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LARGE-SCALE OCEAN DYNAMICS WITH THE
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Abstract. We prove global well-posedness of the ocean primitive equations coupled to advection-
diffusion equations of the oceanic tracers temperature and salinity that are supplemented by the eddy
parametrization model due to Gent, McWilliams, and Redi. This parametrization forms a milestone
in global ocean modeling and constitutes a central part of any general ocean circulation model
computation. The eddy parametrization adds a secondary transport velocity to the tracer equation
and renders the original Laplacian operators in the advection-diffusion equations nonlinear, with
a diffusion matrix that depends via the equation of state in a nonlinear fashion on both tracers
simultaneously. The eddy parametrization of Gent, McWilliams, and Redi augments the complexity
of the mathematical analysis of the whole system which we present here. We show first that weak
solutions exist globally in time, provided the parametrization uses a regularized density. Then we
prove by a detailed analysis of the eddy operators the global well-posedness. Our results apply also
to the ``small-slope approximation"" that is commonly used in global ocean simulations.
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1. Introduction. The hydrostatic Boussinesq equations of the ocean, also re-
ferred to as the ocean primitive equations, are the classical dynamical equations used
in ocean and climate research (see, e.g., [24, 21]). A central component is the subgrid
scale parametrization of mesoscale eddies due to Gent and McWilliams [15] and Redi
[33]. This parametrization is a major achievement in the science of ocean modeling
[6] and forms a cornerstone of global ocean modeling. Virtually every global ocean
general circulation model relies on, and incorporates, this parametrization (see, e.g.,
[21]). The mathematical analysis of the ocean primitive equations with the Gent--
McWilliams--Redi parametrization forms the topic of this paper.

The ocean primitive equations model the large-scale circulation of the ocean as
a thin layer of a weakly compressible fluid on a rotating sphere under the Boussi-
nesq and the hydrostatic approximation. The ocean primitive equations consist of a
coupled system of evolution equations for horizontal velocity v = (v1, v2), potential
temperature \theta , and salinity S that is closed by an equation of state that describes
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8012 PETER KORN AND E. S. TITI

the density as function of temperature, salinity, and static pressure. In this work we
investigate the ocean primitive equations with Gent--McWilliams--Redi eddy parame-
trization, which in cartesian coordinates are given by

\partial tv+ (v \cdot \nabla )v+w\partial zv+\nabla p+ f\vec{}k\times v - 1

Re1
\bigtriangleup v - 1

Re2
\partial 2zzv= 0,(1.1a)

\partial zp+ g\rho = 0,(1.1b)

\nabla \cdot v+ \partial zw= 0,(1.1c)

\partial t\theta + (v \cdot \nabla )\theta +w\partial z\theta +\frakD \BbbK iso(\~\rho ,KI ,KD)(\theta ) +\frakD \BbbK GM
(\~\rho ,\kappa )(\theta ) = 0,(1.1d)

\partial tS + (v \cdot \nabla )S +w\partial zS +\frakD \BbbK iso(\~\rho ,KI ,KD)(S) +\frakD \BbbK GM
(\~\rho ,\kappa )(S) = 0,(1.1e)

with the equation of state \rho = \rho (\theta ,S, pst), where pst denotes the static pressure (see
(3.3)), w the vertical velocity, \rho the equation of state, f the Coriolis parameter, and
g the gravitational constant. The numbers Re1,Re2 denote horizontal and vertical
viscosity, KI ,KD are the isoneutral and dianeutral diffusivity, and \kappa is referred to
as the eddy advection parameter. The operators \nabla ,\nabla \cdot , and \bigtriangleup denote the horizontal
gradient, divergence, and Laplacian, respectively.

The above system (1.1) differs from the classical primitive equations by intro-
ducing in the equations for the oceans active tracers temperature and salinity (1.1d),
(1.1e), the isoneutral eddy diffusion operator \frakD \BbbK iso

and the eddy advection operator
\frakD \BbbK GM

. The presence of these two nonlinear, anisotropic, and flow-dependent opera-
tors changes the nature of the originally linear advection-diffusion equations (1.1d),
(1.1e). Therefore in comparison to the classical analysis of the primitive equations,
the additional nonlinearity poses the main challenge in the mathematical analysis of
this paper.

The work presented here capitalizes on the large body of literature of the math-
ematical analysis of the classical primitive equations, pioneered by Lions, Temam,
and Wang [31], where the global existence of weak solutions was proven. Cao and
Titi established in [4] global existence and uniqueness of strong solutions for initial
data in the Sobolev space H1 and with Neumann boundary conditions for velocity on
the top and bottom of the domain. A different proof is given by Kobelkov [25]. For
Dirichlet boundary conditions well-posedness in H1 was obtained by Kukavica and
Ziane [28]. These works do rely on energy estimates. A Lp-approach for the primitive
equation was developed by Hieber and Kashiwabara [22]. The extension of global
well-posedness to nonlinear equations of state can be found in Korn [26].

The ocean modeling literature is flexible about the exact specifications in the
mathematical definitions of the operators \frakD \BbbK iso

,\frakD \BbbK GM
. The original publication by

Gent and McWilliams [15] (see also [16]) formulates on one hand the eddy closure in
the form of a (continuous) PDE, but on the other hand develops its physical arguments
that results in the specific form of the eddy closure in terms of (finite-dimensional)
numerical models. This ambiguity suggests an interpretation of the continuous ocean
model equations in an averaged sense, where the averages are related to specific grid
sizes (cf. Chapter 8 in [17]). Our work investigates the mathematical structure of this
important ocean parametrization from the perspective of mathematical analysis of
hydrodynamic PDE. We investigate the eddy parametrization of Gent, McWilliams,
and Redi in the continuous limit as a nonlinear PDE.

We start with establishing the existence of weak solutions for (1.1). For weak
solutions a density regularization inside the eddy parametrization is necessitated to
prove a priori bounds on the advective part (the ``GM part"") of the eddy model and for
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GENT--MCWILLIAMS--REDI EDDY PARAMETRIZATION 8013

showing the convergence to a weak solution. For the special case of the small density
slope approximation---a simplification of the full eddy operator, preferably used in
ocean models, under the physically appropriate assumption that density slopes are
small---the a priori estimates for the finite-dimensional approximative system can be
obtained without regularization. This explains the stability of numerical codes, but
still allows for noisy solutions. For proving the convergence of the approximative to
weak solutions we have to regularize as in the full tensor case. The uniqueness of
weak solutions is open.

For proving existence and uniqueness of (strong) solutions to (1.12 globally in
time within the Sobolev space H1 we apply energy estimates, following the approach
of Cao and Titi [4]. The regularity of strong solutions demands a priori estimates
in H1 by integrating against the Laplacian of test functions. In this work we re-
place the Laplace operator in the temperature and salinity equations by \frakD \BbbK iso . This
second-order diffusion operator has divergence-gradient structure; its mixing tensor
is anisotropic, nonlinear, and time-dependent. Establishing the a priori H1-estimates
requires control of the spatial and temporal regularity of the elements of the symmet-
ric mixing tensor of \frakD \BbbK iso

and of the skew-symmetric tensor of \frakD \BbbK GM
, which both are

constructed via functions of density derivatives. This additional complexity, absent
in the previous works cited above, requires us to prove the following novel results:

1. We prove in Lemma 4.9 an elliptic regularity result for the nonlinear diffusion
operator\frakD \BbbK iso

. This is used in the L\infty 
t H

1
x-bound on temperature and salinity.

Elliptic regularity is classical for the Laplace operator but novel for \frakD \BbbK iso
.

2. We estimate the temporal regularity of the mixing tensor by means of an
evolution equation for density. Such an equation is not part of the original
system (1.1) of primitive equations, but it can be derived from the equation
of state. From this equation we estimate the rate of change of the gradient
of density in time (see (3.8), Lemma 4.6, and (5.28)).

3. We prove an L\infty 
t H

1
x bound for the eddy induced advection velocity, given by

\frakD \BbbK GM
(see (5.30)--(5.31)).

Each of these three results is crucial to our proof strategy and for all three results
we need to regularize the density within the eddy operator. The reason being the
nonlinearity of the equation of \frakD \BbbK iso

,\frakD \BbbK GM
in the form of derivatives. For more

details we refer the reader to section 2 and to Remarks 4.7 and 5.6.
The original (unregularized) eddy closure model of Gent, McWilliams, and Redi

is analytically out of reach due to the highly nonlinear and flow-dependent nature
of the eddy closure that lead to potential singularities and to degeneracies near the
boundaries. The computational ocean modeling community has responded to this
challenge with ad hoc regularizations to modify the behavior near the boundary and
to compute sufficiently smooth solutions that agree with physical expectations (see,
e.g., [30, 20]). The discretization of the eddy operators \frakD \BbbK iso

,\frakD \BbbK GM
is a subtle

numerical problem; for details we refer the reader to [18, 19, 27]. Guided by these
considerations we introduce rigorously a physically and computationally motivated
regularization that we then study analytically. This provides in turn a rigorous basis
for computational practice in ocean modeling.

Organization of the paper. Section 2 provides physical background on
mesoscale eddies and the need for regularization. Section 3 defines the thermody-
namical concept. In section 4 we introduces the regularized eddy operators. Sec-
tion 5 contains the main result, of this paper. The proofs are given in sections 5.2
and 5.4.
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8014 PETER KORN AND E. S. TITI

2. Physical and modeling background. Mesoscale eddies have a typical hor-
izontal size between 10--100 km and a lifetime between 10--100 days. They belong to
the most energetic phenomena in the circulation of the world's oceans and are also
referred to as ``weather"" of the ocean due to their analogy with atmospheric weather
systems. They are predominantly created by baroclinic instabilities on a scale that is
determined by the Rossby deformation radius. Ocean eddies are much smaller than
their atmospheric counterparts, and global ocean general circulation models have to
invest significant computational resources to resolve parts of the mesoscale eddy spec-
trum.

The purpose of the eddy-induced diffusion is to mimic the behavior of eddies
to enhance mixing locally, preferably along directions in which a water parcel can
move in an adiabatic way without changing buoyancy (see, e.g., [13] for a review).
The diffusion along the isoneutral direction is orders of magnitude larger than the
diffusion perpendicular to this directions [29]. The parametrization of eddy-induced
advection by Gent, McWilliams, and Redi aims to capture the effect of mesoscale
eddies on tracers by means of stirring through an adiabatic and potential energy-
reducing closure (see [15, 16, 35). Eddies convert potential into kinetic energy, and
thereby flattening of neutral surfaces reduces potential energy, while preserving the
mass between isoneutral layers.

The eddy advection, originally formulated by Gent and McWilliams for coarse
resolution ocean models in vertical density coordinates [15], was transformed to more
frequently used depth coordinates in [16] and combined with the eddy-induced dif-
fusion of Redi [33]. A common modeling framework of eddy-induced advection and
diffusion was developed in [18, 19]; in this form it was used in numerous ocean model-
ing studies (see, e.g., [21, 11]. The Gent--McWilliams--Redi parametrization removes
essential model biases of coarse resolution models such as the Veronis effect (see,
e.g., [14]). Among its effects is a poleward heat transport in better agreement with
observations or a more realistic occurrence of convective regions (see, e.g., [7, 14]).

The eddy parametrization approximates subgrid scale fluxes of density; it is es-
sential to use, therefore, an accurate equation of state. Unlike the case of atmospheric
dynamics no sufficiently accurate analytical expression of the equation of state is avail-
able for oceanic dynamics. We use the equation of state TEOS-10 [23] of the Intergov-
ernmental Oceanographic Commission, the official description of seawater properties
in marine science. It provides an accurate description of seawater thermodynamics by
blending the Gibbs formalism of thermodynamics with seawater measurements (see,
e.g., [12]). This implies the natural condition that tracers are bounded within an
admissible range given by the equation of state.

Parametrizations and need of regularization. The purpose of the eddy
parametrization is to capture the mean effect of subgrid scale buoyancy fluxes on the
resolved large-scale circulation. This particular parametrization, as well as others,
expresses unresolved quantities in terms of resolved through constructing nonlinear
functions of partial derivatives of resolved quantities. The formulation of such a
nonlinear function is not derived from first principle but guided by physical ad hoc
consideration, applied to a very specific individual physical process. In our case this is
the process of baroclinic instability. The mathematical object constructed thereby is
then supplemented by ``numerical controllers"" such as limiters and thresholds in order
to make the eddy parametrization computable in a general model of ocean dynamics
such as the ocean primitive equations with all its complexities. The fundamental
approach to approximate subgrid scale processes of density by nonlinear functions of
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GENT--MCWILLIAMS--REDI EDDY PARAMETRIZATION 8015

partial density derivatives challenges the available regularity of strong solution. In
essence, this accumulation of derivatives generates a nonlinearity that is stronger than
the quadratic nonlinearity of the fluid dynamics part.

The following formal argument illustrates the necessity of a density regularization
for the eddy parametrization. The typical building block of the eddy operator is of
the form \partial xi

(kij\partial xi
\theta ), where ki,j denotes a matrix element of the eddy operator. For

a strong solution (v, \theta ,S) the eddy operator satisfies \partial xi(kij\partial xj\theta )\in L2
tL

2
x, or, equiva-

lently kij\partial xi\theta \in L2
tH

1
x. We have kij \sim \partial xi\rho (\sim indicates the same regularity class) and

\partial xi
\rho \sim \partial xi

\theta . Consequently, having kij\partial xi
\theta \in L2

tH
1
x requires that the product satisfies

\partial xi
\theta \partial xj

\theta \in L2
tH

1
x---a property that is beyond the regularity of strong solutions. We do

not know if this is an artifact of our proof strategy or a generic phenomenon related
to the parametrization. The mathematical challenges are described in Remarks 4.7
and 5.6. The computational experience of ocean circulation models supports the need
of a regularization to provide noise-free solutions (see, e.g., [30, 20]).

A physical viewpoint suggests that the energy extraction and transfer from poten-
tial to kinetic energy, approximated by the eddy parametrization, is related to a stable
and smooth background stratification. The regularity of such a background stratifi-
cation can be described mathematically by filtering the instantaneous density field.
Observations in the world's oceans of the buoyancy frequency N := ( - g\rho 0\partial z\rho )1/2,
which determines the denominator of the density slopes (cf. (4.6)) reveal a field that
is ``extremely noisy"" with ``high wave-number jitter"" that must be removed to make it
interpretable (citations from [37]; see their Figure 2). It appears a physical fact that
the buoyancy frequency N and the density slopes are nonsmooth physical quantities.
The design of the Gent--McWilliams--Redi eddy closure makes an implicit smoothness
assumption, which was justified practically by the very coarse resolution of the nu-
merical ocean models to which it was applied initially, where the coarse mesh acts
as a low-pass filter. In the PDE limit this filter disappears, the implicit assumption
becomes apparent, and we restore regularity via a regularization.

3. Ocean thermodynamics. The oceanic equation of state TEOS-10 [23, 34]
assumes that temperature, salinity, and pressure values are within the observed range
of the world's oceans. Accordingly we make the following hypothesis (cf. [26]).

Hypothesis on ocean thermodynamics:
1. There exist intervals of physically admissible ranges for temperature I\theta :=

[ - K1,K2], salinity IS := [L1,L2], and pressure Ip := [M1,M2] with K1,K2,
L1,L2,M1,M2 > 0, such that for (x, y, z, t)\in \Omega \times [0, T ]

\theta (x, y, z, t)\in I\theta , S(x, y, z, t)\in IS , p(x, y, z, t)\in Ip.(3.1)

2. If \theta \in I\theta , S \in IS , p \in Ip, then the coefficients ci,j,k of the equation of state,
defined below in (3.4), are determined such that the density \rho stays within
the admissible range:

\rho \in I\rho := [R1,R2], R1,R2 > 0.(3.2)

For the Boussinesq approximation one replaces the density \rho by a reference density
\rho 0 > 0 in all terms of the dynamical equations except for the buoyancy term in the
momentum balance and in the equation of state (see, e.g., section 2.4 in [35]). For
energetic consistency one uses in the equation of state the static pressure

pst(z) := - g\rho 0z for z \leq 0.(3.3)

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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8016 PETER KORN AND E. S. TITI

Definition 3.1. Let the hypothesis on ocean thermodynamics (3.1) and (3.2)
hold.

(i) Define L\infty 
I\theta 
(\Omega ) := \{ \theta \in L\infty (\Omega ) : \theta \in I\theta \} , L\infty 

IS
(\Omega ) := \{ S \in L\infty (\Omega ) : S \in IS\} .

(ii) Let \theta \in L\infty 
I\theta 
(\Omega ), S \in L\infty 

IS
(\Omega ). The density \rho is given via the specific volume v,

\rho (\theta ,S, pst) := v(\theta ,S, pst)
 - 1, with v(\theta ,S, pst) :=

Ni,Nj ,Nk\sum 
i,j,k=0

ci,j,kS
i\theta jpkst,

(3.4)

with given coefficients ci,j,k \in \BbbR (cf. Table K1 in [23]), Ni = 7,Nj = 6,Nk = 5.

Lemma 3.2 (boundedness of potential temperature, salinity, and density). De-
note by C \in \{ \theta ,S\} the solution of the tracer equation for temperature (1.1d) or for
salinity (1.1e).

(i) Let initial conditions satisfy C0 \in VC \cap L\infty 
IC
(\Omega ). Then it holds that

C(t)\in L\infty 
IC (\Omega ).(3.5)

(ii) Let \theta 0 \in V\theta \cap L\infty 
I\theta 
(\Omega ), S0 \in VS \cap L\infty 

IS
(\Omega ) be initial conditions of the tracer

equation for temperature (1.1d) and for salinity (1.1e). Then it holds that

\rho (t)\in L\infty 
I\rho (\Omega ).(3.6)

Proof. The proof under the conditions of Definition 3.1 and without eddy param-
etrization can be found in [26]. It is extended to the case under consideration here by
Lemma 4.8 and the skew-symmetry of \BbbK GM .

Lemma 3.3 ([26]). Let (\theta 1, S1) \in L\infty 
I\theta \times IS

(\Omega ) and (\theta 2, S2) \in L\infty 
I\theta \times IS

(\Omega ) be two
pairs of temperature and salinity fields, and denote by \rho 1(\theta 1, S1), \rho 2(\theta 2, S2) the two
associated densities. Then it holds almost everywhere in \Omega ,

| \rho 1  - \rho 2| \leq K(| \theta 1  - \theta 2| + | S1  - S2| ),(3.7)

where K =K(\theta 1, \theta 2, S1, S2, ci,j,k) is bounded.

Density equation. For the density an evolution equation can be derived by
differentiating equation (3.4) with respect to time. This yields

\partial t\rho = - a\partial t\theta + b\partial tS = aF\theta + bFS

with a := - \partial \rho 
\partial \theta 
, b :=

\partial \rho 

\partial S
,

F\theta := - (v \cdot \nabla )\theta  - w\partial z\theta  - \frakD \BbbK iso
(\~\rho )(\theta ) - \frakD \BbbK GM

(\~\rho )(\theta ),

FS := - (v \cdot \nabla )S  - w\partial zS  - \frakD \BbbK iso
(\~\rho )(S) - \frakD \BbbK GM

(\~\rho )(S).

(3.8)

4. Ocean eddy parametrization. We introduce a mathematical formalization
of oceanic neutral physics in section 4.1. This forms the basis of the definition of the
eddy parametrizations in section 4.2.

4.1. Regularized isoneutral density slopes. The eddy parametrization acts
in the interior of the ocean and away from the boundary and only if a minimal
stratification exists. For this purpose we decompose the domain according to the
distance to the boundary (see Figure 1)

\Omega =\Omega 0 \cup \Omega 1 \cup \Omega 2,(4.1)

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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GENT--MCWILLIAMS--REDI EDDY PARAMETRIZATION 8017

Fig. 1. Illustration of the domain near the boundary. In \Omega 0, at a distance of at least 2\eta away
from the boundary the isoneutral density slope L is not modified by the cut-off function \pi \partial \Omega . At a
distance less than 2\eta and more than \eta , in \Omega 1 the density lope L is reduced by the cut-off function
\pi \partial \Omega , at a distance less than \eta , in \Omega 2 both vanish due to the cut-off function.

with \Omega 0 := \{ (x, y, z) \in \Omega : dist((x, y, z), \partial \Omega ) \geq 2\eta \} , \Omega 1 := \{ (x, y, z) \in \Omega : \eta <
dist((x, y, z), \partial \Omega ) < 2\eta \} , and \Omega 2 := \{ (x, y, z) \in \Omega : dist((x, y, z), \partial \Omega ) \leq \eta \} . Fur-
thermore we define the sets

\Omega 0,1 := \Omega 0 \cup \Omega 1 = \{ (x, y, z)\in \Omega : dist((x, y, z), \partial \Omega )> \eta \} ,

\Omega 1,2 :=
\Bigl\{ 
(x, y, z)\in \Omega : dist((x, y, z), \partial \Omega )>

\eta 

2

\Bigr\} 
,

(4.2)

in such a way that the boundary \partial \Omega 1,2 is of class C2. We use the ``cut-off"" function""
\pi \partial \Omega to define isoneutral density slopes in the interior ocean. Let \xi : [0,\infty ]\rightarrow [0,1] be
a C\infty monotonic nondecreasing function

\xi (s) =

\Biggl\{ 
0 if 0\leq s < 1,

1 if s\geq 2.
(4.3)

Define for a given \eta > 0 and (x, y, z)\in \=\Omega the cut-off function

\pi \partial \Omega (x, y, z) := \xi 

\biggl( 
dist((x, y, z), \partial \Omega )

\eta 

\biggr) 
.(4.4)

The physical requirement of a minimal stratification is implemented by the tapering
function \Pi s0,\epsilon 0 in Definition 4.1.

Definition 4.1 (regularized neutral physics). Suppose \theta \in H1(\Omega ) \cap L\infty 
I\theta 
(\Omega ), S \in 

H1(\Omega )\cap L\infty 
IS
(\Omega ).

(i) Let j \in C\infty (\Omega ) be a regularizing kernel with j > 0 on \Omega ,
\int 
\Omega 
j dx= 1, j\eta (x) :=

\eta  - 3j( 2x\eta ). Define for density \rho \in L\infty 
I\rho 
(\Omega ) the regularized density \~\rho by

\~\rho (x, y, z) :=

\Biggl\{ \int 
\Omega 
j\eta (x - \~x, y - \~y, z  - \~z)\rho (\~x, \~y, \~z)d\~xd\~yd\~z for (x, y, z)\in \Omega 1,2,

0 else.

(4.5)

(ii) We define the isoneutral density slope vector L :=L(\~\rho ) := (Lx(\~\rho ),Ly(\~\rho )) with
respect to the density \~\rho by

L(x, y, z, t) :=L(\~\rho )(x, y, z, t) :=

\left\{       
 - \nabla h\~\rho (x, y, z, t)

\partial z \~\rho (x, y, z, t)
\pi \partial \Omega \Pi s0,\epsilon 0

\bigl( 
| \partial z \~\rho (x, y, z, t)| 

\bigr) 
for (x, y, z)\in \Omega \setminus N(\partial z \~\rho ),

0 else,

(4.6)
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8018 PETER KORN AND E. S. TITI

with N(\partial z \~\rho ) := \{ (x, y, z) \in \Omega : | \partial z \~\rho (x, y, z)| \leq s0  - \epsilon 0\} , s0 > \epsilon 0 > 0, and
\Pi s0,\epsilon 0 : [0,\infty )\rightarrow [0,1] a monotonic nondecreasing C\infty -function that satisfies

\Pi s0,\epsilon 0(x) =

\Biggl\{ 
1 for x\geq s0,

0 for 0\leq x\leq s0  - \epsilon 0.
(4.7)

The numbers s0, \epsilon 0 denote the minimal required stratification and width of
the transition zone in which we reduce the density slope towards zero if the
stratification is locally less than s0.

4.2. Eddy-induced diffusion and advection of tracers. In this section we
introduce the eddy operators \frakD \BbbK iso

and \frakD \BbbK GM
that define eddy-induced diffusion and

advection.

Definition 4.2 (eddy operators). Let \theta \in H1(\Omega ) \cap L\infty 
I\theta 
(\Omega ), S \in H1(\Omega ) \cap L\infty 

IS
(\Omega )

be admissible temperature and salinity fields with associated isoneutral density slope
vector L=L(\~\rho ) = (Lx(\~\rho ),Ly(\~\rho )), defined in (4.6).

(i) The isoneutral diffusion operator \frakD \BbbK iso
(\~\rho ) is for C \in \{ \theta ,S\} defined by

\frakD \BbbK iso(\~\rho )(C) := - \nabla 3 \cdot 
\bigl( 
\BbbK iso(\~\rho )\nabla 3C

\bigr) 
,(4.8)

with \BbbK iso(\~\rho ) :=
KI

1 +L2

\left(  1 + \delta L2
x +L2

y (\delta  - 1)LxLy (1 - \delta )Lx

(\delta  - 1)LxLy 1 +L2
x + \delta L2

y (1 - \delta )Ly

(1 - \delta )Lx (1 - \delta )Ly \delta +L2

\right)  ,(4.9)

where \delta := KD

KI
\ll 1 is the fraction of isoneutral and dianeutral mixing coeffi-

cients KD,KI > 0 and L2 :=L \cdot L.
(ii) The operator of eddy-induced advection \frakD \BbbK GM

is for C \in \{ \theta ,S\} defined by

\frakD \BbbK GM
(\~\rho )(C) :=\nabla 3 \cdot 

\bigl( 
\BbbK GM (\~\rho )\nabla 3C

\bigr) 
,(4.10)

with \BbbK GM (\~\rho ) := \kappa 

\left(  0 0  - Lx

0 0  - Ly

Lx Ly 0

\right)  \kappa > 0.(4.11)

The eddy-induced transport velocity is defined as

v\ast := - \partial z(\kappa L), and w\ast :=\nabla \cdot (\kappa L) on \Omega 0,1.(4.12)

Remark 4.3. If the density slope L(x, y, z, t) is reduced to zero, then the isoneutral
diffusion operator \frakD \BbbK iso

locally reduces to an anisotropic Laplacian operator with
horizontal diffusivity KI > 0 and vertical diffusivity KD > 0, and the eddy advection
operator \frakD \BbbK GM

vanishes.

Remark 4.4 (flux balance). The purely isoneutral flux \scrF iso(C) := \BbbK iso(\~\rho )\nabla 3C
with KD = 0 maintains the balance \alpha \scrF iso(C)(\theta ) = \beta \scrF iso(S). This balance avoids
spurious buoyancy fluxes. Preserving this balance on the discrete level is essential
for discretizing the isoneutral operator in a physically consistent manner and pre-
vents a numerical instability (cf. [27, 18]). The calculation of the isoneutral flux in
Definition 4.1 preserves this flux balance.

Remark 4.5 (eddy advection). The advective part of the eddy parametrization
approximates the additional eddy transport of oceanic tracers in terms of the ``eddy-
induced transport velocity"" v\circ 3 = (v\circ ,w\circ ) such that v\prime C \prime \sim v\circ 3C, where the overbar
denotes the mean and the primed variables the fluctuations. The eddy-induced ve-
locity v\circ 3 is determined from a stream function \Psi = (\Psi x,\Psi y,0) by v\circ 3 = curl\Psi and
\Psi := \vec{}z \times \kappa L. A direct calculation shows that v\circ \cdot \nabla 3C = - \nabla 3 \cdot (\BbbK GM\nabla 3C).
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GENT--MCWILLIAMS--REDI EDDY PARAMETRIZATION 8019

4.3. Small density slope approximation. In simulations of a real ocean, nu-
merical circulation models use for efficiency reasons the ``small slope approximation""
of isoneutral diffusion (see [15]),

\BbbK small
iso :=KI

\left(  1 0 L\circ 
x

0 1 L\circ 
y

L\circ 
x L\circ 

y \delta + | L\circ | 2

\right)  , \BbbK small
GM := \kappa 

\left(  0 0  - L\circ 
x

0 0  - L\circ 
y

L\circ 
x L\circ 

y 0

\right)  ,(4.13)

where for a chosen parameter r\ll 1 the ``small density slope"" is defined by

L\circ :=

\Biggl\{ 
L if | L| < r,
0 else.

(4.14)

This approximation is justified by the real-world observation that in oceans horizontal
density gradients are generally smaller than vertical density gradients, and therefore
the off-diagonal terms in (4.9) can be neglected (see [17, Chapter. 14]).

We define the eddy operators in the small slope approximation accordingly as

\frakD \BbbK small
iso

(\~\rho )(C) :=\nabla 3 \cdot (\BbbK small
iso \nabla 3C), \frakD \BbbK small

GM
(\~\rho )(C) :=\nabla 3 \cdot (\BbbK small

GM \nabla 3C).(4.15)

4.4. Properties of the eddy parametrization.

Lemma 4.6. Let \theta \in L2
loc([0, T ], V\theta \cap L\infty 

I\theta 
(\Omega )), S \in \L2

loc([0, T ], VS \cap L\infty 
IS
(\Omega )) and let

L be the isoneutral density slope, defined as in (4.6).
(i) The density slope satisfies L\in L\infty ([0, T ],H2(\Omega )), and

| | L| | H2(\Omega 0,1) \leq | | \rho | | 2L2(\Omega ).(4.16)

(ii) Let (v, \theta ,S) be a strong solution of (5.5) (cf. Definition 5.1(i). Then \partial tL \in 
L\infty ([0, T ],L2(\Omega )).

(iii) Let two pairs of temperature and salinity fields (\theta 1, S1), (\theta 2, S2) \in L2
loc([0, T ],

(V\theta \cap L\infty 
I\theta 
(\Omega )) \times L2

loc([0, T ], VS \cap L\infty 
IS
(\Omega )) be given. For two density slopes

L(\~\rho 1),L(\~\rho 2) it holds that

| | L(\~\rho 1)(t) - L(\~\rho 2)(t)| | L\infty (\Omega ) \leq c\tau 

\biggl( 
c

s0
+
C

s20

\biggr) 
| I\rho | | | \rho 1(t) - \rho 2(t)| | L2(\Omega ),

(4.17)

Proof. Ad (i) We decompose the domain \Omega 0,1 = I1\cup I2\cup I3, where I1 := \{ (x, y, z)\in 
\Omega 0,1 : | \partial z \~\rho (x, y, z)| \geq s0\} , I2 := \{ (x, y, z) \in \Omega 0,1 : s0  - \epsilon \leq | \partial z \~\rho (x, y, z)| \leq s0\} , I3 :=
\{ (x, y, z) \in \Omega 0,1 : 0 \leq | \partial z \~\rho (x, y, z)| < s0  - \epsilon \} . These sets are measurable, since \partial z \~\rho is
continuous. Using this decomposition we find that, with l \in \BbbN 3,

| | L| | 2H2(\Omega 0,1)
=
\sum 
| l| \leq 2

\int 
I1

\bigm| \bigm| \bigm| \bigm| Dl

\biggl( 
\nabla h\~\rho 

\partial z \~\rho 

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dxdydz + \int 
I2

\bigm| \bigm| \bigm| \bigm| Dl

\biggl( 
\nabla h\~\rho 

\partial z \~\rho 
\Pi s0,\epsilon 0(| \partial z \~\rho | )

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dxdydz,
(4.18)

where the integral over I3 vanishes due to the tapering by \Pi s0,\epsilon 0 . For the first integral
we obtain with the Leibniz rule the commutation of convolution and differentiation
for k \in \BbbN 3: \int 

I1

| DlL| 2 dxdydz =
\sum 
| k| \leq l

\int 
I1

| Dk(\nabla h\~\rho )D
l - k((\partial z \~\rho )

 - 1)| 2 dxdydz

\leq c
\sum 
| k| \leq l

\int 
I1

| (\rho \ast Dk+1j\eta )(\rho \ast Dl - k+1j\eta )| 2 dxdydz \leq c| | \rho | | 4L2(\Omega ).

(4.19)
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8020 PETER KORN AND E. S. TITI

An analogous estimate follows for the second integral in (4.18), with an upper bound
c > 0 that depends in addition on \Pi s0,\epsilon 0 .

Ad (ii) For the L2-norm of the time derivative, it follows, with l \in \BbbN 3 and by using
the same decomposition of \Omega 0,1 = I1 \cup I2 \cup I3 as in part (i), that

| | \partial tL| | 2L2(\Omega 0,1)
=

\int 
I1

\bigm| \bigm| \bigm| \bigm| \partial t\biggl( \nabla h\~\rho 

\partial z \~\rho 

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dxdydz + \int 
I2

\bigm| \bigm| \bigm| \bigm| \partial t\biggl( \nabla h\~\rho 

\partial z \~\rho 
\Pi s0,\epsilon 0(| \partial z \~\rho | )

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dxdydz.
(4.20)

For the first integral on the right-hand side we obtain

\int 
I1

\bigm| \bigm| \bigm| \bigm| \partial t\biggl( \nabla h\~\rho 

\partial z \~\rho 

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dxdydz = \int 
I1

\bigm| \bigm| \bigm| \bigm| \partial z \~\rho \partial t\nabla h\~\rho  - \nabla h\~\rho \partial t\partial z \~\rho 

| \partial z \~\rho | 2

\bigm| \bigm| \bigm| \bigm| 2 dxdydz \leq c

\int 
I1

| g| 2 dxdydz

(4.21)

with g := \partial z \~\rho \partial t\nabla h\~\rho  - \nabla h\~\rho \partial t\partial z \~\rho . For the function g in (4.21) we obtain

| g| = | \partial xj
\~\rho \partial t\partial xi

\~\rho | = | 
\bigl( 
\rho \ast Jj

1

\bigr) \bigl( 
\partial t\rho \ast Jxi

1

\bigr) 
| \leq c| \partial t\rho \ast Jxi

1 | = | (aF\theta + bFS) \ast Jxi
1 | ,

(4.22)

with Jxi
1 := \partial xi

j\eta \in C\infty (\Omega ) (i = 1,2,3) and where we have used the evolution equa-
tion (3.8) for density. The thermal expansion function ``a"" and the saline contraction
function ``b"" are defined as in (3.8). For aF\theta follows with the boundedness of the
thermal expansion function

\int 
I1

| (aF\theta ) \ast Jxi
1 | 2 dxdydz =

\int 
I1

| 
\bigl( 
adiv3(v\theta + (\BbbK iso(\~\rho ) +\BbbK GM (\~\rho ))\nabla 3\theta )

\bigr) 
\ast Jxi

1 | 2 dxdydz

\leq | | a| | 2L\infty (\Omega )

\int 
I1

| 
\bigl( 
v\theta + (\BbbK iso(\~\rho ) +\BbbK GM (\~\rho ))\nabla 3\theta 

\bigr) 
\ast \nabla 3J

xi
1 | 2 dxdydz \leq M\theta ,

(4.23)

where M\theta (t) denotes a continuous function that dominates the integral in (4.23),
because the integrand is a convolution of an integrable function with a regularizing
kernel and therefore smooth and bounded. Analogously, it follows for bFS in (4.22)
that

\int 
I1
| bFS\ast Jn - l

1 | 2 dxdydz \leq MS . The functionM :=M\theta +MS bounds the first term
on the right-hand side of (4.20). The bound for the second term follows analogously.

Ad (iii) From the continuity of \Pi s0,\epsilon 0 and the regularity properties of \~\rho follows

| L2  - L1| \leq 
\biggl( 
c

s0
+
C

s20

\biggr) 
| | \nabla h\~\rho 1| | H2(\Omega 0,1)| | \partial z(\~\rho 1  - \~\rho 2)| | H2(\Omega 0,1)

+
C

s20
| | \partial z \~\rho 1| | H2(\Omega 0,1)| | \nabla (\~\rho 1  - \~\rho 2)| | H2(\Omega 0,1)

\leq c\tau 

\biggl( 
c

s0
+
C

s20

\biggr) 
| I\rho | | | \rho 1(t) - \rho 2(t)| | L2(\Omega ).

Remark 4.7. Lemma 4.6 is used in Theorem 5.2 on the existence of weak solutions,
where we use it to prove the convergence of the Galerkin approximation of the eddy
operators. We need this result also for the elliptic regularity of \frakD \BbbK iso

in Lemma 4.9.
In our main result, Theorem 5.4, we apply the lemma to establish the H1-estimate
for temperature and salinity, to prove the estimate on the time derivative of these
tracers for the Aubin--Lions lemma and in the uniqueness part of the proof.
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GENT--MCWILLIAMS--REDI EDDY PARAMETRIZATION 8021

Lemma 4.8 (ellipticity of \BbbK iso). Let an isoneutral density slope L0 := L(\~\rho 0),
defined as in (4.6), be given. The isoneutral operator \frakD \BbbK iso , defined as in (4.8),
satisfies for \theta \in H1(\Omega )\cap L\infty 

I\theta 
(\Omega ), S \in H1(\Omega )\cap L\infty 

IS
(\Omega ) the following inequalities:

\mu | | \nabla 3\theta | | 2L2(\Omega ) + k\theta 

\int 
\Gamma u

| \theta (x, y,0)| 2 dxdy

\leq 
\int 
\Omega 

\frakD \BbbK iso
(\~\rho 0)(\theta )\theta dxdydz \leq M | | \nabla 3\theta | | 2L2(\Omega ) + k\theta 

\int 
\Gamma u

| \theta (x, y,0)| 2 dxdy

and \mu | | \nabla 3S| | 2L2(\Omega ) \leq 
\int 
\Omega 

\frakD \BbbK iso
(\~\rho 0)(S)S dxdydz \leq M | | \nabla 3S| | 2L2(\Omega ),

with \mu :=min\{ KI ,KD\} ,M :=max\{ KI ,KD\} .
(4.24)

Proof. The isoneutral mixing operator \BbbK iso can be written as

\BbbK iso(\~\rho ) =\scrR (L)\BbbD \scrR T (L),(4.25)

where the orthogonal matrix \scrR (L) and the diagonal matrix \BbbD are given by

\scrR (L) :=

\left(   
Ly

| L| 
Lx

| L| 
\surd 
1+L2

 - Lx\surd 
1+L2

 - Lx

| L| 
Ly

| L| 
\surd 
1+L2

 - Ly\surd 
1+L2

0 L\surd 
1+L2

1\surd 
1+L2

\right)   , \BbbD =

\left(  KI 0 0
0 KI 0
0 0 KD

\right)  .(4.26)

For (4.24) it follows after integration by parts and with (4.25) that\int 
\Omega 

\frakD \BbbK iso
(\~\rho 0)(C)C dxdydz =

\int 
\Omega 

| \BbbD 1/2\scrR T (L0)\nabla 3C| 2 dxdydz

+ kC

\int 
\Gamma u

| C(x, y,0)| 2 dxdy

=

\int 
\Omega 

KI | (\scrR T (L0)\nabla 3C) \cdot e1| 2 +KI | (\scrR T (L0)\nabla 3C) \cdot e2| 2

+KD| (\scrR T (L0)\nabla 3C) \cdot e3| 2 dxdydz + kC

\int 
\Gamma u

| C(x, y,0)| 2 dxdy,

where ei, i = 1,2,3, denotes the canonical basis in \BbbR 3 and \BbbD 1/2 := diag(
\surd 
KI ,

\surd 
KI ,\surd 

KD) the diagonal matrix. Since \scrR T (L0) is orthogonal, the assertion follows.

Lemma 4.9 (elliptic estimate for isoneutral operator). Let F,G\in L2(\Omega ) be given.
Then there exists a solution (\theta ,S) of the equation system for the isoneutral diffusion
operator \frakD \BbbK iso

(cf. (4.8)),

\frakD \BbbK iso
(\~\rho )(\theta ) = F and \frakD \BbbK iso

(\~\rho )(S) =G,(4.27)

with boundary conditions (5.2). Equation (4.27) is satisfied in the following sense: for
all \phi \theta \in V\theta and \phi S \in VS,\int 

\Omega 

(\BbbK iso(\~\rho )\nabla 3\theta ) \cdot \nabla 3\phi 
\theta dxdydz + k\theta 

\int 
\Gamma u

\theta \phi \theta dxdy=

\int 
\Omega 

F\phi \theta dxdydz,\int 
\Omega 

(\BbbK iso(\~\rho )\nabla 3S) \cdot \nabla 3\phi 
S dxdydz =

\int 
\Omega 

G\phi S dxdydz,

(4.28)

where \BbbK iso is defined as in (4.9). The solution (\theta ,S) satisfies
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8022 PETER KORN AND E. S. TITI

| | \theta | | H2(\Omega ) \leq c| | \frakD \BbbK iso
(\~\rho )(\theta )| | L2(\Omega ) and | | S| | H2(\Omega ) \leq c| | \frakD \BbbK iso

(\~\rho )(S)| | L2(\Omega ),(4.29)

where c = c(KI ,KD, | \Omega | , | I\rho | ), and | I\rho | is the interval length of admissible density
values.

Proof.
Step 1: Solvability of linearized equation. We linearize (4.28) by fixing an

arbitrary pair (\theta \prime , S\prime ) \in V\theta ,\times VS . With the associated density \~\rho \prime := \~\rho \prime (\theta \prime , S\prime ) we
define D\BbbK iso

(\~\rho \prime )(C) := \nabla 3 \cdot 
\bigl( 
\BbbK iso(\~\rho 

\prime )\nabla 3C
\bigr) 
. This operator is linear, continuous, and

uniformly elliptic on V\theta \times VS (cf. Lemma 4.8). The linearized equation on V\theta \times VS
reads \int 

\Omega 

(\BbbK iso(\~\rho 
\prime 
)\nabla 3\theta ) \cdot \nabla 3\phi 

\theta dxdydz + k\theta 

\int 
\Gamma u

\theta \phi \theta dxdy=

\int 
\Omega 

F\phi \theta dxdydz,\int 
\Omega 

(\BbbK iso(\~\rho 
\prime )\nabla 3S) \cdot \nabla 3\phi 

S dxdydz =

\int 
\Omega 

G\phi S dxdydz.

(4.30)

The Lax--Milgram lemma shows that for all fixed \theta \prime \in V\theta , S\prime \in VS , (4.30) has a unique
weak solution \theta = \theta (\theta \prime ) \in V\theta , S = S(S\prime ) \in VS , which according to elliptic regularity
theory (e.g., section 9.6 in [2]) satisfies

| | \theta | | H2(\Omega ) \leq c| | F | | L2(\Omega ) and | | S| | H2(\Omega ) \leq c| | G| | L2(\Omega ),(4.31)

where c depends on the maximum norm | | \nabla 3ki,j(\~\rho 
\prime )| | L\infty of the gradient of the matrix

elements ki,j(\~\rho 
\prime ) of \BbbK iso. Since | | \nabla 3ki,j(\~\rho 

\prime )| | L\infty \leq c0| | \rho \prime | | L2(\Omega ) \leq c0| \Omega | | I\rho | , with c0 de-
pending on constants KI ,KD, we conclude that c= c(KI ,KD, | \Omega | , | I\rho | ). In particular
c is independent of (\theta \prime , S\prime )\in V\theta ,\times VS .

Step 2: Solvability of system (4.28). Consider the mapping H that assigns to each
fixed pair (\theta \prime , S\prime )\in V\theta \times VS a solution (\theta ,S)\in H2(\Omega )\times H2(\Omega ) of (4.30) with coefficient
matrix \BbbK iso(\~\rho 

\prime ):

H : V\theta \times VS \rightarrow V\theta \times VS

(\theta \prime , S\prime ) \mapsto \rightarrow H(\theta \prime , S\prime ) := (\theta ,S).
(4.32)

We assert the following three properties of H:

(i) H maps a closed ball BR \subset V\theta \times VS into itself.

(ii) H is continuous.

(iii) H is compact.

(4.33)

Ad (i) Consider the ball B\theta 
R1

\subset V\theta and BS
R2

\subset VS with radius R1 := c| | F | | L2(\Omega ) and
R2 := c| | G| | L2(\Omega ), with F,G and c= c(KI ,KD, | \Omega | , | I\rho | ) from (4.31). Choose a nonzero
(\theta 0, S0)\in V\theta \times VS , and define \theta \prime :=R1\theta 0/| | \theta 0| | H1(\Omega ) and S

\prime :=R2S0/| | S0| | H1(\Omega ). Then
(\theta \prime , S\prime ) \in BR := B\theta 

R1
\times BS

R2
. From (4.31) it follows that H(\theta \prime , S\prime ) = (\theta ,S) satisfies

| | \theta | | H2(\Omega ) \leq R1, | | S| | H2(\Omega ) \leq R2. Thus | | \theta | | H1(\Omega ) \leq R1 and | | S| | H1(\Omega ) \leq R2.
Ad (ii) Let the sequence (\theta \prime k, S

\prime 
k)k \subseteq V\theta \times VS converge with respect to the H1-

topology of V\theta \times VS to a limit (\theta \prime , S\prime ) \in V\theta \times VS and denote the associated densities
by (\~\rho \prime k)k and \~\rho \prime . For each element of (\theta \prime k, S

\prime 
k)k there exists a solution (\theta k, Sk)k :=

(H(\theta \prime k, S
\prime 
k))k \subseteq V\theta \times VS of (4.30), i.e., for \phi \theta \in V\theta m, \phi S \in VSm, k \in \BbbN we have\int 

\Omega 

(\BbbK iso(\~\rho 
\prime 
k)\nabla 3\theta k) \cdot \nabla 3\phi 

\theta dxdydz + k\theta 

\int 
\Gamma u

\theta k\phi 
\theta dxdy=

\int 
\Omega 

F\phi \theta dxdydz,\int 
\Omega 

(\BbbK iso(\~\rho 
\prime 
k)\nabla 3Sk) \cdot \nabla 3\phi 

S dxdydz =

\int 
\Omega 

G\phi S dxdydz.

(4.34)
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GENT--MCWILLIAMS--REDI EDDY PARAMETRIZATION 8023

For (4.30) with a coefficient matrix \BbbK iso(\~\rho 
\prime ) given by the limit \~\rho \prime of (\~\rho k)k there exists

a solution (\theta \sharp , S\sharp )\in V\theta \times VS such that for \phi \theta \in V\theta , \phi S \in VS\int 
\Omega 

(\BbbK iso(\~\rho 
\prime )\nabla 3\theta 

\sharp ) \cdot \nabla 3\phi 
\theta dxdydz + k\theta 

\int 
\Gamma u

\theta \sharp \phi \theta dxdy=

\int 
\Omega 

F\phi \theta dxdydz,\int 
\Omega 

(\BbbK iso(\~\rho 
\prime )\nabla 3S

\sharp ) \cdot \nabla 3\phi 
S dxdydz =

\int 
\Omega 

G\phi S dxdydz.

(4.35)

We show now that the sequence of solutions (\theta k, Sk) of (4.34) converges to the solution
(\theta \sharp , S\sharp ) of (4.35). After subtracting (4.35) from (4.34) we obtain for the temperature
difference with \widehat \BbbK iso :=\BbbK iso(\~\rho 

\prime 
k) - \BbbK iso(\~\rho 

\prime ) and for \phi \theta \in V\theta that

0 =

\int 
\Omega 

\bigl( 
\BbbK iso(\~\rho 

\prime 
k)\nabla 3\theta k  - \BbbK iso(\~\rho 

\prime )\nabla 3\theta 
\sharp 
\bigr) 
\cdot \nabla 3\phi 

\theta dxdydz + k\theta 

\int 
\Gamma u

(\theta k  - \theta \sharp )\phi \theta dxdy

(4.36)

=

\int 
\Omega 

\bigl( \widehat \BbbK iso\nabla 3\theta k +\BbbK iso(\~\rho 
\prime )\nabla 3(\theta k  - \theta \sharp )

\bigr) 
\cdot \nabla \phi \theta dxdydz + k\theta 

\int 
\Gamma u

(\theta k  - \theta \sharp )\phi \theta dxdy.

In the first term on the right-hand side of (4.36), the differences \widehat \BbbK iso = (\^ki,j)i,j can
be bounded by density slope differences, i.e., | \^ki,j | \leq c| L(\~\rho \prime k)  - L(\~\rho \prime )| . Lemma 4.6
bounds slope differences by density differences, | L(\~\rho \prime k)  - L(\~\rho \prime )| \leq c| \~\rho \prime k  - \~\rho \prime | , and
Lemma 3.3 bounds density differences by temperature, salinity differences, and with
the H1-convergence of (\theta \prime k, S

\prime 
k) to (\theta \prime , S\prime ) as follows:

lim
k\rightarrow \infty 

\int 
\Omega 

\bigl( \widehat \BbbK iso\nabla 3\theta k
\bigr) 
\cdot \nabla 3\phi 

\theta dxdydz

\leq c lim
k\rightarrow \infty 

| | \theta k| | H1(\Omega )| | \phi \theta | | H1(\Omega )

\bigl( 
| | \theta \prime  - \theta \prime k| | L2(\Omega )) + | | S\prime  - S\prime 

k| | L2(\Omega ))

\bigr) 
= 0.

(4.37)

For the second term on the right-hand side of (4.36) we derive with the ellipticity of
\BbbK iso (cf. Lemma 4.9) and with the particular choice \phi \theta := \theta k  - \theta \sharp 

0\geq lim
k\rightarrow \infty 

\bigm| \bigm| \int 
\Omega 

\bigl( 
\BbbK iso(\~\rho 

\prime )\nabla 3(\theta k  - \theta \sharp )
\bigr) 
\cdot \nabla 3(\theta k  - \theta \sharp )dxdydz + k\theta 

\int 
\Gamma u

| \theta k  - \theta \sharp | 2 dxdy
\bigm| \bigm| 

\geq \mu lim
k\rightarrow \infty 

\bigl\{ 
| | \nabla 3(\theta k  - \theta \sharp )| | 2L2(\Omega ) + k\theta | | \theta k(z = 0) - \theta \sharp (z = 0)| | 2L2(\Omega )

\bigr\} 
.

(4.38)

From the convergence of (\nabla 3\theta k)k to \nabla \theta \sharp in L2(\Omega ) and of (\theta k(z = 0))k in L2(\Gamma u) to
\theta \sharp (z = 0) it follows with Poincar\'e's inequality (cf. Proposition III.2.38 in [3]) that
(\theta k)k converges to \theta \sharp in H1(\Omega ). Thus (\theta k)k converges to \theta \sharp in H1(\Omega ). For salinity we
obtain an analogous statement to (4.38); here the boundary term is absent due to the
boundary condition for salinity. From Poincar\'e's inequality (cf. Proposition III.2.39
in [3]) it follows that (Sk)k converges to S\sharp in H1(\Omega ). Since (\theta k, Sk) =H(\theta \prime k, S

\prime 
k) and

(\theta \sharp , S\sharp ) =H(\theta \prime , S\prime ) this proves the continuity of H.
Ad (iii) Consider a sequence (\theta \prime k, S

\prime 
k)k \subseteq B\theta 

R1
\times BS

R2
. The elements of the image

sequence under H, (\theta k, Sk) :=H(\theta \prime k, S
\prime 
k), solve (4.30) with coefficients determined by

\~\rho \prime k := \~\rho (\theta \prime k, S
\prime 
k). This implies that for all k \in \BbbN the solution \theta k, Sk satisfies

| | \theta k| | H2(\Omega ) \leq c| | F | | L2(\Omega ) and | | Sk| | H2(\Omega ) \leq c| | G| | L2(\Omega ),(4.39)

since c = c(KI ,KD, | \Omega | , | I\rho | ) depends on the data, and is finite, the sequence is
bounded uniformly in H2(\Omega ). This implies that (\theta k, Sk)k converges weakly in H2(\Omega ).
Due to the compact embedding ofH2(\Omega ) inH1(\Omega ) there exists a subsequence (\theta n, Sn)n
that converges in H1(\Omega ).
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8024 PETER KORN AND E. S. TITI

From properties (i) - (iii) in (4.33) it follows from the Tikhonov--Schauder fixed-
point theorem that the mapping H has a fix point, i.e., H(\theta ,S) = (\theta ,S).

5. Regularity results of ocean primitive equations with mesoscale eddy
parametrization. We now specify boundary conditions and introduce basic function
spaces. In section 5.1 we state our main results.

Boundary conditions. The domain is \Omega :=M \times ( - h,0) \subseteq \BbbR 3, with depth h > 0;
the bottom M \subseteq \BbbR 2 is a bounded domain in \BbbR 2 with a boundary \partial M that is a
C2-curve. The boundary \partial \Omega = \Gamma s \cup \Gamma b \cup \Gamma u consists of a lateral boundary \Gamma s :=
\{ (x, y, z) \in \=\Omega : (x, y) \in \partial M\} , a bottom boundary \Gamma b := \{ (x, y, z) \in \=\Omega : z = - h\} , and a
surface boundary \Gamma u := \{ (x, y, z) \in \=\Omega : z = 0\} . The boundary conditions follow Cao
and Titi [4]. Specifically, we impose at the top a wind-driven boundary condition
for velocity and a rigid-lid for vertical velocity. At the side is a no-penetration and
a stress-free boundary condition, and at the bottom we employ for the horizontal
velocity the stress-free boundary condition for the horizontal and a no-penetration
boundary condition for the vertical velocity:

on \Gamma u : \partial zv= h\tau ,w= 0,(5.1a)

on \Gamma s : v \cdot \vec{}n= 0, \partial \vec{}nv\times \vec{}n= 0,w= 0,(5.1b)

on \Gamma b : \partial zv= 0,w= 0,(5.1c)

where \tau is a given 2D wind stress field. Since the isoneutral density slope vector
L vanishes by definition in the vicinity of the boundary \partial \Omega , only constant diagonal
matrix terms of \BbbK iso remain. This allows us to express the tracer boundary conditions
without the mixing tensor \BbbK iso in the following way:

on \Gamma u : \nabla 3\theta \cdot n3 = - k\theta (\theta  - \theta \ast ) and \nabla 3S \cdot n3 = 0,(5.2a)

on \Gamma s : \nabla 3\theta \cdot \vec{}n=\nabla 3S \cdot \vec{}n= 0,(5.2b)

on \Gamma b : \nabla 3\theta \cdot n3 =\nabla 3S \cdot n3 = 0.(5.2c)

The boundary conditions for velocity and potential temperature can be homogenized
(see [31, section 2.4], [4, p. 248]) by adding a \tau - and \theta \ast -dependent term such that we
can assume without loss of generality that \tau = 0 and \theta \ast = 0.

Function spaces. We define the spaces for velocity, temperature, and salinity.

\~Hv :=

\biggl\{ 
v \in (L2(\Omega ))2 : \nabla h \cdot 

\int 0

 - h

v(z)dz = 0, v satisfies boundary condition (5.1)

\biggr\} 
,

\~H\theta :=

\biggl\{ 
\theta \in L2(\Omega ) : \theta satisfies boundary condition (5.2) for temperature

\biggr\} 
,

\~HS :=

\biggl\{ 
S \in L2(\Omega ) : S satisfies boundary condition (5.2) for salinity,

\int 
\Omega 

Sdxdydz = 0

\biggr\} 
,

\~Vv :=

\biggl\{ 
v \in (C\infty (\=\Omega ))2 : v satisfies boundary condition (5.1)

\biggr\} 
,

\~V\theta :=

\biggl\{ 
\theta \in C\infty (\=\Omega ) : \theta satisfies boundary condition (5.2) for temperature

\biggr\} 
,

\~VS :=

\biggl\{ 
S \in C\infty (\=\Omega ) : S satisfies boundary condition (5.2) for salinity,

\int 
\Omega 

S dxdydz = 0

\biggr\} 
.

Denote by Vv, V\theta , VS the closure of \~Vv in the Sobolev space (H1(\Omega ))2 and of \~V\theta , \~VS
in H1(\Omega ) and by H2

v ,H
2
\theta ,H

2
S the closure of \~Vv in (H2(\Omega ))2 and of \~V\theta , \~VS in H2(\Omega ).
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GENT--MCWILLIAMS--REDI EDDY PARAMETRIZATION 8025

The vertical velocity w, which is determined by the constraint (1.1c), can by
virtue of the boundary conditions be expressed as

w(x, y, z, t) = - 
\int z

 - h

\nabla h \cdot v(x, y, \xi , t)d\xi = - \nabla \cdot 
\int z

 - h

v(x, y, \xi , t)d\xi .(5.3)

The pressure term in the velocity equation (1.1a) can with the hydrostatic approxi-
mation (1.1b) be formulated as

p(x, y, z, t) =

\int z

 - h

g\rho (\theta ,S, pst)(x, y, \xi , t)d\xi + ps(x, y, t),(5.4)

where ps is the surface pressure, and pst is the static pressure given by (3.3).

Definition 5.1 (weak and strong solutions). Let initial conditions v0 \in Hv and
\theta 0 \in H\theta \cap L\infty 

I\theta 
(\Omega ), S0 \in HS \cap L\infty 

IS
(\Omega ) be given and [0, T ], T > 0 be a time interval.

Denote by \BbbK iso,\BbbK GM the isoneutral diffusion and the advection tensor, defined as in
(4.9) and (4.11), respectively.

(i) The triple (v, \theta ,S) is called a weak solution of (1.1) on [0, T ] if it satisfies for
all test functions \Phi \in H2

v and \phi \theta \in H2
\theta , \phi 

S \in H2
S the equations

\int 
\Omega 

\partial tv \cdot \Phi dx+
\int 
\Omega 

(v \cdot \nabla )v \cdot \Phi dx - 
\int 
\Omega 

\biggl( 
\nabla \cdot 
\int z

 - h

v(x, y, \xi , t)d\xi 

\biggr) 
(\partial zv)\Phi dxdydz

(5.5a)

+

\int 
\Omega 

\biggl( \int z

 - h

g\rho (x, y, \xi , t)d\xi 

\biggr) 
\nabla h \cdot \Phi dxdydz +

\int 
\Omega 

f\vec{}k\times v\Phi dxdydz

+

\int 
\Omega 

1

Re1
\nabla v \cdot \nabla \Phi +

1

Re2
\partial zv\partial z\Phi dxdydz = 0,

\int 
\Omega 

\partial t\theta \phi 
\theta dxdydz +

\int 
\Omega 

(v \cdot \nabla )\theta \phi \theta dxdydz

(5.5b)

 - 
\int 
\Omega 

\biggl( 
\nabla \cdot 
\int 0

 - h

v(x, y, \xi , t)d\xi 

\biggr) 
(\partial z\theta )\phi dxdydz + k\theta 

\int 
\Gamma u

\theta \phi \theta dxdy

+

\int 
\Omega 

\bigl( 
\BbbK iso(\~\rho )\nabla 3\theta 

\bigr) 
\cdot \nabla 3\phi 

\theta dxdydz +

\int 
\Omega 

\bigl( 
\BbbK GM (\~\rho )\nabla 3\theta 

\bigr) 
\cdot \nabla 3\phi 

\theta dxdydz = 0,

\int 
\Omega 

\partial tS\psi 
S dxdydz +

\int 
\Omega 

(v \cdot \nabla )S\psi S dxdydz

(5.5c)

 - 
\int 
\Omega 

\biggl( 
\nabla \cdot 
\int 0

 - h

v(x, y, \xi , t)d\xi 

\biggr) 
(\partial zS)\psi 

S dxdydz

+

\int 
\Omega 

\bigl( 
\BbbK iso(\~\rho )\nabla 3S

\bigr) 
\cdot \nabla 3\psi 

S dxdydz +

\int 
\Omega 

\bigl( 
\BbbK GM (\~\rho )\nabla 3S

\bigr) 
\cdot \nabla 3\psi 

S dxdydz = 0,

with \rho = \rho (\theta ,S, pst) given by (3.4) and if (v, \theta ,S) satisfies

v \in C([0, T ],L2(\Omega ))\cap L2([0, T ], Vv),

\theta \in C([0, T ],H\theta \cap L\infty 
I\theta 
(\Omega ))\cap L2([0, T ], V\theta ),

S \in C([0, T ],HS \cap L\infty 
IS (\Omega ))\cap L

2([0, T ], VS),

\partial tv \in L1([0, T ], (H2(\Omega ))\ast ),

\partial t\theta \in L1([0, T ], V\theta 
\ast ), \partial tS \in L1([0, T ], VS

\ast ).
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8026 PETER KORN AND E. S. TITI

(ii) The triple (v, \theta ,S) is called a strong solution of (1.1) on [0,\scrT ] if it satisfies
(5.5) for all test functions \Phi \in Vv and \phi \theta \in V\theta , \phi S \in VS and if

v \in C([0, T ], Vv)\cap L2([0, T ],H2(\Omega )(\Omega )),

\theta \in C([0, T ], V\theta )\cap L2([0, T ],H2(\Omega )(\Omega )),

S \in C([0, T ], VS)\cap L2([0, T ],H2(\Omega )(\Omega )),

\partial tv \in L1([0, T ],L2(\Omega )),

\partial t(\theta ,S)\in L1([0, T ],L2(\Omega )).

5.1. Statement of main results.

Theorem 5.2 (existence of weak solutions). Let v0 \in H\theta , \theta 0 \in H\theta \cap L\infty 
I\theta 
(\Omega ), S0 \in 

HS \cap L\infty 
IS
(\Omega ), and the time interval [0, T ], T > 0, be given. Then there exists a weak

solution (v, \theta ,S) in the sense of Definition 5.1(i) of (5.5) on [0, T ].

Corollary 5.3 (small density slope approximation: existence of weak solu-
tions). The assertion of Theorem 5.2 remains valid if in (5.5) the eddy operators
\BbbK iso,\BbbK GM are replaced by their small density slope approximations \BbbK small

iso ,\BbbK small
GM ,

defined as in (4.15).

Theorem 5.4 (global well-posedness). Let v0 \in V\theta , \theta 0 \in V\theta \cap L\infty 
I\theta 
(\Omega ), S0 \in VS \cap 

L\infty 
IS
(\Omega ), and the time interval [0, T ], T > 0, be given. Then there exists a strong

solution (v, \theta ,S) in the sense of Definition 5.1(ii) of (5.5) on [0, T ]. This solution is
unique and depends continuously on the initial conditions.

Corollary 5.5 (global well-posedness; small density slope approximation). The
assertions of Theorem 5.4 remain valid if in (5.5) the eddy operators \BbbK iso,\BbbK GM are re-
placed by their small density slope approximations \BbbK small

iso ,\BbbK small
GM , defined as in (4.15).

5.2. Proof of Theorem 5.2.

Proof. We use a Galerkin approximation of system (5.5). By Pm we denote the
projection of the velocity space Vv on Vv

m := span\{ \psi k : k = 1, . . . ,m\} spanned by
eigenfunctions of the Stokes operator. The anisotropic Laplacian operators R\theta :=
 - KI\bigtriangleup  - KD\partial 

2
zz and RS := - KI\bigtriangleup  - KD\partial 

2
zz, whose respective domains are the closure

of V\theta and VS in H2(\Omega ), with boundary conditions given by (5.2), are positive and
self-adjoint, such that each has a compact inverse (cf. [5]). Consequently there exist
orthonormal bases (\phi \theta k)k and (\phi Sk )k of L2(\Omega ) of eigenfunctions of R\theta and RS . Denote
V\theta 

m := span\{ \phi \theta k : k = 1, . . . ,m\} and VS
m := span\{ \phi Sk : k = 1, . . . ,m\} . The projection

of V\theta , VS on V\theta 
m, VS

m is denoted by PV\theta 
m , PVS

m , respectively.
Step 1: Formulation of approximative system. We approximate velocity, temper-

ature, and salinity in terms of projection on the span of the respective basis functions.
With Cm \in \{ \theta m, Sm\} this reads

vm(x, y, z, t) :=Pmv(x, y, z, t) :=

m\sum 
k=1

ak(t)\psi k(x, y, z),

Cm(x, y, z, t) := PmC(x, y, z, t) :=

m\sum 
k=1

bCk (t)\phi 
C
k (x, y, z).

(5.6)

The Galerkin approximation to (1.1) reads as follows:
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GENT--MCWILLIAMS--REDI EDDY PARAMETRIZATION 8027

\partial tvm = - Pm[(vm \cdot \nabla )vm] +Pm

\biggl[ \biggl( \int z

 - h

\nabla \cdot vm(\xi )d\xi 

\biggr) 
\partial zvm

\biggr] 
 - f\vec{}k\times vm

 - \nabla 
\int z

 - h

g\rho m(x, y, z\prime , t)dz\prime +\nabla (ps)m +
1

Re1
Pm\bigtriangleup vm +

1

Re2
Pm\partial 

2
zzvm,

(5.7a)

\partial tCm = - Pm(vm \cdot \nabla )Cm  - Pm

\biggl[ \biggl( \int z

 - h

\nabla \cdot vm(\xi )d\xi 

\biggr) 
\partial zCm

\biggr] 
 - Pm\frakD \BbbK iso

(\~\rho m)(Cm)

 - Pm\frakD \BbbK GM
(\~\rho m)(Cm),

(5.7b)

with initial conditions vm(t = 0) := Pmv0,Cm(t = 0) := PmC0 and with density
\rho m := Pm\rho (\theta m, Sm) calculated from \theta m, Sm. The Galerkin approximation Lm of the
isoneutral density slope is defined as

Lm := Pm
\nabla h\~\rho m
\partial z \~\rho m

\Pi s0,\epsilon 0(| \partial z \~\rho m| )\pi \partial \Omega .(5.8)

Step 2: Local existence in time of approximative system. The jth component of
the Galerkin approximation is for t\in [0, T ] given by

d

dt
aj(t) =G(j)

v (t) and
d

dt
bCj (t) =G

(j)
C (t),(5.9)

with right-hand sides

G(j)
v (t) := - 

m\sum 
k,l=1

ak(t)al(t)
\bigl\langle 
(\psi k \cdot \nabla )\psi l,\psi j

\bigr\rangle 
L2  - g

m\sum 
k

dk

\biggl\langle 
\nabla 
\int z

 - h

\psi k(x, y, z
\prime )dz\prime ,\psi j

\biggr\rangle 
L2

(5.10)

 - 
m\sum 

k,l=1

ak(t)al(t)

\biggl\langle \biggl( \int z

 - h

\nabla \cdot \psi l(\xi )d\xi 

\biggr) 
\partial z\psi k,\psi j

\biggr\rangle 
L2

 - 1

Re1

m\sum 
k=1

ak(t)
\bigl\langle 
\nabla \psi k,\nabla \psi j

\bigr\rangle 
L2  - 

1

Re2

m\sum 
k=1

ak(t)
\bigl\langle 
\partial z\psi k, \partial z\psi j

\bigr\rangle 
L2 ,

G
(j)
C (t) := - 

m\sum 
k=1

ak(t)b
C
k (t)

\bigl\langle 
(\psi k \cdot \nabla )\phi Ck , \phi 

C
j

\bigr\rangle 
L2(\Omega )

 - kC

m\sum 
k=1

bCk (t)
\bigl\langle 
\phi Ck , \phi 

C
j

\bigr\rangle 
L2(\Gamma u)

(5.11)

 - 
m\sum 

k=1

ak(t)b
C
k (t)

\biggl\langle \biggl( \int z

 - h

\nabla \cdot \psi k(\xi )d\xi 

\biggr) 
\partial z\phi 

C
k , \phi 

C
j

\biggr\rangle 
L2(\Omega )

 - 
m\sum 

k=1

bk(t)
\bigl\langle 
(\BbbK iso(\~\rho k) +\BbbK GM (\~\rho k))\nabla \phi Ck ,\nabla \phi Cj

\bigr\rangle 
L2(\Omega )

,

where
\bigl\langle 
\cdot , \cdot 
\bigr\rangle 
L2(\Omega )

denotes the L2-inner product. Equation (5.9) forms a system of

ordinary differential equations that has a unique solution, provided the right-hand
side is locally Lipschitz continuous. The Lipschitz continuity of G

(j)
v is classical, as

is the Lipschitz continuity of the advection terms in G
(j)
\theta and G

(j)
S . To establish the

Lipschitz property of the eddy matrices \BbbK iso,\BbbK GM it is sufficient to show the Lipschitz
continuity of the mapping

(b\theta , bS) \mapsto \rightarrow 
\bigl\langle 
L\sigma (\~\rho k(b

\theta , bS))\partial \mu \phi k, \partial \nu \phi j
\bigr\rangle 
L2(\Omega )

,(5.12)
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8028 PETER KORN AND E. S. TITI

where L\sigma \in \{ Lx,Ly\} , \partial \mu , \partial \nu \in \{ \partial x, \partial y, \partial z\} and b\theta := (b\theta l (t))
j
l=1, b

S := (bSl (t))
j
l=1 are the

expansion coefficients of potential temperature and salinity in terms of their respective
basis functions \phi k \in \{ \phi \theta k, \phi Sk \} . Let b\theta ,(1), bS,(1) and b\theta ,(2), bS,(2) be two such expansion

coefficients and \rho 
(1)
k , \rho 

(2)
k the associated densities. From definition (4.6) of L we obtain

with the continuity of \Pi s0,\epsilon 0 , H\"older's inequality, and the convolution properties

\bigm| \bigm| \bigl\langle \bigl( L\sigma (\~\rho 
(1)
k (b\theta ,(1), bS,(1))) - L\sigma (\~\rho 

(2)
k (b\theta ,(2), bS,(2))

\bigr) 
\partial \mu \phi k, \partial \nu \phi j

\bigr\rangle 
L2(\Omega )

\bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega 

Pk

\Biggl( 
\nabla h\~\rho 

(1)
k

\partial z \~\rho 
(1)
k

\Biggr) \bigl( 
\Pi s0,\epsilon 0(| \partial z \~\rho 

(1)
k | ) - \Pi s0,\epsilon 0(| \partial z \~\rho 

(2)
k | )

\bigr) 
\pi \partial \Omega \partial \mu \phi k\partial \nu \phi jdxdydz

+

\int 
\Omega 

Pk

\Biggl( 
\partial z \~\rho 

(2)
k (\nabla h\~\rho 

(1)
k  - \nabla h\~\rho 

(2)
k ) +\nabla h\~\rho 

(2)
k (\partial z \~\rho 

(2)
k ) - \partial z \~\rho 

(1)
k )

\partial z \~\rho 
(1)
k \partial z \~\rho 

(2)
k

\Biggr) 

\times \Pi s0,\epsilon 0(| \partial z \~\rho 
(2)
k | )\pi \partial \Omega \partial \mu \phi k\partial \nu \phi jdxdydz

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq c| | \nabla \~\rho 

(1)
k | | L4(\Omega )| | \partial \mu \phi k| | L4(\Omega )| | \partial \nu \phi j | | L4(\Omega )| | \partial z(\~\rho 

(1)
k  - \~\rho 

(2)
k )| | L4(\Omega )

+ c| | \nabla \~\rho 
(2)
k | | L4(\Omega )| | \partial \mu \phi k| | L4(\Omega )| | \partial \nu \phi j | | L4(\Omega )| | \nabla (\~\rho 

(1)
k  - \~\rho 

(2)
k )| | L4(\Omega )

\leq c(| | \nabla \phi (1)k | | L4(\Omega ) + | | \nabla \phi (2)k | | L4(\Omega ))| | \partial \mu \phi k| | L4(\Omega )| | \partial \nu \phi j | | L4(\Omega )| | \nabla 3\phi k| | L4(\Omega )

\times (| | b\theta ,(1)  - b\theta ,(2)| | + | | bS,(1)  - b\theta ,(2)| | )\leq \ell (| | b\theta ,(1)  - b\theta ,(2)| | + | | bS,(1)  - b\theta ,(2)| | ),
(5.13)

where c, \ell > 0 depends on the H2-norms of \phi j \in H2(\Omega ) and on the coefficients of
the equation of state and where the regularized density was defined as convolution in
(4.5). In the last step we have used Lemma 3.3. We note that due to the regularity
of the expansion functions \phi j the density regularization is not required for (5.13).

From (5.13) follows the local Lipschitz continuity of the mapping (5.12). This
implies the (local) Lipschitz continuity of \BbbK iso,\BbbK GM . From the Picard theorem it
follows that for all m a unique local solution to (5.9) on time intervals [0, tm] exists.

Step 3: A priori bounds on approximate system. A priori bounds for velocity,
temperature, and salinity in L\infty ([0, T ],L2) and L2([0, T ],H1) follow analogously to
[4], with only minor modifications by invoking Lemmas 4.8 and 3.2. Steps 3a and 3b
below are included for completeness.

Step 3a: L\infty ([0, T ],L2)- and L2([0, T ],H1)-bound on tracer. Taking the L2 scalar
product of the tracer equation (5.7b) with Cm \in \{ \theta m, Sm\} yields, after integration by
parts and with the tracer boundary condition (5.2),

1

2
dt| | Cm| | 2L2(\Omega ) +

\int 
\Omega 

\bigl( 
\BbbK iso(\~\rho m)\nabla 3Cm

\bigr) 
\cdot \nabla 3Cm dxdydz + kC | | Cm(z = 0)| | 2L2(\Gamma u)

= 0,

(5.14)

where the tracer advection term vanishes due to the incompressibility of vm and the
eddy advection term disappears due to the skewness of \BbbK GM . This implies with
Lemma 4.8 and with the Gronwall inequality

| | Cm(t)| | L2(\Omega ) \leq | | C(t= 0)| | L2(\Omega ) =:K1.(5.15)
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GENT--MCWILLIAMS--REDI EDDY PARAMETRIZATION 8029

From (5.14) it follows after integration with respect to time and with Lemma 4.8 that\int t

0

\biggl( \int 
\Omega 

| \nabla 3Cm| 2dxdydz
\biggr) 
ds\leq K2,(5.16)

with K2(t) :=
K1

\mu , where \mu is the constant from Lemma 4.8.

Step 3b: L\infty (T,L2)- and L2(T,H1)-bound on velocity. The following estimate can
be derived as in [4] (see pp. 253--254):

| | vm(t)| | 2L2(\Omega ) +

\int t

0

1

Re1
| | \nabla vm(s)| | 2L2(\Omega ) +

1

Re2
| | \partial zvm(s)| | 2L2(\Omega )ds

+ | | \theta m(t)| | 2L2(\Omega ) + \mu 

\int t

0

\bigl[ 
| | \nabla 3\theta m| | 2L2(\Omega ) + k\theta | | \theta m(z = 0)| | 22

\bigr] 
ds

+ | | Sm(t)| | 2L2(\Omega ) + \mu 

\int t

0

| | \nabla 3Sm| | 2L2(\Omega )ds

\leq | | v(t= 0)| | 2L2(\Omega ) + (gh)2CMRe
2
1K1t+ h| | v0| | 2L2(\Omega ) =:K3(t),

(5.17)

where K3(t) is bounded on [0, T ]. This shows that the approximate solutions (vm,
\theta m, Sm) exist on the time interval [0, T ].

Step 4: Bound on the time derivatives in L1([0, T ],H - 2(\Omega )). For the velocity
equation it is well known that (\partial tvm)m is uniformly bounded in L4/3([0, T ],H \prime ), where
H \prime := H - 2(\Omega ) is the dual of H2(\Omega ) (see, e.g., [32, section 2.3]). For \phi \in H2(\Omega ) it
holds that

\int t

0

\bigl\langle 
\partial tCm(s), \phi 

\bigr\rangle 
ds\leq 

\bigm| \bigm| \bigm| \bigm| \int t

0

\bigl\langle 
\frakD \BbbK iso

(\~\rho m(s))(Cm(s)) +\frakD \BbbK GM
(\~\rho m(s))(Cm(s)), \phi 

\bigr\rangle 
ds

\bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \int t

0

\biggl( \int 
\Omega 

((vm \cdot \nabla )Cm +wm\partial zCm)\phi dxdydz

\biggr) 
ds

\bigm| \bigm| \bigm| \bigm| .

(5.18)

For the first term on the right-hand side we find with Lemma 4.8 that

| 
\bigl\langle 
\frakD \BbbK iso

(\~\rho m)(Cm), \phi 
\bigr\rangle 
| \leq M | | \nabla Cm| | L2(\Omega )| | \nabla \phi | | L2(\Omega ).(5.19)

The second term on the right-hand side is estimated with H\"older's inequality:1

| 
\bigl\langle 
\frakD \BbbK GM

(\~\rho m)(Cm), \phi 
\bigr\rangle 
| =
\bigl\langle 
\BbbK GM (\~\rho m)\nabla Cm,\nabla \phi 

\bigr\rangle 
| 

\leq c| | L(\~\rho m)| | L3(\Omega )| | \nabla Cm| | L2(\Omega )| | \nabla \phi | | L6(\Omega )

\leq c| | \rho m| | L2(\Omega )| | \nabla Cm| | L2(\Omega )| | \phi | | H2(\Omega )

\leq c(| | \theta m| | L2(\Omega ) + | | Sm| | L2(\Omega ))| | \nabla Cm| | L2(\Omega )| | \phi | | H2(\Omega ).

(5.20)

For the third term on the right-hand side of (5.18) it follows by integration by parts,
by the H\"older and Young inequalities, and by Sobolev's embedding theorem that

1For weak solutions the control of the L3-norm of the density slopes L requires regularization of
the density. In the small slope approximation this is not necessary as it is prescribed that the slopes
are bounded.

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

02
/0

6/
25

 to
 1

36
.1

72
.1

47
.1

08
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



8030 PETER KORN AND E. S. TITI\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

((vm \cdot \nabla h)Cm +wm\partial zCm)\phi (x, y, z)dxdydz

\bigm| \bigm| \bigm| \bigm| 
\leq c| | vm| | 2H1(\Omega )| | Cm| | L2(\Omega ) + | | Cm| | H1(\Omega )| | \phi | | 2H2(\Omega ).

(5.21)

From (5.19)--(5.21) we conclude that (\partial tCm)m is bounded uniformly in L2([0, T ],
L2(\Omega )). In particular the Galerkin approximation (vm, \theta m, Sm) is a weak solution
of (1.1).

Step 5: Passage to the limit. The uniform boundedness of (\partial tvm)m, (\partial t\theta m)m,
(\partial tSm)m in L1([0, T ],L2(\Omega )) and of (vm)m, (\theta m)m, (Sm)m in L2([0, T ],H1(\Omega )) implies
with the Lions--Aubin compactness lemma the existence of subsequences (vn)n, (\theta n)n,
(Sn)n such that

vn \rightarrow v in L2([0, T ],L2(\Omega )) strongly,

(\theta n, Sn)\rightarrow (\theta ,S) in L2([0, T ],L2(\Omega )) strongly,

(\theta n, Sn)\rightarrow (\theta ,S) in L2([0, T ],H1(\Omega )) weakly.

(5.22)

These convergence properties allow for all terms in (5.5) to pass to the limit (see, e.g.,
[32, section 2.3]), except for the eddy terms \BbbK iso,\BbbK GM .

The convergence of (\theta n)n, (Sn)n implies that (\~\rho n)n converges to \~\rho in L2([0, T ],
Hs(\Omega )) for s \geq 2 and that Ln(\~\rho n) converges to L(\~\rho ) in L2([0, T ],Hs(\Omega )) for s \geq 1.
For \BbbK iso the following estimate2 holds for \phi \theta \in H2

\theta :\int 
\Omega 

\bigl( 
\BbbK iso(\~\rho n)\nabla 3\theta n  - \BbbK iso(\~\rho )\nabla 3\theta 

\bigr) 
\cdot \nabla 3\phi 

\theta dxdydz + k\theta 

\int 
\Gamma u

(\theta n  - \theta )\phi \theta dxdy

=

\int 
\Omega 

\bigl( 
\BbbK iso(\~\rho n)\nabla 3(\theta n  - \theta )

\bigr) 
\cdot \nabla 3\phi 

\theta dxdydz + k\theta 

\int 
\Gamma u

(\theta n  - \theta )\phi dxdy

+

\int 
\Omega 

\bigl( \bigl( 
\BbbK iso(\~\rho n) - \BbbK iso(\~\rho )

\bigr) 
\nabla 3\theta 

\bigr) 
\cdot \nabla 3\phi 

\theta dxdydz

\leq 
\int 
\Omega 

\bigl( 
(\BbbK iso(\~\rho n)\nabla 3(\theta n  - \theta )

\bigr) 
\cdot \nabla 3\phi 

\theta dxdydz

+C| | L(\~\rho n) - L(\~\rho )| | H1(\Omega )| | Cm| | H1(\Omega )| | \phi | | H2(\Omega ),

where the right-hand side converges to zero. For \BbbK GM , the convergence of (v\ast n,w
\ast 
n) to

(v\ast ,w\ast ) in L2([0, T ],L2(\Omega )) follows since the density slopes Ln converge in L2([0, T ],
H1(\Omega )) (cf. (4.12)). For salinity analogous results hold.

5.3. Proof of Corollary 5.3. (Sketch.) For the small density slope approxi-
mation only the proof of ellipticity of \BbbK iso in Lemma 4.8 needs to be modified; using
Young's inequality, this follows from\int 

\Omega 

\nabla C \cdot (\BbbK small
iso \nabla C)dxdydz =

\int 
\Omega 

| \nabla hC| 2 + (\delta +L2)| \partial zC| 2dxdydz

+

\int 
\Omega 

Lx\partial zC\partial xC +Ly\partial zC\partial yC dxdydz.

The rest of the proof of Theorem 5.2 remains unchanged.

2The estimate below that shows convergence of \frakD \BbbK iso
is valid for the regularized density.
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GENT--MCWILLIAMS--REDI EDDY PARAMETRIZATION 8031

5.4. Proof of Theorem 5.4.

Proof. We infer from Theorem 5.2 that a weak solution (v, \theta ,S) exists. We pro-
ceed by showing that the weak solution satisfies a priori estimates in L\infty 

t H
1
x.

Step 1: L\infty ([0, T ],H1(\Omega ))-bound on velocity. The proof of L\infty ([0, T ],H1(\Omega ))-
estimates for velocity can be carried out as in Cao and Titi [4] (cf. sections 3.3.1--3.3.3)
and one arrives at the estimate

| | \nabla 3v(t)| | 2L2(\Omega ) +

\int t

0

1

Re1
| | \bigtriangleup v(s)| | 2L2(\Omega ) +

1

Re2
| | \nabla \partial zv(s)| | 2L2(\Omega ) ds

\leq | | v0| | H1(\Omega )e
\int t
0
K0(t)ds + c

\int t

0

(| | \nabla \theta (s)| | 2L2(\Omega ) + | | \nabla S(s)| | 2L2(\Omega ))e
\int s
0
K0(\tau )d\tau ds,(5.23)

where the right-hand side is bounded on [0, T ].
Step 2: L\infty ([0, T ],H1(\Omega ))-bound on temperature and salinity. Taking the L2-inner

product of the tracer equation with \frakD \BbbK iso
(C) yields\int 

\Omega 

\partial tC\frakD \BbbK iso
(\~\rho )(C)dxdydz + | | \frakD \BbbK iso

(\~\rho )(C)| | 2L2(\Omega )

=

\int 
\Omega 

\bigl( 
(v+ v\ast ) \cdot \nabla C + (w+w\ast )\partial zC

\bigr) 
\frakD \BbbK iso(\~\rho )(C)dxdydz.(5.24)

For the time derivative in (5.24) it follows with product rule and integration by parts
that \int 

\Omega 

\partial tC\frakD \BbbK iso
(\~\rho )(C)dxdydz = \partial t

\int 
\Omega 

\nabla 3C \cdot (\BbbK iso(\~\rho )\nabla 3C)dxdydz

 - 
\int 
\Omega 

\nabla 3C \cdot 
\bigl( 
\partial t(\BbbK iso(\~\rho ))\nabla 3C

\bigr) 
dxdydz  - 

\int 
\Omega 

\nabla 3C \cdot (\BbbK iso(\~\rho )\nabla 3\partial tC)dxdydz,(5.25)

where \partial t(\BbbK iso(\~\rho )) denotes the matrix whose entries consist of time derivatives of the
entries of \BbbK iso. For the third integral on the right-hand side of (5.25) it follows by
the boundedness of \BbbK iso (Lemma 4.8) and Young's inequality that\int 

\Omega 

\nabla 3C \cdot (\BbbK iso(\~\rho )\nabla 3\partial tC)dxdydz \leq 
\biggl( 
M

2\epsilon 
| | \nabla 3C| | 2L2(\Omega ) +

\epsilon 

2
| | \nabla 3\partial tC| | 2L2(\Omega )

\biggr) 
.(5.26)

The x-component of the second integral on the right-hand side in (5.25) can with the
inequalities of H\"older, Ladyshenzkaya, and Young be estimated as follows:\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 
\Omega 

\partial xC

\Biggl( 
\partial xC\partial t

\Biggl( 
1 + \delta L2

x +L2
y

1 +L2

\Biggr) 
+ \partial yC\partial t

\biggl( 
(\delta  - 1)LxLy

1 +L2

\biggr) 

+ \partial zC\partial t

\biggl( 
(1 - \delta )Lx

1 +L2

\biggr) \Biggr) 
dxdydz

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int 
\Omega 

\bigm| \bigm| \partial xC(\partial xC + \partial yC + \partial zC)\partial tL
\bigm| \bigm| dxdydz \leq | | \nabla 3C| | L3 | | \nabla 3C| | L6 | | \partial tL| | L2

\leq c

4\epsilon 1\epsilon 2
| | \partial tL| | 4L2 | | \nabla 3C| | 2L2 +

\Bigl( \epsilon 1
2
+
\epsilon 2
2

\Bigr) 
| | C| | 2H2 .(5.27)

Due to the symmetry of the matrix \BbbK iso, analogous estimates apply to y- and z-
components of the inner product in the second integral on the right-hand side of
(5.25), and in summary it holds for the time derivative term that
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8032 PETER KORN AND E. S. TITI

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\nabla 3C \cdot (\partial t(\BbbK iso(\~\rho ))\nabla 3C) dxdydz

\bigm| \bigm| \bigm| \bigm| \leq c

4\epsilon 1\epsilon 2
| | \partial tL| | 4L2 | | \nabla 3C| | 2L2 +

\Bigl( \epsilon 1
2
+
\epsilon 2
2

\Bigr) 
| | C| | 2H2 .

(5.28)

For the first term on the right-hand side of (5.24) we obtain by the inequalities
of H\"older, Ladyshenzkaya, and Young and by Lemma 4.9 that\bigm| \bigm| \bigm| \bigm| \int 

\Omega 

\bigl( 
v \cdot \nabla C

\bigr) 
\frakD \BbbK iso

(\~\rho )(C)dxdydz

\bigm| \bigm| \bigm| \bigm| 
\leq c| | v| | L6(\Omega )| | \nabla C| | L3(\Omega )| | \frakD \BbbK iso

(\~\rho )(C)| | L2(\Omega )

\leq c

2\epsilon 3
| | v| | 2L6(\Omega )| | \nabla C| | L2(\Omega )| | C| | H2(\Omega ) +

\epsilon 3
2
| | \frakD \BbbK iso

(\~\rho )(C)| | 2L2(\Omega )

\leq c

4\epsilon 3\epsilon 4
| | v| | 4H1(\Omega )| | \nabla 3C| | 2L2(\Omega ) +

\Bigl( \epsilon 3
2
+
\epsilon 4
2

\Bigr) 
| | \frakD \BbbK iso

(\~\rho )(C)| | 2L2(\Omega ).

(5.29)

The term with the eddy-induced horizontal velocity v\ast in (5.24) is estimated anal-
ogously; here we use that v\ast vanishes in the vicinity of the boundary such that it
suffices to consider the integral over \Omega 1,2:\bigm| \bigm| \bigm| \bigm| \int 

\Omega 

\bigl( 
v\ast \cdot \nabla C

\bigr) 
\frakD \BbbK iso

(\~\rho )(C)| dxdydz
\bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega 1,2

\bigl( 
v\ast \cdot \nabla C

\bigr) 
\frakD \BbbK iso

(\~\rho )(C)dxdydz

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq c

4\epsilon 5\epsilon 6
| | v\ast | | 4H1(\Omega 1,2)

| | \nabla C| | 2L2(\Omega ) +
\Bigl( \epsilon 5
2
+
\epsilon 6
2

\Bigr) 
| | \frakD \BbbK iso(\~\rho )(C)| | 2L2(\Omega )

\leq c

4\epsilon 5\epsilon 6
| | L| | 4H2(\Omega 1,2)

| | \nabla 3C| | 2L2(\Omega ) +
\Bigl( \epsilon 5
2
+
\epsilon 6
2

\Bigr) 
| | \frakD \BbbK iso(\~\rho )(C)| | 2L2(\Omega ).

(5.30)

Analogously we find for the integral involving the vertical velocity w\ast that\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\bigl( 
w\ast \partial zC

\bigr) 
\frakD \BbbK iso

(\~\rho )(C)dxdydz

\bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega 1,2

\bigl( 
w\ast \partial zC

\bigr) 
\frakD \BbbK iso

(\~\rho )(C)dxdydz

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq c

4\epsilon 7\epsilon 8
| | L| | 4H2(\Omega 1,2)

| | \nabla 3C| | 2L2(\Omega ) +
\Bigl( \epsilon 7
2
+
\epsilon 8
2

\Bigr) 
| | \frakD \BbbK iso

(\~\rho )(C)| | 2L2(\Omega ).

(5.31)

The last term on the right-hand side of (5.24) is estimated with Proposition 2.2 in [5]:\int 
\Omega 

\biggl[ \biggl( \int z

 - h

\nabla \cdot (v(x, y, \xi , t))d\xi 
\biggr) 
\partial zC

\biggr] 
\frakD \BbbK iso

(\~\rho )(C)dxdydz

\leq c

4\epsilon 9\epsilon 10
| | v| | 2H1(\Omega )| | v| | 

2
H2(\Omega )| | \partial zC| | 

2
L2(\Omega ) +

\Bigl( \epsilon 9
2
+
\epsilon 10
2

\Bigr) 
| | \frakD \BbbK iso

(\~\rho )(C)| | 2L2(\Omega ).

(5.32)

Choosing in (5.29)--(5.32) the values \epsilon i =
1
5 yields

d

dt
| | \nabla 3C| | 2L2 + | | \frakD \BbbK iso(\~\rho )(C)| | 2L2(\Omega ) \leq G| | \nabla 3C| | 2L2(\Omega ),

with G := c
\bigl( 
M + | | \partial tL| | 4L2 + | | L| | 4H2(\Omega 1,2)

+ | | v| | 4H1(\Omega ) + | | v| | 2H1(\Omega )| | v| | 
2
H2(\Omega )

\bigr) 
.

(5.33)

Since G is integrable, it follows from the Gronwall inequality that

| | \nabla 3C(t)| | 2L2(\Omega ) \leq | | \nabla 3C(t= 0)| | 2L2(\Omega )exp

\biggl( \int t

0

G(s)ds

\biggr) 
=:KC(t),(5.34)
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GENT--MCWILLIAMS--REDI EDDY PARAMETRIZATION 8033

and it follows that C \in L\infty ([0, T ],H1(\Omega )). Integrating (5.33) with respect to time
yields, with (5.34),\int t

0

| | \frakD \BbbK iso
(C)(s)| | 2L2(\Omega )ds\leq | | \nabla 3C(t= 0)| | 2L2(\Omega ) +

\int t

0

G(s)KC(s)ds.(5.35)

This proves that \frakD \BbbK iso
(C) in L2([0, T ],L2(\Omega )). Since \frakD \BbbK iso

(C)(\cdot , \cdot , \cdot , t) \in L2(\Omega )) for
almost every t\in [0, T ] it follows from Lemma 4.9 that C \in L2([0, T ],H2(\Omega )).

Step 3: Bound on the time derivative in L2([0, T ],L2(\Omega )). Taking the scalar
product of the tracer equation with \partial tCm and applying the inequalities of Cauchy--
Schwarz and Young to the \frakD \BbbK iso

-term yields

\int T

0

| | \partial tC(s)| | 2L2(\Omega )ds\leq 
\int T

0

| | \frakD \BbbK iso
(\~\rho )(C)(s)| | 2L2(\Omega )ds

+ 2

\int T

0

\bigm| \bigm| \bigm| \bigm| \biggl( \int 
\Omega 

\biggl[ 
(v(x, y, z, s) + v\ast (x, y, z, s)) \cdot \nabla C(x, y, z, s)

 - \nabla \cdot 
\biggl( \int z

 - h

v(x, y, \xi , s) + v\ast (x, y, \xi , s)d\xi 

\biggr) 
\partial zC(x, y, z, s)

\biggr] 
\partial tC(x, y, z, s)dxdydz

\biggr) \bigm| \bigm| \bigm| \bigm| ds.

(5.36)

For estimating the right-hand side we proceed as in Step 2 and obtain

\int T

0

| | | \partial tC(s)| | 2L2(\Omega )ds\leq 
\int T

0

| | \frakD \BbbK iso(\~\rho )(C)(s)| | 2L2(\Omega ) +H(s)| | \nabla 3C(s)| | 2L2(\Omega )ds,

with H := | | L| | 4H2(\Omega 1,2)
+ | | v| | 4H1(\Omega ) + | | v| | 2H1(\Omega )| | v| | 

2
H2(\Omega ).

(5.37)

Since H is integrable, it follows with (5.34), (5.35) that \partial tC is in L2([0, T ],L2(\Omega )).
Similarly, it follows that \partial tv \in L2([0, T ],L2(\Omega )).

Step 4: Uniqueness and continuous dependence on initial conditions. Consider
two strong solutions (v1, \theta 1, S1), (v2, \theta 2, S2) with initial conditions ((v0)1,(\theta 0)1, (S0)1),
((v0)2, (\theta 0)2, (S0)2) and denote the differences between them as follows:

\^v := v1  - v2, \^\theta := \theta 1  - \theta 2, \^S := S1  - S2, \^\rho := \rho 1  - \rho 2,

\^v\ast := v\ast 1  - v\ast 2 \^C \in \{ \^\theta , \^S\} Vi := vi + v\ast i , \^V = V1  - V2 = \^v+ \^v\ast .
(5.38)

Taking the inner product of the difference equation for velocity with \^v yields (see [4,
pp. 262--265])

d

dt
| | \^v| | 2L2(\Omega ) + | | \nabla 3\^v| | 2L2(\Omega ) \leq F | | \^v| | 2L2(\Omega ) + c| | \^\rho | | 2L2(\Omega ),

with F :=
c

2\epsilon 1
| | \nabla v2| | 2L2(\Omega ) +

c

\epsilon 2
| | \partial zv2| | 2L2(\Omega )| | \nabla \partial zv2| | 

2
L2(\Omega ).

(5.39)

For the difference equation for a generic tracer we obtain similarly

d

dt
| | \^C| | 2L2(\Omega ) +

\int 
\Omega 

\bigl( 
\frakD \BbbK iso [\~\rho 1](C1) - \frakD \BbbK iso [\~\rho 2](C2)

\bigr) 
\^C dxdydz

\leq G| | \^C| | 2L2(\Omega ) +
\Bigl( \epsilon 4
2
+
\epsilon 5
2

\Bigr) 
| | \nabla \^C| | 2L2(\Omega ) +

\Bigl( \epsilon 3
2
+
\epsilon 6
2

\Bigr) 
| | \nabla \^v| | 2L2(\Omega )

+ c
\Bigl( \epsilon 3
2
+
\epsilon 6
2

\Bigr) 
| | \^\~\rho | | 2H3(\Omega ),

with G :=
c

\epsilon 3\epsilon 4
| | \nabla C2| | 4L2(\Omega ) +

c

\epsilon 6\epsilon 5
| | \partial zC2| | 2L2(\Omega )| | \nabla \partial zC2| | 2L2(\Omega ).

(5.40)
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We decompose the second term on the left-hand side as follows:\int 
\Omega 

\bigl( 
\frakD \BbbK iso [\~\rho 1](C1) - \frakD \BbbK iso [\~\rho 2](C2)

\bigr) 
\^C dxdydz

=

\int 
\Omega 

\bigl( \widehat \BbbK iso\nabla 3C1 +\BbbK iso[L2]\nabla 3
\^C
\bigr) 
\cdot \nabla 3

\^C dxdydz  - kC

\int 
\Gamma u

| \^C| 2dxdy,
(5.41)

where \widehat \BbbK iso := \BbbK iso(\~\rho 1)  - \BbbK iso(\~\rho 2). For the second term in (5.41) the lower bound
follows from the ellipticity of \BbbK iso,\int 

\Omega 

\bigl( 
\BbbK iso[L2]\nabla 3

\^C
\bigr) 
\cdot \nabla 3

\^C dxdydz  - kC

\int 
\Gamma u

| \^C| 2dxdy\geq \mu | | \nabla 3
\^C| | 2L2(\Omega ),(5.42)

with \mu :=min\{ KI ,KD\} . For the first term in (5.41) we have\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\bigl( \widehat \BbbK iso\nabla 3C1

\bigr) 
\cdot \nabla 3

\^C dxdydz

\bigm| \bigm| \bigm| \bigm| \leq | | \^L| | L\infty | | \nabla 3C1| | L2(\Omega )| | \nabla 3
\^C| | L2(\Omega ).(5.43)

Collecting (5.41)--(5.43) and (5.39) yields, with Lemma 4.6,

d

dt
(| | \^v| | 2L2(\Omega ) + | | \^\theta | | 2L2(\Omega ) + | | \^S| | 2L2(\Omega ))

\leq (F +G+ c)(| | \^v| | 2L2(\Omega ) + | | \^\theta | | 2L2(\Omega ) + | | \^S| | 2L2(\Omega )) + c| | \^L| | L\infty 

\leq (F +G+ c)(| | \^v| | 2L2(\Omega ) + | | \^\theta | | 2L2(\Omega ) + | | \^S| | 2L2(\Omega )).

(5.44)

For strong solutions, F,G are integrable, and from Gronwall's inequality follows the
continuous dependency on the initial conditions and the uniqueness.

Remark 5.6 (minimal regularization). The regularization we apply here has to
gain three derivatives (cf. Remark 4.7). In the context of the H1-regularity investi-
gated here, a potential reduction of the regularization towards two or fewer derivatives
faces two challenges. First, to improve the estimates for the nonlinear term in Step
2 of the proof (see (5.29)--(5.32)), which rely on H\"older's inequality and Sobolev em-
bedding. Such an improvement would allow one to relax for the density slope L the
required regularity. Second, to reduce the regularity requirements for the time deriv-
ative of the density gradient (see (3.8)). This amounts to improving the regularity
estimates on the right-hand side of (3.8), which comprise, among other terms, the
derivative of the transport term.

Acknowledgment. We thank the two anonymous reviewers for comments that
helped us improve the paper.
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