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Figure 1. Given a sequence of monocular depth frames of a person, NSF learns a detailed clothed body model of the person. The clothed body model is
controllable and can be used for reconstruction and re-animation at arbitrary mesh resolution while maintaining the coherency whithout retraining.

Abstract

Obtaining personalized 3D animatable avatars from a
monocular camera has several real world applications in
gaming, virtual try-on, animation, and VR/XR, etc. How-
ever, it is very challenging to model dynamic and fine-
grained clothing deformations from such sparse data. Ex-
isting methods for modeling 3D humans from depth data
have limitations in terms of computational efficiency, mesh
coherency, and flexibility in resolution and topology. For in-
stance, reconstructing shapes using implicit functions and
extracting explicit meshes per frame is computationally ex-
pensive and cannot ensure coherent meshes across frames.
Moreover, predicting per-vertex deformations on a pre-
designed human template with a discrete surface lacks flex-
ibility in resolution and topology. To overcome these limi-

tations, we propose a novel method ‘NSF : Neural Surface
Fields’ for modeling 3D clothed humans from monocular
depth. NSF defines a neural field solely on the base sur-
face which models a continuous and flexible displacement
field. NSF can be adapted to the base surface with dif-
ferent resolution and topology without retraining at infer-
ence time. Compared to existing approaches, our method
eliminates the expensive per-frame surface extraction while
maintaining mesh coherency, and is capable of reconstruct-
ing meshes with arbitrary resolution without retraining. To
foster research in this direction, we release our code in
project page at: https://yuxuan-xue.com/nsf.
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1. Introduction
Human modeling is an active and challenging field of

research that has applications in Computer Vision and
Graphics. Recent advancements in data acquisition tech-
niques [50, 51, 63, 64, 66, 40] have opened new opportuni-
ties for capturing and digitising human appearance. Build-
ing digital avatars has found applications in behavioural
[12, 14] and medical [71, 55] studies as well. Our goal is to
build body model which is controllable i.e., animatable with
different poses, and detailed i.e. it should faithfully produce
details such as garments wrinkles under different poses.

In recent years, researchers have looked into learning
clothed human models from full sequences of 4D scans [8,
27, 31, 33, 52, 58]. 4D scans provide rich information about
the subject appearance, but they also require exclusive tech-
nology, pre-processing, and expert intervention at times,
which makes this difficult to scale. A more user friendly
line relies on the input with monocular depth from devices
such as Kinects [6, 13, 22, 67, 68]. Such data is easier to ob-
tain and already supported by consumer-grade devices. But
this flexibility comes at the cost of additional sensor noise,
thus complicating the learning process.

To mitigate the noise in input data, parametric models
such as SMPL [28] and its successors [1, 4, 45, 65, 3],
can provide a good statistical prior for capturing pose and
the overall shape of the person. Also, relying on a tem-
plate naturally supports information transfer across subjects
and poses. However, designing a pipeline around a spe-
cific template restricts the expressivity of the model, which
makes the methods less flexible (e.g., limited to tight gar-
ments). A common representation to relax the topology
constraints is point clouds [27, 31, 33, 70]. Recently, point
based neural implicit representations [8, 13, 52, 58, 60, 2]
demonstrated incredible expressive power. But many real
applications (e.g., animation, texture transfer) require a 3D
mesh. Hence, these approaches require running costly algo-
rithms [29, 21] to reconstruct a supporting surface. Extract-
ing a surface for every frame causes a computational burden
and also results in inconsistent triangulations, which further
complicate downstream tasks. Some works [6, 22] address
this issue by predicting displacements on SMPL vertices for
modeling clothed humans. While these methods yield co-
herent mesh reconstruction, they are constrained by the res-
olution and topology of SMPL template.

We pose ourselves the following goal: starting only from
a set of partial shapes from monocular depth frames, can
we learn a clothed body model that is flexible and coherent
across different frames, with a limited computational cost
for surface extraction?

To this end, we propose NSF : Neural Surface Fields;
a neural field defined continuously all over the surface.
Given a canonical shape, represented with an implicit func-
tion, we use NSF to define a continuous field over the sur-

face, capable of modeling detailed deformations. Using
NSF, we can reconstruct a coherent mesh in the canoni-
cal space at any resolution with just one run of surface
extraction algorithms, and share it across all the different
poses. This formulation avoids per-frame surface extrac-
tion which is ∼ 40x and ∼ 180x faster compared to point-
based works [27, 31, 33, 70] using Poisson reconstruction
and implicit-based works [8, 13, 52, 58, 60] using march-
ing cube at similar resolution, respectively. After training,
NSF can be adapted to arbitrary resolutions at inference
time, depending on the application. This step is possible
since NSF is continuously defined all over the surface, and
hence it is able to support any discretization. Compared to
other feature representations, NSF is more compact, saving
97.4% of memory compared to volumetric representation
and 86.0% compared to triplane features at 1283 resolution.

We validate our self-supervised approach on several
datasets [6, 22, 26, 32, 47], showing better performance
than competitors, even when some of them requires subject-
specific training [6, 13, 33, 41, 42, 60]. We show the practi-
cal benefits of NSF in shape reconstruction, animation, and
texture transfer application, with the flexibility and the co-
herency that is not attainable for prior works [6, 13].

In summary, our contributions can be summarized as:

• We propose NSF : Neural Surface Fields; a continu-
ous neural field defined over the surface in a canonical
space which is compact, efficient, and supports arbi-
trary mesh discretizations without retraining.

• We propose a method to learn an animatable human
avatar from a monocular depth sequence; NSF let us
recover detailed shape information from monocular
depth frames. Our self-supervised approach handles
subjects with different clothing geometries and tex-
tures. To the best of our knowledge, NSF is the first
work in avatarization which directly output mesh at
arbitrary resolution while maintaining the coherency
across different poses.

2. Related Work
Human Capture. Clothed human reconstruction is a
rapidly evolving field of research that aims to create re-
alistic and detailed digital models of humans. Recent
work [50, 51, 64, 63, 18, 73, 17] can reconstruct humans
from a single RGB image but are not as accurate. Methods
such as KinectFusion [39] and DynamicFusion [38] fuse
depth measurements over time to create a complete and ac-
curate model. While these are general and not restricted
to humans, BodyFusion [67] and DoubleFusion [68] in-
corporate priors on human motion and shape, fusing par-
tial depths in real-time to obtain improved reconstruction.
However, these methods are complicated to setup and re-
quire expert intervention. Moreover, their code is unavail-
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able. With the advent of deep learning methods, data-driven
methods such as IF-Nets [9], reconstruct humans by learn-
ing a prior from a large dataset. IP-Net [2] further fits a
parametric model to the implicit reconstruction to make the
mesh controllable. These approaches only capture static hu-
mans and do not capture the pose dependent deformations,
thus lacking realism.

Implicit Neural Avatar. In the last few years, outstand-
ing results produced by Neural Radiance Field (NeRF) [36]
have motivated scholars to model the clothed human as im-
plicit neural representations. There’s a plethora of NeRF-
based approaches for humans modeling that provide ani-
matable avatars starting from monocular RGB videos [16,
19, 46, 53, 61, 72]. Apart from constructing the human
model using RGB images, a common and straightforward
approach involves learning the implicit neural avatar from
geometric data, such as scans [7, 8, 11, 35, 58, 60, 75, 57].
Furthermore, PINA [13] models an implicit personalized
avatar using monocular depth sequences, which share the
same input as our work. However, it is important to note
that these implicit-based methods are subject-specific and
are unable to model multiple subjects simultaneously. Fur-
thermore, these methods that rely on implicit representa-
tions utilize neural networks to parameterize the shape, and
cannot directly provide explicit meshes as output. In or-
der to obtain a mesh representation, an extensive compu-
tation of marching cubes is performed for each frame, re-
sulting in computationally expensive operations. Moreover,
the extracted surface using marching cubes lacks coherence
across different frames. This lack of coherency leads to
the loss of natural correspondence and poses additional hin-
drances in applying these methods to downstream tasks, e.g.
texture transfer between the input and the learned shape.

Explicit Parameterized Avatars. SMPL [28] is a pop-
ular parametric human model. However, it only models
the naked body shape and pose, and lacks details. Hence,
several extensions have been proposed to add further de-
tails like hands [49], face [?], soft-tissues [48] and cloth-
ing [44, 47, 48, 69, 4]. Many works model deforma-
tions [6, 22, 31, 33, 30, 69, 70, 1], by fitting SMPL model
and adding cloth wrinkles as displacement on top of the
coarse shape. Although they reconstruct coherent shapes,
they are often limited by the resolution and topology of
the SMPL template, making them less flexible compared
to implicit-based methods. To overcome this limitation, Lin
et al. [27] proposed to learn the fusion shape using implicit
occupancy network, which is not constrained by the SMPL
topology and can represent loose garments like skirts. How-
ever, this approach relies on complete scans and registered
mesh data to provide ground-truth occupancy labels. More-
over, these point-based works [27, 31, 33] need to perform
Poisson Reconstruction at each frame to obtain the mesh.
In contrast, our approach fuses monocular raw depth inputs

into a canonical space to obtain a coarse, pose-independent
base shape without any supervision, which is difficult to ob-
tain from partial shape data. We then learn pose-dependent
neural surface fields (Sec. 3) on top of the coarse shapes,
which allow us to obtain detailed shapes at arbitrary reso-
lutions. In summary, our approach offers flexibility and ef-
ficiency in generating coherent meshes, and eliminates the
need for Marching Cubes or Poisson Reconstruction at each
frame (Sec. 4.4).

3. NSF: Neural Surface Fields
Neural Fields. A neural field is a field parametrized by a
neural network [62]:

fϕ : Rm → Rn, (1)

where ϕ are the learnable parameters. Neural field defined
in Euclidean space R3 has been widely-used to represent
various geometries like distance [43], occupancy [34], and
radiance [36] functions, correspondences [2], contacts [20,
5, 74], parametric body models [3], and so on.

Neural Surface Fields. When a field carries information
about an object that occupies a limited volume bounded by
a 2D surface S, we know in advance that much region of
the space will not be ever queried, causing a waste of com-
putational and memory resources [9, 2, 3]. Following this
intuition, we are interested to define the field only on the 2D
surface S2:

fϕ : S2 ⊂ R3 → Rn. (2)

We call this representation Neural Surface Fields (NSF).
Recent work [23] defines the neural field with the eigen-
function of the Laplace-Beltrami Operator on the surface,
and hence are defined just for a specific discretization of
the geometry. Instead, our approach is more general and
produces a continuous field independent of the underlying
discretization of the object.

Embedding the neural fields on a surface is advantageous
due to the ability to combine properties with mesh surface
coherency and connectivity as shown in Fig. 2. In our work,
we leverage NSF to learn a continuous deformation field
which models the detailed clothing deformations on the sur-
face of the coarse clothed human shape (Sec. 4.2).

4. NSF for Human Modelling
In this section we show the advantages of NSF by incor-

porating it into an avatarization method. Before diving into
the method details, we will state our goal, define method’s
input, and provide a general overview.
Input. Let s = {1, ...N} be the set of subjects. For each
subject, our method takes as input a sequence of monocular
depth point clouds, X s = {Xs

1, ...X
s
Ts
}. Each Xs

t is a set of
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Generalize to surface discretized with arbitrary resolution and topology NSF: neural fields on surface

Figure 2: We show an example of NSF decoding to surface color ∈ R3. On the right of arrow shows that NSF can be queried with the
surface with arbitrary resolution or topology without retraining.

unordered points {xs,t
j }

Ls,t

j=1 where Ls,t represents the num-
ber of points in the monocular point cloud at time t. Also,
for subject sequence we take as input the corresponding 3D
poses θs = {θs1, ...θsTs

}.
Output. Our goal is to learn subject-specific body models,
M = {M1, ...MN}. Each model Ms(p, θ) can transform
points p ∈ R3 from a neutral pose in canonical space to the
target pose θ, taking the shape and clothing of the subject
into account. Our models are complete, detailed, and con-
tain pose dependent garment deformations of the subject.
Overview. We kindly ask readers to refer Fig. 3 for an
overview of our method. To learn the body model of each
subject, (A) we unpose the input point clouds (Sec. 4.1) to
a neutral pose using inverse skinning, and (B) we fuse them
to learn an implicit (SDF) canonical shape Bs (Sec. 4.1).
Our canonical shape is continuous, and the fusion of differ-
ent depths averages out fine-grained details generated by the
subject poses. On top of our canonical shape, (C) we train
NSF (Sec. 4.2), which predicts the pose-dependent defor-
mation for each point on the continuous canonical surface,
(D) recovering the cloth deformation for a specific pose of
the subject (Sec. 4.2). Finally, (E) we use LBS to pose the
human model (Sec. 4.3). The method is optimized using
a cycle-consistency loss between the input point cloud and
our predicted shape. For simplicity we drop s from subse-
quent notation and explain our method for a single subject.
We will reintroduce s for parts of the manuscript dealing
with multiple subjects.

4.1. Fusion Shape from Monocular Depth

Canonicalization. To build our person-specific canonical
shape, we unpose every Xt input point cloud to a neu-
tral pose. The corresponding canonical points Xc

t for input
points can be found using iterative root finding [8, 25]:

argmin
Xc

t ,w

T∑
t=1

((
K∑
i=1

w(Xc
t)i ·Ti(θt)

)
Xc

t −Xt

)
. (3)

where K is the number of joints, and w(·)i and Ti are the
skinning weights and joint transformation for joint i respec-

tively. We utilize the iterative root finding in canonicaliza-
tion together with the pre-diffused SMPL skinning field in
FiTE [27] to avoid ambiguous solutions. We unpose all in-
put observation X = {Xt}Tt=1 into canonical partial shapes
X c = {Xc

t}Tt=1.
Implicit Fusion Shape. Since the inverse skinning does
not account for pose-dependent deformations operates at a
human level, the point cloud Xc

t resulting from our canoni-
calization process still contains non-rigid deformation spe-
cific to the subject poses. To remove the influence of single
poses and obtain a coarse canonical shape B, our idea is to
fuse every {Xc

t}Tt=0 by learning an implicit surface in the
canonical space. Concretely, we represent Bs as an implicit
SDF in [43], composed by a neural network f shape(·|ϕshape)
parameterised by parameters ϕshape, that takes as an input
a subject specific latent code hs ∈ R256 and a query point
x ∈ R3, to predict an SDF value. The subject-specific latent
codes H = {hs}Ns=1, and the decoder parameters ϕshape,
are optimised with the self-supervised objective [15] below:

Eshape(ϕshape,H) = Egeo + λ1Eeik (4)

Egeo(ϕ
shape,H) =

N∑
s=1

T s∑
t=1

Ls,t∑
i=1

(
|f shape(xc

i ,h
s|ϕshape)|+

λ3|∇xf
shape(xc

i ,h
s|ϕshape)− nc

i |2
)
, (5)

where nc
i is the normal obtained by canonicalising the nor-

mal ni, along with the point xi as described in Eq. ??, and
∇x denotes the spatial derivative. We compute the normal
ni on the point cloud using [39]. The term Eeik(·) [15]
enforces that the SDF prediction on the canonical surface
should be zero and its derivative, i.e. normal direction,
should match the canonicalised normal:

Eeik(ϕ
shape,H) =

N∑
s=1

T s∑
t=1

Ls,t∑
i=1

(
|∇xf

shape(xc
i ,h

s|ϕshape)|2−1
)2

.

(6)
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Figure 3: We propose a method to learn animatable body models of people from monocular depth point clouds and 3D poses (A). We learn
an implicit canonical shape of a person (B) by fusing the partial point clouds. To get fine details, we learn pose-dependent deformations
as a continuous field on the surface of the fusion shape (C), using our neural surface fields. By predicting deformations in canonical pose
(D), we pose our 3D reconstructions using simple LBS (E). Our approach can be trained with self-supervision.

Insights. Our objective Eshape(ϕshape,H) allows us to
fuse all partial canonical frames into a single continuous
shape for each subject, averaging out the pose-dependent
artefacts. The subject-specific geometry of the canonical
shape can be encoded in their respective latent codes hs,
whereas the decoder can freely learn common information
across subjects.

4.2. NSF for Pose-Dependent Deformation

Neural Surface Deformation Field. In the previous Sec-
tion we described how to learn a pose-independent fusion
shape by fusing input observations. But to faithfully repro-
duce the detailed 3D shape of a person we need to model
fine-grained pose-dependent deformations. Leveraging the
NSF introduced in Sec. 3, we define a deformation field on
the top of the fusion shape surface Bs:

fϕ : S2 ⊂ R3 → R3, (7)

where points on the surface S2 are mapped to their corre-
sponding pose-dependent displacements R3 in the canon-
ical space. Similar to our fusion shape, our deformation
fields are also parameterized by a combination of subject-
specific latent codes F = {Fs}Ns=1, and a pose conditioned
decoder network f pose(·|ϕpose). More specifically, the de-
formed points for the subject s is computed as:

Xp = Xc + f pose(Fs(Xc), θ|ϕpose), (8)

where Fs(xc) denotes the latent feature queried at point xc

for subject s and θ denotes the pose feature encoded by a
MLP. Our key idea is to learn a NSF for deformation di-
rectly and solely on the surface of the implicit fusion shape
Bs ⊂ R3 for each subject. This requires addressing two key
challenges: how to learn features Fs(·) on the surface? and
how to handle off-surface query points for prediction?.
Feature Learning On Surface. Volumetric and pixel-
aligned implicit feature learning methods [2, 9, 50, 51] learn

features at regular grid locations and use bi-/tri-linear inter-
polation to compute features at intermediate points. We de-
vise a similar strategy to learn features on a surface. We
first discretize the implicit fusion shape Bs by Marching
Cubes [29] to extract an explicit surface. Moreover, if the
garments can be represented by SMPL [28] topology, we
fit the SMPL+D model by minimizing the SDF value of
SMPL vertices. The same explicit mesh topology allows
us to quickly initialize feature space across different sub-
jects. We use the vertices (5, 000 ∼ 7, 000) on this surface
to form the feature basis location of our surface. The fea-
tures are learnt via an auto-decoder during training. The
feature Fs(xc) at arbitrary surface point xc ∈ Bs is ob-
tained using barycentric interpolation between three nearest
neighbours among the sampled basis points. Our feature
learning on surface is compact and unlike the 1D vectors
retains 3D spatial arrangement. In addition, it is memory-
efficient, whereas volumetric latent features [9, 2, 10] at 128
resolution require learning 1283 ∼ 2mil. features, while we
only need to learn about 7k. features using a neural surface
space. Our experiments demonstrate that learning a defor-
mation field on a surface produces better results than vol-
umetric and other competing feature learning approaches
with significantly lower number of features.

Projecting Off-surface Points Onto Surface. Feature
learning on surface is quite straightforward and intuitive as
described above. But it requires the query point xc to lie
on the surface Bs as the NSF is not even defined outside
in R3. This is challenging because the canonical point xc

obtained by canonicalising the input observation x (Eq. ??)
is pose-dependent and does not lie on the surface. To this
end we use a simple method to project off-surface canonical
point to Bs [10, 56]. We use our pre-trained auto-decoder in
Sec. 4.1 to obtain the SDF corresponding to the canonical
point, and the gradient of this SDF gives us the normal di-
rection perpendicular to the surface. We can use this to find
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the canonical surface point xcc corresponding to xc.

xcc = xc + f shape(xc,hs|ϕshape)∇xc
f shape(xc,hs|ϕshape).

(9)
With this surface projection we can obtain the correspon-
dence xcc on the fusion shape of each pose-dependent
canonical point xc. Afterwards, we can lift the neural sur-
face feature from xcc, Fs(xc)← Fs(xcc).

4.3. Self-supervised Cycle Consistency

Reposing via Skinnning. Once we obtain the pose-
dependent deformation on top of the fusion shape in 8, we
use standard linear blend skinning [24], to repose points:

Xpp =

(
K∑
i=1

wi(X
p)Ti(θ)

)
Xp, (10)

where Xp = {xp
i }

Lt
i=1 is the NSF predicted pose-dependent

canonical points and Xpp = {xpp
i }

Lt
i=1 is the reposed pose-

dependent points. Note that Xpp can be considered as the
reconstruction of input observation Xt.
Self-supervised Learning. The NSF, namely subject-
specific surface features F = {Fs}Ns=1 together with
the pose-conditioned decoder network f pose(·|ϕpose) can be
trained end-to-end by ensuring that our posed reconstruc-
tion Xpp matches the input point cloud Xt. This can be
formulated as the following self-supervised objective:

Epose(ϕpose,F) =
N∑
s=1

T s∑
t=1

Ls,t∑
i=1

(
|xi−xpp

i |2+|ni−npp
i |2

+ dCD(xi,x
pp
i ) + Epose

reg

)
, (11)

Epose
reg = |xp

i − xc
i |2 + |Fs(xc

i )|2 + EDR(xc
i ), (12)

where EDR(xc
i ) = |Fs(xc

i )−Fs(xc
i +ω))|2 and ω is ran-

dom small scalar. dCD(·, ·) denotes uni-directional Cham-
fer distance. Eq.11 forces that the predicted skinned points
(xpp

i ) and corresponding normals (npp
i ) match the input

posed points (xi) and their normals (ni). The regularisation
term Epose

reg contains an L2 regulariser on the deformation
field and neural surface feature as well as EDR term [54]
which enforces spatial smoothness on the feature space.

4.4. Inference and Surface Extraction.

At the inference time, we predict the pose-dependent de-
formation for vertices Vc of our base fusion shape Bs, and
apply LBS [24] with given desired pose to obtain its loca-
tion Vpp in the pose space. Because of the continuity of
NSF, the fusion shape Bs here can be discretized with ar-
bitrary resolution and topology. We use the original edge

connectivity on fusion shape Bs and posed vertices Vpp to
obtain the posed mesh, which ensures the coherency over
different poses. Specifically for reconstruction task, where
the partial point cloud is available, we freeze the deforma-
tion function f pose(·) and fine-tune the neural surface fea-
ture via minimizing the single-directional Chamfer distance
between the input partial shape and our reconstructed mesh
together with the Laplacian smoothness loss [37] of the re-
constructed mesh. Our NSF guarantees the coherent direct
mesh output at arbitrary resolution without performing ex-
pensive marching cubes as in [7, 8, 11, 13, 35, 58, 60] or
Poisson reconstruction [27, 31, 33, 70]

5. Experiments
Datasets. We evaluate the results of our method quali-
tatively and quantitatively on single-view point cloud ob-
tained from monocular depth sequences. We rendered the
depth sequences from the BuFF [69, 47] dataset and the
CAPE [32, 47] dataset using Kinect camera parameters,
same as our baselines [6, 13] and unproject monocular
depth to use as our input along with the SMPL poses.
For real data, we use Kinect depth sequences provided in
DSFN [6]. We experiment with loose garments like skirts
from the Resynth [33, 31] dataset.

Metrics. To evaluate the error of our method we will rely
on Chamfer distance (in cm), the normal correctness, and
the IoU between the ground-truth mesh and the reconstruc-
tions of our body model. The formulation of our metrics
can be found in supp. material. These evaluation metrics
are also applied to our baselines [6, 13].

Baselines. The work closest to ours is PINA [13] as they
have the same problem setting. DSFN [6] is another base-
line that uses neural network to learn SMPL-based 3D
avatars from monocular RGB-D video. Since the code of
PINA and DSFN is both not released, we train our model
using the same data and compare with the pre-computed re-
sults provided by authors. We also compare with POP [33],
MetaAvatar [60], and NPMs [41] on CAPE [32, 47] dataset.
Here, we modify the Chamfer distance in POP [33] to uni-
directional, allowing it accept single-view point cloud as in-
put. Apart from these recent works, we also deploy a sim-
ple yet intuitive baseline: posing the naked SMPL shape
and our learned fusion shape (w/o NSF). These baselines
highlight the importance of learning pose-dependent defor-
mations in NSF.

5.1. Reconstruction Comparison with Baselines.

We test our method on the task of partial point cloud re-
construction. Given a sequence of a monocular point cloud,
our goal is to recover a full clothed body model. Results are
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Table 1: We evaluate our method on the task of reconstructing 3D shape from monocular depth point clouds on BuFF [69], CAPE [32],
and synthesized ReSynth [33] data. Our method performs better than existing methods both quantitatively and qualitatively.

Method BuFF Data [69] CAPE Data [32] Resynth Data [33]
CD (cm) ↓ NC ↑ IoU ↑ CD (cm) ↓ NC ↑ IoU ↑ CD (cm) ↓ NC ↑ IoU ↑

DSFN [6] 1.56 0.916 0.832 - - - - - -
PINA [13] 1.10 0.927 0.879 0.62 0.906 0.941 - - -
Ours, w/o deformation 0.97 0.922 0.851 0.86 0.929 0.869 1.14 0.915 0.846
Ours, complete 0.69 0.930 0.895 0.65 0.940 0.911 0.92 0.917 0.887

Input PC SMPL SMPL+D Ours GTDSFN PINA

Input PC SMPL SMPL+D Ours GTDSFN PINA

Input PC SMPL SMPL+D GTDSFN PINA

Figure 4: Partial point cloud reconstruction on BuFF [69]: We first compare with fitting SMPL and SMPL+D models to our partial point
clouds and then compare against more contemporary baselines DSFN [6] and PINA [13]. Our method reconstructs more detailed avatars.

reported in Tab. 1 and Fig. 4, 5. The results for each indi-
vidual outfit of our method can be found in supp. material.
While the competing approaches [6, 13] train a neural net-
work per-subject, our method which is trained across mul-
tiple subjects, produces more reliable reconstructions with
far less computational resources. Most essentially, our ap-
proach can reconstruct a sequence of coherent meshes at
arbitrary resolution without retraining as in Fig. 1, which is
not achievable by any of our baselines.

5.2. Efficiency of Neural Surface Field.

For this experiment we train 3 variants of our method
with same neural networks and data but using three different
feature representations, i.e. volume [9], tri-plane [54] and
neural surface features. We report our results in Tab. 2. Our
key idea to learn a deformation field on a neural surface
is powerful and we can achieve better quality results with
10 − 100x less learnable features compared to volumetric
and tri-plane features.

Moreover, by avoiding per-frame surface extraction,
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Input PC GT Ours NPMs MetaAvatar POP

Figure 5: Partial point cloud reconstruction on CAPE [32, 47]: We compare with baselines NPMs [41], MetaAvatar [60], POP [33] and
visualize the reconstruction error on the surface. Our method achieves better reconstruction quality on this dataset.

Table 2: We compare our neural surface feature learning with ex-
isting volumetric [9], and tri-plane [54] feature representation. We
show that we require significantly lower learnable parameters and
produce better results.

Method BuFF Data [69] - Subject 00032
# Features CD ↓ NC ↑ IoU ↑

Volume 262, 144 0.77 0.925 0.884
Triplane 49, 152 0.74 0.924 0.885
Ours, NSF 6,890 0.66 0.928 0.899

Table 3: Our feature decoupling allows us to use our pre-trained
network and quickly learn new subject specific features with lit-
tle data and time. We show that in 10 mins, and by just using 10
frames (A) from a sequence, our model achieves similar perfor-
mance as training on all the frames in 10 hrs (B).

Operation BuFF Data [69] - Subject 00114
# Frames Time CD ↓ NC ↑ IoU ↑

(A) Train 126 ∼ 600′ 0.80 0.929 0.881
(B) Fine tune 10 ∼ 10′ 0.87 0.907 0.870

NSF achieves from ∼ 40x to ∼ 180x faster compared to
competitors at inference time. Please refer to supp. mat. for
more detail.

5.3. Importance of Feature Fecoupling: Learning a
New Avatar with 10 images in under 10 mins.

Our baselines [6, 13] require training a new neural net-
work for each subject. This is both computationally and
data expensive. Our method decouples generalizable neu-
ral networks and subject-specific features, and hence we
can quickly learn new subject-specific features with small
amounts of data, (i.e. 10 depth images) in a short time
(< 10mins). Training a full neural network on the other
hand requires several hours (see Tab. 3). We use 3 sub-
jects from BUFF dataset for training and use 10 random
frames from the 4th unseen subject for learning the body
model. Our qualitative results in Fig. 6 show that our de-
coupling allows us to learn models of new subjects easily

with small amounts of data. Competing baselines [6, 13]
lack such capabilities, although their code is not available
for fair comparison. In our supplementary material, we also
show that the generalizable decoder achieves superior per-
formance compared to subject-specific decoder training.

Input PC Ours GT

Figure 6: Point cloud reconstruction results: We learn the body
model of a new subject given 10 frames in under 10 mins.

5.4. Animating Learnt Avatars.

Our method can be efficiently used to manipulate the
learnt model to unseen poses. This can be done by provid-
ing the desired input pose parameters to our method. We use
our model trained on BUFF [69] and animate it with poses
from AIST dataset [59]. Fig. 7 shows our learnt avatars in
different poses. See supp. video and pdf for more examples.

5.5. Results on Real Data.

In this experiment we test the generalization capability
of our method on real data [6]. Fig. 8 demonstrates one ex-
ample on real dataset from DSFN [6]. Both the methods are
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Figure 7: Since our method learns a body model of the subject, we can use this model for re-animation. We show a reference scan of a
person (left) and re-posed avatars of the subject (right). Note that NSF can directly output coherent animated meshes at arbitrary desired
resolution (as in Fig. 1) without retraining, which is more flexible compared to state-of-the-art works.

trained using same data and we our method clearly outper-
forms the baseline. Please supp. mat. for more examples.

Reference Image DSFN Ours

Figure 8: Generalization to real data: We show qualitative com-
parison with DSFN [6] on their dataset captured using a Kinect.
Our model generates more details and less artefacts. Note that the
reference RGB image is not used in training.

5.6. Learning Textured Avatars.

We build our fusion shape by fusing multiple monoc-
ular point clouds and our canonicalization procedure en-
sures that we have explicit correspondence between the in-
put posed space and the fusion shape. This allow us to di-
rectly lift the texture from the input point cloud onto the
canonical shape and we obtain a textured body model of a
person. Our baselines [6, 13] have not shown such capabil-
ities. Fig. 9 shows examples of our learnt textured avatars.

6. Conclusion
We introduced Neural Surface Fields (NSF ): efficient,

fine-grained manifold-based continuous fields for model-
ing articulated clothed humans. NSF is capable of recon-
structing meshes with arbitrary resolution without retrain-
ing while maintaining mesh coherency. NSF eliminates the

A. B. C. D.

Figure 9: We can learn textured 3D avatars of people from input
partial point clouds. We show sample partial inputs (A) and corre-
sponding learnt model (B) We show more avatars in C,D.

expensive per-frame surface extraction, is about 40 to 180
times faster at inference time compared to baselines. NSF is
compact and preserve the 3D structure of the underlying
manifold. NSF also enables applications like texture trans-
fer and fine-tuning to adapt to a new subject. Our evaluation
on rendered and captured data demonstrate the efficiency
and the power of our proposed NSF . We believe NSF can
lead to both real-world applications and useful tools for the
3D vision community. The code as well as models are avail-
able at https://yuxuan-xue.com/nsf for research purposes.
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