Supplementary Information

Palaeoenvironments and hominin evolutionary dynamics in Southeast Asia

Anne-Marie Bacon^{1*}, Nicolas Bourgon^{2,3}, Elise Dufour⁴, Fabrice Demeter^{5,6}, Clément Zanolli⁷, Kira E. Westaway⁸, Renaud Joannes-Boyau⁹, Philippe Duringer¹⁰, Jean-Luc Ponche¹¹, Mike W. Morley¹², Eric Suzzoni¹³, Sébastien Frangeul¹³, Quentin Boesch¹⁰, Pierre-Olivier Antoine¹⁴, Souliphane Boualaphane¹⁵, Phonephanh Sichanthongtip¹⁵, Daovee Sihanam¹⁵, Nguyen Thi Mai Huong¹⁶, Nguyen Anh Tuan¹⁶, Denis Fiorillo⁴, Olivier Tombret⁴, Elise Patole-Edoumba¹⁷, Alexandra Zachwieja¹⁸, Thonglith Luangkhoth¹⁵, Viengkeo Souksavatdy¹⁵, Tyler E. Dunn¹⁹, Laura Shackelford^{20,21}, Jean-Jacques Hublin^{3,22}

¹Université Paris Cité, CNRS, BABEL UMR 8045, 75012 Paris, France ; ²IsoTROPIC research group, Max Planck Institute for Geoanthropology, 07745 Jena, Germany; ³Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, 04103 Leipzig, Germany; ⁴UMR 7209 Archéozoologie, Archéobotanique, Sociétés, Pratiques, Environnements, MNHN, CNRS, Paris, France; ⁵Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark; ⁶Eco-anthropologie (EA), MNHN, CNRS, Université Paris Cité, Musée de l'Homme, 75016 Paris, France; ⁷Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600 Pessac, France ; ⁸'Traps' Luminescence Dating Facility, School of Natural Sciences, Macquarie University, Sydney, Australia; ⁹Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross University, NSW, Australia; ¹⁰Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg, UMR 7516 CNRS, Université de Strasbourg, France; ¹¹Université de Strasbourg, Laboratoire Image, Ville Environnement, UMR 7362 UdS CNRS, France ; ¹²Flinders Microarchaeology Laboratory, Archaeology, College of Humanities and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia; ¹³Spitteurs Pan, technical cave supervision and exploration, La Chapelle en Vercors, France; ¹⁴Institut des Sciences de l'Évolution de Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France; ¹⁵Ministry of Information, Culture and Tourism, Laos PDR; ¹⁶Institute of Archaeology, Hanoi, Vietnam; ¹⁷Muséum d'histoire naturelle de La Rochelle, UMRU 24140 Dynamigues, interactions, interculturalité asiatiques (UBM, LRUniv), La Rochelle, France; ¹⁸Department of Biomedical Sciences, University of Minnesota Medical School Duluth, USA; ¹⁹Anatomical Sciences Education Center, Oregon Health & Sciences University, Portland, OR, USA; ²⁰Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; ²¹Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; ²²Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France.

Location and geological setting of sites. The sites used in this article are located in northern Vietnam (Duoi U'Oi and Coc Muoi) and Laos (Nam Lot I, Tam Hang South, Tam Ngu Hao 2 (Cobra) Cave, Tam Pà Ling, Tam Hay Marklot), at the latitudes 23°-20° (Bacon et al., 2008, 2015, 2018; Duringer et al., 2012; Demeter et al., 2012, 2022; Shackelford et al., 2018; Bourgon et al., 2020) (Fig. S1). The landscape of the region contains typical tower karsts that emerge from the alluvial plain covered by cultivated fields and houses. All karstic sites formed in massive limestone beds, Carboniferous to Triassic in age. The deposits consist of either wellcemented breccias plastered on the walls and/or roofs of caves and/or silty to sandy clays located on the cave floor. The analysis of the sites (except Tam Pà Ling) suggests that the breccias were created principally by reworked carbonate clasts from the limestone massif, speleothems and sandy to silty clays, along with fossils. These fossil remains and sediments were carried and deposited by water inside the cave network (fossiliferous breccias mainly result from endokarstic processes mixed with variable exokarstic material) (Duringer et al., 2012). Fossiliferous deposits are most likely a result of a long transportation process of remains through the subterraneous cave networks over several thousands of years or more. Diverse dating techniques have been used to constrain the ages of faunas and associated hominins (Table SI1). The detailed description of sites can be found in original publications.

Figure S1: Satellite image of the studied area with the location of sites in southeast Asia. The satellite image is from the website (<u>http://www.maps-for-free.com/</u>) and has been reworked by P. Duringer using the software Illustrator CS5 (version 15.0.0).

1. Coc Muoi 2. Duoi U'Oi

3. Nam Lot I - Tam Hang South - Tam Ngu Hao 2 - Tam Pà Ling - Tam Hai Marklot

Conservation of assemblages and taphonomic biases: The faunal assemblages from Vietnam and Laos (Coc Muoi, Duoi U'Oi, Nam Lot, Tam Hang South, Tam Hay Marklot) contain mainly isolated teeth of a large array of mammals, including Artiodactyla, Perissodactyla, Proboscidea, Carnivora, Primates and Rodentia (>5kg). Small-bodied microvertebrates are lacking. Their analysis revealed comparable taphonomic pathways, due to a complex action of biotic (rodents and carnivores) and abiotic (water flows) agents, through comparable processes of deposition (Duringer et al., 2012).

The high percentages of teeth (> 70%) showing gnawing marks indicate the significant role of porcupines (*Hystrix* sp.), as the last accumulator agent of remains of carcasses at the sites, before being transported into the cave network and buried in the sediments. The differential preservation of lower *versus* upper teeth has been associated with the capacity of porcupines to collect all detachable and transportable remains of carcasses of animals of various body-sizes (~5 kg up to 5,000 kg), either mandibles for large-sized ungulates or cranial remains with maxillae for smaller ones (muntjacs), or complete jaws in some cases (wild pigs) (Bacon et al., 2015). Factors involved in the selection of remains by porcupines might be the weight, size and density of elements. This capacity of porcupines to collect a wide range of animals means that assemblages are representative of the species diversity of large mammals. Furthermore, as previously noticed by Brain (1981) for African sites, "*It is evident that the minimum numbers of individual animal represented by the porcupine collected remains do indeed mirror the actual abundance of the antelope species*", it can be reasonably proposed that assemblages are also representative of the abundance of species at a local scale.

- A. Different view of the first or second molar of a juvenile Denisovan female individual (TNH2-1) from Cobra Cave (164-131 ka) (Demeter et al., 2022). Source: Authors.
- **B.** Elements of the partial skull of the TPL-1 *Homo sapiens* individual from Tam Pà Ling Cave (46-43 ka) (Demeter et al., 2012). We used the published isotopic data of the upper first molar (Bourgon et al., 2021). Source: Authors.

C. Isolated hominin teeth (*Homo* sp.) from Duoi U'Oi site (70-60 ka) (Bacon et al., 2018). Right lower m1 (DU761) in occlusal (A), buccal (B), and lingual (C) views; Right upper M3 (DU757) in occlusal (D), buccal (E), and lingual views (F). Source: Authors.

Figure S2. Fossil hominin remains used in the present analysis. Source: Authors.

Conservation of the Tam Pà Ling assemblage and environmental consideration: Unlike the faunal assemblages cited above, the Tam Pà Ling faunal assemblage accumulated under a different sedimentary process. As described in Demeter et al. (2012) "Sediments in the stratigraphic sequence of the excavation form a series of intercalated, clay-rich slopewash deposits that originated outside the south-facing entrance and were carried into the cave". As a result, the site yielded abundant microvertebrates (rodents, insectivores, reptiles, and amphibians), but only 28 specimens of large mammals (Caprinae, Cervidae, *Hystrix* sp., *Muntiacus* sp., *Macaca* sp., *Rhinoceros* cf. *unicornis, Dicerorhinus sumatrensis*) over the ~7 meters high stratigraphy.

For the purpose of our study, we selected the carbon values of Artiodactyla and Perissodactyla specimens previously published, and recovered in the sedimentary section between 70 and 33 ka (Bourgon et al., 2021) (Annex S2). The selection of this time range is based on the isotopic composition of *Camaena massiei* shells recorded over the TPL stratigraphy which documents major changes ~33 ka in the proportions of C₃ and C₄ plants, due to the settlement of the Last Glacial Maximum conditions (Milano et al., 2018) (Fig. S3).

Figure S3. Vegetation composition as C₃ and C₄ plants proportions derived from the isotopic *Camaena massiei* shells recorded at Tam Pà Ling (Milano et al., 2018). Source: Authors.

Figure S4. Distribution of available published $\delta^{13}C_{carbon source}$ values of mammals from different hominin sites: Duoi U'Oi (*Homo* sp.), northern Vietnam (Bacon et al., 2021) dated to 70–60 ka (Bacon et al., 2008, 2015); Lida Ajer (*Homo sapiens*), Sumatra (Louys et al., 2022) dated to 73–63 ka (Westaway et al., 2017) or 71-68 ka (Louys et al., 2022); Trinil H.K. and Sangiran (*Homo erectus*), Java (Janssen et al., 2016) dated to 540–430 ka (Joorden et al., 2015) or to ~900 ka (Basal Layer of the Bapang Formation from Matsu'ura et al., 2020, Fig. 1C); *Homo erectus* specimen from Sangiran (S7–37) (Kubat et al., 2023); Ngandong (*Homo erectus*), Java (Janssen et al., 2016) dated to 117–108 ka (Rizal et al., 2020); Tam Ngu Hao 2 (Cobra) Cave (Denisovan), northeastern Laos (this paper) dated to 164–131 ka (Demeter et al., 2022). The presence of hominins (*Homo sapiens*) in the Punung site, Java (Storm et al., 2005) dated to 128–118 ka ((Westaway et al., 2017) is debated (Kaifu et al., 2022). All isotopic data of specimens can be found in the Annexes. Source: Authors.

Figure S5. Species abundance calculated using MNI within Bovidae and Cervidae expressed as percentages of taxa in each faunal assemblage (see Table S12 for the data). Source: Silhouette image from public domain <u>https://www.phylopic.org</u>; charts, Authors.

Country	Site	Age interval	Dating technique (sediments)	Dating technique (remains)
Laos	Tam Hang South	94 – 60 ka	U-series, SG-OSL, TL ¹	-
Laos	Nam Lot I Cave	86 – 72 ka	U-series, SG-OSL, TL ¹	-
Laos	Tam Ngu Hao 2 (Cobra Cave)	164 – 131 ka	U-series, pIR-IRSL ²	U-series/ESR (teeth)
Laos	Tam Hay Marklot	34.5 – 13.5 ka	-	U-series/ESR (teeth) ³
Laos	Tam Pà Ling	46 – 43 ka	SG-OSL, pIR-IRSL ^{4, 5}	-
Vietnam	Coc Muoi Cave	148 – 117 ka	U-series, SG-OSL, pIR-IRSL ⁶	-
Vietnam	Duoi U'Oi Cave	70 – 60 ka	U-series, SG-OSL, TL ¹	AMSC ¹⁴ (teeth), >32 cal kBP ^{7, 8}
Russia	Denisova Cave (MC, 17-19)	151 ± 17-128 ± 13 ka	pIR-IRSL ⁹	-

Table S1: Dating techniques and materials used to constrain the ages of faunas and associated hominins. [U-series] Uranium-series; [TL] red thermoluminescence; [SG-OSL] single-grain optically stimulated luminescence, [pIR-IRSL] post-infrared infrared-stimulated luminescence; [ESR] electron spin resonance; [AMSC¹⁴] radiocarbon dating by accelerator mass spectrometry. ⁽¹⁾ Bacon et al., 2015; ⁽²⁾ Demeter et al., 2022; ⁽³⁾ Bourgon et al., 2020; ⁽⁴⁾ Demeter et al., 2012; ⁽⁵⁾ Shackelford et al., 2018; ⁽⁶⁾ Bacon et al., 2018; ⁽⁷⁾ Wood et al., 2016; ⁽⁸⁾ Wood et al., 2021. ⁽⁹⁾ The occupation of the cave by Denisovans is estimated using the shorter chronology between 203 ± 14 ka and 55 ± 6 ka (Jacobs et al., 2019). For the purpose of our comparative analysis between Cobra Cave (164–131 ka) and Denisova Cave, we used data (fauna and flora) of the Main Chamber (MC), layers 19–17, dated between 151 ± 17–128 ± 13 ka.

Taxon 1	Common name	Taxon 2	Cobra Cave	Coc Muoi	Tam Hang South	Nam Lot I	Duoi U'Oi	Tam Hai Marklot
Large-sized Cervidae	Large deer	large-sized cervid	Х					
Large-sized Cervidae	Sambar	Rusa unicolor		Х	Х	Х	Х	Х
Medium-sized Cervidae	-	medium-sized cervid	Х	Х	Х			
Medium-sized Cervidae	Thamin	Rucervus eldii						Х
Medium-sized Cervidae	Hog deer	Axis porcinus						cf.
Small-sized Cervidae	Indian muntjac	Muntiacus muntjak			Х	Х	Х	
Small-sized Cervidae	-	<i>Muntiacus</i> sp.	Х	Х				Х
Large-sized Bovidae	Kouprey	Bos sauveli		cf.	cf.			
Large-sized Bovidae	Gayal	Bos frontalis						cf.
Large-sized Bovidae	-	Bos sp.	Х			Х		
Large-sized Bovidae	Large-sized Bovidae	Bovidae indet.		Х	Х	Х	Х	Х
Large-sized Bovidae	Water buffalo	Bubalus bubalis			Х	Х		Х
Large-sized Caprinae	Southern serow	Capricornis sumatraensis			Х	Х	Х	cf.
Large-sized Caprinae	-	Capricornis sp.		Х				
Medium-sized Caprinae	Chinese goral	Naemorhedus caudatus						cf.
Medium-sized Caprinae	-	Naemorhedus sp.	Х					
Suidae	Wild boar	Sus scrofa	Х	Х	Х	Х	Х	Х
Suidae	Bearded pig	Sus barbatus			cf.		Х	cf.
Megatapirus augustus	Giant tapir	Megatapirus augustus		Х	Х			
Tapirus sp.	-	Tapirus indicus intermedius			cf.			
Tapirus sp.	Malayan tapir	Tapirus indicus		Х			Х	
<i>Tapirus</i> sp.	-	<i>Tapirus</i> sp.	Х			Х		Х

		Tapiridae indet.		Х				Х
Rhinocerotidae	Indian rhinoceros	Rhinoceros unicornis		cf.	Х	Х	Х	
Rhinocerotidae	Javan rhinoceros	Rhinoceros sondaicus	Х	Х	Х	Х	Х	Х
Rhinocerotidae		Rhinoceros sp.	Х			Х	Х	
Rhinocerotidae	Sumatran rhinoceros	Dicerorhinus sumatrensis		Х			Х	Х
Rhinocerotidae	-	Dicerorhinus sp.	Х		Х			
Rhinocerotidae		Rhinocerotina indet.	Х				Х	Х
Rhinocerotidae		Rhinocerotidae indet.		Х		Х		
Elephas sp.	Asian elephant	Elephas maximus		х				
Elephas sp.	-	Elephas sp.			Х	Х	Х	
Stegodon sp.	Stegodon	Stegodon orientalis			Х	cf.		
Stegodon sp.	-	Stegodon sp.	Х	Х				

Table S2: Faunal lists of studied sites (Artiodactyla, Perissodactyla, and Proboscidea). Taxon 1 refers to the category used in the presentation of isotopes results, and Taxon 2 refers to the precise assignment of specimens.

Taxon 1	Common name	Taxon 2	Cobra Cave	Coc Muoi	Tam Hang South	Nam Lot I	Duoi U'Oi	Tam Hai Marklot
	Carnivoran	Small-sized carnivora	Х					?
Canidae	Dhole	Cuon alpinus		Х		Х	Х	
Canidae	Dhole	Cuon alpinus antiquus			cf.			
Canidae	Wild dogs	Canidae						Х
	Hog-badger	Arctonyx collaris					Х	
	Hog-badger	Arctonyx collaris rostratus			cf.			
	Eurasian badger	Meles meles			Х	Х	Х	
	Large tooth ferret-badger	Melogale personata			Х			
	Yellow-throated marten	Martes flavigula			cf.	Х		
	-	Martes sp.		Х				
	Large Indian civet	Viverra zibetha			Х	Х	Х	
	Large-spotted civet	Viverra megaspila					cf.	
		Viverridae indet.					Х	
	Common palm civet	Paradoxurus hermaphroditus			Х			
	-	Paradoxurus sp.	Х	Х				
	-	large-sized meline		Х				
	-	small-sized meline		Х				Х
Panthera tigris	Tiger	Panthera tigris		Х	Х		Х	Х
Panthera pardus	Leopard	Panthera pardus					Х	Х
Small-sized Felidae	Leopard cat	Prionailurus bengalensis			cf.			
Small-sized Felidae	Golden cat	Felis temmincki				cf.		
Small-sized Felidae	Clouded leopard	Neofelis nebulosa				Х	Х	
Small-sized Felidae	-	small-sized felid	Х	Х				Х
	Spotted hyena	Crocuta crocuta				Х		
Ursidae	Asiatic black bear	Ursus thibetanus	Х	Х			Х	Х
Ursidae	Asiatic black bear	Ursus thibetanus kokeni			cf.	cf.		
Ursidae	Sun bear	Helarctos malayanus		cf.	Х		Х	Х
Ursidae		Ursus sp.		Х				
	Giant Panda	Ailuropoda melanoleuca		Х		Х		Х
	Giant Panda	Ailuropoda sp.	Х					
Pongo sp.	Orangutan	Pongo pygmaeus	_		Х	x	Х	

Pongo sp.	Orangutan	Pongo devosi		Х				
Pongo sp.	-	Pongo sp.	Х					Х
Macaca sp.	Macaque	Macaca sp.		Х		Х	Х	Х
Macaca sp.		Macaca nemestrina	cf.					
Colobinae	-	Colobinae indet.		Х	Х	Х	Х	
	Gibbon	Hylobates sp.		Х	Х		Х	
Homininae		Hominine	Х				Х	
Hystricidae	Porcupine	Hystrix brachyura			Х	Х	Х	
Hystricidae	-	<i>Hystrix</i> sp.	Х	Х				Х
Hystricidae	Brush-tailed porcupine	Atherurus macrourus						cf.
Hystricidae	-	Atherurus sp.		Х				

Table S3: Faunal lists of the five sites (Carnivora, Primates, and large Rodentia). Taxon 1 refers to the category used in the presentation of isotopes results, and Taxon 2 refers to the precise assignment of specimens.

	Artioda	actyla	Perissoc	lactyla	Probos	cidea	Carni	vora	Prima	ates	Roc	lentia
Cobra cave	59.25 %	32/54	9.25 %	5/54	1.85 %	1/54	9.25 %	5/54	11.11 %	6/54	9.25 %	5/54
Coc Muoi	35.71 %	30/84	20.23 %	17/84	4.76 %	4/84	16.66 %	14/84	10.71 %	9/84	11.90 %	10/84
Tam Hang South	56.45 %	35/62	9.67 %	6/62	-	-	14.51 %	9/62	9.67 %	6/62	9.67 %	6/62
Nam Lot I	35.08 %	20/57	15.78 %	9/57	5.26 %	3/57	26.31 %	15/57*	10.52 %	6/57	7.01 %	4/57
Duoi U'Oi	38.33 %	23/60	18.33 %	11/60	3.33 %	2/60	13.33 %	8/60	13.33 %	8/60	13.33 %	8/60
Tam Hay Marklot	54.16 %	39/72	9.72 %	7/72	-	-	20.83 %	15/72	9.72 %	7/72	5.55 %	4/72

Table S4: Percentage (%) and number of specimens (n/N) by taxonomic group used for the carbon and oxygen isotope analyses. The data of Cobra Cave (Primates) includes the Denisovan tooth. (*) The sample includes 5 teeth of Nam Lot II, another locality in the cave, which produced an assemblage of comparable composition to that Nam Lot I.

	δ ¹³ C _{carbo} < -27.	on source 2 ‰	δ ¹³ C _{carbo} >–27.2 ‰ and	n source < -21.3 ‰	δ ¹³ C _{carbor} > –21.3 ‰ and	source < -15.3 ‰	δ ¹³ C _{carbon source} >-15.3‰			
Cobra Cave	37 %	20/54	48 %	26/54	7 %	5/54	7 %	4/54		
Coc Muoi	65.48 % 55/84		33.33 %	28/84	1.19 %	1/84	-	0/84		
Tam Hang South	27.42 %	17/62	58.06 %	36/62	11.29 %	7/62	3.23 %	2/62		
Nam Lot I	42.11 %	21/57	49.12 %	28/57	5.76 %	3/57	3.84 %	2/57		
Duoi U'Oi	73.33 % 44/60		25 %	15/60	-	0/60	1.67 %	1/60		
Tam Hay Marklot	Hay Marklot 26.39 % 19/72		43.06 %	31/72	18.05 %	13/72	12.50 %	9/72		

Table S5: Percentage (%) and number of specimens (n/N) in the five faunas according to the distribution of $\delta^{13}C_{\text{carbon source}}$ values (% VPDB). The data of Cobra Cave include the Denisovan tooth.

Group1	Group2	N (group1)	N (group2)	statistic	р	p.adj
Cobra	Coc Muoi	53	84	-4.53	0.000	0.000
Cobra	Tam Hang South	53	62	0.82	0.410	0.44
Cobra	Nam Lot I	53	57	-0.815	0.414	0.44
Cobra	Duoi U'Oi	53	60	-4.656	0.000	0.000
Cobra	Tam Hay Marklot	53	72	1.913	0.055	0.08
Coc Muoi	Tam Hang	84	62	5.676	0.000	0.000
Coc Muoi	Nam Lot I	84	57	3.733	0.000	0.00
Coc Muoi	Duoi U'Oi	84	60	-0.481	0.630	0.63
Coc Muoi	Tam Hay Marklot	84	72	7.114	0.000	0.000
Tam Hang South	Nam Lot I	62	57	-1.687	0.091	0.12
Tam Hang South	Duoi U'Oi	62	60	-5.697	0.000	0.000
Tam Hang South	Tam Hay Marklot	62	72	1.109	0.267	0.33
Nam Lot I	Duoi U'Oi	57	60	-3.904	0.000	0.000
Nam Lot I	Tam Hay Marklot	57	72	2.830	0.004	0.01
Duoi U'Oi	Tam Hay Marklot	60	72	7.002	0.000	0.000

Table S6: Results of the Post-hoc Dunn's test pair-wise comparisons on $\delta^{13}C_{carbon source}$ values between sites.

Group1	Group2	N (group1)	N (group2)	statistic	р	p.adj
Cobra	Coc Muoi	53	84	2.158	0.030	0.06
Cobra	Tam Hang South	53	62	-0.445	0.656	0.76
Cobra	Nam Lot I	53	57	3.208	0.001	0.01
Cobra	Duoi U'Oi	53	60	0.265	0.790	0.80
Cobra	Tam Hay Marklot	53	72	3.133	0.001	0.01
Coc Muoi	Tam Hang South	84	62	-2.758	0.005	0.01
Coc Muoi	Nam Lot I	84	57	1.361	0.173	0.26
Coc Muoi	Duoi U'Oi	84	60	-1.943	0.051	0.09
Coc Muoi	Tam Hay Marklot	84	72	1.173	0.240	0.33
Tam Hang South	Nam Lot I	62	57	3.790	0.000	0.00
Tam Hang South	Duoi U'Oi	62	60	0.736	0.461	0.58
Tam Hang South	Tam Hay Marklot	62	72	3.753	0.000	0.00
Nam Lot I	Duoi U'Oi	57	60	-3.039	0.002	0.01
Nam Lot I	Tam Hay Marklot	57	72	-0.255	0.798	0.80
Duoi U'Oi	Tam Hay Marklot	60	72	2.957	0.003	0.01

Table S7: Results of the Post-hoc Dunn's test pair-wise comparisons on δ^{18} O values between sites.

Habitat	Altitude range	Body weigth	Common name	Family	Taxon	Cobra Cave (164-131 ka)	Coc Muoi (148-117 ka)	Indochina	Baishiya Cave (~100 ka)	Tibetan Plateu	Denisova Cave (Layer 17)	Denisova Cave (Layer 19)	Siberia
Open habitat to dense forest	Up to 2,100m (Eurasia) Up to 3,000m (Indochina)	10-20 kg	Dhole ⁽¹⁾	Canidae	Cuon alpinus		х	х		х		х	
Artic and alpine tundras	Low to high mountains	1.4-9 kg	Artic fox ⁽³⁾	Canidae	Alopex lagopus							х	Х
Open steppe and semidesert	Lowland	1.8-2.8 kg	Corsac fox ⁽¹⁾	Canidae	Vulpes corsac					Х		х	х
Semidesert, forest, high mountain toundra	High mountain	3.6-7 kg	Red fox ⁽¹⁾	Canidae	Vulpes vulpes					Х	Х	Х	Х
Tundra, forest, plain, desert, alpine zone	High mountain	28-40 kg	Wolf ⁽¹⁾	Canidae	Canis lupus					Х	Х	Х	х
Forest, subalpine mountain, tundra	High mountain	125-225 kg	Brown or grizzly bear ⁽¹⁾	Ursidae	Ursus arctos					Х		Х	Х
Mixed forest, oak forest, tropical forest	Up to 3,600 m	54-240 kg	Asiatic black bear ⁽¹⁾	Ursidae	Ursus thibetanus	Х	Х	Х		Х		i i	
Tropical forest	Lowland	27-63 kg	Sun bear ⁽²⁾	Ursidae	Helarctos mayalanus		cf.	Х				i i	
Mixed coniferous and broadleaf forest	1,200-3,900 m	85-125 kg	Giant Panda ⁽¹⁾	Ursidae	Ailuropoda sp./A. melanoleuca	Х	Х			Х			
Coniferous forest, open rocky zone	1,300-3,000 m	1-3 kg	Marte ⁽²⁾	Mustelidae	Martes sp.		х	Х				l – – I	
Coniferous and deciduous forests	Low to high mountains	0.4-1.1 kg	Sable ⁽¹⁾	Mustelidae	Martes zibellina							Х	х
Open steppe	High mountain	460-1,198 gr	Steppe polecat ⁽¹⁾	Mustelidae	Mustela eversmannii					Х		х	х
Mixed forest, tundra, woodland	2,000-3,000 m	60-110 gr	Ermine ⁽¹⁾	Mustelidae	Mustela erminea							х	х
Forest, steppe, meadow, mountain	Up to 4,000 m	28-70 gr	Least weasel ⁽¹⁾	Mustelidae	Mustela nivalis					Х		Х	Х
	•	Ŭ	Cave hyena	Hyaenidae	Crocuta spelea				?		Х	Х	
Dense forest, steppe, alpine region	High mountain	18-38 kg	Lynx ⁽¹⁾	Felidae	Lynx lynx					Х		Х	Х
Scrub forest Tropical rainforest	Up to 3,900 m (China)	100-306 kg ⁽¹⁾ 100-258 kg ⁽¹⁾	Tiger (Siberia) ⁽¹⁾ Tiger (India) ⁽¹⁾	Felidae	Panthera tigris		х	х		х			х
-	-	-	-	Felidae	small-sized felid	Х	х	Х		Х			Х
Mountain, subtropical, tropical forests	Lowland	2.4-4 kg ⁽¹⁾	Palm civet ^(1,2)	Viverridae	Paradoxurus sp.	Х	Х	Х					
												<u> </u>	
Tropical/subtropical forest, woodland	Up to 3,700 m	185-260 kg ⁽¹⁾	Sambar deer ⁽¹⁾	Cervidae	Rusa unicolor	Х	Х	Х	?	Х		<u> </u>	
-	-	-	-	Cervidae	medium-sized cervid	Х	Х	Х	?			<u> </u>	
Tropical forest, mountain forest	Lowland to high mountain	~15-up to 40kg	Muntjac ^(1,2)	Cervidae	Muntiacus sp.	Х	Х	Х	?	Х		<u> </u>	
Woodland, open meadow	Lowland to high mountain	20-40 kg ⁽¹⁾	Siberian roe ⁽¹⁾	Cervidae	Capreolus pygargus				?	Х	Х	х	Х
Conifer forest, open alpine meadow	Up to 5,000 m	75-240 kg ⁽¹⁾	Red deer ⁽¹⁾	Cervidae	Cervus elaphus				?	Х	Х	х	Х
Dense to open tropical/subtropical forest	Lowland/medium mountain	650-1,500 kg ⁽¹⁾ 650-900 kg ⁽²⁾	Gaur ⁽¹⁾	Bovidae	Bos sp. (frontalis)	х		х	?				
Mixed savannah, open grassland	Lowland	700-900 kg ⁽²⁾	kouprey	Bovidae	Bos sp. (sauveli)		cf.	Х	?			I	
Desert, grassland	4,000-6,100m	306-821 kg ⁽¹⁾	Yak ⁽¹⁾	Bovidae	Poephagus (Bos grunniens?)				?	Х		?	
Steppe	Lowland to High mountain	1,100 kg	Steppe bison	Bovidae	Bison priscus				?		Х	Х	
Grassy steppe, semidesert, grassland	Up to 5,750 m	25-45 kg ⁽¹⁾	Mongolian gazelle ⁽¹⁾	Bovidae	Procapra gutturosa				?	Х	Х	Х	Х
Grassy plain, aride zone	Lowland	26-69 kg ⁽¹⁾	Steppe saiga ⁽¹⁾	Bovidae	Saiga tatarica				?			х	Х

Mountain, rocky terrain, open meadow	3,000-6,000 m	80-100 kg ⁽¹⁾	Siberian ibex ⁽¹⁾	Bovidae	Capra sibrica				?		х	Х	Х
Alpine grassland	3,000-5,000 m	95-140 kg ⁽¹⁾	Argali ⁽¹⁾	Bovidae	Ovis ammon				?	Х	Х	Х	Х
Forest, meadow, rocky terrain	Lowland up to 4,500 m	~20-42 kg ^(1, 2)	Goral ^(1, 2)	Bovidae	Naemorhedus sp. (N. griseus, N. caudatus)	Х		Х	?	Х			Х
Forest, rocky zone	Lowland up to 4,500 m	85-140 kg ⁽¹⁾	Chinese serow ⁽¹⁾	Povidao	Capricornis sp. (C. milneedwardsii)		х	Х	C	Х			i i
Dense subtropical/tropical forest	Lowland to medium moutain	85-140 kg ⁽²⁾	Southern serow ⁽²⁾	DOVIDAE	Capricornis sp. (C. sumatraensis)			Х	•				1
Forest, scrub, grassland, swamp	Lowland to high mountain	50-200 kg ^(1, 2)	Wild boar ^(1, 2)	Suidae	Sus scrofa	х	х	Х		х			Х
													1
Tropical rainforest	Lowland to high mountain	>800 kg ⁽⁴⁾	Giant tapir	Tapiridae	Megatapirus augustus		х						1
Tropical rainforest	Lowland up to 2,000 m	250-350 kg ⁽²⁾	Malayan tapir ⁽²⁾	Tapiridae	Tapirus sp./T. indicus	Х	Х	Х					1
Tropical rainforest	Lowland	1,500-2,000 kg	Javan rhinoceros ⁽²⁾	Rhinocerotidae	Rhinoceros sondaicus	Х	х	Х	?				1
Savannah, grassland, scrub forest (7)	Lowland	1,800-2,700 kg	Indian rhinoceros	Rhinocerotidae	Rhinoceros unicornis		cf.		?				1
Tropical rainforest	Lowland	900-1,000 kg ⁽²⁾	Sumatran rhinoceros ⁽²⁾	Rhinocerotidae	Dicerorhinus sp./D. sumatrensis	Х	Х	Х	?				
Steppe, harsh conditions	Lowland to high mountain?	3,000 kg	Woolly rhinoceros	Rhinocerotidae	Coelodonta antiquitatis				?		Х	Х	1
Steppe, grassland	Lowland to high mountain?	140-230 kg	European wild ass	Equidae	Equus hydruntinus				?			Х	
Steppe, grassland, semi-arid area	Lowland to high mountain?	200-300 kg	Wild horse	Equidae	Equus ferus				?			Х	1
													1
Tropical forest	Lowland	3,000-5,000 kg ⁽⁵⁾	Stegodon	Stegodontidae	Stegodon sp.	Х	Х						
Steppe	Lowland	5,500-7,300 kg	Woolly mammoth	Elephantidae	Mammuthus primigenius							Х	
Tropical rainforest	Lowland	3,000-5,000 kg ⁽²⁾	Asian elephant ⁽²⁾	Elephantidae	Elephas maximus		Х	Х					

Table S8: Taxa recorded at the genus or species level in the Cobra Cave (164-131 ka; Demeter et al., 2022), Coc Muoi Cave (148-117 ka; Bacon et al., 2018), Denisova Cave (layers 17-19, Main Chamber, 151 ± 17 – 128 ± 13 ka; Jacobs et al., 2019), and Baishiya Cave (layers 10-6, ~100 ka; Figs. S27; Zhang et al., 2020), and in current faunas from Indochinese, Siberian and Tibetan Plateau zones. Also noted are habitat type, altitudinal range, and body weight for each taxon. The presence of brown bear (*Ursus arctos*) and that of east Asian cave hyena (*Crocuta spelea*, Haplogroup D) in the layer 19 of the Main Chamber of the Denisova Cave has also been reported by Zavala et al., (2021) based on sedimentary DNA. ⁽¹⁾ Smith A.T., & Xie Y. (2008), ⁽²⁾ Francis C.M. (2008), ⁽³⁾ Nowak R.M. (1999), ⁽⁴⁾ Janis (1984), ⁽⁵⁾ Schepartz and Miller-Antonio (2010).

Habitat	Altitude range	Diet		BW	Common name	Taxon	Cobra Cave (164-131 ka)	Coc Muoi (148-117 ka)	Indochina	Bayshia Cave (~100 ka)	Tibetan Plateu	Denisova Cave (Layer 17)	Denisova Cave (Layer 19)	Siberia
Tropical/subtropical forest, woodland	Up to 3,700 m	Grass, browse, ferns, leaves ^(1,2)	Browser/mixed feeder ⁽⁶⁾	В	Sambar deer ⁽¹⁾	Rusa unicolor	х	х	х	?	х			
-	-	-	Mixed feeder/grazer ⁽⁶⁾	A/B	-	medium-sized cervid	х	х	х	?				
Tropical forest, mountain forest	Lowland to high mountain	Grass, leaves, herbs, fruits ^(1,2)	Browser	А	Muntjac ^(1 2)	Muntiacus sp.	х	х	х	?	х			
Woodland, open meadow	Lowland to high mountain	Grass, browse, bark ⁽¹⁾	Browser/mixed feeder	А	Siberian roe ⁽¹⁾	Capreolus pygargus				?	х	х	х	х
Conifer forest, open alpine meadow	Up to 5,000 m	Lichens>grass, herbs, mosses, bark ⁽¹⁾	Browser/mixed feeder	В	Red deer ⁽¹⁾	Cervus elaphus				?	х	х	х	х
Dense to open tropical/subtropical forest	Lowland to medium mountain	Grass, browse, bamboo shoots ^(1,2)	Browser/mixed feeder/grazer ⁽⁶⁾	C/D	Gaur ⁽¹⁾	Bos sp. (frontalis)	х		х					
Mixed savannah, grassland, forest	Lowland	Leaves, roots, tubers ⁽⁷⁾	Browser/mixed feeder/grazer ⁽⁶⁾	С	kouprey	<i>Bos</i> sp. (<i>sauveli</i>)		cf.	Х					
Desert, grassland	4,000-6,100 m	Grass ⁽¹⁾	Grazer	С	Yak (1)	Poephagus (Bos grunniens?)				?	Х		?	
Steppe	Lowland to High mountain	Grass, sedge, herb ^(8,9,10)	Grazer	D	Steppe bison	Bison priscus						х	х	
Grassy steppe, semidesert, grassland	Up to 5,750 m	Grass, some browse ⁽¹⁾	Grazer	Α	Mongolian gazelle (1)	Procapra gutturosa				?	х	Х	х	Х
Grassy plain, aride zone	Lowland	Grass, some browse ⁽¹⁾	Grazer	Α	Steppe saiga (1)	Saiga tatarica				?			Х	Х
Mountain, rocky terrain, open meadow	3,000-6,000 m	Grass, herb ⁽¹⁾	Grazer	В	Siberian ibex ⁽¹⁾	Capra sibrica				?		х	х	х
Alpine grassland	3,000-5,000 m	Grass, herb ⁽¹⁾	Grazer	В	Argali (1)	Ovis ammon				?	Х	Х	Х	х
Forest, meadow, rocky terrain	Lowland up to 4,500 m	Grass, herb, twigs ^(1,2)	Browser/mixed feeder	А	Goral ^(1,2)	Naemorhedus sp. (N. griseus, N. caudatus)	х		х	?	х			х
Forest, rocky zone Dense subtropical/tropical forest	Up to 4,500 m Lowland/medium moutain	Leaves, shoots ^(1,2)	Browser/mixed feeder	B B	Chinse Serow ⁽¹⁾ Southern serow ⁽²⁾	Capricornis sp. (C. milneedwardsii) Capricornis sp. (C. sumatraensis)		х	X X	?	х			
Forest, scrub, grassland, swamp	Lowland to high mountain	Roots, seeds, eggs, animals ^(1,2)	Browser/mixed feeder	В	Wild boar ^(1,2)	Sus scrofa	х	х	х		х			х
Tropical rainforest	Lowland to high mountain	Grass, leaves, twigs, bark, herb, fruits	Browser ⁽⁶⁾	С	Giant tapir	Megatapirus augustus		х	х					
Tropical rainforest	Lowland up to 2,000 m	Grass, leaves, twigs, bark, herb, fruits, aquatic plants ⁽⁷⁾	Browser ⁽⁶⁾	В	Malayan tapir ⁽²⁾	Tapirus sp./T. indicus	х	х	х					

Tropical rainforest	Lowland ⁽²⁾	Leaves, wood, bark, fruits ⁽⁷⁾	Browser ⁽⁶⁾	D	Javan rhinoceros ⁽²⁾	Rhinoceros sondaicus	х	х	х	?			
Savannah, grassland, scrub forest ⁽⁷⁾	Lowland ⁽⁷⁾	Leaves, wood, bark, fruit, aquatic plants ⁽⁷⁾	Browser ⁽⁶⁾	D	Indian rhinoceros	Rhinoceros unicornis		cf.		?			
Tropical rainforest	Lowland	Leaves, twigs, woody plants ⁽²⁾	Browser ⁽⁶⁾	С	Sumatran rhinoceros ⁽²⁾	Dicerorhinus sp./D. sumatrensis	х	х	х	?			
Steppe, harsh conditions	Lowland	Grass, sedge ⁽⁸⁾	Grazer	D	Woolly rhinoceros	Coelodonta antiquitatis				?	Х	Х	
Steppe, grassland	Lowland	Grass, sedge = leaves of shrubs and trees ^(8,9, 10)	Grazer/mixed feeder	В	European wild ass	Equus hydruntinus				?		x	
Steppe, grassland, semi-arid area	Lowland	Grass, sedge = leaves of shrubs and trees ^(8,9, 10)	Grazer/mixed feeder	В	Wild horse	Equus ferus				?		x	
Tropical forest	Lowland	Plants, bark, fruits	Browser ⁽⁶⁾	D	Stegodon	Stegodon sp.	х	Х					
Steppe	Lowland	Mature dry grass ⁽⁹⁾ , sedge ^(8,9)	Grazer	D	Woolly mammoth	Mammuthus primigenius						х	
Tropical rainforest	Lowland	Grass, plants, bark, fruits ⁽²⁾	Browser ⁽⁶⁾	D	Asian elephant ⁽²⁾	Elephas maximus		х	х				

Table S9: Taxa recorded at the genus or species level in the Cobra Cave (164-131 ka; Demeter et al., 2022), Coc Muoi Cave (148-117 ka; Bacon et al., 2108), Denisova Cave (layers 17-19, Main Chamber, 151 ± 17 – 128 ± 13 ka; Jacobs et al., 2019), and and Baishiya Cave (layers 10-6, ~100 ka; Figs. S27; Zhang et al., 2020), and in current faunas from Indochinese, Siberian and Tibetan Plateau zones. Also noted are habitat type, altitudinal range, diet and dietary strategy, and body weight category for each taxon. ⁽¹⁾ Smith A.T., & Xie Y. (2008), ⁽²⁾ Francis C.M. (2008), ⁽³⁾ Nowak R.M. (1999), ⁽⁴⁾ Janis (1984), ⁽⁵⁾ Schepartz and Miller-Antonio (2010), ⁽⁶⁾ data based on isotopic measurements (C13) from Late Pleistocene Indochinese sites (Bacon et al., 2015), ⁽⁷⁾ <u>https://animaldiversity.org</u>, ⁽⁸⁾ Ma et al., (2021), ⁽⁹⁾ Drucker (2022), ⁽¹⁰⁾ Kelly et al., (2021). Body size categories from Faith et al., (2019); A. 18-80 kg, B. 80-350 kg, C. 350-1000 kg, D. >1000 kg.

		Cobra Cave	Denisova Cave Main Chamber (layer 17)	Denisova Cave East Chamber (layer 19)
		% (NISP)	% (NISP)	% (NISP)
Artiodactyla	Cervidae	29.11	16.66	1.77
	Bovidae	28.48	29.16	22.49
	Suidae	24.05	-	-
		81.64	45.82	24.26
Perissodactyla	Rhinocerotidae	11.39	8.33	3.55
	Equidae	-	12.50	10.07
	Tapiridae	0.63	-	-
		12.02	20.83	13.62
Proboscidea	Stegodontidae	0.63	-	-
	Mammuthus	-	-	2.37
		0.63	-	2.37
Carnivora	Felidae	0.63	-	1.18
	Hyenidae	-	8.33	16.57
	Ursidae	3.16	16.67	9.46
	Canidae	-	8.34	29.54
	Others	1.89	-	2.95
		5.68	33.34	59.70

Table S10: Percentages of fossil specimens recovered in the Cobra Cave (isolated teeth) (Demeter et al., 2022) and layers 17 and 19 of the Main Chamber in the Denisova Cave (bones) (Jacobs et al., 2019) by Family. Number of identified specimens (NISP).

		A (18 – 80 kg)	B (80 – 350 kg)	C (350 – 1000 kg)	D (>1000 kg)	Distribution of taxa
Tam Ngu Hao 2 (Cobra)	Ruminant	small-sized cervid Naemorhedus sp.	large-sized cervid medium-sized cervid	<i>Bos</i> sp.		11.11
Denisovans	Non-ruminant		Sus scrofa	Tapirus sp. Dicerorhinus sp.	Rhinoceros sondaicus Stegodon sp.	ABCD
Coc Muoi	Ruminant	Muntiacus sp.	<i>Rusa unicolor</i> medium-sized cervid <i>Capricornis</i> sp.	Bos cf. sauveli		
(148 – 117 ka)	Non-ruminant		Sus scrofa	Megatapirus augustus Tapirus indicus Dicerorhinus sumatrensis	Rhinoceros sondaicus Rhinoceros cf. unicornis Elephas maximus Stegodon sp.	ABCD
Denisova Cave (128 ± 13 – 151 ± 17 ka)	Ruminant	Capreolus pygargus Procapra gutturosa Saiga tatarica	Cervus elaphus Capra sibrica Ovis ammon	Poephagus/Bison?	Bison priscus	ll
Denisovans	Non-ruminant		Equus hydruntinus Equus ferus		Coelodonta antiquitatis	ABCD
Tom Llong Couth	Ruminant	Muntiacus muntjak	Rusa unicolor medium-sized cervid Capricornis sumatraensis	Bos cf. sauveli Bubalus bubalis		
(92 – 60 ka)	Non-ruminant		Sus scrofa Sus cf. barbatus	Megatapirus augustus Tapirus indicus cf. intermedius	Rhinoceros sondaicus Rhinoceros unicornis Elephas sp. Stegodon orientalis	A B C D
	Ruminant	Muntiacus muntjak	Rusa unicolor Capricornis sumatraensis	Bos sp. Bubalus bubalis		
Nam Lot (86 – 72 ka)	Non-ruminant		Sus scrofa	Tapirus sp.	Rhinoceros sondaicus Rhinoceros unicornis Elephas sp. Stegodon cf. orientalis	A B C D
Duoi U'Oi	Ruminant	Muntiacus muntjak	Rusa unicolor Capricornis sumatraensis	Bubalus cf. bubalis		
(70 – 60 ka) <i>Homo</i> sp.	Non-ruminant		Sus scrofa Sus barbatus	Tapirus indicus Dicerorhinus sumatrensis	Rhinoceros sondaicus Rhinoceros unicornis Elephas sp.	ABCD
Tam Hay Marklot (38.4 – 13.5 ka)	Ruminant	Muntiacus sp. Axis cf. porcinus Naemorhedus caudatus	Rusa unicolor Rucervus eldii Capricornis cf. sumatraensis	Bos sp. Bubalus bubalis		l lan r
	Non-ruminant		Sus sp. Sus cf. barbatus	Tapirus sp. Dicerorhinus sumatrensis	Rhinoceros sondaicus Elephas sp.	ABCD

Table S11: Lists and distributions of taxa by body size categories (A. 18-80 kg; B. 80-350 kg; C. 350-1000 kg; D. >1000 kg) (Faith et al. 2019), dietary strategy (ruminant (green) *versus* non-ruminant (brown)). No herbivore species smallest than ~20 kg is recorded in the southeast Asian fossil assemblages.

Tam Ngu Hao (Cobra)	MNI	%	Coc Muoi	MNI	%
large-sized cervid	3	20	Rusa unicolor	17	32,07
medium-sized cervid	2	13,33	medium-sized cervid	4	7,54
Muntiacus sp.	4	26,66	<i>Muntiacus</i> sp.	11	20,75
Bos sp.	5	33,33	Bos cf. sauveli	18	33,96
Naemorhedus sp.	1	6,66	Capricornis sp.	3	5,66
	15			53	
Tam Hang South	MNI	%	Nam Lot	MNI	%
Rusa unicolor	13	46,42	Rusa unicolor	4	16,66
medium-sized cervid	1	3,57	<i>Muntiacus</i> sp.	9	37,5
Muntiacus sp.	9	32,14	Bos sp.	2	8,33
Bos cf. sauveli	2	7,14	Bubalus bubalis	2	8,33
Bubalus bubalis	1	3,57	large-sized bovid	4	16,66
Capricornis sumatraensis	2	7,14	Capricornis sumatraensis	3	12,5
	28			24	
Duoi U'Oi	MNI	%	Tam Hay Marklot	MNI	%
Rusa unicolor	27	61,36	Rusa unicolor	29	38,66
Muntiacus sp.	14	31,81	Rucervus eldii	8	10,66
large-sized bovid	1	2,27	Axis cf. porcinus	5	6,66
Capricornis sp.	2	4,54	Muntiacus sp.	14	18,66
	44		Bos sp.	6	8
			large-sized bovid	2	2,66
			Capricornis sp.	7	9,33
			Naemorhedus cf. caudatus	4	5,33
				75	

Table S12. Minimum number of individuals (MNI) calculated by using the most frequent tooth type by taxon, and percentages of taxa belonging to Cervidae and Bovidae for all studied faunas. MNI data of Tam Hang South, Nam Lot and Duoi U'Oi (Bacon et al., 2015); MNI data of Coc Muoi (Bacon et al., 2018); MNI data of Tam Ngu Hao (Cobra) Cave and Tam Hay Marklot (the present paper).

References

- Bacon A.-M. *et al.* The Late Pleistocene Duoi U'Oi cave in northern Vietnam: palaeontology, sedimentology, taphonomy, palaeoenvironments. *Quaternary Science Reviews* 27, 1627-1654 (2008).
- Bacon A.-M. *et al.* Late Pleistocene mammalian assemblages of Southeast Asia: new dating, mortality profiles and evolution of the predator-prey relationships in an environmental context. *Palaeogeography, Palaeoclimatology, Palaeoecology* 422, 101-127 (2015).
- Bacon A.-M. *et al.* A rhinocerotid-dominated megafauna at the MIS6-5 transition: The late Middle Pleistocene Coc Muoi assemblage, Lang Son province, Vietnam. *Quaternary Science Reviews* 186, 123-141 (2018).
- Bacon A-M. *et al.* A multi-proxy approach to exploring *Homo sapiens'* arrival, environments and adaptations in Southeast Asia. *Scientific Reports* 11, 21080 (2021).
- Bourgon N. *et al.* Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. *Proceedings of National Academy of Sciences* 117, 4675-4681 (2020).
- Bourgon N. *et al.* Trophic ecology of a Late Pleistocene early modern human from tropical Southeast Asia inferred from zinc isotopes. *Journal of Human Evolution* 161, 103075 (2021).
- Bouteaux A., 2005. Paléontologie, paléoécologie et taphonomie des mammifères du Pléistocène moyen ancien du site à hominidés de Sangiran (Java central, Indonésie). Thèse du Muséum d'Histoire naturelle de Paris, 258 pages (2005).
- Brain C. K. The hunters and the hunted? An introduction to African cave taphonomy. The University of Chicago press, Chicago and London, 1981.
- Corbet G.B., Hill, J.E. The mammals of the Indomalayan region. Natural History Museum publications. Oxford University Press (1992).
- Demeter F. et al. Anatomically modern human in Southeast Asia (Laos) by 46 ka. Proceedings of the national academy of sciences 109, 14375-14380 (2012).
- Demeter F. *et al.* A Middle Pleistocene Denisovan from the Annamite Chain of northern Laos. *Nature communications*, 13: 2557 (2022).
- Drucker D.G. The Isotopic Ecology of the Mammoth Steppe. *Annual Review of Earth and Planetary Sciences* 50, 395-418 (2022).
- Duringer P. *et al.* Karst development, breccias history, and mammalian assemblages in Southeast Asia: A brief review. *Comptes Rendus Palevol* 11, 133-157 (2012).
- Faith, J.T., Rowan, J., Du, A. Early hominins evolved within non-analog ecosystems. *Proceedings of the National Academy of Sciences* 116, 21478-21483 (2019).

Francis C.M. A field guide to the mammals of south-east Asia. New Holland Publishers (UK), 2008.

Jacobs Z. *et al.* Timing of archaic hominin occupation of Denisova Cave in southern Siberia. *Nature* 565, 594-599 (2019).

Janis C., 1984. Tapirs as living fossils. In Living fossils. Springer New York, pp. 80-86.

Janssen, R. *et al.* Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. *Quat. Sci. Rev.* 144, 145–154 (2016).

Joordens, J.C.A. *et al.Homo erectus* at Trinil on Java used shells for tool production and engraving. *Nature* 518, 228–231 (2015).

- Kaifu, Y. et al. Modern human teeth unearthed from below the ~128,000-year-old level at Punung, Java: A case highlighting the problem of recent intrusion in cave sediments. *Journal of Human Evolution* 163, 103122 (2022).
- Kelly A. *et al.* Dietray paleoeocology of bison and horses on the mammoth steppe of eastern Beringia based on dental microwear and mesowear analyses. *Palaeogeography, Palaeoclimatology, Palaeoecology* 572, 110394 (2021).
- Kubat, J. et al. Dietary strategies of Pleistocene *Pongo* sp. and *Homo erectus* on Java (Indonesia). *Nature, Ecology & Evolution* 7, 279–289 (2023).

Louys, J. *et al.* Speleological and environmental history of Lida Ajer cave, western Sumatra. *Philosophical Transactions of the Royal Society B*. 377, 20200494 (2022).

- Ma J. *et al.* The *Mammuthus-Coelodonta* Faunal Complex at its southeastern limit: A biogeochemical paleoecology investigation in Northeast Asia. *Quaternary International* 591, 93-106 (2021).
- Matsu'ura et al., 2020, Age control of the first appearance datum for Javanese *Homo erectus* in the Sangiran area. Science 367, 210–2014 (2020).
- Milano S. *et al.* Environmental conditions framing the first evidence of modern humans at Tam Pà Ling, Laos: A stable isotope record from terrestrial gastropod carbonates. *Palaeogeography, Palaeoclimatology, Palaeoecology* 511, 352-363 (2018).
- Nowak R.M. Walker's Mammals of the World.Sixth Edition, Volume 1, The Johns Hopkins University Press (1999).
- Puspaningrum, M.R. et al. Isotopic reconstruction of Proboscidean habitats and diets on Java since the Early Pleistocene: Implications for adaptations and extinction. *Quat. Sci. Rev.* 228, 106007 (2020).
- Rizal, Y. et al. Last appearance of *Homo erectus* at Ngandong, Java, 117,000–108,000 years ago. *Nature* 577:381–385 (2020).
- Rozzi, R. Space-time patterns of body size variation in island bovids: The key role of predatory release. *Journal of Biogeography* 45, 1196-1207 (2018).
- Schepartz, L.A., Miller-Antonio, S. Large mamal exploitation in Late Middle Pleistocene China: A comparison of rhinoceros and stegodonts at Panxian Dadong. *Before farming* 4, 1-14 (2010).
- Shackelford L. *et al.* Additional evidence for early modern human morphological diversity in Southeast Asia at Tam Pà Ling, Laos. *Quaternary International* 466, 93-106 (2018).

- Smith A.T., Xie Y. A guide to the mammals of China. Princeton University Press, Princeton and Oxford, 2008.
- Storm, P. et al. Late Pleistocene *Homo sapiens* in a tropical rainforest fauna in East Java. *Journal of Human Evolution* 49: 536–545 (2005).
- Volmer R., Hertler, C., van der Geer, A. Niche overlap and competition potential among tigers (*Panthera tigris*), sabertoothed cats (*Homotherium ultimum*, *Hemimachairodus zwierzyckii*) and Merriam's Dog (*Megacyuon merriami*) in the Pleictocene of Java. *Palaeogreography*, *Palaeocimatology*, *Palaeoecology* 441, 901-911 (2016).
- Westaway, K.E. et al. An early modern human presence in Sumatra 73,000–63,000 years ago. *Nature* 548, 322–325 (2017).
- Westaway, K.E. et al. Age and biostratigraphic significance of the Punung Rainforest Fauna, East Java, Indonesia, and implications for *Pongo* and *Homo*. *Journal of Human Evolution* 53, 709–717 (2007).
- Wood R. *et al.* The effect of grain size on carbonate contaminant removal from tooth enamel: Towards an improved pretreatment for radiocarbon dating. *Quaternary Geochronology* 36, 174-187 (2016).
- Wood R. *et al*. Do weak or strong acids remove carbonate contamination from ancient tooth enamel more effectively? The effect of acid pretreatment on radiocarbon and 13C analyses. *Radiocarbon* 63, 935-952 (2021).

Zhang, D. *et al.* Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau. *Science* 370, 584–587 (2020).

Zavala E.I. *et al.* Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave. *Nature* 595, 399-403 (2021).

Number	Country	Site	Taxon	Body Mass	δ ¹³ C (‰) Enrichment Factor	δ^{13} Ccarbon source	$\delta^{13}C_{apatite}$	$\delta^{18}O_{apatite}$
TNH154	Laos	Cobra Cave	Ailuropoda melanoleuca	92	9.7	-26.2	-16.54	-6.02
TNH152	Laos	Cobra Cave	Ailuropoda melanoleuca	92	9.7	-23.8	-14.1	-6.43
TNH69	Laos	Cobra Cave	Bos sp.	800	14.5	-30.4	-15.9	-3.44
TNH65	Laos	Cobra Cave	Bos sp.	800	14.5	-27.5	-12.99	-4.81
TNH62	Laos	Cobra Cave	Bos sp.	800	14.5	-25.9	-11.44	-9.19
TNH80	Laos	Cobra Cave	Bos sp.	800	14.5	-23.3	-8.83	-5.94
TNH68	Laos	Cobra Cave	Bos sp.	800	14.5	-18.6	-4.05	-5.52
TNH86	Laos	Cobra Cave	Bos sp.	800	14.5	-14.3	+0.18	-4.81
TNH66	Laos	Cobra Cave	Bos sp.	800	14.5	-14.0	+0.53	-8.54
TNH87	Laos	Cobra Cave	Cervidae	220	13.59	-26.5	-12.95	-8.85
TNH119	Laos	Cobra Cave	<i>Hystrix</i> sp.	12	12.18	-26.5	-14.33	-9.48
TNH144	Laos	Cobra Cave	Hystrix sp.	12	12.18	-25.3	-13.13	-10.49
TNH149	Laos	Cobra Cave	<i>Hystrix</i> sp.	12	12.18	-25.0	-12.8	-9.86
TNH151	Laos	Cobra Cave	<i>Hystrix</i> sp.	12	12.18	-24.8	-12.62	-9.82
TNH137	Laos	Cobra Cave	<i>Hystrix</i> sp.	12	12.18	-23.9	-11.74	-5.925
TNH20	Laos	Cobra Cave	Large-sized Bovidae	800	14.5	-29.2	-14.68	-7.26
TNH41	Laos	Cobra Cave	Large-sized Cervidae	220	13.59	-30.2	-16.57	-8.17
TNH83	Laos	Cobra Cave	Large-sized Cervidae	220	13.59	-29.6	-15.97	-6.4
TNH40	Laos	Cobra Cave	Large-sized Cervidae	220	13.59	-27.9	-14.35	-8.74
TNH39	Laos	Cobra Cave	Large-sized Cervidae	220	13.59	-26.4	-12.8	-6.78
TNH45	Laos	Cobra Cave	Large-sized Cervidae	220	13.59	-25.4	-11.83	-3.11
TNH44	Laos	Cobra Cave	Large-sized Cervidae	220	13.59	-15.3	-1.7	-5.11
TNH6	Laos	Cobra Cave	Macaca sp.	6	11.91	-27.6	-15.64	-6.53
TNH5	Laos	Cobra Cave	Macaca sp.	6	11.91	-27.5	-15.55	-6.25
TNH160	Laos	Cobra Cave	Macaca sp.	6	11.91	-26.4	-14.53	-4.8

Annex S1: Faunal list from the Tam Ngu Hao (Cobra) Cave with associated original data $\delta^{13}C_{apatite}$, $\delta^{13}C_{carbon source}$ and $\delta^{18}O_{apatite}$ values (% VPDB), as well as body mass and $\delta^{13}C$ (% VPDB) Enrichment Factor used to obtain $\delta^{13}C_{carbon source}$.

	1						1	
TNH161	Laos	Cobra Cave	Macaca sp.	6	11.91	-26.0	-14.12	-3.58
TNH33	Laos	Cobra Cave	Medium-sized Cervidae	83	12.9	-27.4	-14.42	-9.56
TNH29	Laos	Cobra Cave	Medium-sized Cervidae	83	12.9	-17.3	-4.34	-5.06
TNH14	Laos	Cobra Cave	<i>Muntiacus</i> sp.	220	13.59	-28.5	-14.92	-7.75
TNH57	Laos	Cobra Cave	Muntiacus sp.	24	12.17	-25.1	-12.96	-9.02
TNH55	Laos	Cobra Cave	<i>Muntiacus</i> sp.	24	12.17	-25.0	-12.78	-6.04
TNH181	Laos	Cobra Cave	Pongo sp.	55	12.78	-26.7	-13.96	-4.28
TNH179	Laos	Cobra Cave	Rhinoceros sp.	1650	14.25	-28.1	-13.8	-8.53
TNH172	Laos	Cobra Cave	Rhinocerotidae indet.	1650	14.25	-31.3	-17.09	-7.11
TNH171	Laos	Cobra Cave	Rhinocerotidae indet.	1650	14.25	-30.4	-16.1	-6.05
TNH180	Laos	Cobra Cave	Rhinocerotidae indet.	1650	14.25	-29.6	-15.33	-7.29
TNH76	Laos	Cobra Cave	Small-sized Caprinae	27	12.24	-28.4	-16.13	-6.21
TNH77	Laos	Cobra Cave	Small-sized Caprinae	27	12.24	-27.5	-15.24	-2.9
TNH73	Laos	Cobra Cave	Small-sized Caprinae	27	12.24	-14.8	-2.55	-2.55
TNH75	Laos	Cobra Cave	Small-sized Caprinae	27	12.24	-11.9	+0.37	-8.02
TNH22	Laos	Cobra Cave	Small-sized carnivora	17	13.44	-27.6	-14.14	-3.92
TNH9	Laos	Cobra Cave	Small-sized carnivora	17	13.44	-26.6	-13.16	-10.39
TNH166	Laos	Cobra Cave	Small-sized Felidae	18	13.46	-21.8	-8.38	-3.92
TNH8	Laos	Cobra Cave	Stegodon sp.	4000	14.66	-28.6	-13.95	-7.66
TNH130	Laos	Cobra Cave	Sus sp.	137	13.19	-27.3	-14.09	-7.3
TNH125	Laos	Cobra Cave	Sus sp.	137	13.19	-26.5	-13.34	-7.25
TNH129	Laos	Cobra Cave	Sus sp.	137	13.19	-26.5	-13.35	-5.95
TNH127	Laos	Cobra Cave	Sus sp.	137	13.19	-26.4	-13.23	-8.57
TNH119	Laos	Cobra Cave	Sus sp.	137	13.19	-26.2	-13.0	-6.91
TNH120	Laos	Cobra Cave	Sus sp.	137	13.19	-25.9	-12.7	-8.32
TNH89	Laos	Cobra Cave	Sus sp.	137	13.19	-25.7	-12.49	-7.66
TNH111	Laos	Cobra Cave	Sus sp.	137	13.19	-25.1	-11.94	-7.4
TNH178	Laos	Cobra Cave	Tapirus indicus	300	13.5	-30.0	-16.46	-5.54
TNH2-1	Laos	Cobra Cave	TNH2-1	62	12.7	-16.28	-3.58	-7.03

Annex S2. Ungulate specimens from already-published Tam Pà Ling site (Bourgon et al., 2021) with associated $\delta^{13}C_{apatite}$, $\delta^{13}C_{carbon source}$ and $\delta^{13}O_{apatite}$ values, as well as body mass and $\delta^{13}C$ (‰), and enrichment factor used to obtain $\delta^{13}C_{carbon source}$. S-EVA, Stable Isotope-Evolutionary Anthropology (Max Planck Institute for Evolutionary Anthropology). The age range of teeth are from Shackelford et al., 2018.

S-EVA	Country	Site	Depth (metre)	Optical ages (OSL, pIR- IRSL)	Taxon	Body mass (kg)	$\delta^{13}C_{apatite}$ (‰)	δ ¹⁸ Ο _{apatite} (‰)	δ ¹³ C (‰) Enrichment factor	δ ¹³ C _{carbon source} (‰)
35419	Laos	Tam Pà Ling	2.05	33 ± 3 ka	Naemorhedus sp.	27	-16.3	-2.1	12.2	-28.5
35417	Laos	Tam Pà Ling	2.22	43–33 ka	Capricornis sp.	112	-13.6	-6.2	13.1	-26.7
35946	Laos	Tam Pà Ling	2.32	43–33 ka	Capricornis sp.	112	-14.0	-6.5	13.1	-27.1
35492	Laos	Tam Pà Ling	2.35	46–43 ka	Homo sapiens	62	-13.7	-6.4	12.7	-26.4
35427	Laos	Tam Pà Ling	2.44	46–43 ka	Rhinoceros cf. unicornis	2250	-15.8	-9.1	14.4	-30.2
35416	Laos	Tam Pà Ling	2.50	46–43 ka	Capricornis sp.	112	-12.9	-5.8	13.1	-26.0
35428	Laos	Tam Pà Ling	2.51	46–43 ka	Dicerorhinus sumatrensis	950	-15.8	-8.9	14.0	-29.8
65952	Laos	Tam Pà Ling	2.59	46 ± 4 ka	Caprinae	70	-13.9	-4.2	12.8	-26.7
35947	Laos	Tam Pà Ling	2.78	46 ± 4 ka	Caprinae	70	-14.7	-6.3	12.8	-27.5
35418	Laos	Tam Pà Ling	3.00	46 ± 4 ka	Naemorhedus sp.	27	-5.0	-3.1	12.2	-17.2
35423	Laos	Tam Pà Ling	3.29	56–46 ka	Caprinae	70	-5.5	-0.6	12.8	-18.3
35426	Laos	Tam Pà Ling	3.50	56–46 ka	Naemorhedus sp.	27	-14.6	-3.3	12.2	-26.8
35422	Laos	Tam Pà Ling	3.80	56–46 ka	Bovidae indet.	875	-15.0	-2.7	14.6	-29.6
35429	Laos	Tam Pà Ling	4.20	56 ± 6 ka	Caprinae	70	-14.0	-8.0	12.8	-26.9
35958	Laos	Tam Pà Ling	6.60	>70 ± 8 ka	Rhinoceros sondaicus	1750	-15.7	-3.6	14.3	-30.0

	<u> </u>	c	_	Body Mass	$\delta^{13}C_{apatite}$	δ ¹³ C (‰)	δ^{13} C _{carbon} source	$\delta^{18} O_{apatite}$
Number	Country	Site	Taxon	(kg)	(‰ VPDB)	Enrichment Factor	(‰ VPDB)	(‰ VPDB)
DU876	Vietnam	Duoi U'Oi	Sus scrofa	137	-14.2	13.19	-27.4	-5.1
DU890	Vietnam	Duoi U'Oi	Sus scrofa	137	-12.8	13.19	-26.0	-8.3
DU905	Vietnam	Duoi U'Oi	Sus scrofa	137	-13.7	13.19	-26.9	-7.1
DU906	Vietnam	Duoi U'Oi	Sus scrofa	137	-15.0	13.19	-28.2	-6.0
DU913	Vietnam	Duoi U'Oi	Sus scrofa	137	-14.7	13.19	-27.9	-6.2
DU546	Vietnam	Duoi U'Oi	Rusa unicolor	220	-16.6	13.59	-30.2	-7.1
DU557	Vietnam	Duoi U'Oi	Rusa unicolor	220	-19.6	13.59	-33.2	-6.1
DU567	Vietnam	Duoi U'Oi	Rusa unicolor	220	-18.1	13.59	-31.7	-6.1
DU608	Vietnam	Duoi U'Oi	Rusa unicolor	220	-18.1	13.59	-31.7	-7.0
DU990	Vietnam	Duoi U'Oi	Rusa unicolor	220	-18.3	13.59	-31.9	-5.7
DU1087	Vietnam	Duoi U'Oi	Rusa unicolor	220	-17.7	13.59	-31.3	-8.5
DU437	Vietnam	Duoi U'Oi	Muntiacus muntjak	24	-13.2	12.17	-25.4	-9.3
DU461	Vietnam	Duoi U'Oi	Muntiacus muntjak	24	-14.8	12.17	-27.0	-7.7
DU511	Vietnam	Duoi U'Oi	Muntiacus muntjak	24	-14.6	12.17	-26.8	-5.1
DU433	Vietnam	Duoi U'Oi	Muntiacus muntjak	24	-13.8	12.17	-26.0	-7.8
DU392	Vietnam	Duoi U'Oi	Muntiacus muntjak	24	-13.0	12.17	-25.2	-6.5
DU574	Vietnam	Duoi U'Oi	Capricornis sumatraensis	112	-15.8	13.14	-28.9	-7.1
DU613	Vietnam	Duoi U'Oi	Capricornis sumatraensis	112	-17.4	13.14	-30.5	-7.5
DU538	Vietnam	Duoi U'Oi	Capricornis sumatraensis	112	-14.5	13.14	-27.6	-6.1
DU992	Vietnam	Duoi U'Oi	Bovidae indet.	875	-19.8	14.57	-34.4	-7.1
DU983	Vietnam	Duoi U'Oi	Bovidae indet.	875	-12.1	14.57	-26.7	-5.2
DU984	Vietnam	Duoi U'Oi	Bovidae indet.	875	-0.6	14.57	-15.2	-4.7
DU560	Vietnam	Duoi U'Oi	Bovidae indet.	875	-19.3	14.57	-33.9	-2.5
	Vietnam	Duoi U'Oi	Hystrix brachyura	12	-16.7	12.18	-28.9	-8.0
	Vietnam	Duoi U'Oi	Hystrix brachyura	12	-12.6	12.18	-24.8	-6.7
	Vietnam	Duoi U'Oi	Hystrix brachyura	12	-16.26	12.18	-28.4	-9.71
	Vietnam	Duoi U'Oi	Hystrix brachyura	12	-12.8	12.18	-25.0	-6.39
	Vietnam	Duoi U'Oi	Hystrix brachyura	12	-17.08	12.18	-29.3	-8.68
	Vietnam	Duoi U'Oi	Hystrix brachyura	12	-13.7	12.18	-25.9	-6.6

Annex S3. Faunal lists from other sites (Duoi U'Oi, Coc Muoi, Tam Hang South) with already-published data (Bacon et al., 2021), with associated $\delta^{13}C_{apatite}$, $\delta^{13}C_{carbon source}$ and $\delta^{18}O_{apatite}$ values (% VPDB), as well as body mass and $\delta^{13}C$ (% VPDB) Enrichment Factor used to obtain $\delta^{13}C_{carbon source}$.

	Vietnam	Duoi U'Oi	Hystrix brachyura	12	-17.3	12.18	-29.5	-5.1
DU7	Vietnam	Duoi U'Oi	Hystrix brachyura	12	-14.7	12.18	-26.9	-8.9
DU728	Vietnam	Duoi U'Oi	Ursus sp.	100	-15.0	13.3	-28.3	-6.5
DU729	Vietnam	Duoi U'Oi	Ursus sp.	100	-14.9	13.3	-28.2	-9.3
DU1152	Vietnam	Duoi U'Oi	Cuon alpinus	15	-14.2	13.39	-27.6	-7.3
DU1153	Vietnam	Duoi U'Oi	Cuon alpinus	15	-14.9	13.39	-28.3	-6.7
DU77	Vietnam	Duoi U'Oi	Cuon alpinus	15	-14.5	13.39	-27.9	-7.4
DU68	Vietnam	Duoi U'Oi	Panthera pardus	41	-14.2	13.81	-28.0	-5.2
DU86	Vietnam	Duoi U'Oi	Panthera pardus	41	-13.9	13.81	-27.7	-5.2
DU707	Vietnam	Duoi U'Oi	Panthera tigris	212	-15.5	14.53	-30.0	-5.4
DU326	Vietnam	Duoi U'Oi	Macaca sp.	6	-11.9	11.91	-23.8	-6.2
DU331	Vietnam	Duoi U'Oi	Macaca sp.	6	-15.6	11.91	-27.5	-5.1
DU339	Vietnam	Duoi U'Oi	Macaca sp.	6	-14.4	11.91	-26.3	-4.4
DU343	Vietnam	Duoi U'Oi	Macaca sp.	6	-15.4	11.91	-27.3	-5.0
DU322	Vietnam	Duoi U'Oi	Macaca sp.	6	-16.0	11.91	-27.9	-6.3
DU32	Vietnam	Duoi U'Oi	Rhinoceros unicornis	2250	-17.1	14.4	-31.5	-7.2
DU26	Vietnam	Duoi U'Oi	Rhinoceros unicornis	2250	-16.1	14.4	-30.5	-6.4
DU28	Vietnam	Duoi U'Oi	Rhinoceros unicornis	2250	-16.2	14.4	-30.6	-6.6
DU30	Vietnam	Duoi U'Oi	Rhinoceros sondaicus	2250	-15.7	14.4	-30.1	-6.4
DU31	Vietnam	Duoi U'Oi	Rhinoceros sondaicus	2250	-15.3	14.4	-29.7	-4.9
DU38	Vietnam	Duoi U'Oi	Rhinoceros sondaicus	2250	-16.6	14.4	-31.0	-7.0
DU27	Vietnam	Duoi U'Oi	Dicerorhinus sumatrensis	950	-17.5	14	-31.5	-7.9
DU24	Vietnam	Duoi U'Oi	Dicerorhinus sumatrensis	950	-16.4	14	-30.4	-6.6
DU47	Vietnam	Duoi U'Oi	Tapirus indicus	300	-17.3	13.5	-30.8	-7.9
DU43	Vietnam	Duoi U'Oi	Tapirus indicus	300	-20.1	13.5	-33.6	-6.9
DU53	Vietnam	Duoi U'Oi	Tapirus indicus	300	-19.1	13.5	-32.6	-8.3
DU1021	Vietnam	Duoi U'Oi	Pongo pygmaeus	55	-14.6	12.78	-27.4	-6.0
DU1022	Vietnam	Duoi U'Oi	Pongo pygmaeus	55	-14.5	12.78	-27.3	-5.1
DU1023	Vietnam	Duoi U'Oi	Pongo pygmaeus	55	-14.3	12.17	-26.5	-4.9
DU634	Vietnam	Duoi U'Oi	Elephas sp.	4250	-16.9	14.69	-31.6	-7.0
DU-	Vietnam	Duoi U'Oi	Elephas sp.	4250	-15.9	14.69	-30.6	-6.8
CM169	Vietnam	Coc Muoi	Muntiacus sp.	24	-14.2	12.17	-26.4	-7.1
CM307	Vietnam	Coc Muoi	<i>Muntiacus</i> sp.	24	-14.5	12.17	-26.7	-6.5
CM357	Vietnam	Coc Muoi	Muntiacus sp.	24	-13.5	12.17	-25.7	-5.7
Cm313	Vietnam	Coc Muoi	Muntiacus sp.	24	-14.0	12.17	-26.2	-5.5

CM175	Vietnam	Coc Muoi	<i>Muntiacus</i> sp.	24	-13.9	12.17	-26.1	-6.9
CM176	Vietnam	Coc Muoi	Muntiacus sp.	24	-13.2	12.17	-25.4	-4.4
CM324	Vietnam	Coc Muoi	Muntiacus sp.	24	-16.5	12.17	-28.7	-6.2
CM450	Vietnam	Coc Muoi	Sus scrofa	137	-14.5	13.19	-27.7	-6.2
CM676	Vietnam	Coc Muoi	Sus scrofa	137	-13.9	13.19	-27.1	-6.9
CM677	Vietnam	Coc Muoi	Sus scrofa	137	-13.8	13.19	-27.0	-6.5
CM678	Vietnam	Coc Muoi	Sus scrofa	137	-13.1	13.19	-26.3	-6.4
CM748	Vietnam	Coc Muoi	Sus scrofa	137	-13.7	13.19	-26.9	-7.2
CM746	Vietnam	Coc Muoi	Sus scrofa	137	-13.9	13.19	-27.1	-6.2
CM543	Vietnam	Coc Muoi	Ailuropoda melanoleuca	92	-17.4	10.51	-27.9	-4.2
CM544	Vietnam	Coc Muoi	Ailuropoda melanoleuca	92	-17.7	10.51	-28.2	-5.6
CM564	Vietnam	Coc Muoi	Ailuropoda melanoleuca	92	-18.5	10.51	-29.0	-6.7
CM415	Vietnam	Coc Muoi	Ursus sp. (? thibetanus)	100	-14.5	13.3	-27.8	-5.8
CM518	Vietnam	Coc Muoi	Ursus thibetanus	100	-17.0	13.3	-30.3	-6.9
CM519	Vietnam	Coc Muoi	Ursus thibetanus	100	-13.4	13.3	-26.7	-6.4
CM521	Vietnam	Coc Muoi	Ursus sp. (? thibetanus)	100	-14.4	13.3	-27.7	-8.5
CM525	Vietnam	Coc Muoi	Ursus thibetanus	100	-14.1	13.3	-27.4	-6.8
CM508	Vietnam	Coc Muoi	Pongo devosi	55	-15.3	12.78	-28.1	-4.0
CM579	Vietnam	Coc Muoi	Pongo devosi	55	-15.0	12.78	-27.8	-4.7
CM551	Vietnam	Coc Muoi	Pongo devosi	55	-14.8	12.78	-27.6	-4.8
CM553	Vietnam	Coc Muoi	Pongo devosi	55	-15.0	12.78	-27.8	-5.0
CM509	Vietnam	Coc Muoi	Macaca sp.	6	-14.0	11.91	-25.9	-4.7
CM577	Vietnam	Coc Muoi	Macaca sp.	6	-13.8	11.91	-25.7	-7.4
CM614	Vietnam	Coc Muoi	Macaca sp.	6	-14.2	11.91	-26.1	-5.9
CM618	Vietnam	Coc Muoi	Macaca sp.	6	-15.1	11.91	-27.0	-5.2
CM555	Vietnam	Coc Muoi	Macaca sp.	6	-15.4	11.91	-27.3	-4.7
CM534	Vietnam	Coc Muoi	Panthera tigris	212	-16.2	14.53	-30.7	-7.5
CM566	Vietnam	Coc Muoi	Panthera tigris	212	-14.6	14.53	-29.1	-5.4
CM632	Vietnam	Coc Muoi	Panthera tigris	212	-16.0	14.53	-30.5	-8.6
CM571	Vietnam	Coc Muoi	Cuon alpinus	15	-14.3	13.39	-27.7	-6.7
CM535	Vietnam	Coc Muoi	Small-sized Felidae	18	-14.5	13.46	-28.0	-8.6
CM536	Vietnam	Coc Muoi	Small-sized Felidae	18	-13.2	13.46	-26.7	-6.2
CM421	Vietnam	Coc Muoi	Hystrix sp.	12	-14.8	12.18	-27.0	-8.1
CM472	Vietnam	Coc Muoi	Hystrix sp.	12	-15.8	12.18	-28.0	-3.9
CM902	Vietnam	Coc Muoi	<i>Hystrix</i> sp.	12	-16.0	12.18	-28.2	-7.2

CM903	Vietnam	Coc Muoi	<i>Hystrix</i> sp.	12	-14.5	12.18	-26.7	-7.5
CM904	Vietnam	Coc Muoi	<i>Hystrix</i> sp.	12	-16.0	12.18	-28.2	-4.1
CM910	Vietnam	Coc Muoi	<i>Hystrix</i> sp.	12	-13.6	12.18	-25.8	-8.6
CM911	Vietnam	Coc Muoi	<i>Hystrix</i> sp.	12	-13.7	12.18	-25.9	-4.6
CM954	Vietnam	Coc Muoi	<i>Hystrix</i> sp.	12	-14.7	12.18	-26.9	-4.9
CM983	Vietnam	Coc Muoi	Atherurus sp.	12	-14.6	12.18	-26.8	-5.8
CM984	Vietnam	Coc Muoi	Atherurus sp.	12	-14.1	12.18	-26.3	-4.6
CM75	Vietnam	Coc Muoi	Rusa unicolor	220	-17.5	13.59	-31.1	-6.8
CM244	Vietnam	Coc Muoi	Rusa unicolor	220	-13.4	13.59	-27.0	-6.9
CM245	Vietnam	Coc Muoi	Rusa unicolor	220	-15.2	13.59	-28.8	-6.5
CM246	Vietnam	Coc Muoi	Rusa unicolor	220	-14.0	13.59	-27.6	-5.8
CM247	Vietnam	Coc Muoi	Rusa unicolor	220	-17.0	13.59	-30.6	-7.8
CM249	Vietnam	Coc Muoi	Rusa unicolor	220	-16.3	13.59	-29.9	-7.3
CM287	Vietnam	Coc Muoi	Capricornis sp.	112	-15.0	13.14	-28.1	-5.9
CM173	Vietnam	Coc Muoi	Capricornis sp.	112	-17.7	13.14	-30.8	-5.1
CM286	Vietnam	Coc Muoi	Capricornis sp.	112	-17.9	13.14	-31.0	-7.6
CM147	Vietnam	Coc Muoi	Capricornis sp.	112	-14.5	13.14	-27.6	-4.9
CM149	Vietnam	Coc Muoi	Capricornis sp.	112	-17.1	13.14	-30.2	-5.5
CM370	Vietnam	Coc Muoi	<i>Bos</i> cf. <i>sauveli</i>	800	-14.8	14.5	-29.3	-5.8
CM225	Vietnam	Coc Muoi	Bos cf. sauveli	800	-8.9	14.5	-23.4	-6.6
CM226	Vietnam	Coc Muoi	<i>Bos</i> cf. <i>sauveli</i>	800	-11.1	14.5	-25.6	-5.9
CM227	Vietnam	Coc Muoi	<i>Bos</i> cf. <i>sauveli</i>	800	-11.3	14.5	-25.8	-6.9
CM46	Vietnam	Coc Muoi	Bos cf. sauveli	800	-3.6	14.5	-18.1	-4.1
CM152a	Vietnam	Coc Muoi	Bovidae (?Bos sauveli)	875	-13.4	14.57	-28.0	-5.9
CM1067	Vietnam	Coc Muoi	Rhinoceros sondaicus	1750	-17.0	14.28	-31.3	-5.4
CM1122	Vietnam	Coc Muoi	Rhinoceros sondaicus	1750	-16.6	14.28	-30.9	-4.9
CM1120	Vietnam	Coc Muoi	Rhinoceros sondaicus	1750	-15.6	14.28	-29.9	-5.8
CM1068	Vietnam	Coc Muoi	Rhinoceros sondaicus	1750	-15.5	14.28	-29.8	-5.8
CM1229	Vietnam	Coc Muoi	Rhinoceros sondaicus	1750	-16.3	14.28	-30.6	-4.7
CM1137	Vietnam	Coc Muoi	Rhinoceros sondaicus	1750	-17.0	14.28	-31.3	-7.8
CM1339	Vietnam	Coc Muoi	Rhinoceros sondaicus	1750	-16.5	14.28	-30.8	-5.4
CM998	Vietnam	Coc Muoi	Rhinoceros sondaicus	1750	-16.4	14.28	-30.7	-7.1
CM1151	Vietnam	Coc Muoi	Rhinoceros unicornis	2250	-16.3	14.4	-30.7	-5.8
CM1278	Vietnam	Coc Muoi	Rhinoceros unicornis	2250	-16.8	14.4	-31.2	-6.2
CM1035	Vietnam	Coc Muoi	Dicerorhinus sumatrensis	950	-15.8	14	-29.8	-6.4

CM1096	Vietnam	Coc Muoi	Dicerorhinus sumatrensis	950	-15.6	14	-29.6	-5.0
CM1349	Vietnam	Coc Muoi	Megatapirus augustus	500	-20.1	13.72	-33.8	-5.9
CM514	Vietnam	Coc Muoi	Megatapirus augustus	500	-18.7	13.72	-32.4	-5.5
CM515	Vietnam	Coc Muoi	Tapirus indicus	300	-17.8	13.5	-31.3	-6.2
CM516	Vietnam	Coc Muoi	Tapirus indicus	300	-18.3	13.5	-31.8	-6.8
CM1351	Vietnam	Coc Muoi	Tapirus indicus	300	-16.4	13.5	-29.9	-6.6
CM726	Vietnam	Coc Muoi	Stegodon sp.	4000	-14.2	14.66	-28.9	-7.9
CM637	Vietnam	Coc Muoi	Stegodon sp.	4000	-14.7	14.66	-29.4	-9.8
CM728	Vietnam	Coc Muoi	Elephas maximus	4250	-18.3	14.69	-33.0	-5.8
420	Vietnam	Coc Muoi	Elephas maximus	4250	-15.8	14.69	-30.5	-6.0
TH-860	Laos	Tam Hang South	Cuon alpinus cf. antiquus	15	-12.9	13.39	-26.3	-6.8
TH-861	Laos	Tam Hang South	Cuon alpinus cf. antiquus	15	-14.4	13.39	-27.8	-2.9
TH-870	Laos	Tam Hang South	Cuon alpinus cf. antiquus	15	-13.0	13.39	-26.4	-6.3
TH-539	Laos	Tam Hang South	Capricornis sumatraensis	112	-6.8	13.14	-19.9	-4.3
TH-767	Laos	Tam Hang South	Capricornis sumatraensis	112	-4.9	13.14	-18.0	-2.8
TH-768	Laos	Tam Hang South	Capricornis sumatraensis	112	-13.7	13.14	-26.8	-5.7
TH-873	Laos	Tam Hang South	Helarctos malayanus	50	-12.6	13.3	-25.9	-5.9
TH-877	Laos	Tam Hang South	Helarctos malayanus	50	-12.5	13.3	-25.8	-7.2
TH-H1	Laos	Tam Hang South	Hystrix brachyura	12	-13.7	12.18	-25.9	-5.3
TH-H2	Laos	Tam Hang South	Hystrix brachyura	12	-9.9	12.18	-22.1	-9.4
TH-H3	Laos	Tam Hang South	Hystrix brachyura	12	-10.2	12.18	-22.4	-5.4
TH-H4	Laos	Tam Hang South	Hystrix brachyura	12	-8.9	12.18	-21.1	-8.9
TH-H5	Laos	Tam Hang South	Hystrix brachyura	12	-14.7	12.18	-26.9	-6.7
TH-H6	Laos	Tam Hang South	Hystrix brachyura	12	-14	12.18	-26.2	-6.6
TH-789	Laos	Tam Hang South	Bubalus bubalis	1000	-2.9	14.66	-17.6	-6.7
TH-791	Laos	Tam Hang South	Bubalus bubalis	1000	-5.0	14.66	-19.7	-6.8
TH-455	Laos	Tam Hang South	Bos cf. sauveli	800	+1.8	14.5	-12.7	-5.7
TH-458	Laos	Tam Hang South	Bos cf. sauveli	800	-10.9	14.5	-25.4	-8.2
TH-459	Laos	Tam Hang South	Bos cf. sauveli	800	-11.8	14.5	-26.3	-7.3
TH-546	Laos	Tam Hang South	Bos cf. sauveli	800	-14.9	14.5	-29.4	-6.4
TH-573	Laos	Tam Hang South	Bos cf. sauveli	800	-9.9	14.5	-24.4	-7.1
TH-790	Laos	Tam Hang South	Bos cf. sauveli	800	-12.9	14.5	-27.4	-8.2
TH-799	Laos	Tam Hang South	Bos cf. sauveli	800	-2.8	14.5	-17.3	-6.3
TH-72	Laos	Tam Hang South	Macaca sp.	6	-14.0	11.91	-25.9	-5.7
TH-73	Laos	Tam Hang South	Macaca sp.	6	-13.4	11.91	-25.3	-5.0

TH-74	Laos	Tam Hang South	Macaca sp.	6	-14.1	11.91	-26.0	-5.0
TH-75	Laos	Tam Hang South	Macaca sp.	6	-14.0	11.91	-25.9	-5.3
TH-76	Laos	Tam Hang South	Macaca sp.	6	-13.5	11.91	-25.4	-5.1
TH-79	Laos	Tam Hang South	Macaca sp.	6	-14.2	11.91	-26.1	-5.3
TH-593	Laos	Tam Hang South	Megatapirus augustus	500	-15.8	13.72	-29.5	-7.5
TH-213	Laos	Tam Hang South	Muntiacus muntjak	24	-13.2	12.17	-25.4	-6.8
TH-215	Laos	Tam Hang South	Muntiacus muntjak	24	-12.6	12.17	-24.8	-7.5
TH-216	Laos	Tam Hang South	Muntiacus muntjak	24	-12.8	12.17	-25.0	-7.7
TH-219	Laos	Tam Hang South	Muntiacus muntjak	24	-13.3	12.17	-25.5	-8.1
TH-130	Laos	Tam Hang South	Panthera tigris	212	-14.1	14.53	-28.6	-7.8
TH-132	Laos	Tam Hang South	Panthera tigris	212	-14.0	14.53	-28.5	-7.4
TH-376	Laos	Tam Hang South	Rhinoceros spp.	2000	-13.5	14.34	-27.8	-6.8
TH-379	Laos	Tam Hang South	Rhinoceros spp.	2000	-13.3	14.34	-27.6	-7.0
TH-576	Laos	Tam Hang South	Rhinoceros spp.	2000	-14.4	14.34	-28.7	-7.7
TH-445	Laos	Tam Hang South	Rusa unicolor	220	-14.5	13.59	-28.1	-5.0
TH-469	Laos	Tam Hang South	Rusa unicolor	220	-12.7	13.59	-26.3	-6.8
TH-499	Laos	Tam Hang South	Rusa unicolor	220	-4.8	13.59	-18.4	-8.2
TH-549	Laos	Tam Hang South	Rusa unicolor	220	-15.8	13.59	-29.4	-6.1
TH-555	Laos	Tam Hang South	Rusa unicolor	220	-16.2	13.59	-29.8	-6.7
TH-717	Laos	Tam Hang South	Rusa unicolor	220	-15.0	13.59	-28.6	-8.8
TH-719	Laos	Tam Hang South	Rusa unicolor	220	-13.5	13.59	-27.1	-6.5
TH-748	Laos	Tam Hang South	Rusa unicolor	220	-13.0	13.59	-26.6	-8.6
TH-390-2	Laos	Tam Hang South	Sus scrofa	137	-12.7	13.19	-25.9	-8.6
TH-410	Laos	Tam Hang South	Sus scrofa	137	-12.6	13.19	-25.8	-8.2
TH-420	Laos	Tam Hang South	Sus scrofa	137	-1.4	13.19	-14.6	-6.3
TH-427	Laos	Tam Hang South	Sus scrofa	137	-12.0	13.19	-25.2	-6.2
TH-430	Laos	Tam Hang South	Sus scrofa	137	-11.8	13.19	-25.0	-8.5
TH-431	Laos	Tam Hang South	Sus scrofa	137	-12.3	13.19	-25.5	-6.7
TH-433	Laos	Tam Hang South	Sus scrofa	137	-12.7	13.19	-25.9	-8.9
TH-637	Laos	Tam Hang South	Sus scrofa	137	-13.2	13.19	-26.4	-7.8
TH-642	Laos	Tam Hang South	Sus scrofa	137	-11.2	13.19	-24.4	-5.3
TH-645-2	Laos	Tam Hang South	Sus scrofa	137	-12.3	13.19	-25.5	-8.1
TH-646	Laos	Tam Hang South	Sus scrofa	137	-12.7	13.19	-25.9	-8.5
TH-371	Laos	Tam Hang South	Tapirus indicus cf. intermedius	300	-16.5	13.5	-30.0	-6.5
TH-378	Laos	Tam Hang South	Tapirus indicus cf. intermedius	300	-16.3	13.5	-29.8	-5.6

TH-129	Laos	Tam Hang South	Ursus thibetanus cf. kokeni	100	-14.4	13.3	-27.7	-8.5
TH-139	Laos	Tam Hang South	Ursus thibetanus cf. kokeni	100	-14.4	13.3	-27.7	-6.1

Annex S4. Faunal lists from other sites (Nam Lot I, Tam Hay Marklot) with already-published data (Bacon et al., 2018; Bourgon et al. 2020), with associated $\delta^{13}C_{apatite}$, $\delta^{13}C_{carbon source}$ and $\delta^{18}O_{apatite}$ values, as well as body mass and $\delta^{13}C$ (‰) Enrichment Factor used to obtain $\delta^{13}C_{carbon source}$. (*) The incisor NL 433 has been identified by using palaeoproteomics (Bacon et al., 2021).

Number	6	C14-	T	Body Mass	$\delta^{13}C_{apatite}$	δ ¹³ C (‰)	$\delta^{13}C_{carbon}$ source	$\delta^{18} O_{apatite}$
Number	Country	Site	Taxon	(kg)	(‰ VPDB)	Enrichment Factor	(‰ VPDB)	(‰ VPDB)
NL-8	Laos	Nam Lot	Capricornis sumatraensis	112	-14.6	13.14	-27.7	-4.1
NL-9	Laos	Nam Lot	Capricornis sumatraensis	112	-13.0	13.14	-26.1	-3.3
NL-17	Laos	Nam Lot	Rusa unicolor	220	-12.9	13.59	-26.5	-8.7
NL-19	Laos	Nam Lot	Rusa unicolor	220	-7.5	13.59	-21.1	-5.8
NL-29	Laos	Nam Lot	Rusa unicolor	220	-14.1	13.59	-27.7	-6.7
NL-22	Laos	Nam Lot	Rusa unicolor	220	-0.9	13.59	-14.5	-5.5
NL-24	Laos	Nam Lot	Rusa unicolor	220	-2.7	13.59	-16.3	-6.1
NL-63-1	Laos	Nam Lot	Muntiacus muntjak	24	-13.4	12.17	-25.6	-6.4
NL-65-1	Laos	Nam Lot	Muntiacus muntjak	24	-13.8	12.17	-26.0	-7.3
NL-69	Laos	Nam Lot	Muntiacus muntjak	24	-13.9	12.17	-26.1	-3.3
NL-116	Laos	Nam Lot	Bovidae indet.	875	-9.8	14.57	-24.4	-5.9
NL-117	Laos	Nam Lot	Bovidae indet.	875	+0.3	14.57	-14.3	-4.9
NL-125	Laos	Nam Lot	Bovidae indet.	875	-13.5	14.57	-28.1	-4.7
NL-161	Laos	Nam Lot	Rhinocerotidae indet.	1633	-13.3	14.25	-27.6	-5.9
NL-162	Laos	Nam Lot	Rhinocerotidae indet.	1633	-13.1	14.25	-27.4	-2.5
NL-254-1-1	Laos	Nam Lot	Rhinocerotidae indet.	1633	-12.7	14.25	-27.0	-6.7
NL-256-1	Laos	Nam Lot	Rhinocerotidae indet.	1633	-15.1	14.25	-29.4	-6.6
NL-256-2	Laos	Nam Lot	Rhinocerotidae indet.	1633	-16.3	14.25	-30.6	-4.9
NL-256-3	Laos	Nam Lot	Rhinocerotidae indet.	1633	-15.1	14.25	-29.4	-6.7
NL-139	Laos	Nam Lot	Bubalus bubalis	1000	-4.7	14.66	-19.4	-6.5
NL-143	Laos	Nam Lot	Bubalus bubalis	1000	-9.5	14.66	-24.2	-4.4
NL-186	Laos	Nam Lot	Ailuropoda melanoleuca	92	-14.5	10.51	-25.0	-6.2
NL-277	Laos	Nam Lot	Ailuropoda melanoleuca	92	-14.9	10.51	-25.4	-4.2
NL-162	Laos	Nam Lot	<i>Sus</i> sp.	137	-13.7	13.19	-26.9	-5.7
NL-208	Laos	Nam Lot	Sus sp.	137	-12.4	13.19	-25.6	-6.0
NL-216	Laos	Nam Lot	Sus sp.	137	-12.8	13.19	-26.0	-5.3
NL-218	Laos	Nam Lot	Sus sp.	137	-14.1	13.19	-27.3	-6.8
NL-SS-1	Laos	Nam Lot	Sus sp.	137	-13.1	13.19	-26.3	-6.0

NL-258	Laos	Nam Lot	Tapirus sp.	300	-17.5	13.5	-31.0	-6.4
NL-259	Laos	Nam Lot	Tapirus sp.	300	-14.9	13.5	-28.4	-6.8
NL-260	Laos	Nam Lot	<i>Tapirus</i> sp.	300	-15.3	13.5	-28.8	-5.0
NL-286	Laos	Nam Lot	Cuon alpinus	15	-13.3	13.39	-26.7	-6.4
NL-368	Laos	Nam Lot	Cuon alpinus	15	-13.0	13.39	-26.4	-3.0
NL-269	Laos	Nam Lot	Ursus thibetanus cf. kokeni	100	-15.3	13.3	-28.6	-9.0
NL-271	Laos	Nam Lot	Ursus thibetanus cf. kokeni	100	-14.1	13.3	-27.4	-8.3
NL-275	Laos	Nam Lot	Ursus thibetanus cf. kokeni	100	-12.6	13.3	-25.9	-6.5
NL-310	Laos	Nam Lot	Ursus thibetanus cf. kokeni	100	-13.4	13.3	-26.7	-3.1
NL-288	Laos	Nam Lot	Crocuta crocuta	70	-13.7	14.04	-27.7	-6.4
NL-295	Laos	Nam Lot	Crocuta crocuta	70	-13.6	14.04	-27.6	-6.1
NL-433*	Laos	Nam Lot	Pongo sp.	55	-14.5	12.78	-27.3	-3.3
NL-302	Laos	Nam Lot	Pongo sp.	55	-14.5	12.78	-27.3	-6.1
NL-297	Laos	Nam Lot	Macaca sp.	6	-14.1	11.91	-26.0	-4.8
NL-314	Laos	Nam Lot	Macaca sp.	6	-11.5	11.91	-23.4	-3.7
NL-323	Laos	Nam Lot	Macaca sp.	6	-14.8	11.91	-26.7	-6.1
NL-357	Laos	Nam Lot	Macaca sp.	6	-14.6	11.91	-26.5	-3.6
NL-362	Laos	Nam Lot	Elephas sp.	4250	-16.1	14.69	-30.8	-6.2
NL-365	Laos	Nam Lot	Stegodon orientalis	4000	-18.2	14.66	-32.9	-4.3
NL-367	Laos	Nam Lot	Stegodon orientalis	4000	-15.4	14.66	-30.1	-6.5
NL-369	Laos	Nam Lot	<i>Hystrix</i> sp.	12	-13.6	12.18	-25.8	-6.5
NL-385	Laos	Nam Lot	<i>Hystrix</i> sp.	12	-12.1	12.18	-24.3	-5.7
NL-392	Laos	Nam Lot	<i>Hystrix</i> sp.	12	-14.1	12.18	-26.3	-5.2
NL-397	Laos	Nam Lot	<i>Hystrix</i> sp.	12	-13.3	12.18	-25.5	-5.7
NLII-1	Laos	Nam Lot	Crocuta crocuta	70	-14.3	14.04	-28.3	-6.6
NLII-2	Laos	Nam Lot	Crocuta crocuta	70	-12.5	14.04	-26.5	-6.8
NLII-3	Laos	Nam Lot	Crocuta crocuta	70	-15.1	14.04	-29.1	-6.2
NLII-4	Laos	Nam Lot	Crocuta crocuta	70	-11.8	14.04	-25.8	-7.2
NLII-5	Laos	Nam Lot	Felidae (Neofelis nebulosa ?)	18	-15.0	13.46	-28.5	-6.6
MI-20	Laos	Tam Hay Marklot	Capricornis cf. sumatraensis	112	-13.4	13.14	-26.5	-2.2
MI-21	Laos	Tam Hay Marklot	Capricornis cf. sumatraensis	112	-14.7	13.14	-27.8	-5.2
MI-22	Laos	Tam Hay Marklot	Capricornis cf. sumatraensis	112	-15.2	13.14	-28.3	-5.2
MI-23	Laos	Tam Hay Marklot	Capricornis cf. sumatraensis	112	-13.5	13.14	-26.6	-7.0
MI-24	Laos	Tam Hay Marklot	Capricornis cf. sumatraensis	112	-14.6	13.14	-27.7	-7.6
MI-25	Laos	Tam Hay Marklot	Naemorhedus cf. caudatus	27	-2.4	12.24	-14.6	0.2

MI-26	Laos	Tam Hay Marklot	Naemorhedus cf. caudatus	27	-3.9	12.24	-16.1	-2.5
MI-27	Laos	Tam Hay Marklot	Naemorhedus cf. caudatus	27	-3.7	12.24	-15.9	-1.8
MI-28	Laos	Tam Hay Marklot	Naemorhedus cf. caudatus	27	-2.5	12.24	-14.7	-1.6
MI-103	Laos	Tam Hay Marklot	Helarctos malayanus	50	-14.7	12.59	-27.3	-3.9
MI-121	Laos	Tam Hay Marklot	Helarctos malayanus	50	-14.9	12.59	-27.5	-5.5
MI-117	Laos	Tam Hay Marklot	Ursus thibetanus	100	-15.4	13.3	-28.7	-7.4
MI-119	Laos	Tam Hay Marklot	Ursus thibetanus	100	-13.3	13.3	-26.6	-6.6
MI-122	Laos	Tam Hay Marklot	Ursus thibetanus	100	-14.4	13.3	-27.7	-6.3
MI-134	Laos	Tam Hay Marklot	Panthera pardus	41	-7.9	13.81	-21.7	-7.3
MI-135	Laos	Tam Hay Marklot	Panthera pardus	41	-4.0	13.81	-17.8	-7.3
MI-136	Laos	Tam Hay Marklot	Panthera pardus	41	-13.8	13.81	-27.6	-6.8
MI-166	Laos	Tam Hay Marklot	Rusa unicolor	220	-7.5	13.59	-21.1	-5.7
MI-180	Laos	Tam Hay Marklot	Rusa unicolor	220	-5.3	13.59	-18.9	-4.4
MI-185	Laos	Tam Hay Marklot	Rusa unicolor	220	-6.0	13.59	-19.6	-4.9
MI-187	Laos	Tam Hay Marklot	Rusa unicolor	220	-3.4	13.59	-17.0	-4.9
MI-191	Laos	Tam Hay Marklot	Rusa unicolor	220	-7.9	13.59	-21.5	-6.1
MI-512	Laos	Tam Hay Marklot	Rucervus eldii	123	+2.4	13.19	-10.8	-5.3
MI-595	Laos	Tam Hay Marklot	Rucervus eldii	123	+1.8	13.19	-11.4	-3.1
MI-556	Laos	Tam Hay Marklot	Axis cf. porcinus	43	-0.8	12.53	-13.3	-5.8
MI-557	Laos	Tam Hay Marklot	Axis cf. porcinus	43	-0.6	12.53	-13.1	-5.3
MI-627	Laos	Tam Hay Marklot	Muntiacus sp.	24	-13.8	12.17	-26.0	-7.4
MI-628	Laos	Tam Hay Marklot	Muntiacus sp.	24	-14.8	12.17	-27.0	-8.1
MI-629	Laos	Tam Hay Marklot	Muntiacus sp.	24	-12.7	12.17	-24.9	-8.1
MI-630	Laos	Tam Hay Marklot	Muntiacus sp.	24	-14.4	12.17	-26.6	-5.0
MI-631	Laos	Tam Hay Marklot	Muntiacus sp.	24	-14.5	12.17	-26.7	-7.5
MI-650	Laos	Tam Hay Marklot	Bubalus bubalis	1000	-10.3	14.66	-25.0	-6.0
MI-651	Laos	Tam Hay Marklot	Bubalus bubalis	1000	-4.0	14.66	-18.7	-6.6
MI-652	Laos	Tam Hay Marklot	Bubalus bubalis	1000	+1.0	14.66	-13.7	-4.7
MI-653	Laos	Tam Hay Marklot	Bubalus bubalis	1000	-10.9	14.66	-25.6	-6.3
MI-654	Laos	Tam Hay Marklot	Bubalus bubalis	1000	+0.1	14.66	-14.6	-5.9
MI-655	Laos	Tam Hay Marklot	<i>Bos</i> sp.	800	-2.5	14.5	-17.0	-4.2
MI-656	Laos	Tam Hay Marklot	<i>Bos</i> sp.	800	-14.4	14.5	-28.9	-6.1
MI-657	Laos	Tam Hay Marklot	Bos sp.	800	-0.3	14.5	-14.8	-4.6
MI-658	Laos	Tam Hay Marklot	Bos sp.	800	-10.0	14.5	-24.5	-7.6
MI-659	Laos	Tam Hay Marklot	Bos sp.	800	-13.1	14.5	-27.6	-5.9

MI-130	Laos	Tam Hay Marklot	Panthera tigris	212	-4.3	14.53	-18.8	-3.2
MI-693	Laos	Tam Hay Marklot	Panthera tigris	212	-6.9	14.53	-21.4	-3.5
MI-694	Laos	Tam Hay Marklot	Panthera tigris	212	-10.0	14.53	-24.5	-6.8
MI-662	Laos	Tam Hay Marklot	Sus sp.	137	-7.6	13.19	-20.8	-7.5
MI-663	Laos	Tam Hay Marklot	Sus sp.	137	-8.6	13.19	-21.8	-10.0
MI-664	Laos	Tam Hay Marklot	Sus sp.	137	-6.0	13.19	-19.2	-5.9
MI-665	Laos	Tam Hay Marklot	<i>Sus</i> sp.	137	-13.5	13.19	-26.7	-5.8
MI-666	Laos	Tam Hay Marklot	Sus sp.	137	-14.0	13.19	-27.2	-7.6
MI-667	Laos	Tam Hay Marklot	<i>Sus</i> sp.	137	-13.2	13.19	-26.4	-5.4
MI-131	Laos	Tam Hay Marklot	Cuon alpinus	15	-16.0	13.39	-29.4	-7.3
MI-681	Laos	Tam Hay Marklot	Cuon alpinus	15	-11.4	13.39	-24.8	-3.2
MI-683	Laos	Tam Hay Marklot	Pongo sp.	55	-14.8	12.78	-27.6	-4.1
MI-685	Laos	Tam Hay Marklot	Pongo sp.	55	-13.5	12.78	-26.3	-4.6
MI-682	Laos	Tam Hay Marklot	Canidae	15	-13.2	13.39	-26.6	-6.0
MI-684	Laos	Tam Hay Marklot	Ailuropoda melanoleuca	92	-16.7	10.51	-27.2	-6.3
MI-691	Laos	Tam Hay Marklot	Tapiridae	300	-15.5	13.5	-29.0	-5.9
MI-692	Laos	Tam Hay Marklot	<i>Tapirus</i> sp.	300	-11.3	13.5	-24.8	-7.9
MI-695	Laos	Tam Hay Marklot	<i>Macaca</i> sp.	6	-13.9	11.91	-25.8	-5.3
MI-696	Laos	Tam Hay Marklot	Macaca sp.	6	-14.2	11.91	-26.1	-5.3
MI-697	Laos	Tam Hay Marklot	<i>Macaca</i> sp.	6	-15.1	11.91	-27.0	-5.6
MI-698	Laos	Tam Hay Marklot	Macaca sp.	6	-13.3	11.91	-25.2	-4.7
MI-699	Laos	Tam Hay Marklot	Macaca sp.	6	-12.9	11.91	-24.8	-4.6
MI-700	Laos	Tam Hay Marklot	<i>Hystrix</i> sp.	12	-11.5	12.18	-23.7	-7.6
MI-701	Laos	Tam Hay Marklot	<i>Hystrix</i> sp.	12	-11.5	12.18	-23.7	-5.5
MI-702	Laos	Tam Hay Marklot	<i>Hystrix</i> sp.	12	-7.9	12.18	-20.1	-5.2
MI-703	Laos	Tam Hay Marklot	<i>Hystrix</i> sp.	12	-11.6	12.18	-23.8	-8.5
MI-686	Laos	Tam Hay Marklot	Rhinoceros sondaicus	1750	-16.2	14.28	-30.5	-6.5
MI-687	Laos	Tam Hay Marklot	Rhinoceros sondaicus	1750	-13.3	14.28	-27.6	-5.5
MI-688	Laos	Tam Hay Marklot	Rhinoceros sondaicus	1750	-15.6	14.28	-29.9	-6.3
MI-689	Laos	Tam Hay Marklot	Rhinoceros sondaicus	1750	-15.3	14.28	-29.6	-7.1
MI-690	Laos	Tam Hay Marklot	Rhinoceros sondaicus	1750	-14.6	14.28	-28.9	-7.5

Annex S5: Stegodon trigonocephalus specimens from Trinil HK (in situ von Koenigswald collection) published by Puspaningrum et al. (2020), with associated $\delta^{13}C_{apatite}$, $\delta^{13}C_{carbon source}$ and $\delta^{18}O_{apatite}$ values, as well as body mass and $\delta^{13}C$ (‰), and enrichment factor used to obtain $\delta^{13}C_{carbon source}$ (S-EVA, Stable Isotope-Evolutionary Anthropology). The body mass of *S. trigonocephalus* has an estimated bodymass based on femur length of between 2,000 and 4,000 kg (Puspaningrum et al., 2020).

	Country	Site	Taxon	Body mass (kg)	δ ¹³ C _{apatite} (‰)	δ ¹⁸ O _{apatite} (‰)	δ ¹³ C (‰) Enrichment factor	δ ¹³ C _{carbon source} (‰)
K390	Java	Trinil	Stegodon trigonocephalus	2000-4000	+1.40	-5.71	14.53	-13.13
K399	Java	Trinil	Stegodon trigonocephalus	2000-4000	-1.76	-5.74	14.53	-16.29
DUB-2895	Java	Trinil	Stegodon trigonocephalus	2000-4000	+0.73	-6.68	14.53	-13.80
DUB-2225	Java	Trinil	Stegodon trigonocephalus	2000-4000	+0.11	-6.13	14.53	-14.42
DUB-379	Java	Trinil	Stegodon trigonocephalus	2000-4000	+0.27	-5.52	14.53	-14.26
DUB-389	Java	Trinil	Stegodon trigonocephalus	2000-4000	+0.99	-6.29	14.53	-13.54
DUB-3491	Java	Trinil	Stegodon trigonocephalus	2000-4000	-0.34	-6.4	14.53	-14.87
DUB-3253	Java	Trinil	Stegodon trigonocephalus	2000-4000	-2.67	-5.64	14.53	-17.20
DUB-1803A	Java	Trinil	Stegodon trigonocephalus	2000-4000	-2.34	-6.21	14.53	-16.87
DUB-2896	Java	Trinil	Stegodon trigonocephalus	2000-4000	-0.31	-6.72	14.53	-14.84

Annex S6: Mammalian taxa from Trinil HK (in situ von Koenigswald collection), Ngandong and Punung published by Janssen et al. (2016), with associated $\delta^{13}C_{apatite}$, $\delta^{13}C_{carbon source}$ and $\delta^{18}O_{apatite}$ values, as well as body mass and $\delta^{13}C$ (‰), and enrichment factor used to obtain $\delta^{13}C_{carbon source}$ (S-EVA, Stable Isotope-Evolutionary Anthropology, Max Planck Institute for Evolutionary Anthropology). *Duboisia santeng* has an average bodymass of 60.3kg (95%CI: 58.9-61.7 kg; Wibono. 2020). *Bubalus palaeokerabau* has an average bodymass of ~1000 kg comparable to that of extant buffaloes (*B. bubalis/B. arnee*) (Bouteaux, 2005; Rozzi, 2018). *Axis lydekkeri* has a bodymass estimate comprised between 45 and 100 kg (Bouteaux, 2005). The mean bodymass estimate of *Panthera tigris* (pre-Ngandong samples) is 114 kg (Volmer et al., 2016). We used a bodymass of 40-150 kg for *Sus brachygnathus* comparable to that of *Sus barbatus*.

The values δ^{13} C and δ^{18} O values from enamel of the *Homo erectus* specimen (S7-37, a right upper P4) used here are average values calculated from three samples analysed on the crown (Kubat et al., 2023). The age and the location in the stratigraphy of the tooth are unknow (Early Pleistocene to early Middle Pleistocene from the Sangiran and Bapang Formations from the Sangiran Dome).

	Country	Site	Taxon	Body mass (kg)	δ ¹³ C _{apatite} (‰)	$\delta^{18} O_{apatite}$ (‰)	δ ¹³ C (‰) Enrichment factor	δ ¹³ Ccarbon source (‰)
Trinilbox-01-A	Java	Trinil	Bovidae indet.	875	+1.89	-2.80	14.57	-12.68
Trinilbox-01-A	Java	Trinil	Bovidae indet.	875	+2.49	-2.68	14.57	-12.08
Trinilbox-01-A	Java	Trinil	Bovidae indet.	875	+1.59	-2.51	14.57	-12.98
Trinilbox-02-A	Java	Trinil	Bovidae indet.	875	+1.20	-5.30	14.57	-13.37
Trinilbox-02-B	Java	Trinil	Bovidae indet.	875	+1.37	-3.70	14.57	-13.20
Trinilbox-02-C	Java	Trinil	Bovidae indet.	875	+2.16	-3.92	14.57	-12.41
Trinilbox-03-A	Java	Trinil	Bovidae indet.	875	+3.62	-2.40	14.57	-10.95
Trinilbox-03-B	Java	Trinil	Bovidae indet.	875	+4.15	-1.90	14.57	-10.42
Trinilbox-03-C	Java	Trinil	Bovidae indet.	875	+3.78	-3.16	14.57	-10.79
Trinilbox-04-A	Java	Trinil	Bovidae indet.	875	+1.91	-5.30	14.57	-12.66
Trinilbox-04-B	Java	Trinil	Bovidae indet.	875	+3.53	-3.75	14.57	-11.04
Trinilbox-04-C	Java	Trinil	Bovidae indet.	875	+2.98	-4.56	14.57	-11.59
Trinilbox-05-A	Java	Trinil	Bovidae indet.	875	+2.78	-3.62	14.57	-11.79
Trinilbox-05-B	Java	Trinil	Bovidae indet.	875	+3.32	-1.96	14.57	-11.25
Trinilbox-05-C	Java	Trinil	Bovidae indet.	875	+3.00	-3.29	14.57	-11.57
Trinilbox-06-A	Java	Trinil	Bovidae indet.	875	-3.32	-5.10	14.57	-17.89

Trinilbox-06-B	Java	Trinil	Bovidae indet.	875	+1.75	-4.38	14.57	-12.82
Trinilbox-06-C	Java	Trinil	Bovidae indet.	875	+0.98	-4.90	14.57	-13.59
Trinilbox-07-B	Java	Trinil	Bovidae indet.	875	+0.18	-5.47	14.57	-14.39
Trinilbox-07-C	Java	Trinil	Bovidae indet.	875	+1.98	-5.25	14.57	-12.59
Trinilbox-08-A	Java	Trinil	Bovidae indet.	875	-1.24	-6.74	14.57	-15.81
Trinilbox-08-B	Java	Trinil	Bovidae indet.	875	-0.30	-6.06	14.57	-14.87
Trinilbox-08-C	Java	Trinil	Bovidae indet.	875	+0.19	-6.29	14.57	-14.38
Trinilbox-09-A	Java	Trinil	Bovidae indet.	875	-0.41	-6.60	14.57	-14.98
Trinilbox-09-B	Java	Trinil	Bovidae indet.	875	+0.38	-6.37	14.57	-14.19
Trinilbox-09-C	Java	Trinil	Bovidae indet.	875	+0.91	-5.81	14.57	-13.66
Trinilbox-10-A	Java	Trinil	Bovidae indet.	875	-1.28	-6.16	14.57	-15.85
Trinilbox-10-B	Java	Trinil	Bovidae indet.	875	-3.49	-5.78	14.57	-18.06
Trinilbox-10-C	Java	Trinil	Bovidae indet.	875	-2.36	-5.40	14.57	-16.93
Trinilbox-11-A	Java	Trinil	Bovidae indet.	875	-0.39	-6.64	14.57	-14.96
Trinilbox-11-B	Java	Trinil	Bovidae indet.	875	-0.37	-6.68	14.57	-14.94
Trinilbox-11-C	Java	Trinil	Bovidae indet.	875	-1.12	-6.15	14.57	-15.69
Trinilbox-12-A	Java	Trinil	Bovidae indet.	875	+1.44	-4.90	14.57	-13.13
Trinilbox-12-B	Java	Trinil	Bovidae indet.	875	+0.90	-4.41	14.57	-13.67
Trinilbox-12-C	Java	Trinil	Bovidae indet.	875	+1.10	-4.00	14.57	-13.47
Trinilbox-13-A	Java	Trinil	Bovidae indet.	875	+2.71	-4.49	14.57	-11.86
Trinilbox-13-B	Java	Trinil	Bovidae indet.	875	+3.15	-2.89	14.57	-11.42
Trinilbox-13-C	Java	Trinil	Bovidae indet.	875	+2.30	-3.74	14.57	-12.27
Trinilbox-14-A	Java	Trinil	Bovidae indet.	875	+1.43	-1.90	14.57	-13.14
Trinilbox-14-B	Java	Trinil	Bovidae indet.	875	+1.22	-3.02	14.57	-13.35
RGM1283214	Java	Trinil	Bovidae indet.	875	+2.80	-6.33	14.57	-11.77
RGM1283215	Java	Trinil	Bovidae indet.	875	+1.16	-4.82	14.57	-13.41
RGM1283216	Java	Trinil	Bovidae indet.	875	-1.27	-5.55	14.57	-15.84
RGM1283217	Java	Trinil	Bovidae indet.	875	-2.42	-4.14	14.57	-16.99
RGM1283218	Java	Trinil	Bovidae indet.	875	-1.39	-6.28	14.57	-15.96
RGM1283219	Java	Trinil	Bovidae indet.	875	-1.83	-4.94	14.57	-16.40
RGM1283220	Java	Trinil	Bovidae indet.	875	-0.76	-5.66	14.57	-15.33
S213-A	Java	Trinil	Bubalus palaeokerabau	1000	+0.04	-4.37	14.66	-14.62
S213-B	Java	Trinil	Bubalus palaeokerabau	1000	-0.15	-5.65	14.66	-14.81

S213-C	Java	Trinil	Bubalus palaeokerabau	1000	-0.42	-5.75	14.66	-15.08
S213-D	Java	Trinil	Bubalus palaeokerabau	1000	-0.36	-5.53	14.66	-15.02
S213-E	Java	Trinil	Bubalus palaeokerabau	1000	-0.38	-5.14	14.66	-15.04
S213-F	Java	Trinil	Bubalus palaeokerabau	1000	-0.55	-4.82	14.66	-15.21
S213-G	Java	Trinil	Bubalus palaeokerabau	1000	-0.67	-5.01	14.66	-15.33
S213-H	Java	Trinil	Bubalus palaeokerabau	1000	-0.82	-4.89	14.66	-15.48
S213-I	Java	Trinil	Bubalus palaeokerabau	1000	-1.09	-4.48	14.66	-15.75
S2136-J	Java	Trinil	Bubalus palaeokerabau	1000	-1.05	-3.86	14.66	-15.71
S213-K	Java	Trinil	Bubalus palaeokerabau	1000	-1.65	-3.42	14.66	-16.31
S213-L	Java	Trinil	Bubalus palaeokerabau	1000	-1.97	-3.32	14.66	-16.63
S213-M	Java	Trinil	Bubalus palaeokerabau	1000	-0.34	-5.51	14.66	-15.00
S21-A	Java	Trinil	Bubalus palaeokerabau	1000	-0.37	-2.52	14.66	-15.03
S21-B	Java	Trinil	Bubalus palaeokerabau	1000	-0.27	-1.41	14.66	-14.93
S21-C	Java	Trinil	Bubalus palaeokerabau	1000	-0.21	-0.49	14.66	-14.87
S21-D	Java	Trinil	Bubalus palaeokerabau	1000	-0.61	+0.23	14.66	-15.27
S21-E	Java	Trinil	Bubalus palaeokerabau	1000	-0.92	+0.29	14.66	-15.58
S21-F	Java	Trinil	Bubalus palaeokerabau	1000	-1.15	+0.98	14.66	-15.81
S273-A	Java	Trinil	Bubalus palaeokerabau	1000	+0.41	-3.30	14.66	-14.25
S273-B	Java	Trinil	Bubalus palaeokerabau	1000	+0.15	-3.68	14.66	-14.51
S273-C	Java	Trinil	Bubalus palaeokerabau	1000	+0.15	-3.83	14.66	-14.51
S273-D	Java	Trinil	Bubalus palaeokerabau	1000	-0.04	-4.20	14.66	-14.70
S273-E	Java	Trinil	Bubalus palaeokerabau	1000	-0.08	-4.01	14.66	-14.74
S334-A	Java	Trinil	Bubalus palaeokerabau	1000	-2.66	-7.98	14.66	-17.32
S334-B	Java	Trinil	Bubalus palaeokerabau	1000	-1.20	-4.92	14.66	-15.86
S600-A	Java	Trinil	Bubalus palaeokerabau	1000	+0.80	-5.37	14.66	-13.86
S600-B	Java	Trinil	Bubalus palaeokerabau	1000	+0.09	-6.00	14.66	-14.57
S600-C	Java	Trinil	Bubalus palaeokerabau	1000	-0.20	-4.54	14.66	-14.86
S600-D	Java	Trinil	Bubalus palaeokerabau	1000	-0.86	-4.86	14.66	-15.52
S600-E	Java	Trinil	Bubalus palaeokerabau	1000	-0.10	-3.65	14.66	-14.76
S729-A	Java	Trinil	Bubalus palaeokerabau	1000	+0.49	-3.76	14.66	-14.17
S729-B	Java	Trinil	Bubalus palaeokerabau	1000	-0.86	-4.51	14.66	-15.52
S729-C	Java	Trinil	Bubalus palaeokerabau	1000	+0.53	-5.00	14.66	-14.13
S729-D	Java	Trinil	Bubalus palaeokerabau	1000	+0.20	-2.20	14.66	-14.46

S729-E	Java	Trinil	Bubalus palaeokerabau	1000	-0.26	-4.79	14.66	-14.92
S734-A	Java	Trinil	Bubalus palaeokerabau	1000	+0.27	-4.28	14.66	-14.39
S734-B	Java	Trinil	Bubalus palaeokerabau	1000	+0.20	-4.62	14.66	-14.46
S734-C	Java	Trinil	Bubalus palaeokerabau	1000	+0.37	-4.98	14.66	-14.29
S734-D	Java	Trinil	Bubalus palaeokerabau	1000	-0.14	-4.79	14.66	-14.80
S734-E	Java	Trinil	Bubalus palaeokerabau	1000	+0.49	-3.87	14.66	-14.17
S734-F	Java	Trinil	Bubalus palaeokerabau	1000	-0.16	-5.18	14.66	-14.82
S734-G	Java	Trinil	Bubalus palaeokerabau	1000	+0.08	-5.09	14.66	-14.58
S734-H	Java	Trinil	Bubalus palaeokerabau	1000	+0.10	-3.77	14.66	-14.56
S734-I	Java	Trinil	Bubalus palaeokerabau	1000	+0.01	-3.58	14.66	-14.65
S781-A	Java	Trinil	Bubalus palaeokerabau	1000	+0.03	-5.28	14.66	-14.63
S781-B	Java	Trinil	Bubalus palaeokerabau	1000	+0.25	-5.21	14.66	-14.41
S781-C	Java	Trinil	Bubalus palaeokerabau	1000	+0.42	-4.66	14.66	-14.24
S781-D	Java	Trinil	Bubalus palaeokerabau	1000	+0.22	-4.56	14.66	-14.44
S781-E	Java	Trinil	Bubalus palaeokerabau	1000	+0.29	-4.79	14.66	-14.37
S781-F	Java	Trinil	Bubalus palaeokerabau	1000	-0.05	-5.24	14.66	-14.71
S781-G	Java	Trinil	Bubalus palaeokerabau	1000	-0.23	-4.22	14.66	-14.89
S781-H	Java	Trinil	Bubalus palaeokerabau	1000	+0.35	-4.49	14.66	-14.31
S781-I	Java	Trinil	Bubalus palaeokerabau	1000	+0.18	-4.53	14.66	-14.48
S781-J	Java	Trinil	Bubalus palaeokerabau	1000	-3.33	-9.11	14.66	-17.99
S781-K	Java	Trinil	Bubalus palaeokerabau	1000	-1.66	-7.43	14.66	-16.32
S782-A	Java	Trinil	Bubalus palaeokerabau	1000	-8.63	-3.60	14.66	-23.29
S782-B	Java	Trinil	Bubalus palaeokerabau	1000	-7.61	-4.69	14.66	-22.27
S782-C	Java	Trinil	Bubalus palaeokerabau	1000	-8.82	-3.87	14.66	-23.48
T1	Java	Trinil	Bubalus palaeokerabau	1000	-1.50	-2.90	14.66	-16.16
Т3	Java	Trinil	Bubalus palaeokerabau	1000	-1.70	-4.70	14.66	-16.36
Т4	Java	Trinil	Duboisa santeng	60	-0.30	-5.10	12.74	-13.04
Т5	Java	Trinil	Duboisa santeng	60	-0.10	-4.50	12.74	-12.84
Т6	Java	Trinil	Duboisa santeng	60	+0.40	-2.70	12.74	-12.34
13750	Java	Trinil	Axis lydekkeri	45-100	+0.60	-4.07	12.86	-12.26
S1641-A	Java	Trinil	Axis lydekkeri	45-100	+0.85	-4.97	12.86	-12.01
S1641-B	Java	Trinil	Axis lydekkeri	45-100	+0.54	-3.86	12.86	-12.32
S364-A	Java	Trinil	Axis lydekkeri	45-100	-2.15	-5.02	12.86	-15.01

S364-B	Java	Trinil	Axis lydekkeri	45-100	-1.02	-4.54	12.86	-13.88
S364-C	Java	Trinil	Axis lydekkeri	45-100	-0.26	-5.36	12.86	-13.12
MB.Ma.22115	Java	Trinil	Axis lydekkeri	45-100	+0.57	-3.03	12.86	-12.29
S604-A	Java	Trinil	Axis lydekkeri	45-100	+0.02	-3.97	12.86	-12.84
S604-B	Java	Trinil	Axis lydekkeri	45-100	+0.44	-3.76	12.86	-12.42
S738-A	Java	Trinil	Axis lydekkeri	45-100	-0.31	-3.58	12.86	-13.17
S738-B	Java	Trinil	Axis lydekkeri	45-100	+0.77	-3.08	12.86	-12.09
1578-1-A	Java	Trinil	Sus brachygnathus	41-150	-3.94	-6.05	13.19	-17.13
1578-1-B	Java	Trinil	Sus brachygnathus	41-150	-4.18	-5.31	13.19	-17.37
1578-1-C	Java	Trinil	Sus brachygnathus	41-150	-4.97	-5.31	13.19	-18.16
1578-1-D	Java	Trinil	Sus brachygnathus	41-150	-8.94	-7.73	13.19	-22.13
1578-2	Java	Trinil	Sus brachygnathus	41-150	-12.77	-5.42	13.19	-25.96
1578-3	Java	Trinil	Sus brachygnathus	41-150	-1.96	-7.49	13.19	-15.15
MB.Ma.30002	Java	Trinil	Panthera tigris	114	-5.63	-6.57	14.53	-20.16
11309(K363)	Java	Ngandong	Stegodon trigonocephalus	2000-4000	+0.61	-6.79	14.53	-13.92
13322(K351)	Java	Ngandong	Stegodon trigonocephalus	2000-4000	-1.62	-6.43	14.53	-16.15
K323	Java	Ngandong	Stegodon trigonocephalus	2000-4000	+0.02	-6.33	14.53	-14.51
9875(K320)	Java	Ngandong	Stegodon trigonocephalus	2000-4000	-2.02	-6.48	14.53	-16.55
5667(K440a)	Java	Ngandong	Stegodon trigonocephalus	2000-4000	-5.92	-7.63	14.53	-20.45
383(K318)	Java	Ngandong	Stegodon trigonocephalus	2000-4000	-5.32	-6.72	14.53	-19.85
К316	Java	Ngandong	Stegodon trigonocephalus	2000-4000	-3.21	-6.60	14.53	-17.74
К329	Java	Ngandong	Stegodon trigonocephalus	2000-4000	-3.50	-7.41	14.53	-18.03
1075(K307)	Java	Ngandong	Stegodon trigonocephalus	2000-4000	+0.73	-7.22	14.53	-13.80
2205	Java	Ngandong	Stegodon trigonocephalus	2000-4000	+2.31	-6.31	14.53	-12.22
631035-1	Java	Sangiran	Bubalus palaeokerabau	1000	+1.05	-4.88	14.66	-13.61
631035-2-A	Java	Sangiran	Bubalus palaeokerabau	1000	+2.28	-3.03	14.66	-12.38
631035-2-B	Java	Sangiran	Bubalus palaeokerabau	1000	+2.04	-3.59	14.66	-12.62
631035-2-C	Java	Sangiran	Bubalus palaeokerabau	1000	+2.56	-4.50	14.66	-12.1
631035-2-D	Java	Sangiran	Bubalus palaeokerabau	1000	+2.44	-5.92	14.66	-12.22
631035-2-E	Java	Sangiran	Bubalus palaeokerabau	1000	+2.49	-5.64	14.66	-12.17
631035-2-F	Java	Sangiran	Bubalus palaeokerabau	1000	+2.27	-4.97	14.66	-12.39

631035-2-G	Java	Sangiran	Bubalus palaeokerabau	1000	+2.04	-5.11	14.66	-12.62
631035-3	Java	Sangiran	Bubalus palaeokerabau	1000	+3.06	-4.79	14.66	-11.6
631035-4	Java	Sangiran	Bubalus palaeokerabau	1000	+0.68	-5.37	14.66	-13.98
631035-5-A	Java	Sangiran	Bubalus palaeokerabau	1000	-6.29	-6.11	14.66	-20.95
631035-5-B	Java	Sangiran	Bubalus palaeokerabau	1000	-6.75	-5.31	14.66	-21.41
631035-5-C	Java	Sangiran	Bubalus palaeokerabau	1000	-6.98	-5.35	14.66	-21.64
631035-5-D	Java	Sangiran	Bubalus palaeokerabau	1000	-7.80	-5.79	14.66	-22.46
631035-5-Е	Java	Sangiran	Bubalus palaeokerabau	1000	-7.75	-5.88	14.66	-22.41
631035-5-F	Java	Sangiran	Bubalus palaeokerabau	1000	-6.43	-5.55	14.66	-21.09
631035-5-G	Java	Sangiran	Bubalus palaeokerabau	1000	-6.26	-4.96	14.66	-20.92
631035-6	Java	Sangiran	Bubalus palaeokerabau	1000	+0.87	-6.22	14.66	-13.79
631035-7-A	Java	Sangiran	Bubalus palaeokerabau	1000	+0.59	-5.29	14.66	-14.07
631035-7-В	Java	Sangiran	Bubalus palaeokerabau	1000	+0.87	-5.56	14.66	-13.79
631035-7-D	Java	Sangiran	Bubalus palaeokerabau	1000	+1.01	-5.36	14.66	-13.65
631035-7-F	Java	Sangiran	Bubalus palaeokerabau	1000	+0.35	-7.32	14.66	-14.31
631035-8	Java	Sangiran	Bubalus palaeokerabau	1000	+1.11	-4.78	14.66	-13.55
630847-1-A	Java	Sangiran	Cervidae Indet.	45-100	+2.06	-6.07	12.86	-10.8
630847-1-B	Java	Sangiran	Cervidae Indet.	45-100	+2.16	-6.49	12.86	-10.7
630847-2-A	Java	Sangiran	Cervidae Indet.	45-100	-6.50	-4.10	12.86	-19.36
630847-2-В	Java	Sangiran	Cervidae Indet.	45-100	-5.60	-5.17	12.86	-18.46
630847-2-C	Java	Sangiran	Cervidae Indet.	41-150	-6.01	-5.46	12.86	-18.87
630847-3	Java	Sangiran	Cervidae Indet.	41-150	+0.78	-2.89	12.86	-12.08
630847-4-A	Java	Sangiran	Cervidae Indet.	41-150	-9.61	-4.87	12.86	-22.47
630847-4-B	Java	Sangiran	Cervidae Indet.	41-150	-10.63	-5.67	12.86	-23.49
630847-4-C	Java	Sangiran	Cervidae Indet.	41-150	-9.79	-5.92	12.86	-22.65
630847-5-A	Java	Sangiran	Cervidae Indet.	45-100	-1.71	-5.71	12.86	-14.57
630847-5-B	Java	Sangiran	Cervidae Indet.	45-100	-2.94	-5.79	12.86	-15.8
630847-5-C	Java	Sangiran	Cervidae Indet.	45-100	-2.97	-6.64	12.86	-15.83
630847-6-A	Java	Sangiran	Cervidae Indet.	41-150	+0.67	-4.32	12.86	-12.19
630847-6-B	Java	Sangiran	Cervidae Indet.	41-150	+0.48	-6.13	12.86	-12.38
630847-6-C	Java	Sangiran	Cervidae Indet.	41-150	+0.45	-4.86	12.86	-12.41
630847-7-A	Java	Sangiran	Cervidae Indet.	41-150	-0.12	-3.51	12.86	-12.98
630847-7-В	Java	Sangiran	Cervidae Indet.	41-150	+0.10	-4.20	12.86	-12.76

630847-7-C	Java	Sangiran	Cervidae Indet.	45-100	-0.22	-5.54	12.86	-13.08
630847-8-A	Java	Sangiran	Cervidae Indet.	45-100	-0.69	-7.10	12.86	-13.55
630847-8-B	Java	Sangiran	Cervidae Indet.	45-100	-0.38	-5.93	12.86	-13.24
630847-8-C	Java	Sangiran	Cervidae Indet.	45-100	-0.38	-5.93	12.86	-13.24
630847-9-A	Java	Sangiran	Cervidae Indet.	45-100	+0.00	-4.94	12.86	-12.86
630847-9-B	Java	Sangiran	Cervidae Indet.	45-100	-2.04	-2.47	12.86	-14.9
630847-9-C	Java	Sangiran	Cervidae Indet.	45-100	-1.32	-3.81	12.86	-14.18
630847-10-A	Java	Sangiran	Cervidae Indet.	45-100	-0.69	-4.81	12.86	-13.55
630847-10-B	Java	Sangiran	Cervidae Indet.	45-100	-1.33	-5.34	12.86	-14.19
RGM630846	Java	Sangiran	Axis lydekkeri	45-100	+0.43	-5.62	12.86	-12.43
631045-1-A	Java	Sangiran	Sus sp.	41-150	-15.26	-5.69	13.19	-28.45
631045-1-B	Java	Sangiran	Sus sp.	41-150	-14.18	-5.04	13.19	-27.37
631045-1-C	Java	Sangiran	Sus sp.	41-150	-15.31	-4.91	13.19	-28.5
631045-2	Java	Sangiran	<i>Sus</i> sp.	41-150	-0.34	-5.41	13.19	-13.53
631045-3	Java	Sangiran	<i>Sus</i> sp.	41-150	-10.55	-5.71	13.19	-23.74
631045-4	Java	Sangiran	<i>Sus</i> sp.	41-150	-11.59	-7.44	13.19	-24.78
631045-5	Java	Sangiran	<i>Sus</i> sp.	41-150	-12.52	-5.87	13.19	-25.71
631045-6-A	Java	Sangiran	<i>Sus</i> sp.	41-150	+0.83	-5.26	13.19	-12.36
631045-6-B	Java	Sangiran	<i>Sus</i> sp.	41-150	+0.96	-6.52	13.19	-12.23
631045-7	Java	Sangiran	<i>Sus</i> sp.	41-150	-2.14	-6.74	13.19	-15.33
631045-8-A	Java	Sangiran	Sus sp.	41-150	-6.75	-5.80	13.19	-19.94
631045-8-B	Java	Sangiran	<i>Sus</i> sp.	41-150	-6.63	-5.97	13.19	-19.82
631045-9	Java	Sangiran	Sus sp.	41-150	-2.66	-7.65	13.19	-15.85
631045-10	Java	Sangiran	<i>Sus</i> sp.	41-150	-11.84	-8.83	13.19	-25.03
S7-37	Java	Sangiran 7	Homo erectus-right upper P4	62	-3.96	-6.3	12.7	-16.66
80108	Java	Punung	Bovidae indet.	875	-13.08	-5.42	14.57	-27.65
GD110-A	Java	Punung	Bovidae indet.	875	+1.24	-4.69	14.57	-13.33
GD110-B	Java	Punung	Bovidae indet.	875	+1.18	-4.84	14.57	-13.39
GD110-C	Java	Punung	Bovidae indet.	875	+0.79	-5.43	14.57	-13.78

GD110-D	Java	Punung	Bovidae indet.	875	+0.35	-5.60	14.57	-14.22
GD110-E	Java	Punung	Bovidae indet.	875	-0.80	-4.76	14.57	-15.37
GD39	Java	Punung	Sus sp.	137	-10.08	-7.20	13.19	-23.27

Annex S7: Mammalian taxa from Lida Ajer published by Louys et al. (2022) with associated $\delta^{13}C_{apatite}$, $\delta^{13}C_{carbon source}$ and $\delta^{18}O_{apatite}$ values, as well as body mass and $\delta^{13}C$ (‰), and enrichment factor used to obtain $\delta^{13}C_{carbon source}$ (S-EVA, Stable Isotope-Evolutionary Anthropology, Max Planck Institute for Evolutionary Anthropology).

Sample ID	Taxon	Family	Source	δ ¹³ C ‰	Body mass (kg)	δ ¹³ C (‰) Enrichment factor	δ ¹³ C _{carbon} source (‰)	δ ¹³ C _{diet} (‰)	δ ¹⁸ Ο (‰)
L007-A	Capricornis sumatraensis	Bovidae	Naturalis	-15,3	112	13,14	-28,44	-29,3	-7,2
L007-B	Capricornis sumatraensis	Bovidae	Naturalis	-15,5	112	13,14	-28,64	-29,5	-6,5
L004-A	Elephas maximus	Elephantidae	Naturalis	-15,7	4250	14,69	-30,39	-29,7	-8,7
L004-B	Elephas maximus	Elephantidae	Naturalis	-15,7	4250	14,69	-30,39	-29,7	-8,7
L004-C	Elephas maximus	Elephantidae	Naturalis	-15,5	4250	14,69	-30,19	-29,5	-9
L004-D	Elephas maximus	Elephantidae	Naturalis	-16,2	4250	14,69	-30,89	-30,2	-8,9
L004-E	Elephas maximus	Elephantidae	Naturalis	-16,2	4250	14,69	-30,89	-30,2	-8,9
L004-F	Elephas maximus	Elephantidae	Naturalis	-15,4	4250	14,69	-30,09	-29,4	-8,7
L005	Elephas maximus	Elephantidae	Naturalis	-13,2	4250	14,69	-27,89	-27,2	-8,3
LA15-5	Pongo sp.	Hominidae	ITB (sinkhole)	-12,6	55	12,78	-25,38	-23,6	-6,5
LA15-8	Pongo sp.	Hominidae	ITB (Area 2)	-12,3	55	12,78	-25,08	-23,3	-7,8
L001-B	Pongo pygmaeus	Hominidae	Naturalis	-15	55	12,78	-27,78	-26	-6,8
LA15-1	?Rhinoceros	Rhinocerotidae	ITB (sinkhole)	-15,5	950	14	-29,5	-29,5	-7,4
LA15-7	?Dicerorhinus	Rhinocerotidae	ITB (area 2)	-17,4	1650	14,25	-31,65	-31,4	-6,5
L008-A	Rhinocerotidae	Rhinocerotidae	Naturalis	-16,8	1650	14,25	-31,05	-30,8	-8,4

L008-B	Rhinocerotidae	Rhinocerotidae	Naturalis	-16,3	1650	14,25	-30,55	-30,3	-8,2
L009	Rhinocerotidae	Rhinocerotidae	Naturalis	-16,7	1650	14,25	-30,95	-30,7	-6,3
L010	Rhinocerotidae	Rhinocerotidae	Naturalis	-16,2	1650	14,25	-30,45	-30,2	-8
L011-A	Rhinocerotidae	Rhinocerotidae	Naturalis	-16,3	1650	14,25	-30,55	-30,3	-7,6
L011-B	Rhinocerotidae	Rhinocerotidae	Naturalis	-16,6	1650	14,25	-30,85	-30,6	-7,5
L012-A	Rhinocerotidae	Rhinocerotidae	Naturalis	-17,4	1650	14,25	-31,65	-31,4	-6,6
L012-B	Rhinocerotidae	Rhinocerotidae	Naturalis	-17,3	1650	14,25	-31,55	-31,3	-6,4
L013	Rhinocerotidae	Rhinocerotidae	Naturalis	-16,9	1650	14,25	-31,15	-30,9	-8,8
LA15-3	Sus sp.	Suidae	ITB (sinkhole)	-11,53	137	13,19	-24,72	-22,5	-7,4
LA15-4	Sus sp.	Suidae	ITB (sinkhole)	-11,94	137	13,19	-25,13	-22,9	-8,2
LA15-16	Sus sp.	Suidae	ITB (Unit 7)	-12,31	137	13,19	-25,5	-23,3	-9,1
LA15-17	Sus sp.	Suidae	ITB (unit 7)	-12,02	137	13,19	-25,21	-23	-8,9
L002	Tapirus indicus	Tapiridae	Naturalis	-17,2	300	13,5	-30,7	-31,2	-9,3