian of the model system is given
below

Ĥmol = − 1

2µn

∂2

∂R2
+

1

R
+

1√
(x1 − x2)2 + aee

+

2∑
i=1

(
− 1

2µe

∂2

∂x2i
− 1√

(xi −R/2)2 + aen
(E1)

− 1√
(xi +R/2)2 + aen

)
,

where µe = 2Mn/(2Mn + 1) and µn = Mn/2 are
the reduced observable electronic and nuclei masses, re-
spectively. We take the proton mass to be Mn =
1836me. The electron-electron and electron-nuclear in-
teraction terms are represented by soft-Coulomb poten-
tials where the soft-Coulomb parameters take values
aee = 2 and aen = 1. For the model, the PESs are
defined by the following electronic eigenvalue problem:
Ĥel(x1, x2;R)Φk(x1, x2;R) = Ek(R)Φk(x1, x2;R) where

Ĥel = ĤH2
− T̂n where T̂n = − 1

2µn

∂2

∂R2 . We show the

first five numerically exact PESs in Fig. (16) for the case
where we do not couple to the photonic continuum (i.e.
for Np = 0). The mean nuclear equilibrium position
is Req = 1.9 a.u. with the corresponding ground-state
energy E0 = −1.4843 a.u. Applying the harmonic ap-
proximation to the ground-state PES as in App. F we

FIG. 16. The first five numerically exact PESs of the 1D
hydrogen molecule H2 for Np = 0. The harmonic approxi-
mation to the ground-state PES has the harmonic frequency
ωe = 0.020455 a.u. for the nuclear degrees.

obtain the harmonic frequency ωe = 0.020455 a.u. of the
nuclear degrees.

We note that when we couple the molecule to the
discretized continuum, we used the bare proton mass
M = 1836m where the bare electronic mass is m = 1.
At the equilibrium position, we compute the ground-
state density for NRQED and QM for the case when the
renormalized mass is obtained with the lowest 50 of the
200 sampled photon modes. In Fig. (17), we show the
ground-state density where the QM case is more bound
when compared to the NRQED. The reason for this is
discussed in Sec. IVA of the main text.

FIG. 17. A comparison of the ground-state density of the H2

molecule at the equilibrium position Req = 1.9 a.u. between
NRQED and QM for the case of Np = 50 photon modes.
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Appendix F: Morse and harmonic approximation to
the H2 PES

In this section we provide details of the Morse and
harmonic approximation to the numerical exact ground-
state H2 PoPES of the NRQED and QM settings. To do
this, we first consider the Morse potential

VM,i(R) = De,i

(
e−ai(R−Req) − 1

)2
+ Ci , (F1)

where the parameter “a” controls the ‘width’ of the po-
tential (i.e., the smaller “a” is, the larger the well), C
is a constant shift in the PES and i = {NRQED,QM}.
Since we have access to all the parameters of Eq. (F1)
except for the a parameter, this makes the fitting proce-
dure easier. To fit the Morse potential to the exact results
of NRQED and QM settings, we employ the “curve fit”
function of scipy and the corresponding a parameter val-
ues of NRQED and QM are given in Tab. (II). The results
of the fit are plotted in Fig. (18). Since we are interested

Level of theory Morse parameter a Harmonic frequency ωe

QM 1.1306567 0.0202009

NRQED 1.18811731 0.0217312

TABLE II. The values of the a parameter of the Morse poten-
tial resulting from the fit and the deduced harmonic frequency
ωe for the case of Np = 50 photon modes. The units are in
(a.u.).

in the influence the continuum has on the nuclear de-
grees, we connect the a parameter to the nuclei mass by
employing the harmonic potential fit to the Morse poten-
tial around the equilibrium Req. The harmonic potential
is given by

VH,i(R) =
1

2
ki (R−Req)

2
+ Ci , (F2)

where k is the force constant of the bond which is re-
lated to the reduced nuclei mass as k = µn ω

2
e and ωe

is the vibrational frequency of the potential. From the
above considerations, we have the relation k = 2Dea

2

from which we have ωe =
√

2Dea2/µn.

To obtain the approximate vibrational harmonic fre-
quency of the NRQED setting, we used the bare pro-
ton mass M = 1836m where the bare electronic mass is
m = 1. The renormalized proton mass is deduced from
the energy dispersion for free interacting protons coupled
to the electromagnetic continuum. The energy dispersion
is similar to Eq. (6) where the diamagnetic frequency has
a dependence on the nuclear charge.

FIG. 18. Morse potential fit to the numerical exact ground-
state PES of the H2 molecule for NRQED and QM for the
case of Np = 50 photon modes.
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[41] V. Bužek, G. Drobný, Min Gyu Kim, M. Havukainen,
and P. L. Knight, “Numerical simulations of atomic decay
in cavities and material media,” Phys. Rev. A 60, 582–
592 (1999).

[42] Johannes Flick, Michael Ruggenthaler, Heiko Appel, and
Angel Rubio, “Atoms and molecules in cavities, from
weak to strong coupling in quantum-electrodynamics
(qed) chemistry,” Proceedings of the National Academy
of Sciences 114, 3026–3034 (2017).

[43] Herbert Spohn, Dynamics of charged particles and their
radiation field (Cambridge university press, 2004).

[44] Claude Cohen-Tannoudji, Jacques Dupont-Roc, and
Gilbert Grynberg, Photons and Atoms: Introduction to
Quantum Electrodynamics (John Wiley & Sons, Inc.,
1989).

[45] Christian Hainzl and Robert Seiringer, “Mass renormal-
ization and energy level shift in non-relativistic qed,”
Adv. Theor. Math. Phys 6, 847–871 (2002).

[46] I. D. Landau and E. M. Lifshitz, Quantum Mechanics
Non-Relativistic Theory , 3rd ed. (Pergamon Press, Ox-
ford, 1977).

[47] Guillermo Albareda, Kevin Lively, Shunsuke A. Sato,
Aaron Kelly, and Angel Rubio, “Conditional wave func-
tion theory: A unified treatment of molecular structure
and nonadiabatic dynamics,” Journal of Chemical The-
ory and Computation 17, 7321–7340 (2021).

[48] Franz Mandl and Graham Shaw, Quantum Field Theory
(Wiley, 2010).

[49] Vasil Rokaj, Davis M Welakuh, Michael Ruggenthaler,
and Angel Rubio, “Light–matter interaction in the long-
wavelength limit: no ground-state without dipole self-
energy,” Journal of Physics B: Atomic, Molecular and
Optical Physics 51, 034005 (2018).
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