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ABSTRACT
The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. 
These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus 
I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in struc-
ture should be related, especially for connected regions. To test this hypothesis, we examined covariation between the volumes 
of anterior sensorimotor and lateral cognitive lobules of the cerebellum and measures of cortical thickness (CT) and surface 
area (SA) across the whole brain in a sample of 270 young adults drawn from the HCP dataset. We observed that patterns of 
cerebellar– cortical covariance differed between sensorimotor and cognitive networks. Anterior motor lobules of the cerebellum 
showed greater covariance with sensorimotor regions of the cortex, while lobules Crus I and Crus II showed greater covariance 
with frontal and temporal regions. Interestingly, cerebellar volume showed predominantly negative relationships with CT and 
predominantly positive relationships with SA. Individual differences in SA are thought to be largely under genetic control while 
CT is thought to be more malleable by experience. This suggests that cerebellar–cortical covariation for SA may be a more sta-
ble feature, whereas covariation for CT may be more affected by development. Additionally, similarity metrics revealed that 
the pattern of covariance showed a gradual transition between sensorimotor and cognitive lobules, consistent with evidence of 
functional gradients within the cerebellum. Taken together, these findings are consistent with known patterns of structural and 
functional connectivity between the cerebellum and cortex. They also shed new light on possibly differing relationships between 
cerebellar volume and cortical thickness and surface area. Finally, our findings are consistent with the interactive specialization 
framework which proposes that structurally and functionally connected brain regions develop in concert.
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1   |   Introduction

Axonal tracing experiments in primates and neuroimaging 
studies in humans have revealed an intricate pattern of con-
nectivity between the cerebellum and the cerebral cortex. 
These two brain structures are connected through reciprocal 
input/output projections that form circuits linking function-
ally related regions (Leiner, Leiner, and Dow 1987; Orioli and 
Strick 1989). For example, anterior lobules of the cerebellum 
exhibit denser connections to sensorimotor and parietal cor-
tical regions than they do to prefrontal regions, while lobules 
Crus I and II are more heavily connected to the prefrontal re-
gions (Palesi et al. 2017; Salmi et al. 2010). Functional mag-
netic resonance imaging (fMRI) studies have also revealed 
functional connectivity between the cortex and cerebellum 
that parallels structural connectivity, both during rest and 
during cognitive and motor tasks (Buckner et al. 2011; Kipping 
et  al.  2013). Further, evidence from brain development has 
shown that the volumes of the cerebellum and cortex follow 
correlated developmental trajectories (Bethlehem et al. 2022; 
Kipping, Xie, and Qiu 2018; Mechelli et al. 2005). These cere-
bellar–cortical loop circuits form powerful networks that are 
thought to be involved in error processing and the develop-
ment of forward models that optimize both movement and 
cognitive functions, such as working memory and language 
(Guell, Gabrieli, and Schmahmann 2018; Schmahmann 2019).

The pattern of correlations between structural measures can 
be compared across regions using an approach termed struc-
tural covariance (Alexander- Bloch, Giedd, and Bullmore 2013; 
Lerch et al. 2006). Structural covariance has been examined 
between structurally connected cortical regions (Mechelli 
et al. 2005), and between the cortex and subcortical structures 
(Colibazzi et al. 2007). In addition, recent work from our lab-
oratory has found that the structure of cerebellar and cortical 
motor regions shows different patterns of covariance in peo-
ple who began musical training before age seven compared 
to those who began later and non- musician controls (Shenker 
et  al.  2022). In our previous work, we hypothesized that in-
teractive specialization, such as music training, promoted 
changes in one region that may drive changes in connected 
regions (Johnson 2011). However, as far as we can determine, 
normative structural covariance between the cortex and the 
cerebellum has not yet been examined. Therefore, the goal of 
the current study was to investigate this relationship in a large 
sample of healthy young adults from The Human Connectome 
Project (HCP; van Essen et  al.  2013). Using structural mag-
netic resonance imaging scans (MRI) of the human brain, 

we examined the association between the thickness and sur-
face area of the cortex and the volume of cerebellar lobules. 
We hypothesized that anatomically connected regions of the 
cerebellum and cortex would show stronger structural cova-
riance compared to unconnected regions. In particular, we 
expected that structural covariance would be stronger be-
tween the thickness and surface area of posterior frontal and 
parietal regions with the volume of motor lobules of the cer-
ebellum, namely hemispherical lobules III, IV, V, VI, VIIB, 
VIIIA, and VIIIB. We also expected that covariance between 
prefrontal cortical regions is stronger with lobules Crus I and 
Crus II, which have been implicated in cognitive functioning 
and are anatomically connected to frontal regions (Kelly and 
Strick 2003).

Using transneuronal tracing of fiber pathways in non- human 
primates, Kelly and Strick  (2003) identified differential con-
nectivity between sensorimotor and frontal cortical regions 
and the cerebellum. Axons from lobules III- VI as well as lob-
ules VIIIA, and VIIIB were found to project to the primary 
motor cortex, the premotor cortex, and the supplementary 
motor cortex. Importantly, another set of axons projects back 
from these cortices to the cerebellum to form cerebellar–corti-
cal loops. Similarly, Crus I and Crus II are connected to fron-
tal regions, primarily the dorsal prefrontal cortex, through 
reciprocal loops.

As expected, cerebellar–cortical functional connectivity 
reflects the known structural connectivity, as observed in 
resting- state fMRI (rs- fMRI; Buckner et  al.  2011) and la-
tent functional gradients (Guell et  al.  2018; Stoodley and 
Schmahmann  2010). Resting- state connectivity has been 
found between the lobules of the anterior cerebellum, VIIIA, 
and VIIIB and sensorimotor cortices, and between Crus I 
and Crus II and the prefrontal cortex (Kipping et  al.  2013). 
Consistent with the results of structural and functional con-
nectivity studies, task- based studies show that lobules III- VI, 
VIIB- VIIIB, and sensorimotor cortices are active during sen-
sorimotor tasks and Crus I and Crus II and the prefrontal cor-
tex are active during cognitive functions (Buckner et al. 2011; 
Salmi et al. 2010). Indeed, correlated activity between senso-
rimotor cortices and the cerebellum is related to motor task 
performance and motor learning (Penhune and Steele  2012; 
Stoodley and Schmahmann 2010), and correlated cerebellar- 
cortical activity has also been linked to executive functioning 
(Stoodley, Valera, and Schmahmann 2012). Gradient decom-
position of cerebellar function also supports this conclusion 
by revealing motor versus nonmotor representations within 
the cerebellum (Guell et al. 2018). However, whether the as-
sociations between the structure of the cerebellum and that of 
the cortex show similar organization remains unclear.

We and others hypothesize that the structural and functional 
connectivity between the cortex and the cerebellum may be in 
part determined by a pattern of interactive changes during de-
velopment (Johnson 2011). Johnson (2011) proposes that func-
tionally connected brain regions develop in association and exert 
effects on each other throughout maturation and in response 
to experience. This framework for understanding brain devel-
opment is termed interactive specialization. Based on the exis-
tence of structural and functional connections between regions 

Summary

• Individual differences in structural features covary 
between connected regions of the cerebellum and 
cortex.

• Patterns of covariation differ for sensorimotor and 
cognitive loops.

• Patterns of covariation with cortical thickness and sur-
face area suggest differing developmental influences.
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(Alexander- Bloch, Giedd, and Bullmore  2013), interactive spe-
cialization might be expected to lead to structural covariance. 
Structural connectivity has been suggested to mediate positive 
associations between variations in the structure of brain regions 
during development (Mechelli et  al.  2005). Structural covari-
ance between regions is also influenced by genetics and lifespan 
experiences and exhibits different patterns across sexes (Chen 
et al. 2011; Lv et al. 2010; Schmitt et al. 2008). It has been shown 
that dancers exhibit an association between reduced cortical 
thickness in the entire brain and cortical thickness in the mid-
dle frontal gyrus when compared to healthy controls (Karpati 
et al. 2018). Yee et al. (2018) observed an association between the 
transcriptomic similarity between regions and their structural 
covariance, reflecting a genetic influence on these patterns of 
variation. Since structural covariance is influenced by life ex-
periences, we expect that experience could play a role in cere-
bellar–cortical structural associations as well. This is evident 
in our previous study with musicians showing that changes in 
cerebellar–cortical structural covariance were linked to musical 
training before the age of 7 (Shenker et al. 2022). The current 
study extends this work to investigate the patterns of norma-
tive cerebellar- cortical structural covariance in the healthy 
adult brain.

There are two primary and theoretically distinct measures of 
cortical structure that can be measured in humans from MRI: 
cortical thickness and surface area. Cortical thickness is defined 
as the depth/thickness of the grey matter ribbon, and surface 
area as the two- dimensional extent of a given region of cortex. 
Individual variation in these features is thought to reflect dif-
ferent contributions from genetic and environmental factors 
during development (Panizzon et  al.  2009). Surface area un-
dergoes rapid changes early in life and is thought to be under 
greater genetic control (Bishop, Goudreau, and O'Leary  2000; 
Sanabria- Diaz et  al.  2010; Yoon, Perusse, and Evans  2012). 
Cortical thickness continues to change across development into 
young adulthood and is therefore more likely to be affected by 
the environment and experience (Amlien et  al.  2016). While 
cortical thickness and surface area are routinely extracted from 
MRI images of cortex, measuring them in the cerebellum is 
problematic. The cerebellum has a relatively thin grey matter 
ribbon, very dense gyrification, and closely packed lobules. This 
means that white and grey matter tissue segmentation, the basis 
for estimating these metrics, is unreliable (Sereno et al. 2020). 
Therefore, lobular volume is a more reliable measure of cortical 
structure in the cerebellum that can be accurately measured. 
To measure the volumes of cerebellar lobules, we used a robust 
multi- atlas segmentation approach (Chakravarty et  al.  2013) 
that has been applied in a number of previous studies of cere-
bellar structural variation (Park et al. 2014; Shenker et al. 2022; 
Steele and Chakravarty 2018).

Taken together, the existing literature suggests that there may 
be normative covariance between the structure of the cortex and 
cerebellum based on known anatomical and functional connec-
tivity. Therefore, the current study examined cerebellar–cortical 
structural covariance in a large sample of healthy young adults 
controlling for age and sex. We hypothesized that the volumes 
of motor and cognitive lobules of the cerebellum would show 
greater covariance with cortical thickness and surface area of 
motor and cognitive regions of the cortex. Further, we expected 

that these patterns of covariation might differ for cortical thick-
ness and surface area, and between hemispheres.

2   |   Methods

2.1   |   Participants

Structural MRI images were obtained from the Human 
Connectome Project S1200 release [HCP; full protocol is de-
scribed in van Essen et  al.  (2013)]. We conducted our analy-
ses on a subsample of 270 right- handed young adults (age: M: 
28.77 years, SD: 3.73; 157 female) who were selected based on 
the following criteria: no history of psychiatric, neurological, 
or neuropsychological disorders; no history of substance abuse; 
and full cerebellar coverage on T1w scans. Given the nature of 
the HCP data collection that included family members, we se-
lected unrelated subjects. In our previous work, we reported the 
volumes of all cerebellar regions in this same sample, and here 
we extend the analysis to include cortical features (Steele and 
Chakravarty 2018).

2.2   |   Procedure

2.2.1   |   MRI Acquisition and Preprocessing

T1- weighted Structural MRI images were acquired for all 
participants on a 3T Connectome Skyra MRI scanner with a 
32- channel head coil. Scanning parameters were as follows: 
voxel size = 0.7 mm3 isotropic, reputation time = 2400 ms, in-
version time = 1000 ms, echo time = 2.14 ms, field of view = 
224 × 224 mm (van Essen et al. 2012). All MRI scans were pre-
processed by the HCP according to the minimal preprocessing 
pipeline (Glasser et al. 2013). This included registration to the 
common Montreal Neurological Institute 152 space (MNI- 152) 
with a rigid body transformation. Then, FreeSurfer's recon- all 
was used to reconstruct white and grey matter surfaces that 
were then used in surface area (SA) and cortical thickness (CT) 
measurements (Dale, Fischl, and Sereno  1999). In this study, 
we used CT and SA which were provided by the HCP consor-
tium (db. human conne ctome. org). We used CIFTI metric files to 
extract individual- level CT surface maps (i.e., corrThickness). 
We extracted the CT values and applied a smoothing kernel on 
the resulting vertex- wise data (using - metric- smoothing). For 
SA, we used the individual- level pial GIFTI surface meshes, 
and used the connectome workbench toolbox to calculate the 
surface area of each vertex (- surface- vertex- areas). Then, we 
applied the same smoothing kernel on the resulting SA maps 
(using - surface- smoothing). Details on CT and SA calculation 
and smoothing are described next.

2.2.2   |   Thickness and Area Calculation

Thickness was measured as the distance between the white and 
gray matter surfaces in millimeters (mm). To extract the SA of 
the cortex at every vertex, the area of one- third of each trian-
gle that the vertex was part of was assigned to that vertex, and it 
was measured in mm2. Surface area values for each participant 
were normalized at each vertex by total brain volume to account 
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for global differences in brain size. SA, but not CT values were 
normalized because variations in the cortical volume are mainly 
driven by changes in SA, therefore normalizing only SA corrects 
for brain size while preventing data contamination with noise 
(Im et  al.  2008). Thickness and area measurements were then 
smoothed using a 12 mm full width at half maximum smoothing 
Gaussian kernel to maximize signal- to- noise ratio and minimize 
false positives as reported previously in structural covariance 
literature (Bernal- Rusiel, Atienza, and Cantero  2010; Mechelli 
et al. 2005).

2.2.3   |   Cerebellar Lobule Identification

To label the hemispherical cerebellar lobules of interest, the 
Multiple Automatically Generated Templates Brain Segmentation 
Algorithm was used (MAGeTbrain: https:// github. com/ Cobra 
Lab/ MAGeT brain ; Park et  al.  2014). The algorithm first per-
forms a nonlinear registration between multiple high- resolution, 
expert- labeled, atlases and a set of 21 randomly chosen scans 
from the subsample (Steele and Chakravarty 2018). Each of the 
21 scans is segmented according to the five atlases, therefore 
each voxel in these scans would have five labels assigned to it. 
Then, a majority vote is conducted to determine the most fre-
quent label out of the 5 × 21 = 105 possible labels that each voxel 
is assigned. Based on the votes, a sample template is created, 
and each participant's scan was then labeled according to that 
template. Following the identification of the nine hemispherical 
cerebellar lobules in each hemisphere (III, IV, V, VI, Crus I, Crus 
I, VIIB, VIIIA, and VIIIB), we normalized their volume by total 
brain volume to account for variation due to brain size.

2.3   |   Statistical Analysis

2.3.1   |   Cerebellar–Cortical Structural Covariance

Since our goal was to examine cerebellar–cortical structural 
covariance, regression analyses were used to investigate the 
relationships between measures of CT and SA at each vertex 
in the cortex and the volumes of contralateral hemispherical 
cerebellar lobules. That is, CT and SA of the vertices in the left 
cortex were the dependent variables while the volumes of right 
cerebellar lobules were the independent variables. The same 
was performed for the right cortex and the left cerebellum, such 
that each hemisphere's structural covariance was assessed with 
each of the nine lobules of the contralateral cerebellum. Age 
and sex were included as covariates. Standardized regression 
coefficients were extracted to indicate the specific association 
between the volumes of the lobules and vertex- wise CT or SA, 
which were then plotted on the cortex for visualization. In total, 
we conducted 18 regression analyses at each of the 326k cortical 
vertices (i.e., 9 lobules each for CT and SA, with each lobular vol-
ume serving as the independent variable). We performed 1000 
permutations per vertex per lobule to assess significance, for CT 
and SA, setting a permutation- threshold p- value of 0.05. For the 
permutation analysis, we used Nilearn's ols_permuted in a mass 
univariate paradigm. First, an ordinary least squares model is fit 
at each vertex, estimating the relationship between the volume 
of cerebellar lobules and either CT or SA. Permutation of the cer-
ebellar volumes provides the null distribution by recomputing 

the OLS estimates for each permutation and the resulting p val-
ues are then corrected for multiple comparisons using family- 
wise error correction. All analyses were conducted in Python 
version 3.7 (https:// www. python. org/ ), using the packages stats-
models and scipy for regression analysis, and Nilearn for permu-
tation analysis and data visualization.

2.3.2   |   Similarity Assessment

To assess similarity in patterns of associations between the 
cortex and the volumes of the different cerebellar lobules, we 
computed the correlation between the vertex- wise associations 
of each cortical hemisphere (for CT and SA separately) for each 
cerebellar lobule, using only statistically significant vertices 
after permutations. The correlation between each pair of brain 
maps was permuted 1000 times, with a 0.05 significance thresh-
old. In this step, correlation coefficients represent the similarity 
in the pattern of covariance between each pair of lobules, and 
provide a comparative summary of the vertex- wise regression 
analyses. In this analysis, greater correlations between lobules 
are indicative of greater similarity, whereas lower values indi-
cate less similar patterns of covariance of the lobules with CT/
SA across the cortical hemisphere. We conducted 36 similarity 
assessments (each of the 9 lobules to every other lobule) per cor-
tical measure per hemisphere. In total, there were 36 × 4 = 144 
assessments, grouped by measure (CT/SA) and hemisphere. The 
similarity analysis was conducted in Python version 3.7 (https:// 
www. python. org/ ), using the packages scipy for correlation and 
permutation analysis, and seaborn for data visualization (i.e., 
heatmaps of similarity).

3   |   Results

3.1   |   Cerebellar–Cortical Structural Covariance

First, we assessed cerebellar–cortical structural covariance be-
tween motor and cognitive lobules of the cerebellum and either 
CT or SA using multiple regression accounting for age and sex. 
Results revealed a pattern of cerebellar–cortical covariance that 
differed for CT and SA, between sensorimotor versus cognitive 
regions, and between the left (Figure 1) and right hemispheres 
(Figure 2).

For CT, the covariance between left cortical sensorimotor 
regions and right lobules III, IV, V, VIIIA, and VIIIB were 
predominantly strong negative associations as seen by the 
large negative beta coefficients. This negative covariance was 
weaker for lobules Crus I and Crus II, and positive for lobules 
that are at the boundary of motor and cognitive transitions, 
namely VI and VIIB. CT of the left cortical cognitive regions 
in the frontal lobes exhibited sparsely distributed weaker neg-
ative associations with the motor lobules III, IV, V, VIIIA, and 
VIIIB. Overall, this pattern was weaker and less consistent for 
the right hemisphere. For CT of the right cortical sensorim-
otor regions, negative associations were found with lobules 
III, IV, V, while lobules VI–VIIIB show weak negative associ-
ations with premotor regions. CT of right frontal regions was 
positively associated with lobules VI–VIIB. In contrast to the 
left cortex, CT of the right frontal regions was also negatively 
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associated with lobules III–VIIB, and this negative associa-
tion is stronger with VIIIA and VIIIB.

In contrast to CT, SA was generally positively related to cere-
bellar volumes, but with a similar pattern in the shift of cova-
riance across cognitive versus motor lobules and hemispheres. 
SA of the left sensorimotor regions of the cortex were strongly 
positively associated with right lobules III, IV, and V. This pos-
itive association extended to lobules VI, Crus I, Crus II, unlike 
CT where the direction of association switched from negative 
to positive between motor and cognitive lobules. We observed 
negative associations between left SA and right lobules VIIB 
and VIIIA similarly to lobules III and IV. However, the asso-
ciations between right VIIIB and SA were predominantly posi-
tive. SA of left frontal regions was strongly positively associated 

with lobules Crus I and Crus II, with weaker associations with 
other lobules. A similar pattern of associations was observed for 
the right hemisphere, where SA was positively associated with 
volumes of lobules III–Crus II as well as VIIIB, and negatively 
associated with VIIB and VIIIA.

3.2   |   Similarity Assessment

To quantify similarity in cerebellar–cortical structural cova-
riance between motor and cognitive regions, we investigated 
whether the distributions of covariance were correlated across 
lobules for CT and SA. As a measure of similarity, we calculated 
the correlation between hemispherical covariance maps for each 
pair of lobules (Figure 3). Each association map is compared to 

FIGURE 1    |    Vertex- wise beta coefficients of the association between CT and SA of the left cortex and the volumes of right cerebellar lobules while 
accounting for age and sex. Each brain- plot represents the association between the cortical measure (top) of one hemisphere (lateral and medial view) 
and the volume of the contralateral cerebellar lobule (left). Blue indicates a negative association while red indicates a positive one. The unthresholded 
beta maps for left and right CT and SA are included as Figure S1.
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other maps in the same hemisphere for either CT or SA, sum-
marizing vertex- wise similarity between each pair of lobules in 
one score.

We observed a clear delineation of motor versus cognitive cerebel-
lar lobules in their associations with the cortex (Figure 3). Except 
for the comparisons between lobules VIIIB with VI and Crus II, 
and VIIIA with IV in their association with left CT, all correlations 
were statistically significant (permuted p values < 0.05). For CT, 
motor lobules III–V showed higher similarity among themselves 
and lower similarity with lobules VI, Crus I and VIIB. Cognitive 
lobules Crus I and II also showed higher similarity with each 
other and greater dissimilarity with lobules III–V and VIIIA and 
VIIIB. Lobule VI appears to be a transitional area, showing higher 

similarity with Crus I and III (than the other motor lobules) and 
lower similarity with other motor lobules. Similarity was generally 
lower in the left than the right hemisphere.

The similarity between cognitive and motor lobules was overall 
lower for SA. Motor lobules III–V again showed higher similarity 
with each other and greater dissimilarity with lobules Crus I and 
II, and VIIIA. Cognitive lobules Crus I and II were more similar 
to each other and showed lower similarity with lobules VIIB and 
VIIIA. Lobule VI again was found to be more similar to Crus II 
and more dissimilar to lobules VIIB and VIIIA. Inferior motor 
lobules VIIB and VIIIA also showed marked lower similarity 
from all other regions. For SA, lobular similarities appear to be 
more pronounced for the left, compared to the right hemisphere.

FIGURE 2    |    Vertex- wise beta coefficients of the association between CT and SA of the right cortex and the volumes of left cerebellar lobules while 
accounting for age and sex. Each brain- plot represents the association between the cortical measure (top) of one hemisphere (lateral and medial view) 
and the volume of the contralateral cerebellar lobule (left). Blue indicates a negative association while red indicates a positive one. The unthresholded 
beta maps for left and right CT and SA are included as Figure S1.
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4   |   Discussion

The goal of the current study was to examine the pattern of cer-
ebellar–cortical structural covariance in motor and cognitive 
networks. Overall, our findings revealed a pattern of cerebellar–
cortical covariance that differed between sensorimotor versus 
cognitive regions, for cortical thickness and surface area, and be-
tween the left and right hemispheres. Cortical thickness showed 
predominantly negative relationships with cerebellar volume, 
particularly in sensorimotor, parietal, and frontal regions of the 
left hemisphere. Surface area showed a predominantly positive 
relationship with cerebellar volumes, particularly in senso-
rimotor, parietal, frontal, and temporal lobe regions bilaterally. 

Motor lobules (III–VI and VIIB–VIIIB) of the cerebellum showed 
greater covariance with sensorimotor regions of the cortex, and 
cognitive lobules (Crus I and Crus II) showed greater positive co-
variance with frontal and temporal regions. The pattern of cere-
bellar–cortical covariance for both cortical thickness and surface 
area differed across regions, with covariance being more similar 
within sensorimotor and cognitive networks and more dissimi-
lar between them. Similarity in the pattern of covariance of each 
lobule with the cortex showed a gradual transition between sen-
sorimotor and cognitive lobules, with lobules III–V showing the 
greatest dissimilarity with lobules VI, and VIIB showing greater 
similarity to Crus I and II. Taken together, these findings are 
consistent with the known pattern of anatomical connectivity 

FIGURE 3    |    Statistically significant correlation coefficients between each pair of cerebellar–cortical associations, for each structural measure of 
each hemisphere. The color represents the similarity between each brain- plot in Figures 1 and 2 and all the other plots below it, for all possible pairs. 
White square represents nonstatistically significant similarity.
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between different cerebellar lobules and the cortex. In addition, 
they shed new light on the relationship between cerebellar vol-
umes and different cortical features, showing that larger cerebel-
lar volumes are related to reduced cortical thickness but greater 
surface area. Surface area has been hypothesized to be under 
greater genetic control (Bishop, Goudreau, and O'Leary  2000; 
Sanabria- Diaz et al. 2010; Yoon, Perusse, and Evans 2012) while 
cortical thickness is thought to be more malleable by experi-
ence (Amlien et al. 2016). This suggests that covariance between 
cerebellar volumes and surface may be a more stable feature, 
whereas covariance with cortical thickness may be more affected 
by development. This is consistent with the interactive special-
ization framework which proposes that functionally connected 
brain regions develop in tandem (Johnson 2011).

For both the left and right hemisphere, cerebellar motor lob-
ules III–V and VIIIA and VIIIB showed primarily negative as-
sociations with sensorimotor and parietal cortical regions in 
cortical thickness. In contrast, lobules VI and Crus I showed 
positive associations with frontal regions, with those in Crus 
I exhibiting larger spatial extent in the right hemisphere. In 
a parallel finding, but with reversed direction, motor lobules 
III–V and VIIB, VIIIA, and B showed predominantly positive 
associations with cortical surface area in sensorimotor regions 
of the cortex, and with more frontal regions that appeared 
to increase in coverage from lobules III–VI. This culminated 
in Crus I and II, which were found to be more strongly posi-
tively associated with surface area of cortical frontal regions. 
The patterns of observed differences in structural covariance 
were supported by their similarity which shows clearly that 
 cerebellar–cortical covariance within motor and cognitive re-
gions is more similar than covariance across these regions, and 
that similarity decreased at the transition from motor (III and 
IV) to cognitive (Crus I and Crus II) and back to motor (VIIIA 
and VIIIB) lobules.

In line with our hypotheses, these differing patterns of cerebel-
lar–cortical structural covariance are consistent with known 
anatomical connectivity in primates (Kelly and Strick 2003), 
with studies in humans using diffusion- weighted imag-
ing (Habas and Cabanis  2007; Rousseau, Chakravarty, and 
Steele 2022; Steele and Chakravarty 2018) and with evidence 
from resting- state functional connectivity (Bernard et al. 2012; 
Krienen and Buckner 2009; Stoodley and Schmahmann 2010). 
In primates, lobules III–VI as well as VIIIA and VIIIB project 
primarily to motor cortical regions, while Crus I and II con-
nect primarily to prefrontal regions (Kelly and Strick  2003). 
Evidence for a similar pattern of connectivity has been found 
using diffusion imaging in humans, showing distinct motor 
and nonmotor divisions in the dentate nucleus and the pons 
(Rousseau, Chakravarty, and Steele 2022; Steele et al. 2017). 
In parallel, patterns of resting- state functional connectivity 
between the cerebellum and sensorimotor and prefrontal re-
gions match the anatomical connections between the regions 
described above (Buckner et  al.  2011; Ji et  al.  2019; Marek 
et  al.  2018; O'Reilly et  al.  2010). Finally, task- based studies 
show specific activation of sensorimotor regions of the cer-
ebellum and cortex for sensorimotor tasks and lobules Crus 
I and Crus II and the prefrontal cortex for cognitive tasks 
(King et al. 2019, 2023; Salmi et al. 2010; Stoodley, Valera, and 
Schmahmann 2012).

Thus the observed pattern of structural covariance is consis-
tent with known segregation of the sensorimotor and cognitive 
cortico- cerebellar networks. This segregation is also supported 
by the similarity results, which showed that covariation was 
more similar within the motor and cognitive networks than 
between them. Despite this broad segregation into motor and 
cognitive domains, we also observed a transitional zone at the 
border of motor to cognitive representations for lobules VI and 
VIIB. This is consistent with the observation of multiple gra-
dients of functionally defined continuous representations that 
do not strictly match lobular structural boundaries (Guell and 
Schmahmann 2020; King et al. 2019).

An intriguing finding from this study is the differing relation-
ship between cerebellar volumes and the cortical metrics; while 
cerebellar volumes exhibited largely negative relationships with 
cortical thickness, they showed largely positive relationships 
with surface area. These opposite relationships may be due to 
differing developmental trajectories: surface area increases up 
until age 12 with little change thereafter, while cortical thick-
ness peaks in infancy and then decreases until the third decade 
of life (Amlien et al. 2016; Bethlehem et al. 2022). Based on this, 
variation in surface area is thought to be largely under genetic 
control, while variation in cortical thickness is thought to re-
flect a combination of accumulated genetic and environmental 
effects (Roe et al. 2023). Together with our findings, this sug-
gests that interactions between cerebellar and cortical regions 
across development may lead to correlated structural plasticity, 
although it is not clear what underlying mechanisms would lead 
to positively correlated versus negatively correlated changes.

Structural covariance is thought to be driven by structural 
and functional connectivity (Alexander- Bloch, Giedd, and 
Bullmore  2013). Therefore, covariation between cerebellar and 
cortical regions is consistent with the idea that functionally 
and structurally connected regions may develop in tandem, a 
concept known as interactive specialization (Johnson  2011). 
Developmental data show that GM volume of anterior motor re-
gions, including M1 and PMC has a peak rate of change between 
the ages of 6 and 8 (Bethlehem et al. 2022; Giedd et al. 1999). 
In contrast, peak maturation in the cerebellum occurs later, be-
tween the ages of 12 and 18 (Bethlehem et  al.  2022; Tiemeier 
et al. 2010). The interactive specialization framework proposes 
that connected brain regions or networks interact during devel-
opment to reciprocally influence maturation (Johnson  2011). 
In the case of the cortex and cerebellum, we propose that dense 
connectivity drives plasticity, and that the structure of these re-
gions changes interactively (Fjell et al. 2019; Penhune 2020). The 
cerebellum has been hypothesized to support the optimization of 
both motor and cognitive functions through its loop circuits with 
different cortical regions (Bostan, Dum, and Strick 2013), possibly 
through encoding of predictions and error correction (Sokolov, 
Miall, and Ivry 2017). Thus optimal functioning is contingent on 
the co- development of the cortex and the cerebellum. This idea 
is supported both by correlated cerebellar and cortical structural 
changes in early- trained musicians (Shenker et al. 2022) and in 
rodents exposed to an enriched environment (Scholz, Allemang- 
Grand, et al. 2015; Scholz, Niibori, et al. 2015). Earlier- maturing 
sensorimotor cortical networks may modulate the development 
of later- maturing cerebellar networks. Later in development, 
however, cerebellar mechanisms related to forward models and 
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optimization may contribute to the fine- tuning of motor and 
cognitive functions observed in adolescence and early adulthood 
(Fuhrmann, Knoll, and Blakemore 2015).

Finally, our results also show that the degree of covariance was 
overall stronger for the left compared to the right hemisphere. 
This may be due to typical left- hemisphere dominance for con-
trol of the right hand and language functions. It may also be 
due to differences in intra-  and inter- hemispheric connectivity 
where the left hemisphere is characterized by stronger within- 
hemisphere networks and the right by broader, more distributed 
connections (Iturria- Medina et al. 2011).

Although we aimed to decompose cortical volumes into more 
basic elements by using cortical thickness and surface area, it 
remains difficult to attribute the patterns of structural covari-
ance that we observed to specific molecular or physiological 
causes. Further research is needed to examine the mecha-
nisms that drive structural covariance or determine the di-
rection of correlated change. One approach that could address 
this would be to look at covariance in a longitudinal sample of 
children where patterns of change in cerebellar volume could 
be related to changes in cortical metrics across development. 
It is also likely that the observed patterns of cerebellar–corti-
cal structural covariance would differ with aging since sur-
face area and cortical thickness follow different trajectories 
(Lemaitre et al. 2012). Another direction for future work would 
be to decompose cerebellar volumes into surface area and cor-
tical thickness in order to examine covariation with cortex for 
each metric separately. While we were able to estimate lobular 
volumes with high accuracy, the cerebellar cortex is a dense 
and highly gyrified structure, rendering results from com-
monly used tools to measure cortical thickness and surface 
unreliable (Lundell and Steele  2024; Sereno et  al.  2020). In 
the future, the use of high- field strength scanners may resolve 
these limitations.

5   |   Conclusion

The observed pattern of cerebellar–cortical structural covari-
ance largely mirrors known structural and functional connec-
tivity, where sensorimotor and cognitive regions are connected 
in partially separate loops. Similarity metrics also identified 
transitional regions at the boundaries of motor and cogni-
tive lobules, consistent with evidence of functional gradients, 
rather than sharp boundaries within the cerebellum. Patterns 
of structural covariation differed for surface area and cortical 
thickness, consistent with evidence that individual variation in 
these features results from either greater genetic or environmen-
tal influences. Together, these findings support the interactive 
specialization framework which proposes that structurally and 
functionally connected regions mutually influence each other 
during development.

Data Availability Statement

The data that support the findings of this study are available in Human 
Connectome Project at https:// www. human conne ctome. org/ study/  
hcp-  young -  adult . These data were derived from the following resources 

available in the public domain: -  Human Connectome Database, https:// 
db. human conne ctome. org/ app/ templ ate/ Login. vm; jsess ionid = 98B43 
57A64 C4CFA F607F C18F3 AA4506E.
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