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Nonperturbative mass renormalization effects in nonrelativistic quantum electrodynamics
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In this work we investigate the effects that multimode photonic environments, e.g., optical cavities, have on
the properties of quantum matter. We highlight the importance of the nonperturbative mass renormalization
procedure for ab initio quantum electrodynamics simulations and how it connects to common approximations
used in polaritonic chemistry and cavity materials engineering. We focus on one-dimensional systems which
can be solved exactly for large number of photon modes. First, we apply mass renormalization to free particles.
The value of the renormalized mass depends on the details of the photonic environment and on the number of
particles. We then show how the multimode photon field influences various ground- and excited-state properties
of atomic and molecular systems. For instance, we observe the enhancement of particle confinement in the
binding potential for the atomic system, and the modification of the potential energy surfaces of the molecular
dimer due to photon-mediated long-range interactions. We also highlight how these changes compare to the
common free-space mass-renormalization approximation employed in electronic structure theory and quantum
chemistry. Since such phenomena are enhanced under strong light-matter coupling in a cavity environment they
will become relevant for the emerging fields of polaritonic chemistry and cavity materials engineering.
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I. INTRODUCTION

In recent years, a multitude of seminal experimental and
theoretical breakthroughs involving atoms, molecules, and
solids embedded in photonic structures have ushered in the
rapidly developing fields of polaritonic chemistry [1–3] and
cavity quantum materials [4–7]. The most important and strik-
ing aspect of these fields is the capability of modifying or
controlling the properties of matter in an unprecedented way
by coupling it strongly to the vacuum modes of a photonic
structure. Some examples of the experimental and theoretical
works include the possibility of building polariton lasers [8],
control photochemical reactions [9–11] and energy transfer
[12–14], enhancement of harmonic generation from polari-
tonic states [15–18], modification of ground-state chemical
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reactions via vibrational strong coupling [19–21], or cavity
control of condensed matter properties [22–31]. Also, the cou-
pled light-matter system can be tuned to exhibit significantly
different properties even at room temperature [32,33]. The
variety of these different effects (which is by no means a
comprehensive list) shows the complexity that results from
a strongly coupled light-matter system. It is clear that the
theoretical description of these effects is far from trivial as
it requires knowledge and methods ranging from materials
science, quantum chemistry, quantum optics, and many-body
physics.

The theoretical tools employed to explain the experimental
results are typically quantum optical models (e.g., Tavis-
Cummings or Dicke model) [34,35] or perturbative methods
similar to scattering considerations in high-energy physics
[36,37], and only recently first-principles approaches for
coupled light-matter systems have been developed [38–41].
Usually these approaches in practice employ the few- or
even single-effective-mode approximation [42,43]. Also for
macroscopic molecular ensembles and extended systems it
has been recently shown how such an effective few-mode
approximation can be properly defined [44]. While such ap-
proximations are often well justified, there are many effects
that need a multimode description [3,44,45]. Examples in-
clude radiative dissipation and finite-lifetime effects, such as
the Purcell effect [46], dispersive forces (Casimir and van
der Walls forces) [47], or renormalization effects such as the

2643-1564/2025/7(1)/013093(19) 013093-1 Published by the American Physical Society

https://orcid.org/0000-0002-9585-3406
https://orcid.org/0000-0002-0627-7292
https://orcid.org/0000-0002-0728-8372
https://orcid.org/0000-0003-2060-3151
https://ror.org/01cmst727
https://ror.org/0411b0f77
https://ror.org/03c3r2d17
https://ror.org/03vek6s52
https://ror.org/02g7kd627
https://ror.org/0149pv473
https://ror.org/00sekdz59
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.7.013093&domain=pdf&date_stamp=2025-01-23
https://doi.org/10.1103/PhysRevResearch.7.013093
https://creativecommons.org/licenses/by/4.0/


WELAKUH, ROKAJ, RUGGENTHALER, AND RUBIO PHYSICAL REVIEW RESEARCH 7, 013093 (2025)

Lamb shift [48]. In the case of few-level quantum optical
models, important multimode phenomena have been studied
in detail [49–51]. However, due to the reduction of the matter
degrees of freedom, typically mass renormalization effects
are not considered. For example, only recently the renor-
malization group flow of the Jaynes-Cummings model was
studied [52].

For first-principles methods, it has been pointed out that
the mass renormalization of charged particles due to the
transverse photonic degrees of freedom can have important
implications for physical systems [3,53,54]. Given the fact
that the electromagnetic environment in a cavity is drasti-
cally different than free space, because the photon density
of states, electromagnetic spectrum, and light-matter coupling
are modified, it becomes necessary to investigate how mul-
timode renormalization effects in the cavity emerge under
strong coupling. This is specifically important in the context
of simulating multimode situations in polaritonic chemistry
and cavity materials engineering, where usually the free-space
renormalized mass of the charged particles is employed [3].
Such a procedure runs the risk of erroneously double counting
the free-space continuum of modes [44]. Yet, having in mind
the recent successes in experimentally modifying chemical
reactions and material properties, such effects could be part
of the solution to the conundrum of how photon-field fluctua-
tions can influence atoms, molecules, and solid-state systems
even for ambient conditions. We further note that similar
renormalization effects are well known in, e.g., solid-state
physics, where the longitudinal Coulomb interaction leads
to the emergence of new quasiparticles with effective and
renormalized masses [55]. We highlight, however, that here
we focus on the mass renormalization due to the transverse
photonic degrees of freedom. In order to quantify the effects
on equilibrium states, a nonperturbative ab initio investigation
that solves the coupled light-matter problem exactly is needed.
For our working definition of ab initio in the context of cou-
pled light-matter problems we refer the reader to Appendix A
of Ref. [3].

At this point it becomes important to stress the difference
between mass renormalization and quasiparticles due to the
Coulomb interaction between many charged particles, and the
mass renormalization of a single, free charged particle due to
the self-consistent interaction with the transverse photon field.
Already for a classical charged particle coupled to the classi-
cal electromagnetic field, the backaction of the self-field, i.e.,
the electromagnetic field that a charged particle generates due
to its own presence, leads to the need to renormalize the mass
of the particle [53]. Without introducing a smallest length
scale, the self-field would trap the particle and it would not
move. That is, already for merely having a theoretical descrip-
tion of the energy-momentum (dispersion) relation of a free
charged particle, we need to regularize the ultraviolet behavior
and introduce a corresponding bare mass. By considering
the bare mass to be a function of the ultraviolet regular-
ization one can describe the observed dispersion relation. If
we discard the influence of the self-field completely, i.e., we
choose an ultraviolet cutoff zero, we call the mass in the
energy-momentum relation the observable mass. This prob-
lem survives the quantization of the matter and photon degrees
of freedom [36,37,53] and we note again that the ubiquitous

mass renormalization and emergence of quasiparticles due
to the longitudinal Coulomb interaction is a different effect.
Moreover, in the context of multimode photonic environments
in polaritonic chemistry and cavity materials engineering,
where the ultraviolet cutoff is by construction nonzero, one
then has to either work with the corresponding bare masses
or one has to keep track of the difference to the free-space
continuum [44]. This subtlety is, however, usually ignored and
the question of how the bare mass “runs” with the cutoff in
the dispersion relation moreover depends on the theory used
to describe the physical system and is thus far from trivial.
For instance, in relativistic quantum electrodynamics (QED)
the bare mass goes to infinity as the cutoff is increased and we
note that its “running” can also be influenced by the respective
antiparticles [56]. For nonrelativistic QED (NRQED), where
the electrons are assumed to have small momenta such that a
Schrödinger description becomes appropriate, the bare mass
goes to zero [53]. This is quite intuitive since the bare mass
appears in the denominator of the kinetic energy and in order
to cancel the arbitrarily large self-energy the 1/m prefactor
needs to diverge as well.

We note that to understand this “running” of the mass
due to coupling to the transverse photon degrees of freedom
of a single free particle within a QED theory, we have two
equivalent options: We can either fix the dispersion relation
and consider how the bare mass needs to be adapted when
increasing the cutoff, or we fix the bare mass and consider how
the dispersion changes. Both considerations give us the same
information, yet in the latter option we consider a hypothetical
observable mass that changes with the cutoff. In this case the
hypothetical observable mass is merely a theoretical tool.

It is obvious that this mass-renormalization procedure
merely fixes the single-particle free-space dispersion relation,
while it does not fix how other observables or systems are
affected by changing the cutoffs within a QED theory. There
is a priori no reason to believe that this dispersion-based
mass-renormalization procedure gives the same results as
when we would try to make, e.g., the one-particle density of
a bound-state system of the bare and renormalized system
the same. It is even unclear whether the dispersion-based
mass renormalization of a single free particle gives the same
relation as the dispersion-based mass renormalization for a
single free particle in an ensemble of many free particles.
Moreover, it remains completely unexplored how this mass
renormalization due to the transverse photon fields affects the
emergence of quasiparticles that arise due to the longitudinal
Coulomb interaction. In this work we want to explore such
mass renormalization due to the transverse photonic degrees
of freedom and its interplay with the longitudinal Coulomb
interaction in the context of ab initio NRQED. The NRQED
setting describes the quantum mechanical interaction between
the constituents of matter (electrons and nuclei) and photon
degrees alike.

Such a study is, however, far from trivial and we need
to make some initial assumptions to make it tractable. First,
since we are mainly interested in the effect of optical wave-
lengths on bound-state systems, we make the long-wavelength
approximation (also called dipole approximation or optical
limit [53,57]). This approximation is standard in most cases
of polaritonic chemistry and material sciences [1,5,6,58]. In
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the case of the long-wavelength approximation the relation
between the observable and the bare mass in QED [53] is
known analytically and nonperturbatively for a single free
particle [54,59].1 This result allows us to verify the accuracy
of our numerical simulations when going from free parti-
cles to bound-state systems. Second, in order to represent
the continuum of modes numerically, we require a dense
sampling of the relevant energy range. For a nonperturbative
simulation this becomes exceptionally demanding for three
dimensions. We will therefore restrict to a one-dimensional
continuum of modes and respective atomic and molecular
models [51,60,61]. We will comment on the range of valid-
ity of these two assumptions and on the implications of our
results for general situations later.

Having set the stage, the aim of this work is to in-
vestigate nonperturbative mass renormalization due to the
transverse photonic degrees of freedom in the emerging fields
of polaritonic chemistry and cavity quantum materials. We
demonstrate the mass renormalization first for a single particle
in free space in nonperturbative QED. This introduces the con-
cept of a bare mass in a way that is most closely connected to
the common renormalization procedure of perturbative QED
[59,62]. We demonstrate how the mass-renormalization pro-
cedure introduces the observable renormalized mass and how
this connects to the usual energy dispersion of a single free
particle in quantum mechanics. In this simplest of situations
we then highlight the need to go beyond perturbation theory
when we consider the coupled wave function and we uncover
that the energy and length scales of the light and matter modes
and states need to match to recover the analytic results in a
nonperturbative simulation. Next we show how the continuum
of modes influences the ground state of atomic and molecular
systems. Interestingly we find that the renormalized (observ-
able) mass approximation, as employed in electronic structure
theory and quantum chemistry, shows relatively strong devia-
tions from the full multimode simulations. The discrepancies
become more pronounced when going to the molecular case.
These results highlight an important feature of multimode
light-matter interaction for bound matter systems, where the
lower-lying modes of the sampled electromagnetic contin-
uum couple more strongly than the higher-lying modes. We
then show how modifying the electromagnetic vacuum by,
e.g., an optical cavity, can affect the ground-state properties
of atomic and molecular systems. For the atomic model we
find that the ground-state density of the electron gets more
localized due to the interaction with the multimode cavity
field. For the molecular model we observe the modification
of the ground-state potential energy surface (PES) due to
cavity-mediated long-range interactions. We finally connect
our results to multimode simulations in polaritonic chemistry
and cavity materials engineering and comment on the general
case of three-dimensional light-matter systems.

1We note that in the work of Hainzl and Seiringer [59] the minimal-
coupling considerations are perturbative and are then contrasted to
the nonperturbative (to all orders) results in the long-wavelength
approximation known from the thesis of van Kampen.

II. THEORETICAL FRAMEWORK

We will focus in the following on the nonrelativistic limit
of QED for the charged particles and assume that the wave-
lengths of the transverse modes of relevance are much larger
than the exponentially localized matter system, such that the
long-wavelength limit [57] is applicable. In this setting, the
dynamics of the coupled system is described by the velocity
(momentum) form of the Pauli-Fierz Hamiltonian [53,63]

ĤV =
Ne∑

l=1

1

2m

(
−ih̄∇rl − |e|

c
Â

)2

+ 1

2

Ne∑
l �= j

w(|r̂l − r̂ j |)

+
Nn∑

l=1

1

2Ml

(
−ih̄∇Rl + Zl |e|

c
Â

)2

+ 1

2

Nn∑
l �= j

ZlZ jw(|R̂l − R̂ j |) +
Np∑

α=1

h̄ωα

(
â†

α âα + 1

2

)

−
Ne∑

l=1

Nn∑
j=1

Zjw(|r̂l − R̂ j |), (1)

where the positive parameters m and Ml are the bare masses of
the Ne electrons and Nn nuclei, respectively. These are not the
usual masses of quantum mechanics [compare with Eq. (4)],
and the elucidation of the effect of these bare masses and
their relation with the cutoffs in the context of NRQED is
the central topic of this paper. The electrons and nuclei are,
respectively, described by the coordinates r̂l and R̂l , and w

is the longitudinal interaction between the charged particles.
In free space and in three dimensions it is the usual Coulomb
interaction w(|r̂ − r̂′|) = e2/4πε0|r̂ − r̂′|. The energy of the
quantized electromagnetic field is given in terms of the pho-
ton creation â†

α and annihilation âα operators with associated
mode frequency ωα for each mode α of an arbitrarily large but
finite number of photon modes Np. The vector potential is

Â =
Np∑

α=1

c λα

√
h̄

2ωα

(âα + â†
α ) with λα =

√
1

ε0Vα

eα. (2)

Note that λα is the vectorial coupling parameter and Vα is the
mode volume of the mode α. We highlight that for general
photonic structures the proper definition of the mode volume
is nontrivial and might depend even on the matter system
under consideration [44]. In the case of three-dimensional free
space the coupling becomes proportional to the fine-structure
constant [54]. In the simple Fabry-Pérot cavities the coupling
becomes proportional to mirror distances and the finesse of the
cavity [44]. The collective index α ≡ (ks) is used to denote
the photon wave vector and the two transverse polarization
directions s = 1, 2. We further note that we follow the usual
convention of constructive quantum field theories to consider
a discretized continuum that converges in resolvent norm to
the full continuum solution [64–66]. Moreover, we stress that
when sampling the photon modes, we cannot go to arbitrary
high photon momenta |k| → ∞, otherwise the Pauli-Fierz
Hamiltonian will be ill defined [53]. This mathematical fact
is easy to understand on physical grounds, specifically for
the long-wavelength approximation, since arbitrarily high
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momenta directly contradict our initial assumption to not re-
solve arbitrarily small length scales. Any microscopic length
scale would be resolved with arbitrarily high frequencies. To
circumvent this, the contributions of the photon continuum
needs to be regularized by introducing an ultraviolet regular-
ization [53,59]. The effect of this regularization on physical
properties is a further central topic of this work and will be
discussed in the following.

It is important to note that the coupled light-matter system
can be studied using the unitarily equivalent form of Eq. (1)
[63], the length form of the Pauli-Fierz Hamiltonian given as

ĤL = − h̄2

2m

Ne∑
l=1

∇2
rl

−
Nn∑

l=1

h̄2

2Ml
∇2

Rl
+ 1

2
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w(|r̂l − r̂ j |)

+ 1

2

Nn∑
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Ne∑

l=1
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+ 1

2

M∑
α=1

[
p̂2

α + ω2
α

(
q̂α− λα

ωα

· μ̂

)2
]
, (3)

where the total dipole is μ̂ = −∑Ne
l=1 |e| r̂l + ∑Nn

l=1 Zl eR̂l , q̂α

is the displacement coordinate, and p̂α = −ih̄ ∂
∂ q̂α

its conjugate
momentum. We can define new creation and annihilation op-
erators also for the length gauge, but we note that they are
not the original photonic operators as defined above in the
velocity gauge but are mixed light-matter objects [63,67].

The explicit interaction of the matter degrees of freedom
with the photons as in Eqs. (1) and (3) requires that we work
with the bare masses m and Ml for the electrons and nuclei,
respectively, as it is usually done in QED [53,68]. In electronic
structure theory and quantum chemistry, however, the observ-
able masses of the particles are used and the transverse photon
modes are discarded. The Hamiltonian describing this setting
of interacting electrons and nuclei is

Ĥ = − h̄2

2me

Ne∑
l=1

∇2
rl

−
Nn∑

l=1

h̄2

2Mn,l
∇2

Rl

+ 1

2

Ne∑
l �= j

w(|r̂l − r̂ j |) + 1

2

Nn∑
l �= j

ZlZ jw(|R̂l − R̂ j |)

−
Ne∑

l=1

Nn∑
j=1

Zjw(|r̂l − R̂ j |), (4)

where me and Mn,l are the renormalized or observable masses
of the electrons and nuclei in free space, respectively. In stan-
dard formulations of QED the following relation is assumed
between the bare and the observable masses [53,59,69]:

me = m + mpt , (5)

Mn,l = Ml + Mpt,l . (6)

The photon-induced masses mpt and Mpt,l are interpreted, re-
spectively, as the masses acquired by the electrons and nuclei
due to the interaction with the photon field [69]. The bare
masses of NRQED and the renormalized masses are related
via the free-space energy-momentum relation (see Sec. III

for details). How well these two descriptions agree for other
observables and properties of different systems is the main
topic of this work. At this point it is important to mention
that the Hamiltonians defined in this section refer to general
many-body systems in three dimensions. In what follows, in
order to have exactly solvable models we will, however, focus
on one-dimensional atomic and molecular models which can
be simulated exactly when coupled to the electromagnetic
continuum of modes. In the atomic case (Sec. IV A) we will
consider only the single-electron case, while for the molecule
(Sec. IV B) we have two electrons and two positively charged
nuclei. But before we do so, let us consider how typically the
bare and the observable masses are related [53,59,69].

III. FREE PARTICLES COUPLED TO THE
ELECTROMAGNETIC CONTINUUM

To elucidate how the bare masses of NRQED and the
renormalized and observable masses are related we consider
the dispersion relation of free charged particles. We will use
the case of free electrons in the following, but note that we can
merely replace the charges and bare masses in the different
formulas and also find the corresponding forms for the nuclei.
We describe the free electrons coupled to the photon modes
using Eq. (1). Further, we neglect the Coulomb interaction
between the electrons w(|r̂ − r̂′|) = 0. We note that in this
section and the atomic model (Sec. IV A) we will focus on
the single-electron case, where this is automatically fulfilled.
Given this assumption the electronic eigenstates are plane
waves of the form eikx, and the nonperturbative spectrum
for Ne electrons coupled to the vacuum photons in the long-
wavelength approximation can be obtained analytically [54].
It takes the form

Ek(Np) = h̄2

2m

⎛⎝ Ne∑
j=1

k2
j − 1

Ne

Np∑
α=1

ω2
d

�2
α

(ẽα · K)2

⎞⎠
+

Np∑
α=1

h̄�α

(
nα + 1

2

)
, (7)

where �α and ẽα are the new normal modes and the new
polarization vectors, the diamagnetic frequency of the system
is defined as

ωd =
√

Nee2

ε0mVα

= |λα|
√

Nee2

m
, (8)

and K = ∑Ne
j=1 k j is the sum of all electronic momenta. To

obtain the renormalized dispersion relation for the noninter-
acting free-electron gas from Eq. (7), we can subsume the
contributions of the photonic degrees and its interaction with
the electronic system into the observable mass and find

Ek = h̄2

2me

Ne∑
j=1

k2
j . (9)

In NRQED, the renormalized mass for free electrons is de-
fined via the energy dispersion of the electrons at the lowest
relevant frequencies and is formally by [70,71]

me =
[

1

h̄2

∂2Ek(Np)

∂k2
i

]−1

(10)
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evaluated at the scale of interest. Next, applying Eq. (10) to
(7), we obtain the renormalized mass for the free-electron gas
given by

me = m

1 − g(Np)
where g(Np) = 1

Ne

Np∑
α=1

ω2
d

�2
α

(ẽα · ei )
2.

(11)

We note that i = x, y, z and g(Np) is the total multimode
coupling to the electromagnetic field. Equation (11) provides
an analytic expression of the connection between the bare
mass m and observable mass me from a nonperturbative
description. As already highlighted in the Introduction, we
here see explicitly that the bare mass in NRQED goes to
zero when the ultraviolet regularization is removed. For a
locally isotropic and homogeneous density of modes, such
as in three-dimensional free space, where ωn = c|n|(2π/L)
for n ∈ Z3

0 and Vα = V = L3 the full quantization volume,
we can connect to well-known results from renormalization
theory [53]. Indeed, for three-dimensional free space we re-
cover the fine-structure-dependent mass renormalization of
long-wavelength-approximated NRQED [54]. The cutoff (or
some other form of regularization) is needed to avoid the
divergence of the observable mass, which for a single electron
in three dimensions is found to be at exceedingly high energies
corresponding to the energy regime of quantum chromody-
namics (QCD) [54]. We will discuss the choice of cutoff
and its implications below. It is important to stress that the
multimode coupling g(Np) to the photon modes approaches
unity, g(Np) → 1, resulting to a diverging me in the cases that
we consider [54]. To tame the diverging me in renormalization
theory, the bare mass m becomes cutoff dependent and is
promoted into m(Np) such that to exactly cancel the diverg-
ing term 1/[1 − g(Np)]. For that purpose one takes m(Np) =
me[1 − g(Np)] where me is the observable electron mass. In
addition we would like to highlight that, strictly speaking,
in a general, nonisotropic photonic environment the observ-
able mass would become direction dependent, as can be seen
from Eq. (10). We will, however, in the following consider
one-dimensional models and hence will ignore this subtle yet
important point, and only comment on it at the end of this
work. In the following we will use adapted units (a.u.) such
that e = (4πε0)−1 = h̄ = m = 1. These units are not atomic
units since we choose the bare electronic mass m to be equal to
one, and hence the units are adapted to the cutoff and scale of
the model. We therefore consider the situation, as discussed in
Sec. I, where we fix the bare mass and investigate a changing
hypothetical observable mass. We are not interested in the
actual value of the observable mass but rather in how the wave
function and its observables “run” with the cutoff.

Now, we will consider a situation of a free electron
restricted to one dimension interacting with a discretized elec-
tromagnetic continuum. With this model, we want to demon-
strate the working principles of the mass-renormalization
procedure and obtain the observable and renormalized mass of
the interacting light-matter system. We choose the discretized
photon continuum such that the range of its frequencies cov-
ers the desired energy range of the bound matter systems
(discussed in Sec. IV). That is, the matter wave function of
the bound-state system, which is equivalent to exponential

TABLE I. The values of the renormalized mass obtained from
Eq. (11) for the nonperturbative and perturbative (denoted pert)
calculation for different coupling strengths λ when coupled to 200
photon modes. The value of the bare mass used is m = 1.

Coupling strength λ me me (pert)

0.0019 1.1683661411 1.2024522443
0.0012 1.0673464565 1.0722095112
0.0009 1.0336732282 1.0348466266

localization [53,72], intrinsically sets the scale at which we
investigate the present theory. In our case, we introduce lower
and upper energy cutoffs which are, respectively, 0.01 and
0.5 a.u. The upper cutoff is well within the validity of the
dipole approximation. The lower cutoff is needed to treat the
matter and the light sector consistently. Although nonpertur-
bative NRQED has no infrared divergence [53], the consistent
treatment of the limit ω → 0 needs extra care and we discuss
this in more detail at the end of this section. Here we choose
the lower cutoff in agreement with the matter grid by having
l = 2π/kmin. We sample the one-dimensional electromagnetic
continuum by including explicitly 200 photon modes with
equidistant energy spacing per mode of 0.00246 a.u. (see
Appendix A for details on the photon continuum). This is
smaller than the energy spacing of the matter system and
choosing the sampling finer does not change the outcome,
i.e., the results are converged. This specified continuum of
modes describes the local photonic density of states that we
consider for the light-matter coupled system. In this setting of
the coupled light-matter system, we compute the dispersion
relations of Eq. (7), what we term as results from NRQED,
and the renormalized dispersion relations of Eq. (9).

To obtain the renormalized dispersion relation requires that
we perform a mass renormalization which accounts for the
interaction between the bare free electron and the photon
continuum. This procedure involves computing the observable
mass as given in Eq. (10). In Fig. 1(a), we show a compari-
son of the energy dispersion obtained from both approaches.
We find that (by construction) both approaches agree which
highlights a clear connection between those two settings when
the photonic degrees are traced out and included in the renor-
malized mass. The results at the same time demonstrate the
validity and working principles of the mass-renormalization
procedure in the long-wavelength approximation. For the dif-
ferent coupling parameters λ, which for larger values indicate
a stronger interaction with the photonic continuum, we find
that the energy dispersion becomes more flat as shown in
Fig. 1(b). This is as a result of the photon-induced mass mpt as
the free particle interacts with the photon field. Table I shows
the hypothetical observable masses for different λ and from
which the photon-induced mass mpt can be deduced according
to Eq. (5).

In Fig. 2 we show how the observable mass depends on
the coupling parameter λ and the number of photon modes
Np (i.e., increasing photonic density of states and energy
cutoff). We find that for a fixed light-matter coupling (e.g.,
λ = 0.0020) and a nonzero lower photon cutoff, the renor-
malized mass increases as a function of Np and reaches a
plateau without diverging. The renormalized mass diverges
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FIG. 1. (a) The energy dispersion of a free electron in the
NRQED setting when coupled to 200 photon modes and the cor-
responding renormalized description using the renormalized mass
me. Both settings show a quantitative agreement and we note this
holds for different coupling strengths. (b) Comparison of the energy
dispersion of NRQED for different λ’s where the dispersion relation
becomes more flat increasing λ. (c) Comparison between the nonper-
turbative and perturbative (denoted pert.) NRQED energy dispersion,
where the perturbative solution needs to employ also an infrared
cutoff to lead to finite results. Still the perturbative results deviate
for higher k values.

only in the case where the lower photon frequency is taken
to zero. This point is discussed in more detail in Appendix B
and is due to the one-dimensional setting considered in this
work. In three dimensions this effect is absent for isotropic
and homogeneous modes due to the three-dimensional volume
element [54].

At this point it becomes important to discuss the relation
with a perturbative treatment. Up to second-order perturbation
theory in terms of the electronic charge e (see Appendix B for
the continuum), the spectrum of an electron coupled to the
discretized electromagnetic continuum is given by

E (pert)
k = k2

2

(
1 −

∞∑
n=1

ω2
d

ω2
n

)
, (12)

where the photon frequencies are ωn = 2πcn/L. Using
Euler’s formula

∑∞
n=1 1/n2 = π2/6, and substituting the def-

inition for the single-particle diamagnetic frequency ω2
d =

4π/V and assuming for the effective quantization volume
a cavitylike geometry of the form V = AL, where A is the
area of the mirrors and L the mirror distance, we find the

FIG. 2. The dependence of the renormalized mass on the cou-
pling parameter λ and number of photon modes Np. For fixed
coupling and increasing number of modes the mass increases quickly
and asymptotically reaches a plateau at a finite value. For fixed
number of modes and increasing coupling, the mass is shown to
increase.

perturbative free-particle dispersion

E (pert)
k = k2

2
(1 − γ ) where γ = πL

6c2A
, (13)

From the above result it becomes evident that if γ > 1 then
the free-particle dispersion and the renormalized mass turn
negative, signaling a breakdown of perturbation theory. It is
crucial to mention that the instability occurs for large L which
implies for low photon frequencies, i.e., perturbation theory
becomes unstable in the infrared part of the spectrum. This
is a striking result as it demonstrates that perturbation theory
can become invalid even at low energies. In contrast, the non-
perturbative multimode coupling from the exact solution has
an upper bound and it does not exceed unity, g(Np) � 1 (see
Appendix B). Thus, the nonperturbative dispersion of the free
particle is always positive and the system remains stable [54].
This supports the idea by Van Hove [73] that divergences (or
instabilities) in quantum field theories might not be a generic
property but only due to perturbation theory. At this point it is
important to mention that if we assume a cubic geometry for
the quantization volume V ′ = L3, with L the box size, then
the corresponding parameter which modifies the perturbative
dispersion takes the form γ ′ = π

6c2L . In this case the instability
point γ ′ > 1 of the perturbative dispersion occurs for small
L, i.e., for high photonic frequencies. This is the standard ul-
traviolet diverging behavior of (three-dimensional) free space
[54,69]. In order to make a comparison between nonperturba-
tive NRQED and perturbative light-matter coupling possible,
we need to avoid this infrared instability that only appears
in perturbation theory. However, even if we do so, the cor-
responding lowest-order perturbative wave function2

|� (pert)〉 ≈ C
(

|k〉 ⊗ |0〉 + ωd

ω

k√
2ω

|k〉 ⊗ |1〉
)

, (14)

2We note that here we focus on just one out of the many modes
that constitute the discretized continuum. We can reconstruct the
many-mode wave function by combining all possible excitations.
Yet, if already the single-mode perturbative wave function can be-
come inaccurate, the many-mode perturbative wave function will be
so as well.
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where C is a normalization constant, is only accurate as long
as the matter momentum scale is comparable with the photon
momentum scale. That means, not only do we have a break-
down of perturbation theory if ω becomes too small for fixed
|k|, but also if |k| becomes too large for a fixed ω. In addition,
we observe important differences between the perturbative
and the nonperturbative treatments for bound-state systems, as
will be discussed in Secs. IV A and IV B. Finally, we note that
if we consider a many-particle system, i.e., when ωd becomes
large due to collective coupling and the matter system can
span a large momentum scale, the above consideration shows
that one cannot expect a reasonable approximation of the ex-
act NRQED wave function by perturbation theory. Moreover,
as can be seen from Eq. (11), also the number of particles
within the effective mode volume affects the renormalized
mass of the particles [54]. Nevertheless, perturbative con-
siderations with the appropriate cutoffs can be in qualitative
agreement with nonperturbative results for specific observ-
ables such as ground-state energies.

Let us finally remark on the importance of the lower
(infrared) cutoff in the numerically exact calculations and
the consistency between light and matter. As is clear from
the gauge coupling prescription, the fields are directly re-
lated to the matter wave functions [3,36]. So the matter grid
determines which modes are possible. While we here have
considered free particles, and the sizes of L and A are some-
what arbitrary, we aim at considering bound-state systems,
for which the long-wavelength approximation is designed for.
So the size of the simulation box is chosen such that all the
relevant observables for the bound state are well converged.
The free-space case is numerically very instructive to under-
stand that a mismatch between the light and matter basis sets
leads to nonphysical results and that a nonperturbative study
needs to be performed to have a consistent description of the
coupled system at different light-matter coupling strengths.
For instance, allowing for modes that are much smaller in
energy than the minimal momentum eigenstate of matter re-
sults in a wrong dispersion relation that becomes flat (see
Appendix C for an example). This again shows the importance
of length scales in QED in numerical calculations [44], even if
in the mathematically exact theory no divergence is found for
soft photons [53]. Neglecting this important numerical detail
would necessarily lead to erroneous results for the much more
complex bound-state case, and hence checking the free-space
situation first proves also paramount to generate reliable data.

IV. THE BOUND MATTER SYSTEM COUPLED TO THE
ELECTROMAGNETIC CONTINUUM

The previous section considered the case of a single free
charged particle interacting with the quantum fluctuations
of a discretized continuum of isotropic photonic modes. We
will now consider the case of a bound matter system inter-
acting with the same discretized continuum of modes and
investigate some effects the photon modes have on several
physical properties of the coupled system. For our investiga-
tion of the bound system, we chose to work with the length
form of the Pauli-Fierz Hamiltonian given by Eq. (3). A
practical advantage of the length gauge Hamiltonian is that
for a real-space description of the bound matter system, the

spectrum converges faster for a basis of simple tensor products
of photon displacement and matter states as opposed to the
velocity gauge [74,75]. It is crucial to mention that the relation
between the bare mass m and the observable mass me is non-
perturbatively the same in both gauges. The energy dispersion
of the free electron in the length gauge has exactly the same
form as the one obtained in the velocity gauge. We demon-
strate this fact for the single-particle case in Appendix C. At
this point we would like to emphasize that to obtain the free-
particle dispersion in the length gauge, the dipole self-energy
is absolutely crucial. Without the dipole self-energy there is no
translationally invariant direction in the electron-photon con-
figuration space, i.e., translational invariance is broken [63].
As a consequence, the free-particle energy dispersion cannot
be obtained nonperturbatively without the dipole self-energy.
This makes evident the importance of the dipole self-energy
for the mass-renormalization procedure.

To obtain physical observables of the coupled light-matter
system, we solve the stationary eigenvalue problem Ĥ |�n〉 =
En|�n〉 of the Pauli-Fierz Hamiltonian of Eq. (3) and the
matter-only QM setting of Eq. (4) numerically exactly and
compare the results. In the renormalized setting for the bound
systems, the contributions due to the interaction with a dis-
cretized continuum are accounted for by using the observable
and renormalized mass obtained in Table I for the different
couplings. We will consider two examples of one-dimensional
model systems interacting with the electromagnetic contin-
uum: the first being an atomic system consisting of a single
bound electron, and the second a molecular hydrogen model
of two interacting electrons and nuclei with soft Coulomb
potentials.

A. Atomic light-matter system

In what follows we consider an atomic model of a single
electron bound in the Pöschl-Teller potential [76]

v(x) = − e2

4πε0

v0

cosh2(k0x)
, (15)

where v0 and k0 are parameters that control the depth of
the Pöschl-Teller potential [76]. We note that the Pöschl-
Teller potential arises due to longitudinal interaction between
a charged nucleus and a single charged electron and hence
takes into account nonperturbatively the longitudinal photon
interaction. An important quantity of a matter system is the
ground-state density, as it describes the localization properties
of matter. By localization of a bound system, we are referring
to the exponential localization of the probability distribution
of finding a particle in a particular region trapped by an attrac-
tive longitudinal potential. We investigate this property for the
case of the one-dimensional atomic model (see Appendix D
for the details of the model) coupled to the electromagnetic
continuum. The atomic system interacts with the discretized
continuum of photon modes discussed in Sec. III. For this
setting of the coupled light-matter system, we compute the
ground-state electron density, which gives the probability of
finding an electron at position x, and make a comparison be-
tween the NRQED and the free-space renormalized settings.
In contrast to the free-space dispersion, for which the mass-
renormalization procedure was designed, we find that the
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FIG. 3. A comparison of the electronic ground-state density be-
tween the NRQED and the free-space renormalized settings for a
bound electron coupled to 200 photon modes. (a)–(c) Show the com-
parison for different coupling strengths λ where the renormalized
results deviate from NRQED due to how the bound system interacts
with the discretized photonic continuum.

observable-mass approximation does not lead to a quantitative
agreement as illustrated in Fig. 3 for the different light-matter
coupling strengths. Instead, we find that the results from the
free-space renormalized theory deviates from NRQED as the
system in its ground state becomes more bound as indicated
by the increased amplitude and shrinking of the width of the
density profile. In this setting of a bound system interacting
with a continuum, it is interesting to find that the usual free-
space mass-renormalization procedure does not agree with the
NRQED results.

The reason for this deviation is that by introducing a bind-
ing potential the localized electronic states do not couple
equally to all the modes of the discretized electromag-
netic continuum as opposed to the free-space case studied
above. Since the energy dispersion of Fig. 1 is actually an
excited-state property, it probes a larger part of the photonic
continuum of modes. Hence, the resulting observable mass
obtained from Eq. (10) (see values in Table I) includes a large
contribution from the high-lying modes of the electromagnetic
continuum. Therefore, using this renormalized mass in Eq. (4)
leads to the deviations seen in Fig. 3. This is elucidated clearly
in the second point where we illustrate how the different
photon modes interact with the atomic system by comput-
ing the mean photon occupation per photon mode defined

FIG. 4. The photon occupation of the electron-photon ground
state for the atomic bound system coupled to a discretized continuum
sampled with Np = 200 photon modes. Only the occupations of the
first 20 low-lying photon modes are shown where the lowest modes
couple strongly and the occupation increases with the coupling
strength. Each bar represents the contribution of each photon mode
to the photon occupation.

in the velocity gauge as nα = 〈�0|n̂α|�0〉 where n̂α = â†
α âα

and |�0〉 is the correlated electron-photon ground state. For
different light-matter couplings λ, we show in Fig. 4 the
mean photon occupation for the lowest-lying 20 of the 200
photon modes. Clearly, the lower-lying photon modes have
more photon occupation as they interact more with the atomic
system when compared to the high-lying modes. Also, we
find that the stronger the coupling λ the higher the photon
occupation, and the decreasing trend of photon occupation for
higher-lying photon frequencies applies for the different λ’s.
From these results we can deduce that ground-state proper-
ties will saturate with increasing photon modes with higher
frequencies (i.e., increasing photonic cutoff).

To demonstrate this, we compute the integrated ground-
state electron density difference defined as �n = ∫

dx|n(x) −
n′(x)| where n(x) and n′(x) are the densities of two dif-
ferent settings. Since NRQED is the reference result, we
compute this quantity within this theory and compare then
to the renormalized theory for increasing number of modes
(increasing cutoff) from 10 to 200 modes in steps of 10 modes
and increasing coupling λ. This comparison is shown in
Fig. 5(a) where we find that “NRQED-renormalized” (density
of NRQED subtracted from the renormalized theory) saturate
for increasing photon modes for the different couplings. From
the results of Fig. 5(a), we also infer that the atomic system
becomes more bound (increased electronic localization) for
increasing photon modes (photonic cutoff energy). A conclu-
sion that can be drawn from the results of Figs. 4 and 5(a) is
that for the bound system not all photon modes are equally
important since the effect of coupling to the ground state
becomes smaller for higher photon frequencies. This implies
that the bound system saturates faster than the free particle
as a function of the number of modes Np. It is interesting
to highlight that the multimode coupling g(Np) has a similar
dependence on the number of photon modes as the integrated
ground-state density up to a multiplicative prefactor as shown
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FIG. 5. (a) The integrated ground-state density difference �n
between the NRQED and the free-space renormalized settings when
coupled to different photon modes in the range 10 to 200 and in-
creasing coupling λ. In contrast to the free-space case we see a
convergence of the results when increasing the number of modes.
(b) The dependence of the multimode coupling on the number of
photon modes for different light-matter coupling.

in Fig. 5(b). We would like to mention that the enhanced local-
ization as a result of mass renormalization has been reported
even with a single cavity mode for a many-particle system
in a harmonic potential [77]. In this case the localization
phenomenon was significantly enhanced due to the collective
coupling of the system and cavity-mediated interactions. A
further important point to make here is that, as opposed to
the free-space case, where Eq. (11) shows that a finite cutoff
or regularization needs to be kept, for ground states, even in
the long-wavelength approximation NRQED might become
largely cutoff independent for a fixed bare-mass value. Finally,
we note that an exponentially suppressed mode occupation
for higher frequencies reflects the origin of quantum physics,
where quantized photon modes were introduced to overcome
the Rayleigh-Jeans ultraviolet catastrophe.

Before moving on, we provide results for the ground-state
properties of the atomic light-matter system using perturba-
tion theory. In this approach, using Eq. (12) we determine the
renormalized electron mass as noted from Eq. (5) and given
in Table I, which is then used in the renormalized theory.
We show in Fig. 6(a) how the renormalized mass obtained
from perturbation theory deviates from the exact NRQED
case. Perturbation theory will have an increasing deviation for
higher-lying photon modes. Furthermore, to demonstrate how
the perturbative treatment differs from the nonperturbative re-
sults, we compute the integrated ground-state electron density
difference between NRQED and the perturbatively renormal-
ized results and make a comparison with the nonperturbative
results. This result is shown in Fig. 6(b) where we find a sim-
ilar behavior between exact NRQED and perturbation theory
stemming from the respective renormalized masses employed.

FIG. 6. (a) Comparison between the renormalized mass of the
exact NRQED and that using perturbation theory. (b) The integrated
ground-state density difference �n between NRQED and the renor-
malized theory, and NRQED and the perturbatively renormalized
theory.

Based on these findings, we obtain the important result that
perturbation theory deviates more from the exact results as
the number of photon modes increases.

1. Impact of mass renormalization on excited-state properties

We have so far considered only ground-state properties for
the atomic system interacting with the discretized electromag-
netic continuum. Now, we focus on excited-state properties
of this coupled system. One common quantity which is nor-
mally computed is the absorption spectrum of the system
which we determined here by computing the dipole strength
function S(ω) = ∑

n 2ωn|〈�0|x̂|�n〉|2δ(ω − ωn) where x̂ is
the electronic dipole operator of the one-dimensional atomic
system. For this quantity, we make a comparison for the
different settings as shown in Fig. 7 where we employ Wigner-
Weisskopf theory to fit the NRQED results and subsequently
obtain the spectrum of the renormalized setting. Similar to
the ground-state results, we find that free-space renormalized
theory deviates from NRQED in peak position. The reason for
this can be partly attributed to how the discretized continuum
of modes interact with the atomic system and affect ground-
state properties such that a transition from the ground state
to the first excited state leads to this deviation. We expect
that for higher-lying excitations in the absorption spectrum,
the NRQED and renormalized settings should agree since the
excited states become more delocalized and should probe a
large part of the continuum as in the free-electron case dis-
cussed above. A noticeable difference is that the absorption
peak of the free-space renormalized theory is redshifted in the
spectrum relative to NRQED. From the analytic expression
of the energies of the atomic system given in Eq. (D2), we
deduce that for a larger (i.e., the observable) mass, the en-
ergies become more negative (strongly bound) which causes
the redshift relative to the NRQED peak. In passing, we note
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FIG. 7. The absorption spectrum of the NRQED setting with-
out applying an artificial broadening and the corresponding fitted
spectrum with Wigner-Weisskopf (WW) theory (magenta) with a
Lorentzian broadening of h̄γ = 0.0034 a.u. The same broadening
and WW theory is employed to obtain the absorption spectrum of
the free-space renormalized setting (red).

that for a more dense sampling of the discretized continuum
of modes as done in Refs. [78–80], we will obtain a smooth
Lorentzian profile for the NRQED case that naturally occurs
due to the continuum of modes.

B. Molecular light-matter system

We now investigate how molecular properties are affected
when a molecular system interacts with the discretized contin-
uum of photon modes. Our example considers the model for
the H2 molecule where the motion of all particles is restricted
to one spatial dimension and the center-of-mass motion of
the molecule can be separated off similar to the atomic case
discussed above [61,81,82]. The relevant coordinates of this
model are the internuclear separation R and the two electronic
coordinates x1 and x2. The Hamiltonian of the molecular
model is

Ĥmol = − 1

2μn

∂2

∂R2
+ 1

R
+ 1√

(x1 − x2)2 + aee

+
2∑

i=1

(
− 1

2μe

∂2

∂x2
i

− 1√
(xi − R/2)2 + aen

− 1√
(xi + R/2)2 + aen

)
, (16)

where μe = 2Mn/(2Mn + 1) and μn = Mn/2 are the reduced
electronic and nuclei masses, respectively. Further details
on how we treat the one-dimensional model of a hydrogen
molecule are provided in Appendix E.

For the calculations of the molecular light-matter system,
we couple the molecule to the lowest 15 photon modes since
they are the most important for bound systems as discussed
above. A common and widely studied property of a molecule
is its potential energy surface (PES) which describes the re-
lationship between the molecular geometry, for example, the
relative positions of the participating atoms, and the molecular

FIG. 8. A comparison of the ground-state PoPESs showing a
deviation between the free-space renormalized and NRQED results.
The PoPES for NRQED is the case when coupled to 15 photon modes
and renormalized theory uses the observable mass due to the same
photonic density of states.

energy. For the case of coupled light-matter systems we have
similar objects. Since we have three natural subsystems, i.e.,
nuclei, electrons, and photons, we can perform the Born-
Huang expansion that underlies the PES concept in different
ways [3,83,84]. In our case, where the frequency range is
chosen to affect the electronic degrees of freedom (as we show
in the Appendix E, the basic frequency of the nuclear degrees
of freedom is ωe ≈ 0.02 a.u. which is within the lower fre-
quencies of the sampled continuum), we can use a grouping of
the photonic degrees of freedom with the electronic ones. This
leads to polaritonic PES (PoPES) [85], where the nuclei (in
our case indicated by the internuclear separation R) “feel” the
photonic continuum of modes via the changes in the PoPES.

We now show in Fig. 8 the ground-state PoPES for the
different settings. This result is similar to the atomic light-
matter system discussed above, where the lower-lying modes
of the continuum couple strongly compared to the higher-
lying modes which causes the deviation when the calculated
renormalized mass (in Table I) is used in the renormalized
theory. To support this, we show in Fig. 16 the ground-state
density of NRQED and of the free-space renormalized theory,
where we find that the renormalized result shows that the
molecular system at the equilibrium position becomes more
bound when compared to NRQED, similar to the atomic light-
matter results in Fig. 3(a). We note that we have removed the
vacuum contribution of the zero-point energy due to the 15
photon modes from the PoPES of NRQED. That means, we
have normal ordered and discarded an overall constant energy
contribution.

Another important information that can be obtained from
Fig. 8 is the bond dissociation energy De of the molecule. The
results on how the dissociation energy of the H2 molecule
changes with increasing photonic energy cutoff (number of
photon modes) is shown in Fig. 9. For up to 15 photon modes,
the photon-mode-dependent dissociation energy for NRQED
and the free-space renormalized theory has an opposite be-
havior. For NRQED the dissociation energy increases with
increasing energy cutoff which implies that it is more difficult
to break a chemical bond when the molecule is made to
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FIG. 9. The photon-mode-dependent dissociation energy plotted
as function of photon modes for the NRQED and the free-space
renormalized theory. The NRQED setting indicates that it is in-
creasingly difficult to break a bond for increasing Np while the
renormalized theory shows the opposite behavior.

interact with the electromagnetic continuum. This is in line
with the enhanced binding of the minimal-coupling Pauli-
Fierz Hamiltonian due to trapping of virtual photons [53,86].
The trapping of virtual photons is nicely demonstrated in
Fig. 4. That the renormalized theory shows the opposite trend
is due to the fact that it spuriously assumes that all modes
couple equally strong irrespective of the localization of the
electronic system, similar to the atomic case. In other words,
if we would like to recover the NRQED results we would need
to have also an R dependence in the renormalized mass, where
only for large R we would approach the free-space value.

As we have seen, the PoPES changes due to the inter-
action with the photon modes. To quantify the effect of the
modes on the nuclear degrees further we next consider the
change in vibrational frequencies in the H2 molecule. Since
we have chosen a Born-Huang grouping of the electrons with
the photons, the effect of the many modes is mediated via
the changes in the PoPES. We note that for free interacting
protons coupled to the electromagnetic continuum, we obtain
an analogous dispersion energy as in Eq. (7) with a diamag-
netic frequency that is dependent on the nuclear charge. From
the energy dispersion the renormalized proton mass can be
obtained and with this we can investigate how the nuclear
degrees are influenced due to coupling to the electromagnetic
continuum in a renormalized setting. In Fig. 10 we show
the results of the harmonically approximated vibrational fre-
quency dependence on the sampled photon continuum (see
Appendix F for details). We find for NRQED that the ap-
proximate harmonic vibrational frequency increases with the
number of photon modes indicating that the nuclear degrees of
the ground-state PoPES become more bound while the free-
space renormalized theory shows the opposite behavior. The
behavior of the approximate harmonic frequency is reminis-
cent of the dissociation energy in Fig. 9 since it is proportional
to the square root of De. We can thus conclude that the nuclear
degrees of freedom are influenced in a similar way to the
electronic degrees where only the lower-lying photon modes
play a significant role.

FIG. 10. A comparison of the harmonic-approximated frequency
of the ground-state PoPES between NRQED and the free-space
renormalized theory as a function of the number of photon modes Np.
The approximated harmonic frequency for Np = 0 is ωe = 0.020 455
a.u.

In addition, the fact that the PES of the H2 molecule is mod-
ified indicates that the photon field modifies the long-range
interactions between the atomic dimer. The intuition that the
mediated forces are of long-range nature is due to the fact that
if we fit the PESs, with and without coupling to the photon
field, we find that the defining parameters (De, a, and ωe) of
the Morse model are modified when the molecule is coupled
to light. The Morse model effectively describes the long-range
interactions between the pair of atoms, which are responsible
for the formation of the molecule. Thus, it becomes evident
that the photon field has an impact on these long-range inter-
actions, which is in line with recent experimental results [87].

C. Cavity modifications of the ground state

In this section we focus on how enhancing the coupling
between the bound matter system and the electromagnetic
continuum can lead to the modification of ground-state prop-
erties. There are several methods by which the coupling to the
electromagnetic continuum can be enhanced. For instance, to
enhance the coupling of a single atom or molecule usually
microcavities and nanocavities are employed [88–91], while
to enhance the collective coupling often Fabry-Pérot cavities
are used [7]. Here, we distinguish two settings for the coupling
of matter with vacuum fluctuations. The first setting is the
reference “free-space” case where the discretized continuum
is weakly coupled to matter and we chose λ = 0.0009 to
designate the free-space coupling. In the second setting, the
discretized continuum is made to strongly interact with matter
by decreasing the mode volume for the relevant frequency
ranges to enhance the coupling. In this cavity setup, we en-
hance the coupling to the discretized continuum by increasing
the coupling parameter λ = 0.0012, 0.0019. As we learned
from Sec. III, we need to have the matter and the photonic
degrees of freedom to be consistent. We therefore only con-
sider the photonic density of states in the relevant frequency
range, where there are matter states that can be affected by
the photons. We do not consider how the photonic modes are
changed outside of this frequency range, from where the extra
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FIG. 11. (a) The ground-state density difference δn(x) between
the cavity and free-space case for two cases (blue: “0.0019–0.0009”)
and (orange: “0.0012–0.0009”). (b) A comparison of the photon-
mode-dependent dissociation energy for different light-matter
coupling.

density of states is taken from. The specifics of the photonic
environment are not further discussed here, but engineering
the photonic modes can be done in an ab initio setting via,
e.g., macroscopic QED [45]. We will investigate the properties
of the coupled system in the following only in the NRQED
setting.

In Fig. 11, we show the results of the atomic and molec-
ular light-matter systems for the free-space and the cavity
settings. For the atomic system in Fig. 11(a), we compute the
difference between the ground-state density δn(x) of the free-
space case (λ = 0.0009) and when we enhance the coupling
to the discretized continuum with cavity with couplings λ =
0.0012, 0.0019. Although relatively small, we find that there
are cavity-induced modifications of the ground-state density
(i.e., atomic system is more bound) when we change the pho-
tonic continuum using a cavity. For the molecular light matter
in Fig. 11(b), we show the photon-mode-dependent dissoci-
ation energy of the ground-state PoPES where we find that
it becomes more difficult to break a chemical bond when the
cavity mode enhances the coupling to discretized continuum.
On the other hand, if we would change the photonic environ-
ment to have less photonic density of modes in the relevant
frequency range, we would actually observe the opposite ef-
fect. These results highlight that ground-state properties of
bound systems can be modified when the coupling to the
photonic continuum is changed, for example, using an optical
cavity. The specific effect will depend on the properties of
the cavity, i.e., how it re-arranges the mode strengths locally,

and on the matter system, i.e., in which range of energies the
matter wave function has occupations [44].

V. SUMMARY, CONCLUSION, AND OUTLOOK

We have investigated nonperturbatively how the coupling
to a (discretized) continuum of modes leads to mass-
renormalization effects in ab initio QED. Starting with free
charged particles interacting with a photonic continuum of
modes, we demonstrated the free-space mass-renormalization
procedure and highlighted how it connects two levels of
theory (NRQED and the free-space renormalized theory) by
the energy dispersion. We showed the dependence of the
renormalized mass on the amount of photon modes and
the light-matter interaction strength. Our numerically ex-
act, nonperturbative simulations highlighted the shortcomings
of second-order perturbation theory. We found in accor-
dance to intuition that the renormalized mass increases
when the coupling is increased in the relevant energy range
and decreases for deceasing coupling. In the nonperturba-
tive mass-renormalization case of bound systems coupled to
light, we found that the NRQED and renormalized settings,
which are connected via the free-space mass renormaliza-
tion, do not agree for both its equilibrium and excited-state
properties. This occurs because the bound system interacts
differently with the electromagnetic continuum as opposed to
the free-particle case. That is, out of the sampled discretized
continuum only a few of the lowest-lying photon modes play
a significant role when interacting with a bound system.

These results, which highlight that the interplay between
the longitudinal and transverse light-matter interactions is
nontrivial, also demonstrate that one should be cautious when
using a multimode description of a photonic environment
together with a free-space renormalized description of the
charged particles. This is a very relevant and timely topic
since in ab initio QED simulations routinely the free-space
renormalized masses of the charged particles are used in
conjunction with multiple modes of a cavity [3]. As has
been highlighted in the literature [3,44], one at least needs
to subtract the free-space continuum of modes from the cav-
ity description. Yet, as we have demonstrated in this work,
the interplay between the free-space renormalization and the
longitudinal interaction between the charged particles can be
highly nontrivial. Although these two effects are individually
well studied in their respective communities, their interplay
clearly merits future research and is clearly important for
polaritonic chemistry and cavity materials engineering.

Naturally the question arises as to whether this nontrivial
interplay will also be found in real three-dimensional ab initio
systems. The main difference when going to three dimensions
will be the anisotropy of the renormalized masses. The cavity
breaks the simple free-space symmetries and it will be inter-
esting how this symmetry breaking can influence real systems.
It is further interesting to study how simple approximation
schemes like lumping the effect of the continuum of modes
into a few effective modes for ground-state properties behave
[44]. Such studies might allow to qualitatively study mass-
renormalization effects also for realistic three-dimensional
systems. The renormalization effects will also change if we
go beyond the long-wavelength approximation. Although in
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free space there is a fundamental difference between minimal-
coupling and the long-wavelength approximations, i.e., dipole
approximation is not fully nonperturbatively renormalizable
yet for the full Pauli-Fierz Hamiltonian it might be possible
similar to the Nelson model [53,92], the saturation effect for
bound states might point towards a very similar behavior
of the long-wavelength and the minimal-coupling situations.
Also, based on the success of the dipole approximation for
bound systems, it seems reasonable to assume that in such
cases the differences are usually small. Clearly, there are many
cases where one expects stark differences, such as due to self-
organization in a cavity or when large momenta are transferred
between light and matter. Overall we believe, however, that
the obtained model results are a very good indicator when
similar effects will appear in realistic ab initio systems. Under-
standing these inherently nonperturbative effects could help
us to get a further theoretical control knob on the properties of
matter in photonic environments. Aside from these more prac-
tically relevant implications, the obtained theoretical insights
could provide a different viewpoint, from a nonperturbative
perspective, on the renormalization effects that show up in
interacting quantum field theories. If QED phenomena can be
described fully nonperturbatively, without resorting to infinite
renormalization, it could support the idea by Van Hove [73]
that divergences in quantum field theory are not a general
property, but could be due to applying perturbation theory.
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APPENDIX A: NUMERICAL DETAILS

We outline the numerical details to treat the coupled
matter-photon system. First, for the matter Hamiltonian of
the one-dimensional atomic system, we represent the single
bound electron on a uniform real-space grid of Nx = 3000
grid points with grid spacing �x = 0.0707 a.u. while applying
an eighth-order finite-difference scheme for the momentum
operator and Laplacian. Next, we perform an exact diagonal-
ization of the Hamiltonian and obtain the spectrum of the
system (converged eigen-energies Ei and eigenstates |ψi〉).
Now, using the completeness relation

∑∞
i=1 |ψi〉〈ψi| = 1̂, the

operators of the matter system can be expressed as [93]

ĤM =
∑
i=1

Ei|ψi〉〈ψi|, p̂ =
∑
i=1

∑
j=1

〈ψi|p̂|ψ j〉|ψi〉〈ψ j |,

R̂ =
∑
i=1

∑
j=1

〈ψi|R̂|ψ j〉|ψi〉〈ψ j |,

where the indices i, j run over the number of matter states
considered. We consider Ns = 10 lowest-energy states for
the models of atomic and molecular hydrogen to couple to
the electromagnetic field. For the photonic subsystem, each
photon mode is represented in a basis of Fock number states.
For the atomic light-matter system, to be able to treat the dis-
cretized photonic continuum consisting of Np = 200 photon
modes numerically exact, we truncate the Fock space and
consider only the vacuum state, the Np one-photon states,
and the (N2

p + Np)/2 two-photon states as in Ref. [51]. This
implies the dimension of the photonic continuum is 1 + Np +
(N2

p + Np)/2 = 20 301. Coupling to Ns = 10 lowest-energy
states of the atomic system gives an atom-photon dimen-
sion of 10 × 20 301 = 203 010. We note that keeping up to
the two-photon states for the different light-matter coupling
strengths is sufficient to obtain numerical convergence. For
example, the integrated ground-state density difference be-
tween the case including up to two-photon states and that
where we keep only the vacuum state and the Np one-photon
states is �n = 8.238 × 10−10.

For the model of the hydrogen molecule (H2) in 1D,
we used a grid (0, 9] a.u. for the internuclear separation
with a uniform grid spacing �R = 0.1 a.u. For the electron
coordinates (x̂1 and x̂2), we represent both electrons on a
uniform real-space grid of Nx1 = Nx2 = 200 grid points with
grid spacing �x1 = �x2 = 0.35 a.u. We perform exact nu-
merical diagonalizations to obtain the spectrum and use only
the Ns = 10 lowest-energy states for different R. We couple
to the discrete photonic continuum as described above but
for the molecular light-matter system, we include up to five-
photon Fock states for each photon mode to obtain numerical
convergence.

APPENDIX B: PERTURBATIVE AND EXACT
FREE-PARTICLE DISPERSION AND CONTINUUM

BEHAVIORS

In this Appendix we compute the free-particle dispersion in
1D perturbatively and we compare to the exact nonperturba-
tive solution. Following Ref. [69] the first nontrivial correction
to the free-particle dispersion in three dimensions is

�E = e2

m2

∑
p′,k,α

h̄eα (k) · eα (k)

2ε0c|k|V
〈φp|pi|φp′ 〉〈φp′ |p j |φp〉

p2/2m − p′2/2m − h̄c|k| .

(B1)

In our effective one-dimensional model the polarization vec-
tors are all parallel and the correction to the energy dispersion
simplifies

�E = e2

m2

∑
p′,k

h̄

2ε0c|k|V
〈φp|p|φp′ 〉〈φp′ |p|φp〉

p2/2m − p′2/2m − h̄c|k| . (B2)

Then, we use the property for the plane waves 〈φp|p|φp′ 〉 =
pδpp′ , we sum over p′ and we find

�E = −p2 e2

m2c2

1

2ε0V

∑
k

1

k2
. (B3)

In contrast to the main part, we here perform the summation
over all photonic momenta k by promoting the sum into an
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FIG. 12. Normalized perturbative light-matter coupling
g(�u, �l ) for different values of the lower cutoff �l . The coupling
constant increases rapidly and asymptotically reaches a fixed value
which is inversely proportional to the lower cutoff �l . For �l → 0
the perturbative coupling diverges.

integral. For this purpose we write the mode volume as V =
AL and we have

�E = −p2 e2

m2c2

1

4πε0A

∫ �u

�l

dk

k2
, (B4)

where �u and �l are the limits of integration. After the inte-
gration we find

�E = − p2

2m

e2

2mc2πε0A

(
1

�l
− 1

�u

)
= − p2

2m
g(�u,�l ).

(B5)

From the expression of the multimode coupling constant
g(�u,�l ) it is clear that the perturbative correction is not
divergent in the ultraviolet (UV) since the limit �u → ∞ can
be taken safely and the term 1/�u goes to zero. This can
be understood from Fig. 12 where we plot the perturbative
coupling g(�u,�l ) normalized by the prefactor e2/2mπc2ε0A
and for a fixed lower cutoff �l . The coupling constant in-
creases rapidly and asymptotically reaches a fixed value which
is e2

2mc2πε0A
1
�l

which means that the perturbative multimode
coupling converges with the UV cutoff �u. However, the
perturbative coupling diverges if the lower cutoff is taken to
zero,

lim
�l →0

g(�u,�l ) → ∞. (B6)

This implies that the perturbative coupling is divergent in
the infrared part of the electromagnetic spectrum as we have
also seen in the main part of this work. As a consequence,
the perturbative correction to the free-particle dispersion �E
becomes arbitrarily negative and thus the perturbative com-
putation leads to an instability as the particle dispersion turns
from positive to negative. Thus, perturbation theory violates
the boundedness of the Pauli-Fierz Hamiltonian from below
and the perturbative free-particle spectrum no longer has a
minimum. We note that up to the factor π2/6 we obtain the
same result as the discretized form of Eq. (13). This difference
is merely due to the fact that we first perform the infinite sum
before performing the limit of L → ∞ for the integration. For
notational simplicity we keep the explicitly discretized form
in the main text.

FIG. 13. Nonperturbative multimode coupling g(Np) as obtained
from the exact solution for the free particle in Eq. (7) as a function
of the number of photon modes Np, for different values of the ratio
ωd/ω. The coupling constant increases rapidly and asymptotically
reaches a plateau. The value of the plateau depends on the ratio ωd/ω

but it never goes beyond unity.

In contrast to the perturbative computation, the physical
picture emerging from the nonperturbative solution of the free
particle is different [54]. In Fig. 13 we plot the exact non-
perturbative multimode coupling constant g(Np) as a function
of the number of photon modes Np as given from Eq. (7).
We see that g(Np) has effectively the same dependence with
respect to the amount of photon modes as the perturbative
coupling g(�u,�l ) with respect to the upper cutoff �u. They
both increase rapidly and then reach a plateau. However, with
the respect to the lower photonic cutoff their behaviors are
drastically different. The nonperturbative coupling constant
g(Np) has an upper bound and never exceeds 1, even for very
large values of the ratio ωd/ω = 5, 10, 20. We note that ω

here denotes the lowest frequency considered in the photonic
spectrum. From Fig. 13 it is clear that if we fix ωd then for
arbitrarily small ω the multimode coupling can reach unity
but never exceeds it. In contrast to the perturbative coupling,
the exact coupling never diverges and as consequence the free-
particle dispersion is stable (positive) and always well defined.
This is a decisive and fundamental difference between per-
turbation theory and the exact solution which highlights the
importance of nonperturbative treatment of the light-matter
interaction.

The fact that the exact coupling does not diverge even for
lowest mode going to zero, ω → 0, can be understood from
the single-mode case (Np = 1) where g(1) is given analyti-
cally [54],

g(1) = ω2
d

ω2 + ω2
d

. (B7)

The diamagnetic frequency is ω2
d = e2/(meε0AL), and the

lowest mode for periodic boundary conditions is ω = 2πc/L.
For L → ∞ we have ω2 ∼ 1/L2, which goes faster to zero
than ω2

d ∼ 1/L, and consequently g(1) → 1.
Finally, it is important to mention that despite the fact that

the free-particle dispersion is always well defined and the
coupling bounded, the observable mass me = m/[1 − g(Np)]
as defined in Eq. (10) diverges when g(Np) → 1. To tame
the diverging me in renormalization theory, the bare mass m
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becomes cutoff dependent and is promoted into m(Np) such
that to exactly cancel the diverging term 1/[1 − g(Np)]. For
that purpose one takes m(Np) = me[1 − g(Np)] where me is
the observable electron mass. An important feature of our
nonperturbative formula for the mass renormalization is that
the bare masses are always positive m(Np) � 0 because the
total coupling g(Np) � 1 has an upper bound.

APPENDIX C: FREE ELECTRON IN THE LENGTH GAUGE

In this Appendix we provide the solution for a single
electron coupled to one photon mode in the length gauge.
Our purpose is to show that the renormalized dispersion of
the electron in velocity and length gauges is the same. The
Hamiltonian of one electron interacting with one photon mode
in the length gauge is [63]

ĤL = p̂2

2m
+ 1

2

[
p̂2 + ω2

(
q̂− eλ

ω
· r̂

)2
]
. (C1)

We choose the polarization of the mode to be in the x direc-
tion, λ = λex, and in one spatial dimension we have

ĤL = − h̄2

2m

∂2

∂x2
− h̄2

2

∂2

∂q2
+ ω2

2

(
q − λ

ω
x

)2

. (C2)

First we perform the scaling transformation x̄ = eλx/ω and
we introduce the parameter m̄ = mω2/λ2:

ĤL = − h̄2

2m̄

∂2

∂ x̄2
− h̄2

2

∂2

∂q2
+ ω2

2
(q − x̄)2. (C3)

The Hamiltonian can be solved by going into the mixed coor-
dinates

w = m̄x̄ + q

m̄ + 1
and u = q − x̄, (C4)

where it takes the simple form

ĤL = − h̄2

2(m̄ + 1)

∂2

∂w2
− (m̄ + 1)h̄2

2m̄

∂2

∂u2
+ ω2

2
u2. (C5)

In the above Hamiltonian we have a freely propagating polari-
tonic mode along the w coordinate and harmonically confined
mode along the u coordinate. The w-dependent eigenfunc-
tions are plane waves fkw

(w) = eikww while the eigenfunctions
of the u mode are Hermite functions �n(u). Then, the energy
spectrum of the system is

Ekw,n = h̄2k2
w

m̄ + 1
+ h̄ω̃

(
n + 1

2

)
. (C6)

We note that the coordinates w and u are independent as they
mutually commute [∂w, ∂u] = [∂w, u] = [∂u,w] = 0. Com-
paring now the spectrum above of the free electron in the
length gauge to the one derived in the velocity gauge given in
Eq. (7) we see that they are not exactly the same. The length
gauge spectrum Ekw,n depends on the polaritonic quantum
number kw while the spectrum in the velocity gauge on the
quantum number kx. Naturally, the question that arises is as
follows: How are kx and kw related?

To figure this out we will use the relation between the
differential operators of ∂x and ∂w. From the chain rule and

FIG. 14. A comparison of the energy dispersion between two
different samplings of the discretized photonic continuum. NRQED
is the result presented in Fig. 1(a) and NRQED (off) is the case where
the upper cutoff is 0.05 a.u.

neglecting the contribution of the photonic coordinate q we
have

∂

∂w
= ∂ x̄

∂w

∂x

∂ x̄

∂

∂x
= ω

λ

∂

∂x
�⇒ kw = ω

λ
kx. (C7)

Substituting the relation above into Eq. (C6) we find for the
length gauge spectrum

Ekx,n = h̄2k2
x

2m

(
1 − ω2

d

ω̃2

)
+ h̄ω̃

(
n + 1

2

)
. (C8)

The above result reproduces precisely the single-particle dis-
persion coupled to a single photon mode obtained in the
velocity gauge in Ref. [54]. This shows that the same free-
particle dispersion and the corresponding renormalized mass
can be consistently obtained from both gauges.

We now revisit the issue of a mismatch between light and
matter if both systems are not chosen consistently. To illustrate
this, we keep a fixed length scale for the free particle as
done in Sec. III and also keep the same sampling of 200
photon modes with cutoffs 0.01 and 0.5 a.u. We now sample a
different discretized continuum with 200 photon modes but
with cutoffs 0.001 and 0.05 a.u. Here, the upper cutoff is
much lower than the energy of the first excitation of the free
particle. For both continua, the coupling of the photon modes
to the free particle is fixed to λ = 0.0019. A comparison of
the energy dispersion is shown in Fig. 14 where we find that
the NRQED case with the upper cutoff (0.05 a.u.) is off from
the NRQED case with upper cutoff (0.5 a.u.). The reason
for this mismatch is that the photonic modes are all excited
before the first electronic state can be populated making the
matter degrees less important in the coupled system. This
result shows that choosing length scales consistently is very
important in QED.

APPENDIX D: MODEL OF A ONE-DIMENSIONAL ATOM

The one-dimensional atomic system we consider features a
single bound electron. The quantum mechanical Hamiltonian
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describing this system is given by

Ĥatom = − h̄2

2me

∂2

∂x2
− e2

4πε0

v0

cosh2(k0x)
, (D1)

where v0 and k0 are parameters that control the depth of
the Pöschl-Teller potential [76]. For a single electron in the
binding potential, the analytic spectrum of Eq. (D1) is given
as [60]

En = − h̄2k2
0

8me

(√
1 + 8mev0ke

h̄2k2
0

− (1 + 2n)

)2

, (D2)

where the quantum numbers are n ∈ N and ke = e2/4πε0.
The number of bound states can be controlled using v0 and
k0. For our calculations we choose v0 = 10 and k0 = 0.05
which gives 10 bound states of interest. We use the analytic
results to benchmark our numerical implementation which
quantitatively agree.

APPENDIX E: MODEL OF A ONE-DIMENSIONAL H2

MOLECULE

The Hamiltonian of the model system of the H2 molecule
in one dimension where the relevant coordinates are the inter-
nuclear separation R, and the electronic coordinates x1 and x2

are given by

Ĥmol = − 1

2μn

∂2

∂R2
+ 1

R
+ 1√

(x1 − x2)2 + aee

+
2∑

i=1

(
− 1

2μe

∂2

∂x2
i

− 1√
(xi − R/2)2 + aen

− 1√
(xi + R/2)2 + aen

)
, (E1)

where μe = 2Mn/(2Mn + 1) and μn = Mn/2 are the reduced
observable electronic and nuclei masses, respectively. We take
the proton mass to be Mn = 1836 me. The electron-electron
and electron-nuclear interaction terms are represented by
soft Coulomb potentials where the soft Coulomb parame-
ters take values aee =2 and aen =1. For the model, the PESs
are defined by the following electronic eigenvalue problem:
Ĥel(x1, x2; R)�k (x1, x2; R) = Ek (R)�k (x1, x2; R) where Ĥel =
Ĥmol − T̂n where T̂n = − 1

2μn

∂2

∂R2 . We show the first five nu-
merically exact PESs in Fig. 15 for the case where we do
not couple to the photonic continuum (i.e., for Np = 0). The
mean nuclear equilibrium position is Req = 1.9 a.u. with the
corresponding ground-state energy E0 = −1.4843 a.u. Apply-
ing the harmonic approximation to the ground-state PES as in
Appendix F we obtain the harmonic frequency ωe =
0.020 455 a.u. of the nuclear degrees.

We note that when we couple the molecule to the dis-
cretized continuum, we used the bare proton mass M =
1836 m where the bare electronic mass is m = 1. At the equi-
librium position, we compute the ground-state density for
NRQED and the renormalized theory for the case when the
renormalized mass is obtained with the lowest 50 of the 200
sampled photon modes. In Fig. 16, we show the ground-state
density where the free-space renormalized case is more bound

FIG. 15. The first five numerically exact PESs of the 1D hydro-
gen molecule H2 for Np = 0. The harmonic approximation to the
ground-state PES has the harmonic frequency ωe = 0.020 455 a.u.
for the nuclear degrees.

when compared to the NRQED. The reason for this is dis-
cussed in Sec. IV A of the main text.

APPENDIX F: MORSE AND HARMONIC
APPROXIMATION TO THE H2 PES

In this Appendix we provide details of the Morse and
harmonic approximation to the numerical exact ground-state
H2 PoPES of the NRQED and the renormalized settings. To
do this, we first consider the Morse potential

VM,i(R) = De,i(e
−ai (R−Req ) − 1)2 + Ci, (F1)

where the parameter “a” controls the “width” of the potential
(i.e., the smaller “a” is, the larger the well), C is a constant
shift in the PES, and i = {NRQED, renormalized}. Since we
have access to all the parameters of Eq. (F1) except for the
a parameter, this makes the fitting procedure easier. To fit
the Morse potential to the exact results of NRQED and the
free-space renormalized settings, we employ the “curve_fit”
function of SCIPY and the corresponding a parameter values
are given in Table II. The results of the fit are plotted in

FIG. 16. A comparison of the ground-state density of the H2

molecule at the equilibrium position Req = 1.9 a.u. between NRQED
and the free-space renormalized theory for the case of Np = 15
photon modes.
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TABLE II. The values of the a parameter of the Morse potential
resulting from the fit and the deduced harmonic frequency ωe for the
case of Np = 15 photon modes. The units are in (a.u.).

Level of theory Morse parameter a Harmonic frequency ωe

Renormalized 1.12908125 0.0202418
NRQED 1.18930095 0.0217007

Fig. 17. Since we are interested in the influence the continuum
has on the nuclear degrees, we connect the a parameter to
the nuclei mass by employing the harmonic potential fit to
the Morse potential around the equilibrium Req. The harmonic
potential is given by

VH,i(R) = 1
2 ki(R − Req)2 + Ci, (F2)

where k is the force constant of the bond which is related to
the reduced nuclei mass as k = μn ω2

e and ωe is the vibrational
frequency of the potential. From the above considerations,
we have the relation k = 2Dea2 from which we have ωe =√

2Dea2/μn.
To obtain the approximate vibrational harmonic frequency

of the NRQED setting, we used the bare proton mass M =
1836 m where the bare electronic mass is m = 1. The renor-
malized proton mass is deduced from the energy dispersion
for free interacting protons coupled to the electromagnetic
continuum. The energy dispersion is similar to Eq. (7) where

FIG. 17. Morse potential fit to the numerical exact ground-state
PES of the H2 molecule for NRQED and the free-space renormalized
theory for the case of Np = 15 photon modes.

the diamagnetic frequency has a dependence on the nuclear
charge.
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