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Randomness and Integral 
Forcing

JIN-SONG VON STORCH 

ABSTRACT
Consider a system described by a multi-dimensional state vector x. The evolution of x 
is governed by a set of equations in the form of . x is a component of x. 
F(x(t)), the differential forcing of x, is a deterministic function of x. The solution of such 
a system often exhibits randomness, where the solution at one time is independent 
of the solution at another more distant time. This study investigates the mechanism 
responsible for such randomness. We do so by exploring the integral forcing of x, 
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¢ ¢= ò x , which links the solution at two distant times, t and t+T.

We show that, for a system in equilibrium, GT(t) can be expressed as GT(t) = cT+dT x(t) 
+fT(t), which consists of (apart from the constant cT) a dissipating component dTx(t) 
with a negative dT and a fluctuating component fT(t). This expression aligns with the 
idea of the fluctuation-dissipation theorem that for a system in equilibrium, anything 
that generates fluctuations must also damp the fluctuations. We show further that 
for a sufficiently large value of T, GT(t) emerges as a unified forcing. This forcing has 
a dissipating component characterized by dT = –1 and a fluctuating component that 
resembles a white noise. The evolution of x from time t to time t+T, which is described 
by x(t+T)=x(t)+GT(t) nominally, is then described by x(t+T) = cT+fT(t). This evolution is 
random, since x(t+T) is independent of x(t). This evolution is also irreversible, since 
the dissipating component of GT(t) cancels with x(t) little by little and eventually 
completely by the time when GT(t) emerges and generates x(t+T). The unified forcing 
results from interactions of x(t) with other components of x that are completed during 
the forward integration over the time span [t,t+T). It represents a forcing that cannot 
be included in the differential forcing F. In general, randomness and irreversibility are 
inherent features of a multi-dimensional physical system in equilibrium.
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1 INTRODUCTION

Many physical systems are governed by principles that 
can be expressed in terms of differential equations. In the 
case of a system with a multi-dimensional state vector 
x, the evolution of x is described by a set of differential 
equations, each taking the form:

d
( ( )).

d
x

F t
t
= x � (1)

x is a component of x, which is a function of time t. The 
differential forcing F(x(t)) is a deterministic function 
of x. F(x(t)) describes internal dynamics arising from 
interactions of x with other components of x under 
the influence of some external forcings. Examples 
of systems governed by equations in form of Eq.(1) 
include a climate model describing the atmosphere 
and the ocean, and a many-particle system describing 
the movements of Brownian particles suspended in a 
fluid. A common feature observed from these physical 
systems is the lack of serial correlations, where a solution 
at one time point is uncorrelated to the solution at 
another more distant time point. A solution that lacks 
serial correlation is commonly regarded as random. We 
identify this randomness as the subject of this study. 
Under this definition of randomness, movements of a 
Brownian particle are random; weather patterns are 
random. Random features are also found in many other 
occasions. A prominent example in atmospheric sciences 
concerns time averages of meteorological variables. 
These averages display variability similar to that of 
the sample mean of a random variable, leading to the 
concept known as “climate noise” (Leith, 1973; Madden, 
1976, 1981; Feldstein & Robinson, 1994; Feldstein, 2000). 
Despite evident random behaviors found for classical 
physical systems, a theory of randomness is still missing.

Instead, heuristic arguments are used to provide 
some explanations. Such arguments often associate 
randomness with uncertainties. Two types of 
uncertainties are considered in this context. The first one 
arises from our inability to precisely track the evolution 
of each individual degree of freedom in a system that 
has an exceedingly large number of degrees of freedom. 
Brownian motion serves as a typical example, as it is 
challenging to formulate and to solve the complete 
set of equations that describe all interactions between 
fluid molecules and Brownian particles. The standard 
approach, commonly used to deal with noise and 
fluctuations in physical systems (MacDonald, 1962), is 
to replace the original deterministic equations by ones 
that include stochastic forcing. In case of Brownian 
motion, the original equations are replaced by Langevin-
type equations.

Inspired by the statistical approach used for handling 
Brownian motion, Hasselmann proposed to describe 
climate variability using stochastic climate models 

(Hasselmann, 1976). These models are formulated for 
the slow components of x. In line with the statistical 
treatment of slow Brownian particles embedded in fast 
fluid molecules, a stochastic climate model for a slow 
component x is written as

d
.

d
x

F
t

z= + � (2)

F  represents the slow dynamics of x and the averaged 
effect of the fast components of x on x, with ( )×  being an 
average over a time period longer than the timescale of 
the fast components but shorter than the timescale of x. 
ζ is a stochastic forcing used to describe the fluctuating 
effect arising from the fast components.

Statistical approaches are efficient in constructing 
different variance-generation mechanisms. In case 
of Hasselmann’s stochastic climate model, a solution 
obtained by integrating Eq. (2) over time contains an 
integral of ζ over time, which is a random walk. The 
variance of a random walk increases with increasing 
time. In order to obtain a stationarily varying solution 
from Eq. (2), F  must incorporate negative feedbacks 
(Hasselmann, 1976). Thus, variations generated by a 
stochastic climate model result from the joint effect 
of random-walk and negative feedbacks. Statistical 
approaches can also be accurate in describing 
random behaviors, if the stochastic forcing is carefully 
constructed to possess specific properties. What 
statistical approaches do not explicitly address is the 
mechanism responsible for the randomness in solutions 
of the considered system.

The other type of uncertainty arises from our inability 
to specify the exact initial conditions from which the 
considered physical system starts to evolve with time. 
This problem, first described by Lorenz (1963) and well-
known to the numerical weather forecast community, is 
one of the key aspects studied by the dynamical systems 
theory. There, the sensitivity to initial conditions is 
attributed to the chaos arising from non-linear dynamics 
in a dynamical system. However, dynamical systems 
theory does not explicitly deal with randomness. It is 
unclear whether and to what extent chaotic solutions 
are random.

Quite the contrary, both the statistical approaches 
for handling high-dimensional systems and the 
investigation addressing the sensitivity to initial 
conditions implicitly assume that a physical system 
is fundamentally deterministic. The situation is 
understandable, since the uncertainties, which 
represent randomness, do not originate from the 
deterministic dynamics. Instead, they result solely from 
external factors related to our inability in tracking the 
exact solution or in specifying precise initial conditions. 
This assumption about determinism is in obvious 
conflict with the randomness which we experience 
from physical systems.
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One step towards resolving this conflict is made by 
the finding that the determinism, as dictated by Eq. (1), 
breaks down under certain circumstances (von Storch, 
2022). Given Eq. (1), the spectra of x and F, Γx(ω) and 
ΓF(ω) where ω is frequency, are related to each other via

2(2 )  ( ) ( ).x FG =Gπω ω ω � (3)

Eq. (3) seems to confirm the determinism that variations 
of x at any one frequency must be generated by the 
variations of F at the same frequency. This however 
cannot be true for a solution whose spectrum Γx(ω) is 
continuous and approaches a finite and non-zero Γx(0) as 
ω → 0. Given a finite and non-zero Γx(0), Eq. (3) requires 
that ΓF(ω) must go to zero as ω → 0 so that ΓF(0) = 0. Thus, 
at frequency ω = 0, variations of x can not be generated 
by variations of F at this frequency.

Before elaborating the meaning of the just mentioned 
low-frequency shape of Γx(ω), we point out that the 
determinism described by Eq. (3), which holds for all 
frequencies except zero frequency, is the norm that can 
become more prominent in case when F contains a time-
varying external forcing. The present paper does not 
question and is not concerned with this determinism. To 
concentrate on internal dynamics, in which the origin of 
randomness presumably lies, we will focus on physical 
systems that are not influenced by any time-varying 
external forcing. We cannot rule out the presence of 
constant external forcings, as variations in a physical 
system, no matter random or deterministic, necessitate 
external power support.

Come back to the low-frequency shape of Γx(ω). 
That Γx(ω) is continuous and has finite and non-zero 
spectral value as ω → 0 describes nothing other than the 
manifestation of randomness in the solution of x. When 
defined as a Fourier cosine transform of auto-covariance 
function, the spectrum of a solution Γx(ω) only exists 
when the auto-covariance function is absolutely 
summable. Upon existence, Γx(ω) must be continuous, 
since a cosine function is continuous and since a Fourier 
cosine transform is a sum of weighted cosine functions. 
The condition of absolute summability implies that 
the auto-covariance function must decay to zero with 
increasing time lag. It is precisely this decay of auto-
covariance function that diminishes serial correlation and 
makes a solution to appear random. It is also this decay 
of auto-covariance function that prohibits the solution 
of x to be purely periodic. Auto-covariance function of 
a purely periodic solution, whose spectrum consists of 
distinct spectral lines (Priestley, 1981), does not decay 
and retain its magnitude as time lag increases. It is still 
this decay of auto-covariance function, that allows Γx(0), 
the value of Γx(ω) at ω = 0, to be finite and non-zero. To 
see this, note that being a Fourier cosine transform of an 
auto-covariance function and since the value of a cosine 
function at the origin is one, Γx(0) is identical to the 

sum over the auto-covariance function at all time lags. 
Given that an auto-covariance function has a positive 
maximum at lag zero, the sum of an auto-covariance 
function that decays with increasing time lag can lead 
to a Γx(0) that is not zero and finite. The same argument 
does not apply to ΓF(0), since auto-covariance function of 
F consists of differences of auto-covariance function of x 
because of Eq. (1) (von Storch, 2022).

The finite and non-zero low-frequency shape of 
Γx(ω) can be inferred from spectra of variables that are 
apparently random. Figure 1 shows a collection of such 
spectra. To this end we note that while the deterministic 
influence of external forcing can be easily controlled in 
a numerical experiment, achieving the same for the real 
climate is challenging. The real climate is subjected to 
an external forcing, that has a non-zero mean and varies 
with time. The real climate can hence reveal not only 
random behaviors resulting from internal dynamics (via 
e.g. instability and turbulence), but also deterministic 
behaviors resulting from external forcing. The latter 
includes for example long-term trends as responses to 
a slowly varying external forcing, and oscillations (e.g. 
annual cycle) as responses to a periodic external forcing. 
Thus, if we want to find from observations spectra 
that are continuous and have finite and non-zero 
values at the lowest frequencies, we need to consider 
those variables whose variations are mainly generated 
by internal dynamics, with the influence of external 
forcings being negligibly small relative to that of these 
internal dynamics.

Figure 1a) shows a spectrum of a component x of a dry 
atmospheric model (James & James, 1989), generated 
by model’s internal dynamics without influence of any 
time-varying external forcing. Figure 1b) shows spectra 
of sea level pressure derived from an atmospheric 
reanalysis (Deser et al., 2012) (black lines). Figure1d) 
and e) show spectra of current kinetic energy derived 
from instrumental records (Ferrari & Wunsch, 2009). We 
assume that sea level pressure and ocean current are 
variables whose variations arise mainly from internal 
dynamics. All these spectra reveal finite and non-zero 
values at the lowest resolved frequencies. Finally, Figure 
1c) shows the spectra derived from the Lorenz model 
(Lorenz, 1963), a model that does not contain any time-
varying external forcing. In contrast to the other spectra 
depicted in Figure 1, which are merely indicative owing 
to the limited duration of available observations and 
model solutions, the finite and non-zero low-frequency 
shape of Γx(ω) can now be demonstrated asymptotically 
by considering longer and longer Lorenz solutions (von 
Storch, 2022). We conclude that for a solution of a 
system governed by a set of equations in form of Eq. (1), 
the apparent randomness is manifested in the solution’s 
spectrum that is continuous and has a finite and non-zero 
Γx(0). This spectral feature enforces the breakdown of 
determinism at zero frequency, including the associated 
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asymptotic behavior towards the breakdown at near-
zero frequencies. The breakdown suggests that Γx(0) has 
nothing to do with F, which is puzzling at first glance.

On further reflection, we notice that the randomness in 
x and the wholly deterministic nature of F do not pertain 
to the same thing. Randomness in x is only evident when 
a solution of x at time t is set in relation to the solution 
of x at a distant time t+T with T ≠ 0. A Brownian particle 
appears to move randomly because its velocity at time 
t seems to be independent of its velocity at time t+T, 
where T is a time interval larger than the reaction time 
of the human eye. F on the other hand tells us about the 
evolution tendency. Given F of the velocity of a Brownian 
particle at time t (which is a function of the whole state 
vector x describing the positions and velocities of all 
involved particles and molecules at time t), the time 
rate of change of the velocity of the considered particle 
is know exactly. Nothing is random. Thus, if we want to 
understand the mechanism behind the randomness, 
we should shift to examining the integral forcing GT, a 
definite integral of F(x(t)) over a time span of length T 
that drives the evolution from x(t) to x(t+T). Studying GT 
contrasts with the standard approaches that emphasize 
solely the differential forcing F.

This paper explores the properties of GT(t). Following 
some preliminaries provided in Section 2, we show 
in Section 3 that GT consists of a fluctuating and 
a dissipating components, in accordance with the 
fluctuation-dissipation theorem of Callen and Welton 

(1951). This theorem was introduced to the realm of 
climate research by Leith (1975) who showed how the 
theorem can be used to estimate climate responses to a 
changing external forcing, no matter which component x 
of x is considered. We show that there exists a threshold 
such that for T larger than this threshold, GT emerges 
as a unified forcing. Section 4 describes the impacts of 
these properties of GT on the solution of x. Section 5 and 6 
discuss two aspects that are essential for the dissipation 
represented by GT. Conclusions are provided in Section 7.

2 PRELIMINARIES

2.1 CONTINUOUS SOLUTIONS
Consider a physical system, whose evolution is governed 
by a set of equations in form of Eq. (1). Suppose that this 
set of equations has a solution and the solution at time 
t is x(t). This solution is a function of continuous time, 
and referred to as a continuous solution. For component 
x of x, its differential forcing F(t) = F(x(t)) is also a function 
of continuous time. Its integral forcing GT(t) at time t is 
defined as the definite integral

*( ) ( ( )) d ,   for  ,
t T

T
t

G t F t t T
+

¢ ¢= Îò x 

� (4)

where *  represents the non-negative part of the real 
axis. Being an integral of F which is a function of the full 

Figure 1 Spectra of a) a spherical harmonic coefficient simulated by an atmospheric model (James & James, 1989), b) zonally 
averaged SLP difference representing the Southern Annular Mode from the NCEP/NCAR reanalysis (solid black) and from models (gray) 
(Deser et al., 2012), c) the three components of the Lorenz’s 1963 model (von Storch, 2022), d) and e) current kinetic energy from 
instrumental records in the North Atlantic at 500 m and in the South Pacific at 1000 m (Ferrari & Wunsch, 2009). Using detrended 
time series (dashed black line in b) can be considered as a way to eliminate the influence from external forcings.
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state vector x, GT(t) can only be obtained after the whole 
system has been integrated over the interval [t,t+T). For 
T = 0, GT(t) = 0. For T < 0, GT(t) is not defined.

Following Section 1 and throughout this paper, 
a solution of x, x(t), is deemed random when x(t) is 
independent of x(t+T) for any time t and for all T larger 
than a threshold. The evolution from x(t) to x(t+T) is 
determined by GT(t) defined in Eq. (4). To understand 
what makes x(t) independent of x(t+T), we explore 
properties of GT(t) for different values of T. We do so 
systematically by grouping the states at separated 
time points along a solution according to the time 
span that separates the time points. When setting the 
initial time of the solution at zero, such a group forms 
a series *{ ( )| }x iT iÎ , where T denotes the length of 
the time span, x(iT) denotes the solution of x at time 
t = iT, and *  is the set of non-negative integers. The 
integral forcing, which is responsible for the evolution 
from one member to the next in the series *{ ( )| }x iT iÎ ,  
constitutes the series *{ ( )| }TG iT iÎ , where GT(iT) is 
obtained by setting t = iT in Eq. (4). We have for any 

*T Î

*( ) ( ) ( ),   .Tx iT T x iT G iT i+ = + Î � (5)

Both *{ ( )| }x iT iÎ  and *{ ( )| }TG iT iÎ  are discrete series, 
with their members being defined at discrete times 
t = iT with *iÎ .

2.2 DISCRETE SOLUTIONS
For a real physical system, the set of governing equations 
in form of Eq. (1) often does not have analytical solutions, 
and must be solved numerically by discretizing the time 
axis using a time increment Δt. The resulting solutions 
are referred to as discrete solutions. A discretized version 
of Eq. (1) takes the form

1 .j j jx x F t+ = + D � (6)

Integer j counts the j-th time step at t = jΔt. xj is a 
component of the solution xj at the j-th time step, and 
Fj = F(xj). Following Eq. (4), the integral forcing of x at the 
k-th time step, Gτ,k, is defined as the integral over Fj at τ 
time steps starting from the k-th time step:

1

, ,   .
k

k j

j k

G F t
+ -

+

=

= D Îå 

τ

τ τ � (7)

+  is the set of positive integers. Similar to GT(t), Gτ,k 
can only be obtained by integrating the whole system 
forward in time. Different from GT, which is a function of 
continuous solution, Gτ is a function of discrete solution. 
Gτ is not defined for τ ≤ 0.

Again, to understand the behaviors of a solution at 
separated time steps, we explore the properties of Gτ,k 
for different values of τ. To do so, we group the states at 

separated time steps along a solution according to the 
number of time steps covering the separation. Setting 
again the initial time of a discrete solution at the origin, 
such a group forms a series *{ | }ix iÎτ , where τ denotes 
the number of time steps covering the separation, and 
xiτ is the solution at the (i × τ)-th time step. The integral 
forcing, which is responsible for the evolution from one 
member to the next in the series *{ | }ix iÎτ , constitutes 
the series *,{ | }iG iÎτ τ , where Gτ,iτ is obtained by setting k 
= iτ in Eq. (7). We have for any value of +Îτ ,

*, ,   .i i ix x G i+ = + Îτ τ τ τ τ � (8)

We note that as a consequence of discretization, Gτ,iτ is 
not defined for τ = 0 and equals FiΔt for τ = 1. Provided 
that Δt is reasonably small, we assume that the 
properties of Gτ can be considered as the properties of 
GT. We describe these properties in term of Gτ, since they 
can only be verified when knowing the solution of x, and 
since for systems of our interests, only discrete solutions 
are available.

3 PROPERTIES OF INTEGRAL FORCING

Important for the consideration below is the condition 
of a physical system referred to as equilibrium. This 
condition can be achieved under the influence of 
constant external forcings. For a multi-dimensional 
system, an equilibrium is generally not described by a 
solution that is independent of time, but by a solution 
that varies stationarily with time. If the external 
influences were kept constant forever, the solution 
would continue to vary stationarily into infinite times. 
In case of a climate model, an equilibrium of the model 
can be reached by integrating the model under constant 
external forcing conditions for some time (to allow the 
model to spin up).

Consider a multi-dimensional system in equilibrium. 
For every component x of the system’s state vector x, 
and for any +Îτ , the properties of the integral forcing 
of x, *, ,{ | }i iG G iÎ Îτ τ τ τ , are described by the following 
three postulates.

I.	 Gτ,iτ consists of, apart from a constant ĉτ , a dissipating 
component ˆ

id xτ τ  and a fluctuating component fτ,iτ, 
and can be written as

, ,
ˆˆ    for .i i iG c d x f t += + + Îτ ττ τ τ τ τ � (9)

ĉτ  and d̂τ  are the intercept and the slope of the line 
obtained by regressing Gτ,iτ against xiτ using n pairs of 
(xiτ,Gτ,iτ) along a solution, where n is finite. fτ,iτ, the residual 
not described by the regression line, is determined such 
that Gτ,iτ in Eq. (9) is identical to Gτ,iτ in Eq. (8) calculated 
from Eq. (7).
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II.	The expression given in Eq. (9) is unique in the sense 
that it can be replaced by

, ,    for ,i i iG c d x f t += + + Îτ ττ τ τ τ τ � (10)

where

ˆˆlim ,   lim .
n n

c c d d
®¥ ®¥

= =τ τ τ τ � (11)

Moreover, the dissipating and fluctuating components 
are related to each other via

2 2 21 (1 ) ,   for  [ 2,0],( )xf d ds s= - + Î -
τ τ τ � (12)

where 2
fs τ

 is the variance of the series *,{ | }if iÎτ τ  and 
2
xs  is the variance of the series *{ | }ix iÎτ . On the plane 

spanned by dτ and 2
fs τ

 or the plane spanned by dτ and 
2 2/ xfs s
τ

, Eq. (12) is a curve that has its maximum at the 
center where dτ = –1 and is mirror symmetric about dτ = 
–1. Such a curve is referred to as a fluctuating-dissipating 
curve, or for short a fd-curve.

III.	� There exists a threshold τ0 such that Gτ,iτ with 
τ > τ0 emerges as a unified forcing consisting of a 
dissipating component characterized by dτ = –1, 
and a fluctuating component fτ,iτ that behaves like a 
white noise.

Postulate I, which is the basis of all postulates, adopts 
the idea behind the fluctuation – dissipation theorem 
(Callen & Welton, 1951) that for a system in equilibrium, 
anything that generates fluctuations must also damp 
the fluctuations. In case of the Brownian motion, the 
collisions with fluid molecules make a Brownian particle 
to fluctuate. At the same time, the collisions introduce a 
drag that damps the movement of the particle. Postulate 
I says that for a system in equilibrium, Gτ always contains 
a dissipation, independent of the value of τ and no 
matter which one of the components of x is considered. 
Whether this is true is a priori not clear.

To verify these postulates, we need many long series 
{xiτ|i = 1,2,…} and {Gτ,iτ|i=1,2,…}, for many different values 
of of τ. Despite the advance of computer technology, 
numerically deriving all these long series is still 
challenging for a high-dimensional system, such as a 
climate model or a Brownian system. We hence verify 
these postulates in terms of the Lorenz model (Lorenz, 
1963). This model is multi-dimensional and possesses 
an equilibrium described by stationarily varying and 
seemingly random solutions.

3.1 VERIFICATION OF POSTULATE I
Formally, Gτ,iτ can always be described by the expression 
given in Eq. (9) using a properly chosen fτ,iτ. Since no 
conditions have been imposed on fτ,iτ, apart from its 
existence, Postulate I is verified by showing that d̂τ  is 

negative for all components of x and for all τ ≥ 1. Figure 
2 shows for the three Lorenz components (magenta, 
blue and green) and for five values of τ that the 
regression line is indeed always tilted with a negative 
slope. The exact values of d̂τ  are truncated to two 
digits after the dot and listed in the bottom left corner 
of each scatter diagram. Negative slopes are also 
found for all other considered values of τ, as shown by  
Figure 5.

3.2 VERIFICATION OF POSTULATE II
Postulate II is verified in terms of Figures 3 and 4. 
Figure 3 shows for all three Lorenz components and for 
two different values of τ that ĉτ  and d̂τ  converge with 
increasing n, the number of data points ,( , )i ix Gτ τ τ  used for 
calculating the regression line. The convergences suggest 
that both ˆlim n

n
c c

®¥
=τ  and ˆlim n

n
d d

®¥
=τ  exist. Gτ,iτ can hence 

be uniquely expressed in terms of Eq. (10). The notions ĉτ  
and d̂τ  are still used, since everything we show are derived 
from a finite number of data points along a solution.

Figure 4 shows the fd-curves complemented by the 
variances of the three Lorenz components (black lines). 
For all three Lorenz components, the points 2ˆ ˆ( , )fd s

ττ  
(magenta, blue, and green dots) are located right on the 
fd-curve 2 2 2)1 (1 )(xf ds s= - +

τ τ  (top); and the points with 
normalized variance, 2 2ˆ ˆ ˆ( , / )xfd s s

ττ , are located right on 
the fd-curves 2 2 2/ (1 (1 ) )xf ds s = - +

τ τ  (bottom). Thus, the 
relation between 2ˆfs τ

 and d̂τ  can be readily described by 
Eq. (12) for a large but finite n. Appendix B shows further 
how Eq. (12) emerges in the limit n → ∞.

Regarding the points 2ˆ ˆ( , )fd s
ττ  or 2 2ˆ ˆ ˆ( , / )xfd s s

ττ , there is a 
difference between the three Lorenz components. As τ 
increases, the points of the first two Lorenz components 
(magenta and blue dots) move from the right end to 
the center of the fd-curve, and eventually stay and 
remain to stay at the center of the curve. d̂τ  strengthens 
monotonically from zero to –1 with increasing τ, and 
equals –1 for τ larger than a threshold. For the third 
Lorenz component, the points (green dots) move with 
increasing τ from the right end of the curve toward the 
left, pass the center of the curve, and reach the most 
left position at ˆ 2d >-τ . As τ further increases, they move 
backward toward the right, pass the center of the curve, 
and reach the most right position at ˆ 0d <τ . Thereafter, 
they continue to move back and forth around the center 
of the fd-curve, with the far left and the far right position 
reached becoming increasingly close to the center the 
fd-curve. As a result, d̂τ  strengthens from zero to –1 in a 
non-monotonic manner.

3.3 VERIFICATION OF POSTULATE III
Postulate III is verified by Figures 5 and 6. The two 
figures show that for all three Lorenz components, there 
exists a threshold τ0 such that for τ > τ0, Gτ,iτ represents 
a unified forcing. The phrase “unified” refers to the 
same type of Gτ,iτ, no matter which component of x is 
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considered, and independent of values of τ provided τ > 
τ0. This unified forcing contains a dissipating component 
that is characterized by dτ = –1 and a fluctuating 
component whose auto-correlation function resembles 
that of a white noise. The threshold τ0, beyond which 
the unified forcing is found, depends on the component 
x considered. It is smaller for the first two Lorenz 
components (magenta and blue) than for the third 
Lorenz component (green).

By definition, Gτ,k is the sum over Fj at τ time steps 
obtained when integrating the whole system from 
time step k to time step k+τ –1. Before Gτ,k with dτ = –1 
is produced, the forward integration first produces 

G1,k = FkΔt, then G2,k = FkΔt+Fk+1Δt, and so forth, and 
eventually 1

,
k

k j k jG F t+ -
==S Dτ

τ . Thus, we should see a 
general strengthening of the dissipating component, 
characterized by an overall increase from |d1|, to |d2|, 
and so forth, before the maximum characterized 
by |dτ| = 1 is reached. A sign of this can already be 
seen from Figure 2, which shows a general strengthening 
of dτ with increasing value of τ (from top to bottom row 
in Figure 2).

For τ < τ0, the way how the dissipating component 
of Gτ,iτ strengthen with increasing τ is different for 
different Lorenz component. While the strengthening 
is monotonic for the first two Lorenz components, it 

Figure 2 Scatter diagrams of Gτ,iτ against xiτ (dots) and the respective regression lines 
,

ˆˆi iG c d x= +τ ττ τ τ
 (black lines) for five values 

of τ (listed on the far left) and for the three Lorenz components (magenta, blue, green), as derived from n = 106 pairs of ,( , )i ix Gτ τ τ . 
ˆˆ ,c dτ τ , and 2ˆfs τ

 are calculated following Eq. (A1) – Eq. (A4) in Appendix A. Numbers listed in each scatter diagram are values of d̂τ  and 
2 2ˆ ˆ ˆ/ xfr s s=
τ

, where 2ˆfs τ
 is the variance of ,{ | 1, , }if i n=

τ τ  and 2ˆxs  is the variance of { | 1, , }ix i n=
τ . Points (xiτ,Gτ,iτ) are collected along a 

stationary Lorenz solution. A stationary Lorenz solution is obtained by first integrating the Lorenz model from an arbitrary initial state 
for a sufficiently long time. The integration is done using a Runge Kutta scheme with a time step of 0.01.
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is non-monotonic for the third Lorenz component. 
The former is characterized by the uni-dimensional 
movement of the 2ˆ ˆ( , )fd s

ττ -point along the fd-curve 
with increasing τ described before, which results in 
the magenta and blue lines in Figure 5. The latter is 

Figure 3 ĉτ  (top) and d̂τ  (bottom) for τ = 2 (left) and τ = 10000 (right) and for the three Lorenz components (magenta, blue and 
green) as functions of n, the number of pairs (xiτ,Gτ,iτ) used for their calculations. The calculation is carried out using an increment in 
n that equals one for 1 ≤ n ≤ 500 and equals 20 for 500 ≤ n ≤ 10000.

Figure 4 2 2 2(1 (1 ) )xf ds s= - +
τ τ  (top) and 2 2 2/ (1 (1 ) )xf ds s = - +

τ τ  (bottom), 
with 2

xs  being set to the variance of each of the three Lorenz 
components (black lines) and to the variance of the solution 
of dx/dt = cos(2πt/P) with period P = 200 (orange line). The 
latter equals P2/(8π2) = 506.61. Colored dots are points 2ˆ ˆ( , )fd s

ττ  
(top) and points 2 2ˆ ˆ ˆ( , / )xfd s s

τττ  (bottom) with τ = 1,…,1000, each 
obtained using n = 106 pairs of (xiτ, Gτ,i) along a stationary Lorenz 
solution, with the colors (magenta, blue, and green) indicating 
the Lorenz components. Black dots are points 2( , )

TT fd s  with T = 
1,2,…,P, obtained from (x(iT),GT(iT)) with i = 1,…, 5P. Both x(iT) and 
GT(iT) are calculated using the analytical expressions obtained 
from the cosine model. dT and 2

Tf
s  are calculated using the 

regression defined in the same way as for the discrete solution.

Figure 5 d̂τ  and 2ˆfs τ  as functions of τ, derived using n = 105 
pairs of (xiτ,Gτ,iτ) along a stationary Lorenz solution. d̂τ  and 2ˆfs τ  
obtained from the first two Lorenz components (magenta, blue), 
which overlay each other, converge with increasing τ faster 
than those obtained from the third component (green). The 
calculation is done using an increment in τ that equals 10 for 1 ≤ 
τ ≤ 1001 and equals 200 for τ >1001.
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characterized by the back and forth swing of the 
2ˆ ˆ( , )fd s
ττ -point along the fd-curve, which results in the 

green lines in Figure 5.

4 IMPACTS OF INTEGRAL FORCING Gτ

The dissipation, that is associated with Gτ and 
characterized by dτ, is the same between any two 
adjacent members in the series *{ | }ix iÎτ . As such, it 
systematically weakens the link between xiτ and xiτ+τ, 
resulting in an auto-correlation function of x at lag 
τ, ρτ, whose magnitude is smaller than one. This relation 
between dτ and ρτ (see Appendix C for its derivation) is 
described by

1 ,  for .dr += + Îτ τ τ � (13)

Although presented as an equality, ρτ should be regarded 
as the effect resulting from dτ, since xiτ+τ that has a 
weaker link to xiτ is generated by Gτ,iτ that diminishes xiτ by 
the amount quantified by |dτ|.

For Gτ with τ > τ0, Gτ,iτ = cτ+ dτ xiτ +fτ,iτ is replaced by

, , ,i i iG c x ft= - +τ τ τ τ τ � (14)

with fτ,iτ being a white-noise-like forcing. With Eq. (14), Eq. 
(8) reduces to

, .i ix c f+ = +ττ τ τ τ � (15)

xiτ+τ becomes independent of xiτ, a behavior deemed as 
random in Section 1. We hence conclude that it is the 
integral forcing Gτ of x with τ > τ0, that makes the solution 
of x to become random. Given Eq. (15), the variance of 
the series *{ | }ix iÎτ , which equals also the variance of 
the series *{ | }jx j Î , becomes identical to the variance of 

*,{ | }if iÎτ τ . Consequently, the ratio 2 2/ xfr s s=
τ

 is identical 
to one, as shown in Figure 5b).

Furthermore, for any two adjacent members in the 
series *{ | }ix iÎτ , it is impossible to determining the 
past member xiτ from the future member xiτ+τ, despite 
of Eq. (8). This is because as Gτ,iτ with τ > τ0 emerges 
through forward integration, the dissipating component 
of Gτ,iτ cancels with the past state xiτ little by little and 
eventually completely, at the time when xiτ+τ is generated 
by the fluctuating component fτ,iτ of Gτ,iτ at time step iτ+τ. 
Consequently, xiτ is independent of fτ,iτ. This independence 
leads to a parallelogram-like shape of the scatter 
obtained when regressing Gτ,iτ against xiτ (two bottom 
rows of Figure 2). The evolution from xiτ to xiτ+τ is not only 
random but also irreversible.

Figure 6 Auto-correlation function , ,( )
ˆ ˆ

n

i i kf f +τ τ τ τ  of fluctuating component ,
ˆ
ifτ τ , defined as 1 , ,( )

ˆ ˆ1/ n
i i i kn f f= +S τ τ τ τ , for six values of τ, obtained 

for the three Lorenz components (magenta, blue, green) using n = 106 data points along a stationary Lorenz solution. , ,( )
ˆ ˆ

n

i i kf f +τ τ τ τ  is a 
function of k. The smallest non-zero time lag resolved by , ,( )

ˆ ˆ
n

i i kf f +τ τ τ τ  is obtained for k = 1, corresponding to a time lag of τ time steps.
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The relation between two adjacent members in the 
series *{ | }ix iÎτ  with τ > τ0 is in striking contrast with the 
relation between x(t) and x(t+δt) with an infinitesimal δt 
for a continuous solution, or the relation between xk and 
xk+1 for a discrete solution. Given F(x(t)), Eq. (1) is also valid 
when time is reversed. Given Fk, Eq. (6) can be integrated 
for a given past state xk forward in time to predict the 
future state xk+1, or integrated for a given future state xk+1 
backward in time to predict the state member xk. The 
evolution from x(t) to x(t+δt) with an infinitesimal δt is 
reversible, so does the evolution of from xk to xk+1. The 
key to the reversibility is the differential forcing F(x(t)), or 
Fk, which represents a forcing rate at a time instant. This 
stands in stark contrast to Gτ,k, which is a forcing over a 
time span of non-zero length.

5 SIGNIFICANCE OF PASSING OF TIME

A further aspect that makes Gτ different from F concerns 
the dissipation represented by Gτ, which should not be 
confused with the damping included in F. We refer the 
latter as “damping” to distinguish it from the dissipation 
in Gτ. In the Lorenz model, F contains a linear damping 
ax with a = –10, –1, and –8/3 for the three components 
respectively. The damping in F differs from the dissipation 
in Gτ. Being a differential forcing, the strength of the 
damping (i.e. a in the Lorenz model) represents a damping 
rate, and has the unit of 1/[t], with [t] being the unit of 
time. Different from that, the dissipation in Gτ, which is 
characterized by dτ, represents a portion of dissipation 
and is dimensionless. More importantly, the damping in Fj 
is not associated with any specific timescale, consistent 
with the fact that it represents a rate, whereas dτ is 
associated with one and only one timescale of length τΔt. 
dτ represents the dissipation experienced by an evolution 
of x from xk to xk+τ over τ time steps.

We further explore the difference between the 
damping in F and the dissipation in Gτ using the Lorenz 
model. In this paper, the Lorenz model is solved using 
Δt = 0.01. With this value of Δt, the damping within one 
time step, aΔt, equals –0.1, –0.01, and –0.027 for the 
three Lorenz components, respectively. Here, we have 
disregarded the impact of the numerical scheme used 
for solving the discretized equations, which can affect 
the damping amount by a few percent. The values of 
aΔt can be compared with the dissipation experienced 
by x as x evolves from xi to xi+1 over a time span of length 
Δt, which is quantified by d1 and listed in the first row of 
Figure 2. We find that the values of aΔt are much larger 
than the values of d1.

We further explore the difference between the 
damping in F and the dissipation in Gτ by considering the 
limit Δt → 0. In this limit, Eq. (6) converges to Eq. (1), and 
d1 converges to dT with T = 0 defined for a continuous 

solution. Since for T = 0, GT(t) = G0(t) = 0 for all *tÎ  dT 
with T = 0 must also be zero. However, the fact that d1 → 
0 in the limit Δt → 0 does not make d1 so different from 
the damping within one time step, aΔt, since we have 
also aΔt → 0 in the limit Δt → 0. The difference between 
the damping in F and the dissipation in Gτ becomes 
only apparent when considering the rate of dissipation 
and the rate of damping. Figure 7 shows that aΔt is 
proportional to –Δt, whereas d1 is proportional to –Δt2. 
Thus, the dissipation rate vanishes,

1

0
lim 0,
t

d
tD ®
=

D � (16)

whereas the damping rate

0
lim
t

a t
a

tD ®

D
=

D � (17)

is generally not zero. Eq. (16) and Eq. (17) suggest 
that the damping in F and the dissipation in Gτ are two 
different things. The dissipation in Gτ cannot be included 
in F as a forcing rate, since this rate vanishes exactly.

Figure 7 Dissipation associated with integral forcing G1 (i.e. Gτ 
with τ = 1, solid lines) and damping amount due to differential 
forcing F (dashed lines) as functions of time increment Δt, for 
the three Lorenz components (magenta, blue, and green). The 
dissipation associated with G1 is quantified by 1d̂ . For a given 
value of Δt, 1d̂  is the regression slope obtained by regressing 
G1,i against xi using (xi, G1,i) with i = 1,…,106 along a Lorenz 
solution computed with this Δt. The damping amount due to F 
is quantified by ãΔt, where ã is the proportionality factor of the 
linear damping in the discretized Lorenz model. The values of ã 
differ slightly from a = –10, –1, –8/3 given in the Lorenz model. 
The difference results from the numerical scheme used, which 
is the fourth order Runge-Kutta scheme in this study. The two 
black lines are proportional to –Δt and –Δt2, respectively.
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Given the link of dτ to the specific timescale of 
length τΔt, we may interpret the dissipation in Gτ,k as 
something that results from interactions of xk with 
other components of x, that have taken place within a 
time span covering τ time steps starting from the k-th 
time step. The length of the time span is τΔt. For τ = 1 
and when Δt goes to zero, the length of the time span, 
τΔt = Δt, goes to zero. No interaction of x with other 
components of x can complete within a time span of 
vanishing length. d1 approaches zero. On the other hand, 
increasing the value of τ for a given Δt increases the 
length of time span τΔt. The larger the value of τ, the 
more interactions between xk and other components 
of x can take place within the time span extending 
from the k-th to the (k+τ-1)-th time step, the stronger 
is the dissipation resulting from these interactions. 
The threshold τ0, beyond which Gτ equals the unified 
forcing, corresponds to the length of the time span that 
starts from the k-th time step and encompasses all 
interactions, and only these interactions, between xk and 
other components of x. Further extending the length of 
this time span (by increasing τ) allows more interactions 
to occur within the time span. However the additional 
interactions no longer involve xk at the k-th time step 
and hence no longer contribute to the dissipation of xk.

Accepting the idea of the fluctuation – dissipation 
theorem that for a system in equilibrium, anything that 
generates fluctuations must also damp the fluctuations, 
this “anything” is manifested in actions that take place 
in form of interactions of x with other components of x. 
Without the passing of time, these actions cannot be 
completed and the associated dissipation cannot take 
effect. The demand on the passing of time is in stark 
contrast to the damping in F, which is a forcing rate 
needed to balance the rate of external forcing, and exists 
without the passing of time.

6 SIGNIFICANCE OF MULTI-
DIMENSIONALITY

The interpretation of the timescale dependence of dτ 
suggests that multi-dimensionality is a necessarily 
condition for Gτ to possess a dissipation that allows 
Postulate III to be valid, and with that a solution that is 
random. Even though we are unable to prove this assertion 
rigorously, we provide below some supporting evidences. 
We do so by considering two one-dimensional systems as 
counterexamples, for which Postulate III is not valid, and 
consequently whose solutions cannot be random.

The first example is the one-dimensional system 
d
d
x
t b= , where β is a constant. This system has the 

analytical solution x(t) = x0+βt. The differential forcing of 
x is β; the integral forcing of x is GT(t) = βT. For a given 
non-zero value of T, the regression slope dT obtained 

from regressing GT(t) against x(t) is zero, since GT(t) is 
independent of t and then independent of x(t), no matter 
whether β is positive or negative. With dT = 0, GT(t) does 
not contain a dissipating component. Postulate I is not 
valid. Without Postulate I, the other two postulates, 
especially Postulate III, are meaningless. The solution 
x(t) = x0+βt is always deterministic.

The second example is the one-dimensional cosine 
model, d

d cos(2 / )x
t t Pp=  with period P. This model has 

the analytical solution 0 2( ) sin(2 / )Px t x t Pp p= + . The 
differential forcing of x is cos(2πt/P); the integral forcing 
of x is 2( ) (sin(2 ( )/ ) sin(2 / ))P

TG t t T P t Pp p p= + - . Figure 
8 shows for six values of T and for t = iT and i = 1,…,n, 
how GT(t) are scattered against x(t). Also shown are the 
regression line GT(iT) = cT+dT xiT + fT,iT for each value of 
T. In all six cases, the regression lines are tilted with a 
slope dT < 0, albeit dT with a value of T that is close to a 
multiple of P (as in Figure 8a,f) is close to zero and has 
to be listed as –0.00 when keeping only two digits after 
the point. The negative slope is also found for T = P/4 
(Figure 8d), for which the period of GT(iT) is four and the 
regression line goes through only four pairs of (xiT,GT(iT)). 
Thus, the integral forcing GT(iT) can also be decomposed 
into a dissipating and a fluctuating component for a 
periodic solution. Postulate I is valid for the cosine model. 
The idea that for a system in equilibrium, anything 
that generates fluctuations must also dampen those 
fluctuations, seems to apply universally to all types of 
stationarily varying solutions, regardless of whether they 
are periodic or non-periodic.

Postulate II is also valid for the cosine model. The 
points 2( , )

TT fd s  (black dots in Figure 4), which can be 
calculated using the analytical expressions of GT(iT) and 
x(iT) with i=1,…, n, are located right on the corresponding 
fd-curve, which is indicated by the orange line in Figure 
4a) and collapses to the black line in Figure 4b). Thus, the 
dissipating and fluctuating component of the integral 
forcing of a periodic solution are also related to each 
other via Eq. (12).

The situation is different for Postulate III. The general 
strengthening of dT with increasing T, which in this 
example can only occur in a non-monotonic manner, 
cannot be realized by the one-dimensional cosine model. 
dT, which is a periodic function of T, retains its overall 
strength with increasing T. The points 2( , )

FT fd s  or ( , )T Td r  
(black dots in Figure 4) swing with increasing T from the 
right end (where dT = 0) to the left end (where dT = –2) of 
the fd-curve and continue to swing with the same reach 
as T goes to infinity. No threshold of T exists such that 
for T larger than this threshold, GT(t) reduces to a forcing 
consisting of a dissipating component with dT = –1 and a 
white-noise like fluctuating component. Postulate III is 
not valid. The sinus solution at time t is always related to 
the sinus solution at time t+T later, independent of the 
value of T.
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7 CONCLUSIONS

Consider a system described by a multi-dimensional 
state vector x, whose evolution is governed by a set 
of equations in form of dx/dt = F(x(t)) with x being a 
component of x and F = F (x(t)) being a deterministic 
function of x. When solving such a system at discrete 
time steps, the solution of x at a time step can become 
independent of the solution of x at a later time step, 
a behavior deemed as random. This paper examines 
how this randomness arises from internal dynamics 
represented by F. We do so by exploring the properties 
of the integral forcing Gτ,k, which equals the integral over 
F at τ time steps starting from the k-th time step. Gτ,k 
is responsible for the evolution of x from xk to xk+τ. The 
following conclusions are drawn.

First, for a system in equilibrium, the integral forcing 
Gτ,k consists of (apart from a constant cτ) a dissipating 
component dτxk with dτ < 0 and a fluctuating component 
fτ,k, and can be expressed as Gτ,k = cτ+dτ xk+fτ,k. This 
expression is in accordance with the idea behind the 
fluctuation – dissipation theorem that for a system in 
equilibrium, anything that generates fluctuations must 
also damp the fluctuations. The two components of Gτ,k 
are related to each other following the rule described 
by the fd-curve. There exists a threshold τ0 such that Gτ,k 
with τ > τ0 emerges as a unified forcing. The dissipating 
component of this forcing is characterized by dτ = –1, and 

the fluctuating component of this forcing behaves like a 
white noise, independent of τ, as long as τ > τ0, and no 
matter which component of x is considered.

Second, for τ > τ0, the state xk+τ, which is nominally 
produced by Gτ,k via xk+τ = xk+Gτ,k, equals then xk+τ = cτ+fτ,k, 
with fτ,k being a white-noise-like forcing. The series 

*{ | }ix iÎτ  becomes random, since any one member in 
the series is independent of any other member of the 
series. This series is also irreversible, since a member xiτ 
is little by little canceled by the dissipation that emerges 
as soon as the system is integrated forward in time. By 
the time when the system is integrated over τ time steps 
to allow the emergence of Gτ,iτ, xiτ is completely canceled 
by the dissipating component of Gτ,iτ. xiτ+τ is generated by 
the fluctuating forcing of Gτ,iτ, which is independent of xiτ.

Third, while the damping in Fj represents a typically 
non-zero damping rate needed for counterbalancing 
the rate of external forcing, the dissipation in Gτ,k arises 
from actions completed over a time span of non-zero 
length. More precisely, these actions are interactions 
of xk with other components of x completed during the 
time span extending from time step k to time step k+τ–1. 
The number of these interactions inevitably goes to zero 
when the length of the time span goes to zero. It reaches 
a maximum, when the length of the time span equals τ0 
time steps. Since the completion of these actions requires 
the passing of time, the resulting dissipation cannot be 
included in the differential forcing F.

Figure 8 Same as Figure 2, but for the cosine model dx/dt = cos(2π t/P) with period P = 200 for six different values of T. Dots are the 
points (x(t), GT(t)) with t = iT, i = 0,1,… n, and n = 103. They overlap when the periods of (x(iT), GT(iT)), which vary with T, are shorter 
than n. Lines are regressions GT(iT) = cT+dT x(iT) obtained from the n points. Numbers listed are values of dT and 2 2/

T xfr s s=  with 
2 2 2/(8 )x Ps p= . Note that if T is a multiple of P/2, we have GT,iT = 0. Different from Figure 2, the symbol ^ is dropped, since for n that is a 

multiple of P, cT, dT, 
2
Tf

s  and 2
xs  do not change with increasing n.
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Finally, being arising from interactions among 
components of x, randomness is a peculiar feature of 
a multi-dimensional system. The solution of a one-
dimensional system cannot be random.

The above conclusions are drawn based on the integral 
forcing numerically obtained from the Lorenz’s 1963 
model. Verifying them for high-dimensional systems 
requires great computational efforts. By suggesting that 
Gτ consists of a dissipating and a fluctuating component, 
we link the mechanism responsible for the emergence 
of randomness with the fluctuation-dissipation theorem 
known in statistical physics. By demonstrating that the 
dissipation in Gτ cannot be included in F but emerges 
as soon as the system is integrated forward in time, we 
identify the mechanism as resulting from interactions 
completed within a time span of non-zero length. 
When further verified, the idea behind the fluctuation 
and dissipation theorem should be considered as 
generally valid for multi-dimensional systems that are 
in equilibrium and governed by differential equations in 
form of dx/dt = F.

APPENDIX A: CALCULATION OF 
INTERCEPT cτ, REGRESSION SLOPE dτ 
AND RESIDUAL fτ,iτ

This appendix shows how the intercept cτ, the regression 
slope dτ, and the residual fτ,iτ (or the fluctuating 
component of Gτ,iτ) and its variance 2

fs τ
 are calculated. 

Since Eq. (9) represents a regression of Gτ,iτ against xτ,i, we 
use the known result of least squared fitting and define
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Given ĉτ  and d̂τ , fτ,iτ is defines as

, ,
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with variance
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We use ^ to distinguish quantities obtained from a finite 
number n of data points from quantities obtained in the 
limit n → ∞:
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n
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=τ τ � (A5)
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and

, , .i i if G c d x= - -τ ττ τ τ τ τ � (A8)

For the Lorenz model, ĉτ  and d̂τ  (Figure 3) and 2ˆfs τ
 (not 

shown) converge with increasing value of n.

APPENDIX B: DERIVATION OF THE FD-
CURVE

This appendix derives the fd-curve that describes 
the relation between the dissipating and fluctuating 
component of an integral forcing Gτ,iτ with +Îτ . We start 
from expressing Gτ,iτ in terms of intercept ĉτ , regression 
slope d̂τ  and residual ,

ˆ
ifτ , defined using n data points 

along a solution, with n being finite, and proceed further 
by considering the limit n → ∞.

For +Îτ , we rewrite Eq. (8) using Eq. (A3) as

( 1) , ,
ˆˆˆ (1 ) ,   for .i i i i ix x G c d x f ++ = + = + + + Îτ ττ τ τ τ τ τ τ τ � (B1)

We define the mean and the variance of the series 
{xiτ|i=1,…, n} by

1

1
ˆ ,

n

x i

i

x
n

m
=

º åτ τ � (B2)

2 2

1

1
ˆˆ ( ) ,

n

x xi

i

x
n

s m
=

º -åτ ττ � (B3)

and the mean of ,
ˆ{ | 1, , }if i n= τ τ  by

,

1

1 ˆˆ ,
n

if

i

f
n

m
=

º åτ τ τ � (B4)

and the covariance between ,
ˆ

ifτ τ  and xiτ by

, ,

1

1ˆ ˆ ˆ( ),
nn

xi i i

i

f x f x
n

m
=

= -å ττ τ τ τ τ � (B5)

where

1

1
( ) ( ).

n
n

i
n

=

× º ×å � (B6)

Rearranging Eq. (B1) by expressing x(i+1)τ in terms of 

( 1) ˆxix m+ -
ττ  and xiτ in terms of ˆxix m-

ττ  through adding and 
subtracting ˆxm τ

, we find,

( 1) ,
ˆˆ ˆˆˆ ˆ ˆ(1 )( ) ,   for .x x xi i ix c d d x fm m m ++ - = + + + - + Î

τ τ ττ τ ττ τ τ τ τ �(B7)

Squaring Eq. (B7) and applying ( )
n

×  to the result, we obtain 
after making use of ˆ 0

n

xix m- =
ττ ,
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2 2 2 2
1 2 3( 1)

ˆˆ ˆ ˆ( ) (1 )  
n

x xi fx d A A Am s s+ - - + = + + +
τ τ τττ � (B8)

with

2
1

ˆˆ ˆ( )xA c d m= +
ττ τ � (B9)

2
ˆˆ ˆ ˆ2( )x fA c dm m= +

τ ττ τ � (B10)

3 ,
ˆˆ2(1 ) .

n

iA d f x= + τ τ τ � (B11)

For a sufficiently large n, 2
( 1) ˆ( )

n

xix m+ -
ττ  is well 

approximated by 2 2ˆ ˆ( )
n

x xix m s- =
τ ττ . Eq. (B8) reduces to

2 2 2
1 2 3

ˆ ˆ ˆ(1 (1 ) ) x fd A A As s- + = + + +
τ ττ � (B12)

Figure B1 shows for the three Lorenz components and for 
τ = 2 and τ = 5000 respectively, how the three A-terms 
defined in Eq. (B9)–Eq. (B11) evolve with increasing 
number n of data points used for their calculations. A1 and 
A2 (first two rows) converge fast to zero with increasing 
n. A3 (bottom panel) is numerically not distinguishable 
from zero for all considered values of n. Similar behaviors 
are found for other values of τ, including τ = 1. The three 

A-terms in Eq. (B12) can hence be considered to be zero 
for +Îτ  for sufficiently large value of n. In the limit 
n → ∞, Eq. (B12) can, after making use of Eq. (A7) and

2 2ˆlim ,x x
n

s s
®¥

=
τ � (B13)

be rewritten as

2 2 21 (1 ) .( )xf ds s= - +
τ τ � (B14)

That the limit Eq. (B13) is independent of τ can be easily 
demonstrated numerically.

APPENDIX C: DERIVATION OF THE 
RELATION BETWEEN ρτ AND dτ

This appendix establishes the relation between auto-
correlation function ρτ of x and dτ associated with the 
integral forcing Gτ of x. For ,r+Î ττ  and the respective 
covariance function τγ  are defined by

2
( 1) ˆ ˆlim ( )( )

n

x x xi in
x xr s m m+®¥

= º - -
τ ττ τ τ τγ � (C1)

Figure B1 A1 (top), A2 (middle), and A3 (bottom) as functions of n, derived for the three Lorenz components (magenta, blue and 
green) and for τ = 2 (left) and τ = 5000 (right). n is the number of consecutive data points along a stationary solution used to 
calculate A1, A2 and A3.
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where ˆxm τ
 is defined in Eq. (B2). Multiplying Eq. (B7) by 

ˆ( )xix m-
ττ  and applying ( )

n
×  (for its definition, see Eq. (B6)) 

to the result yields

2
( 1) ,

ˆˆˆ ˆ ˆ( )( ) (1 ) ,
nn

x x xi i ix x d f xm m s+ - - = + +
τ τ τττ τ τ τ � (C2)

where the equality ˆ 0
n

xix m- =
ττ  is used. Since ,

ˆ
n

if xτ τ  can 
be shown to be numerically not distinguishable from 
zero, similar to A3 discussed in Appendix B, we can set 

,
ˆ

n

if xτ τ  to zero. In the limit n → ∞, Eq. (C2) reduces then, 
after making use of Eq. (B13), to

(1 ).dr = +τ τ � (C3)
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