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Abstract

Serving as a channel for communication with locked-in patients or control of prostheses, sen-
sorimotor brain-computer interfaces (BCIs) decode imaginary movements from the recorded
activity of the user’s brain. However, many individuals remain unable to control the BCI,
and the underlying mechanisms are not clear yet. The user’s BCI performance was previously
shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the
phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predic-
tors of performance were primarily evaluated in a single BCI session, while the longitudinal
aspect remains rather uninvestigated. In addition, different analysis pipelines were used for the
estimation of PS in source space, potentially hindering the reproducibility of the results. To
systematically address these issues, we performed an extensive validation of the relationship
between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available
dataset of 62 human participants performing up to 11 sessions of BCI training. We combined 24
pipelines for source space analysis and three PS measures in a multiverse analysis to investigate
how robust the observed effects were to the selection of the pipeline. Our results show that SNR
had a between- and within-subject effect on BCI performance for the majority of the pipelines.
In contrast, the effect of phase synchronization on BCI performance was less robust to the
selection of the pipeline and became non-significant after controlling for SNR. Taken together,
our results demonstrate that changes in neuronal connectivity within the sensorimotor system
are not critical for learning to control a BCI, and interventions that increase the SNR of the
mu rhythm might lead to improvements in the user’s BCI performance.
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1. Introduction

A brain-computer interface (BCI) is a system that decodes the intentions of the user based on
the recorded activity of their brain and provides commands to external devices (e.g., prosthe-
ses; Wolpaw et al. (2002)). These systems have many potential applications ranging from the
clinical ones, such as providing a communication pathway for locked-in patients (Chaudhary
et al., 2016), to the research ones, such as the detection of mental states and the facilitation of
actions in healthy humans (Blankertz et al., 2010b, 2016). Often, BCIs are based on magnetoen-
cephalographic (MEG) or electroencephalographic (EEG) recordings of brain activity. MEG
and EEG (M/EEG) have high temporal resolution and provide multiple features of the ongoing
or evoked brain activity that can be used as a control signal (Abiri et al., 2019). For example,
BCI paradigms based on the P300 component of the evoked response or steady-state visual
evoked responses (SSVEP) provide high information transfer rates for efficient communication
(Abiri et al., 2019). However, these paradigms always require external stimuli to be presented,
which makes the approach less flexible. In contrast, sensorimotor BCIs decode the imaginary
movements of limbs or tongue that can be self-initiated and thus provide more flexibility (Leeb
et al., 2007; Yuan and He, 2014; Scherer and Vidaurre, 2018). Decoding of the imaginary move-
ments is often based on the modulation of power in the alpha (8 – 13 Hz) and beta (13 – 30
Hz) frequency ranges in sensorimotor brain areas, also referred to as event-related desynchro-
nization or synchronization (ERD/ERS; Pfurtscheller and Lopes da Silva (1999); Pfurtscheller
et al. (1996)). Sensorimotor BCIs are also used to facilitate the recovery of motor functions
during rehabilitation after a stroke (Cervera et al., 2018; Kruse et al., 2020; Peng et al., 2022).

While BCI seems to be a promising approach with multiple clinical applications, some partici-
pants remain unable to control it (Allison and Neuper, 2010). Typically, participants complete
several training sessions to learn to control a BCI. However, their performance in the task
varies considerably, and on average around 20% of the participants fail to learn the task (San-
nelli et al., 2019). The mechanisms underlying successful modulation of brain activity for
controlling a BCI are not clear yet. However, previous studies have identified several psycho-
logical (Hammer et al., 2012; Jeunet et al., 2015) and neurophysiological (Blankertz et al.,
2010a; Sugata et al., 2014; Samek et al., 2016; Vidaurre et al., 2020) predictors of successful
control of a sensorimotor BCI. These predictors allow pre-screening of participants in order to
provide the full training only if the participant is likely to be successful in controlling the BCI
(Sannelli et al., 2019).

Neurophysiological predictors of successful BCI control also provide information about the
features of brain activity (e.g., neuronal networks) that play a role in the success of BCI
training. For example, the signal-to-noise ratio (SNR) of the sensorimotor mu rhythm during
resting-state was positively correlated (𝑟 = 0.53) with online accuracy of sensorimotor BCI
control (Blankertz et al., 2010a). This predictor was later validated in an independent dataset
with a similar experimental paradigm (Acqualagna et al., 2016). Moreover, several other neural
correlates of performance in a sensorimotor BCI task are related to the SNR of the mu rhythm,
for example, the performance potential factor (Ahn et al., 2013) or the spectral entropy at C3
electrode during resting-state (Zhang et al., 2015). Although SNR seems to be a well-established
predictor of BCI performance, it is often investigated in the context of a single BCI session.
However, the relationship between SNR and performance could change if participants with low
SNR eventually learned the task or if the SNR itself changed throughout a multi-session BCI
training. Therefore, it is crucial to validate this predictor in a longitudinal analysis, which is
one of the aims of the current study.

Other predictors of sensorimotor BCI performance include long-range temporal correlations
(Samek et al., 2016) and functional connectivity between sensorimotor brain regions (Sugata
et al., 2014; Vidaurre et al., 2020). Connectivity-based predictors might be especially relevant
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since motor imagery involves activation of multiple interacting brain areas (Solodkin et al., 2004;
Halder et al., 2011; Hardwick et al., 2018). The strength and the phase lag of these interactions
can be quantified using various connectivity measures and then related to the performance in
the sensorimotor BCI task. Thereby, connectivity could provide additional information about
the underlying neuronal networks that is not reflected in the SNR.

When considering M/EEG-based functional connectivity within the same (e.g., alpha/mu) fre-
quency band, phase synchronization (PS) and amplitude envelope correlation (AEC) can reflect
different properties of the underlying neuronal networks. Studies combining EEG and fMRI
(functional Magnetic Resonance Imaging) have previously shown that the power of alpha and
beta oscillations at C3 and C4 is negatively correlated with the blood-oxygen-level-dependent
(BOLD) fMRI signal in sensorimotor areas during the execution of real and imaginary hand
movements (Ritter et al., 2009; Yuan et al., 2010). Therefore, AEC primarily captures the
low-frequency (below 0.1 Hz) dynamics of brain activity similar to the fMRI connectivity based
on the BOLD signal (Engel et al., 2013). In contrast, phase synchronization between high-
frequency (above 5 Hz) oscillations might reveal additional information that is only accessible
with the high temporal resolution of M/EEG (Engel et al., 2013). In particular, phase syn-
chronization was proposed to be a mechanism of efficient communication between neuronal
populations (Engel et al., 2001; Fries, 2005; Palva and Palva, 2007) and can reflect short-term
changes in the functional organization of neuronal networks due to plasticity (Engel et al.,
2013). Therefore, in the current study, we also investigated the role of phase synchronization
of the sensorimotor mu (9-15 Hz) oscillations in the successful control of a sensorimotor BCI.

Several studies have already applied various M/EEG-based phase synchronization measures in
the context of sensorimotor BCI training. First, BCI performance was positively correlated
with the imaginary part of coherency (ImCoh; Nolte et al. (2004)) of the mu rhythm between
sensorimotor areas both before and during the trial (Sugata et al., 2014; Vidaurre et al., 2020).
In addition, the phase locking value (PLV; Lachaux et al. (1999)) of alpha-band oscillations
within the motor areas of the right hemisphere was higher for the successful participants in
comparison to the unsuccessful ones (Leeuwis et al., 2021). Finally, in a whole-head analysis
Corsi et al. (2020) observed a global decrease in ImCoh during motor imagery as compared to
resting-state. While phase synchronization seems to play a role in sensorimotor BCI training,
the results were obtained using various PS measures and partially in the context of single-session
experiments. To address these issues, we examined several PS measures and ran a longitudinal
analysis of changes in phase synchronization and its relationship with the BCI performance.

Studies investigating longitudinal changes in phase synchronization are scarce in the sensori-
motor BCI literature. On the one hand, Corsi et al. (2020) observed a progressive decrease of
ImCoh during motor imagery in alpha and beta bands along sessions. On the other hand, the
positive correlation between ImCoh and BCI performance in one session (Sugata et al., 2014;
Vidaurre et al., 2020) may suggest the entrainment of task-relevant networks throughout the
training. However, in both cases, ImCoh reflects a mixture of the strength and the phase lag of
the interaction between brain areas, which can only be disentangled with other PS measures,
such as coherence. Therefore, further validation of these results in the longitudinal setting with
multiple PS measures is necessary.

In practice, the estimation of phase synchronization in M/EEG critically depends on the proper
control for confounding factors (Bastos and Schoffelen, 2015). In the current study, we focused
on the effects of volume conduction and signal-to-noise ratio (SNR). To overcome these chal-
lenges, we used PS measures, which are insensitive to zero-lag interactions (e.g., ImCoh), and
applied a correction for SNR in the statistical analysis.

Furthermore, to obtain a higher spatial specificity of the estimated PS values, we performed
the source space analysis using time courses of brain activity in particular regions of interest
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(ROIs). For this purpose, two-step processing pipelines are typically used (Schoffelen and Gross,
2009). First, inverse modeling is applied to reconstruct time courses of activity for individual
sources within the cortex. Second, time courses of activity for all sources within the ROI
are aggregated to extract one or several time courses of activity in the ROI. While multiple
approaches exist for inverse modeling and extraction of ROI time series, there is no consensus
on the most appropriate pipeline in the community. Previous studies have shown that the
choice of methods for inverse modeling and extraction of ROI time series affects the estimated
PS values in real and simulated data (Mahjoory et al., 2017; Pellegrini et al., 2023). Therefore,
multiple pipelines should be considered simultaneously to arrive at a valid conclusion about
genuine neuronal connectivity based on M/EEG data.

To address the multitude of possible pipelines while analyzing SNR and phase synchronization
as predictors of BCI performance, we ran a multiverse analysis (Steegen et al., 2016) using
several pipelines for extraction of ROI time series. While results are typically reported only
for one or a few of many possible pipelines, the idea of the multiverse analysis is to consider
a set of reasonable pipelines and report the results from all of the considered options. This
way, one can not only analyze the variability of the estimated PS values similar to Mahjoory
et al. (2017) but also assess the robustness of the observed effects (e.g., on BCI performance)
to the selection of the pipeline. More pronounced effects should be more robust to changes in
the processing pipeline, and including several pipelines in the analysis may reveal important
information about the influence of different processing steps on the observed results.

Overall, in the current study, we aimed to validate and extend the findings about the effects of
SNR and phase synchronization of the mu rhythm on BCI performance in a publicly available
longitudinal dataset (Stieger et al., 2021). We focused on four sensorimotor ROIs corresponding
to the primary motor and somatosensory cortices. These ROIs were previously shown to be the
most involved in the BCI training based on imaginary movements (Samek et al., 2016; Vidaurre
et al., 2020; Nierhaus et al., 2021). In the current analysis, we aimed to address the following
research questions:

1. Do SNR and PS predict performance not just in one but also in multiple training sessions?
2. Do SNR and PS change over time due to BCI training?
3. Are SNR, PS, and the observed effects for questions 1 and 2 robust to the selection of

processing steps in the source space analysis?

To touch upon the open questions regarding the multitude of existing approaches for source
space analysis and estimation of phase synchronization, we considered a set of existing methods
and performed a multiverse analysis to capture the between-pipeline variability in estimated
values of SNR and PS, their effects on BCI performance, and longitudinal changes over time. In
addition, to ensure the end-to-end repeatability of the results, we designed the analysis pipeline
to automatically include the results in a publishable report, which, as we hope, will be useful
as a template for future studies involving a multitude of different analysis pipelines.

2. Materials and Methods

2.1. Description of the Dataset
We used publicly available EEG recordings of 62 participants (50 female; 55 right-handed; mean
age = 39.2 years, SD = 14.1 years) from a study that investigated the effects of mindfulness-
based training on performance in a motor imagery BCI task (Stieger et al., 2021). Participants
first completed a baseline BCI training session and then were randomly assigned to an 8-week
mindfulness intervention (n = 33; 26 female; 28 right-handed; mean age = 42.2, SD = 14.7) and
a wait-list control condition of the same length (n = 29; 24 female; 27 right-handed; mean age
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= 35.8, SD = 12.9). After eight weeks, participants returned to the lab for 6-10 more sessions
of BCI training (Fig. 1A). All experiments were approved by the institutional review boards of
the University of Minnesota and Carnegie Mellon University. Informed consent was obtained
from all participants.

2.2. Experimental Procedure
During each BCI session, participants performed imaginary movements (opening and closing)
of their hands to control a cursor, which was displayed on the screen in front of them in the
BCI2000 system (Schalk et al., 2004). Each session included three tasks: (1) horizontal cursor
control task (via imaginary movements of the left or right hand), (2) vertical cursor control
task (down: voluntary rest, up: imaginary movement of both hands), (3) 2D control task (the
targets were reachable through one of the previous strategies, but the cursor moved in both
directions). Each task included 150 trials, and the number of trials was balanced across classes
for both 1D and 2D control tasks. In the current study, we only analyzed the data from the
first (horizontal cursor control) task.

The structure of all trials is shown in Fig. 1B. First, participants saw a blank screen during
the inter-trial interval of 2 s. Then, a bar appeared on one of the sides of the screen, indicating
the target action to execute. After 2 seconds of target presentation, a cursor (circle) appeared
in the middle of the screen, and its position was calculated based on the EEG data acquired in
real time. Trials ended either when the cursor reached any side of the screen (not necessarily
the target one) or after the timeout when 6 seconds passed without any target being reached.

Feedback was presented with a cursor, whose position was updated in real time based on
the EEG power in the mu (9-15 Hz) frequency range. Power was calculated based on an
autoregressive model of order 16 fitted to the most recent 160 ms of the EEG data after applying
small Laplacian transform to channels C3 and C4 (using the closest neighboring channels FC3,
CP3, C1, C5 and FC4, CP4, C2, C6, respectively). The horizontal position of the cursor was
determined by the lateralization of mu power (C4 – C3), while the vertical position reflected
the total mu power (C4 + C3). Feedback values were re-calculated every 40 ms and normalized
by subtracting the mean and dividing over the standard deviation. The mean and the standard
deviation were constantly updated based on the last 30 seconds of data. More details about
the experimental procedure can be found in (Stieger et al., 2021).

2.3. EEG Acquisition
EEG was acquired using SynAmps RT amplifiers and Neuroscan acquisition software (Com-
pumedics Neuroscan, VA). Data were recorded with a sampling frequency of 1 kHz and band-
pass filtered between 0.1 and 200 Hz with an additional notch filter at 60 Hz. EEG data were
acquired from 62 channels with the following locations according to the 10-5 system: Fp1, Fpz,
Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4,
FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6,
TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO5, PO3, POz, PO4, PO6, PO8, CB1, O1,
Oz, O2, CB2. AFz was used as the ground electrode, while the reference electrode was located
between Cz and CPz.

2.4. Preprocessing
EEG preprocessing and analyses were performed in MATLAB R2022b (The MathWorks; RRID:
SCR_001622) using custom scripts employing functions from EEGLAB 2021.0 (Delorme and
Makeig (2004); RRID: SCR_007292), BBCI (Blankertz et al., 2016), Brainstorm (Tadel et al.
(2011); RRID: SCR_001761), MVGC (Barnett and Seth (2014); RRID: SCR_015755) and
METH (Guido Nolte; RRID: SCR_016104) toolboxes. For source space visualizations, we
utilized functions from (Haufe and Ewald, 2019).
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Figure 1: Overview of the publicly available dataset from (Stieger et al., 2021): structure of the BCI training and
performance of the participants. (A) Participants were assigned to MBSR (mindfulness-based stress reduction)
and control groups and completed up to 11 sessions of cursor control training. (B) Trial structure of the
horizontal cursor control task with time windows of interest highlighted. Participants performed imaginary
movements of their left and right hands to control a cursor, whose position was calculated based on the values
of mu power at Laplace-transformed channels C3 and C4 in real time. (C) Channel-wise t-statistic of difference
in mu power between trials that involved imaginary movements of the right and left hand. While no difference
in mu power was observed during the resting-state period, effects emerged over sensorimotor areas during target
presentation, accompanied by effects over visual areas due to the movement of the cursor during the feedback
period. (D) Dynamics of group-average performance reflect improvement over the course of the training. Error
bars reflect the standard error of the mean. (E) No difference in average performance in the horizontal cursor
control task was observed between groups. (F) High variability of performance in the individual sessions was
observed and accounted for in the analyses. Subjects are ordered according to their average accuracy. Vertical
bars depict subject-specific ranges of accuracy.
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First, trials were concatenated to restore continuous segments of data accounting for breaks
during the recording. Then, EEG time series were downsampled to 250 Hz, and channels CB1
and CB2 were removed as they are not part of the 10-10 system. A semi-automatic identification
of bad trials, channels, and components was applied as follows. Trials and channels were
rejected if the z-score of power within 1-45 Hz was higher than three in at least 5% of trials for
a certain channel or in at least 5% of channels for a certain trial. This procedure was performed
recursively until nothing could be rejected. Additionally, we used the clean_rawdata EEGLAB
plugin to reject channels if one of the following conditions was met: (1) the variance of the
channel data was near zero for at least five seconds, (2) the ratio of the power of the line noise
and power of the signal below 50 Hz exceeded 4, or (3) the correlation of the channel data with
an interpolated estimate based on the data from neighboring channels was less than 0.8. After
the removal of bad trials and channels, EEG data were re-referenced to the common average
reference and filtered with a forward-backward second-order high-pass Butterworth filter with
a cutoff frequency of 1 Hz. Then, we applied independent component analysis (ICA) based
on the FastICA approach (Hyvärinen, 1999) and used ICLabel (Pion-Tonachini et al., 2019)
for distinguishing ICA components of different types: brain, muscle, eye, heart, line noise,
and channel noise. Based on the output of ICLabel, components that explained 95% of the
variance in the data were rejected if their probability of originating from the brain was less
than 20%, and other components were rejected only if their probability of belonging to one of
the non-brain classes was at least 80%.

Results of the automatic preprocessing were verified through visual inspection of power spectra
in sensor space as well as topographic maps and power spectra of kept and rejected ICA
components. Overall, 3 sessions were excluded from analysis due to poor data quality. Then,
we removed previously identified bad trials, channels, and ICA components from the raw EEG
data that were not high-pass filtered. The removed channels were interpolated, and EEG time
series were downsampled to 250 Hz. DC offset was removed by subtracting the mean of the
signal within continuous data segments. The resulting data were used for the analyses described
below.

2.5. Overview of the Analyses
In this section, we provide a brief overview of the performed analyses. The detailed description
of the processing steps is presented in the subsequent sections.

In the current study, we only analyzed the data from the first (horizontal cursor control) task,
which was based on the imaginary movements of the left or right hand. Additionally, we
combined the data from both participant groups since a previous analysis of the same dataset
has shown that the mindfulness intervention did not affect the performance in the horizontal
cursor control task (Stieger et al., 2020).

We estimated the values of SNR of the mu rhythm (in sensor and source space) and phase
synchronization between sensorimotor areas (source space only) in order to investigate their
relationship with BCI performance and changes over time. For both of the analyses, we focused
on the same [0.49, 1.99] s window of the inter-trial interval (labeled as rest in Fig. 1B). During
this interval, participants did not perform any task similar to a typical resting-state recording.
Previous studies often used resting-state data to predict BCI performance in subsequent training
sessions. Additionally, we investigated differences in mu power during the [0.49, 1.99] s window
of the target presentation interval as well as the [-1.51, -0.01] s window relative to the end of the
feedback interval (Fig. 1C). The performance in the BCI task (later referred to as accuracy)
was assessed with the percentage of correct trials among those that did not end due to timeout.
Trials were considered correct if the cursor reached the target side of the screen.
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In the sensor space analysis, we applied the small Laplacian transform by subtracting the mean
of the neighboring channels (FC3, C5, C1, CP3 or FC4, C6, C2, CP4) from data at channels
C3 and C4. The same transform was used during the experiment for calculating the feedback
values in real time. Then, we estimated the SNR of the mu rhythm (9-15 Hz) and correlated
it with the BCI performance similar to (Blankertz et al., 2010a). Additionally, we examined
longitudinal changes in SNR across sessions to find out whether the BCI training affected the
SNR of the mu rhythm.

In the source space analysis, we estimated the SNR of the mu rhythm and phase synchronization
between the sensorimotor regions of interest (ROIs) to obtain higher spatial specificity. The
time courses of activity in each ROI were computed through inverse modeling and subsequent
aggregation of reconstructed time series of source dipoles within the ROI. Various methods for
inverse modeling and extraction of ROI time series are used in the literature with few guidelines
for preferring one over the other. Therefore, we combined several widely used data-driven and
data-independent approaches in a multiverse analysis (Steegen et al., 2016) to investigate the
robustness of SNR and PS values as well as related statistical effects (e.g., on BCI performance)
to the selection of the pipeline (Fig. 2A).

2.6. Forward Model
We used the “New York Head” forward model (Huang et al., 2016), which was derived using
the finite element method based on the ICBM152 anatomical template (Fonov et al., 2009,
2011). The model contains several lead field matrices calculated for different numbers and
orientations of the source dipoles (later referred to as sources). We used the lead field matrix
for 4502 sources with fixed orientations perpendicular to the cortical surface. Since channels
PO5 and PO6 were not included in the precomputed lead field, we excluded them before source
space analysis. The common average reference transform was applied to the lead field matrix
to match the preprocessing of the EEG data.

2.7. Inverse Modeling
We used two inverse solutions with different underlying assumptions: eLORETA (Pascual-
Marqui, 2007) and linearly constrained minimal variance (LCMV) beamformer (Van Veen et al.,
1997). For both approaches, we used the implementation from the METH toolbox (Guido
Nolte; RRID: SCR_016104) with minor modifications from (Haufe and Ewald, 2019). The
regularization parameter was set to 0.05 and the identity matrix was used as the noise covariance
matrix.

eLORETA is a data-independent approach that belongs to the family of weighted minimum
norm inverse solutions and provides zero source localization error (Pascual-Marqui et al., 2011).
In the described setting, this approach is also data-independent. In contrast, LCMV is a data-
driven method and is fit to the covariance matrix of the data. We averaged covariance matrices
for both imaginary movements and calculated a separate LCMV beamformer for each subject
and session.

2.8. Extraction of ROI Time Series
After the inverse modeling, one obtains a reconstructed time series of activity for each source.
Taking into account the spatial resolution of EEG, it is reasonable to reduce the dimensionality
of the source space. The common approach is to aggregate time courses of activity of sources
within each ROI into a single or several time series. Yet, multiple aggregation methods exist
in the literature, and there is no consensus in the community on the most appropriate method.
In particular, previous studies have used averaging (Babiloni et al., 2005), averaging with sign
flip (AVG-F; Lai et al. (2018)), singular value decomposition (SVD; Rubega et al. (2019)),
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etc. In the current analysis, we considered AVG-F and SVD to compare data-independent and
data-driven approaches.

For both approaches, the time series of activity for all sources within the ROI are concatenated
to form a matrix. By fitting SVD, one decomposes the multivariate time series of activity into
components sorted by the explained variance of the reconstructed source data. Then, a few
first components are selected to represent the activity of the whole ROI. We considered either
only the first (1SVD) or the first three components (3SVD) as, e.g., in (Rubega et al., 2019;
Pellegrini et al., 2023) or (Vidaurre et al., 2020; Pellegrini et al., 2023), respectively.

Alternatively, AVG-F assigns equal weights to all sources within the ROI, and a sign flip is
applied to some sources to prevent the cancellation of the activity of dipoles with opposite
orientations. To determine the sources that should be flipped, SVD is applied to the leadfield
of sources within the ROI to find the dominant orientation of source dipoles. If the angle
between the orientation of the dipole and the dominant orientation is larger than 90 degrees,
the time series corresponding to this dipole is flipped (that is, multiplied by a negative one).
We used the implementation of sign flip from Brainstorm (Tadel et al., 2011). Fig. 2C shows
1SVD and AVG-F weights for all sources within the sensorimotor ROIs based on the data of
an exemplary subject.

2.9. Anatomical and Task-Based Definitions of ROIs
All the analyses in the source space were performed for four sensorimotor ROIs — pre- and
postcentral gyri of both hemispheres — either according to their definitions in the Harvard-
Oxford atlas (Frazier et al., 2005; Desikan et al., 2006; Makris et al., 2006; Goldstein et al.,
2007; Jenkinson et al., 2012) or reduced to a group of task-relevant sources (Fig. 2B). To select
a subset of sources that contribute the most to the observed task-related changes in the brain
activity, we applied a mask in source space derived from the common spatial pattern (CSP)
transformation (Koles et al., 1990; Ramoser et al., 2000). CSP was applied to the sensor space
data filtered in the 9-15 Hz range for extracting spatial filters that explain the most difference
in EEG power between the two imaginary movements. For this purpose, we used the EEG
data during the [0.49, 1.99] s window of the target presentation interval (labeled as prep in Fig.
1B). Covariance matrices of the signal were calculated for each subject, session, and imaginary
movement separately. Then, for each subject and session, covariance matrices corresponding to
different imaginary movements were normalized to make the trace of their average equal to one.
The normalization allowed us to exclude the difference in signal power between subjects and
sessions while preserving the within-session difference in power between channels and imaginary
movements. Normalized covariance matrices were averaged over all subjects and sessions and
then used to obtain one set of CSP filters and patterns for all participants. CSP patterns were
then source reconstructed with eLORETA. A threshold based on 97.5th percentile of activity
strength was applied to select the most responsive sources, which formed the resulting source
mask. The mask was applied to the anatomical definitions of sensorimotor ROIs to obtain a
task-based reduced representation.

2.10. Filtering
Due to the 1/f shape of the M/EEG power spectra, lower frequencies (< 7 Hz) might have
higher power and overshadow mu oscillations in covariance calculations. By filtering the data
in a narrow frequency band, one makes sure that data-dependent methods (LCMV, SVD) are
not affected by frequencies outside of the target band. At the same time, data-independent
methods (eLORETA, AVG-F) are not affected by filtering.

To investigate how filtering in a narrow frequency band affects data-dependent methods for
inverse modeling and extraction of ROI time series, we considered two cases: broadband with
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no filtering (BB) or band-pass filtering in the 9-15 Hz band (NB). A forward-backward fourth-
order Butterworth filter was applied before restricting the data to the time windows of interest
and applying the inverse modeling. Since the recording contained breaks, 8 seconds of data
in the beginning and the end were mirrored to minimize filtering-related artifacts at the edges
of continuous data segments. Separate LCMV beamformers and sets of SVD weights were
calculated for broadband and narrowband data.

2.11. SNR
SNR was estimated as the ratio of the total power and the power of the aperiodic component
of the signal in the 9-15 Hz frequency range as follows:

SNR [dB] = 10 · log10
𝑃𝑡𝑜𝑡𝑎𝑙

𝑃𝑎𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐

(2.1)

The aperiodic component of the signal was estimated using FOOOF (Fig. 2D; Donoghue et al.
(2020)) with the following set of parameters: 1-45 Hz fit range, 2-12 Hz as limits of peak width,
and 3 as the maximal number of peaks. Since it is not possible to fit an aperiodic component
for the data that was already band-pass filtered in a narrow frequency range, values of SNR for
pipelines that involved filtering were copied from the corresponding broadband pipeline, which
had all the other steps unchanged. Values of SNR were estimated in the same manner for the
sensor space data after the Laplacian transform and in the source space, later referred to as
Laplace SNR and ROI SNR, respectively.

2.12. Phase Synchronization
To estimate phase synchronization between time series of activity in ROIs, we employed three
measures: imaginary part of coherency (ImCoh; Nolte et al. (2004)), lagged coherence (LagCoh;
Pascual-Marqui et al. (2011)), and coherence (the absolute value of coherency). ImCoh and
LagCoh are insensitive to all zero-lag interactions, including the spurious ones caused by the
volume conduction. However, it may be hard to interpret correlations between performance
and phase synchronization as measured by ImCoh and LagCoh. Both measures depend on
the strength and the phase lag of the interaction between neuronal populations. If ImCoh or
LagCoh is correlated with performance, it is not entirely clear whether the strength or the phase
lag of interaction drives the correlation. At the same time, coherence is supposed to solely reflect
the strength of an interaction, but is prone to the effects of volume conduction and might be
spurious. To combine interpretability and robustness to spurious zero-lag interactions, we have
considered all of these PS measures and looked at whether the observed effects are consistent
between them.

We computed the phase synchronization via the Fourier transform for broadband pipelines
using the Hamming window and 1.5 s segments from different trials (frequency resolution =
0.67 Hz) and averaged the absolute values of PS measures across frequencies of interest (9-
15 Hz). If the data were filtered in the 9-15 Hz range, we calculated the phase synchronization
via the analytic signal obtained using the Hilbert transform. These approaches were shown
to have a negligible difference within the frequency band of interest for Gaussian distributed
data (Nolte et al., 2020). In the case of several SVD components per ROI, PS values were first
computed for each pair of the SVD components, then the absolute values of PS were averaged.
Furthermore, absolute PS values were averaged over within-hemisphere and across-hemisphere
edges as shown in Fig. 2E, which resulted in two values (i.e., within and across-hemisphere
connectivity) per session for each subject similar to (Vidaurre et al., 2020).

Since changes in SNR of oscillations in the frequency band of interest lead to spurious changes
in PS due to either more or less accurate phase estimation (Muthukumaraswamy and Singh,
2011), we applied a correction for SNR in the statistical analyses.
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2.13. Multiverse Analysis
Overall, in the current multiverse analysis, we considered 24 pipelines based on all possible
combinations of methods for the aforementioned processing steps (Fig. 2A). By selecting these
pipelines, we aimed to assess the effects of data-independent (eLORETA, AVG-F, BB, anatom-
ical ROIs) and task- or subject-dependent (LCMV, SVD, NB, task-based ROIs) methods on
the estimated values of SNR and connectivity, their relationship with BCI performance, and
changes over time. For each pipeline, we estimated the values of SNR as well as within- and
across-hemisphere PS. Then, we tested their relationship with performance and changes over
time, as described below.

2.14. Statistical Analysis
Statistical analysis was performed in R 4.2.2 (R Core Team, 2022). We used one-sample t-tests
to analyze differences in mu power between trials corresponding to the imaginary movements.
Also, we used Welch’s two-sample t-test to check for group differences in performance and SNR.
To assess the between-subject effects of SNR or phase synchronization on BCI performance, we
correlated accuracy and a predictor variable (SNR or PS) after averaging them over all sessions
for each subject. Within-subject effects of SNR and PS on accuracy as well as changes in SNR
and PS over time were assessed with linear mixed-effect (LME) models using lme4 (Bates et al.,
2015) and lmerTest (Kuznetsova et al., 2017) packages. The values of continuous variables were
normalized before fitting the LMEs by subtracting the mean and dividing over the standard
deviation. The denominator degrees of freedom in the LMEs were adjusted according to Sat-
terthwaite’s method (Satterthwaite, 1946). P-values less than 0.05 were considered significant.
The LME models that correspond to the research questions (relationship between SNR or PS
and BCI performance, changes in SNR and PS over time, and effects of different processing
methods on SNR and PS) are presented in Table 1. Additionally, we used linear mixed models
to investigate the relationship between SNR and PS values.

Effect Model

Relationship between SNR and Phase Synchronization (PS) Values
SNR → PS PS ∼ 1 + SNR + (1 | Subject) (*)

Relationship between SNR or PS and BCI Performance (Accuracy)
SNR → Acc. Accuracy ∼ 1 + SNR + (SNR | Subject) (*)
PS → Acc. Accuracy ∼ 1 + PS + (1 | Subject) (*)
PS → Acc. | SNR Accuracy ∼ 1 + SNR + PS + (1 | Subject) (*)

Longitudinal Changes in Accuracy, SNR, and Phase Synchronization
Session → Acc. Accuracy ∼ 1 + Session + (Session | Subject)
Session → SNR SNR ∼ 1 + Session + (Session | Subject) (*)
Session → PS PS ∼ 1 + Session + (1 | Subject) (*)
Session → PS | SNR PS ∼ 1 + SNR + Session + (1 | Subject) (*)

Effects of the Processing Methods on the Estimated SNR and Phase Synchronization
Methods → SNR SNR ∼ Inv. + ROI + Mask + (1 | Subject) + (1 | Pipeline)
Methods → PS PS ∼ Inv. + ROI + Band + Mask + (1 | Subject) + (1 | Pipeline)
Methods → PS | SNR PS ∼ SNR + Inv. + ROI + Band + Mask + (1 | Subject) + (1 | Pipeline)
(*) random effect of the processing pipeline (1 | Pipeline) was added in the joint multiverse analysis.

Table 1: Linear mixed-effects models that were used for the assessment of the effects of interest. Notation
X → Y | Z corresponds to the effects of X on Y, controlled for Z. Acc., ROI, and Inv. stand for Accuracy,
Extraction of ROI Time Series and Inverse Modeling, respectively. Random slopes were added to the models
as long as they converged for all of the considered pipelines.

For the multiverse analysis, we have considered two approaches: split and joint analysis. In the
split analysis, we fitted a separate mixed model for each of the pipelines and then aggregated
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Figure 2: Overview of the multiverse analysis of SNR and phase synchronization in the source space. (A)
24 combinations of the data-independent and task- or subject-specific methods were used in the current analysis.
(B) Anatomical (No Mask) and task-based (Mask, derived using CSP) definitions of sensorimotor ROIs. (C)
AVG-F and 1SVD weights for all sources within sensorimotor ROIs for an exemplary subject. (D) SNR was
estimated as the ratio of the total (periodic + aperiodic) power and the power of the aperiodic component in
the 9-15 Hz frequency range. The gray line depicts the 1/f fit obtained with FOOOF. (E) Phase synchronization
values were averaged over the within-hemisphere and across-hemisphere interactions between sensorimotor ROIs.
(F) Statistical results were aggregated in a table to assess the robustness of effects to the selection of the pipeline.
Estimated correlations (between-subject effect) or beta weights (within-subject effect) were coded with color,
and the significance of the effects was indicated by filled black dots.
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the results in the form of a table as shown in Fig. 2F. With this representation, one can visually
inspect whether the effect is robust or specific to one of the processing steps.

In the joint analysis, we first combined the data from all pipelines and then ran the statistical
analysis while including the pipeline as a random factor in the linear mixed model (see the
asterisks in the rows of Table 1). This way, we obtained one result for each research question
based on the combined evidence from all the considered pipelines. Additionally, we calculated
the consistency between pipelines as the number of pipelines that led to the same result as the
joint analysis. Finally, we analyzed the effects of different processing methods on the estimated
values of SNR and phase synchronization.

For all of the research questions, we applied the Bonferroni correction for multiple comparisons
(𝑚 = 6) since we considered two options (within- and across-hemisphere) for three PS measures
(ImCoh, LagCoh, and coherence). We did not apply correction for multiple comparisons due
to having 24 pipelines, since we assumed that each pipeline is equally likely to be selected
for the estimation of PS. Instead, the split analysis was performed to investigate which of the
individual pipelines led to a significant result.

3. Results

3.1. Performance improved over time and did not differ between groups
The average accuracy of BCI control increased from 64.3 % in the baseline session to 76.5 %
in the last session (Fig. 1D). Changes over time were statistically significant (𝛽 = 0.12,
𝑡(57.9) = 2.8, 𝑝 = 0.006, 95% CI: [0.03, 0.20]). As shown in the previous analyses of the same
dataset (Stieger et al., 2020), there were no significant differences in the mean accuracy be-
tween MBSR (70.99 %) and control (71.08 %) groups: 𝑡(57.5) = −0.02, 𝑝 = 0.98,Cohen’s 𝑑 =
−0.006, 95% CI of the difference [−0.07, 0.07] (Fig. 1E). The mean accuracy of all participants
was 71.03%. At the same time, the intra-individual variability of performance was quite con-
siderable (Fig. 1F). We used linear mixed models to account for this variability in the current
analysis.

3.2. Sensorimotor ROIs contained the majority of task-relevant sources
For some of the source space analysis pipelines, we identified the task-relevant sources by fitting
CSP to distinguish between imaginary movements of two hands. For this purpose, we used
EEG during the target presentation interval as it showed a difference in mu power between the
imaginary movements primarily over the sensorimotor areas (Fig. 1C). Resulting CSP patterns
and the corresponding power spectra for left- and right-hand movements are shown in Fig. 3A
and Fig. 3B, respectively. These patterns were source reconstructed with eLORETA to assess
the contribution of individual sources to CSP components (Fig. 3C). Sources that exceeded the
97.5th percentile of activity strength were considered task-relevant, and table S1 shows that
the sensorimotor ROIs contained the highest number of selected sources. Task-relevant sources
formed the resulting source mask (Fig. 3D), which was applied to the anatomical definitions
of sensorimotor ROIs to obtain a task-based reduced representation (Fig. 2B).

3.3. Laplace SNR was correlated with BCI performance but did not change over time
In the sensor space analysis, we used FOOOF to estimate average values of SNR at C3 and
C4 after the Laplace transform. Examples of average power spectra for three representative
subjects with different levels of Laplace SNR are shown in Fig. 4A. Similar to performance,
Laplace SNR did not differ significantly between the participant groups as shown in Fig. 4B
(𝑡(59.7) = 1.09, 𝑝 = 0.28,Cohen’s 𝑑 = 0.28, 95% CI of the difference: [−0.63, 2.1]). Group-
average SNR for different sessions is shown in Fig. 4C.
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Figure 3: The task-relevant sources were identified through applying CSP to the EEG data during the target
presentation interval after filtering in the 9-15 Hz frequency band. (A) Spatial patterns corresponding to the CSP
filters that best discriminate imaginary movements of the right (upper row) and left (lower row) hands. Values
were scaled to the [-1, 1] range. (B) Grand average power spectra of the CSP components corresponding to the
spatial patterns from (A). The shaded area depicts the 9-15 Hz frequency band that was used to fit CSP. (C)
Source reconstruction (absolute values, scaled to [-1, 1] range) of the spatial patterns from (A) with eLORETA.
(D) Sources that exceeded the 97.5th percentile of activity strength were considered the most relevant for the
execution of the motor imagery task.
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Similar to (Blankertz et al., 2010a), we checked whether Laplace SNR was related to suc-
cessful performance in the BCI training. Subject-average values of Laplace SNR were posi-
tively correlated with accuracy (𝑟 = 0.35, 𝑡(60) = 2.9, 𝑝 = 0.005, 95% CI: [0.11, 0.55]), show-
ing a between-subject effect of SNR on performance (Fig. 4D). Additionally, the within-
subject effect of SNR on accuracy was significant, as assessed with a linear mixed model
(𝛽 = 0.29, 𝑡(57.2) = 5.22, 𝑝 < 0.001, 95% CI: [0.18, 0.40]). Figure 4E illustrates the observed
within-subject effect.
Then, we investigated whether Laplace SNR changed over time due to the training, but longitu-
dinal changes were not significant (𝛽 = −0.03, 𝑡(51.2) = −1.11, 𝑝 = 0.27, 95% CI:[−0.07, 0.02]).
Individual and group-level trends are shown in Fig. 4F.

Figure 4: Laplace and ROI SNR showed both between- and within-subject effects on BCI performance and
did not change systematically throughout the training. (A) Examples of resting-state power spectra (average
of C3- and C4-Laplace over all sessions) for representative subjects with different levels of Laplace SNR. (B)
The difference in SNR between groups was not significant. (C) Dynamics of group-average SNR across sessions.
(D) Accuracy positively correlated with SNR after averaging over all sessions. Each point corresponds to a
single participant. (E) Within-subject variability of BCI performance was related to session-to-session changes
in SNR. Each point corresponds to a single session. Within-subject (gray) and group-level (blue) linear trends
are shown. (F) No longitudinal changes were observed for SNR. Within-subject (gray) and group-level (blue)
linear trends are shown. (G-I) Multiverse analysis similar to (D-F) but for ROI SNR in the source space showed
high consistency of SNR-related effects across the data processing pipelines.
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3.4. Effects of SNR, but not phase synchronization, were stable in the multiverse analysis
For the ROI SNR and phase synchronization, we applied a multiverse analysis to investigate
the robustness of the observed effects to the selection of the pipeline. Figures 4G and 4H show
that the estimated effects of ROI SNR on accuracy were positive for all 12 broad-band pipelines
both on the between- and within-subject level, respectively. Additionally, on the within-subject
level, all effects were significant. Figure 4I shows that no significant longitudinal changes in ROI
SNR were observed for all considered pipelines. Overall, the results of the multiverse analysis
for ROI SNR corresponded to the results for Laplace SNR and showed that the selection of the
pipelines did not affect the observed effect of SNR on performance and changes in SNR.

For the phase synchronization, we first checked whether the grand-average spectra of within-
and across-hemisphere values of PS measures show a pronounced peak in the mu frequency
range. Such a peak indicates that the interaction is specific to the ongoing mu oscillations. As
shown in Fig. 5A for a selection of pipelines, the peak was pronounced in most cases. However,
within-hemisphere coherence estimated using the first SVD component showed almost identical
values in the whole frequency range. In this case, it might occur due to the volume conduction,
which equally affects all the frequencies.

In line with the previous studies (Bayraktaroglu et al., 2013; Vidaurre et al., 2020), we observed
a robust positive effect of SNR on ImCoh and LagCoh, which are not sensitive to both spurious
(caused by volume conduction) as well as genuine zero-lag interactions (Fig. 5B). In contrast,
the effects of SNR on coherence were less consistent between pipelines and differed in sign
depending on the selection of the processing methods. Overall, these results confirm that it is
necessary to correct for SNR in the analyses of effects related to phase synchronization.

Then, we investigated the relationship between phase synchronization and accuracy as well
as changes in PS over time. For both research questions, effects were not significant for the
majority of the pipelines and PS measures (Fig. 6). Nevertheless, the pipelines that led to
significant results often corresponded to a choice of a particular method at different processing
steps. For example, the effects of within-hemisphere ImCoh and LagCoh on accuracy were
more likely to be significant when inverse modeling was performed with an LCMV beamformer
(Fig. 6A, rows 2, 4, and 6 from the top). In this case, pipeline-specific results showed up as
stripes in the visualization. A different tendency was observed for the between-subject effect of
phase synchronization on accuracy (Fig. S1) as well as longitudinal changes in PS (Fig. S2):
When assessing phase synchronization using coherence, significant effects were more likely to
emerge than for other PS measures. Overall, the effects of connectivity on performance were not
significant for the majority of the pipelines, and the direction of the effects was not consistent
between different pipelines and PS measures.

Finally, we ran a joint analysis for all research questions by pooling together the data from all
of the pipelines and fitting one linear mixed model per question (Fig. 7). Once again, the afore-
mentioned effects of SNR on accuracy and phase synchronization were significant and robust
to the selection of the pipeline. Effects of ImCoh and LagCoh on accuracy were significant, but
only before correction for SNR and less consistent between considered pipelines. Based on the
evidence from all of the pipelines, across-hemisphere coherence significantly increased over the
course of the training. Statistical results are presented in Table S2.

3.5. The selection of processing methods affected the estimated values of SNR and PS
Effects of processing methods on the estimated values of SNR and PS were assessed with a linear
mixed model. Processing steps were modeled as fixed effects, and we investigated whether the
selection of the pipeline systematically affected the estimated values of SNR and PS. Table 2
contains the estimated t-values for all predictors, and significant effects are highlighted in bold.
Stars indicate that the effects remained significant after the correction for multiple comparisons.
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Figure 5: Multiverse analysis of the relationship between SNR and phase synchronization measures. (A)
Grand average spectra of within- (top row) and across-hemisphere (bottom row) values of ImCoh, LagCoh, and
coherence (columns: left to right) for the broadband pipelines with eLORETA, anatomical definitions of ROIs,
and different ROI aggregation methods. (B) SNR showed consistent positive effects on ImCoh and LagCoh but
not on coherence, both for within- and across-hemisphere phase synchronization.
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Figure 6: Within-subject effects of phase synchronization on BCI performance in the split multiverse analysis.
Bonferroni correction for multiple (𝑚 = 6) comparisons was applied. Panels (A) and (B) correspond to within-
and across-hemisphere phase synchronization, respectively.
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Figure 7: Overview of the observed within-subject effects in the joint multiverse analysis. Bonferroni correction
for multiple (𝑚 = 6) comparisons was applied to account for several phase synchronization measures. Color
codes the number of pipelines that led to the same statistical result as the joint analysis.

First, we observed that the values of SNR were higher when LCMV was used for inverse
modeling as compared to eLORETA (Fig. 8A), while other processing steps did not have a
significant effect on SNR. We investigated the increase in SNR in more detail since the quality
of the source reconstruction with LCMV depends on the SNR (Van Veen et al., 1997), and
SNR played an important role in the previous analyses. For this purpose, we compared values
of SNR within pairs of pipelines, which differed only in the method for inverse modeling. As
shown in Fig. S3, the difference in the estimated SNR between the pipelines that include LCMV
and eLORETA was positive and most pronounced for low values of SNR. For higher values for
SNR, the difference either vanished or became negative.

PS measures were affected by the selection of methods for all processing steps. When the
3SVD method was used for the extraction of ROI time series as compared to 1SVD, coherence
decreased (Fig. 8C,F), while ImCoh increased. Filtering in a narrow frequency band signifi-
cantly decreased all PS measures apart from within-hemisphere coherence, and Fig. 8B and
8E illustrate this effect for within- and across-hemisphere ImCoh, respectively. Additionally,
for within-hemisphere phase synchronization, AVG-F and anatomical definitions of ROIs led to
an increase in ImCoh and LagCoh as well as a decrease in coherence compared to 1SVD and
task-based definitions of ROIs, respectively. Finally, LCMV led to smaller values of ImCoh and
LagCoh than eLORETA (Fig. 8D).

4. Discussion

In the current study, we investigated the role of SNR and phase synchronization of the mu
rhythm in sensorimotor brain areas as predictors of BCI performance in a multi-session training
using a publicly available dataset (Stieger et al., 2021). The dataset contained EEG recordings
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Figure 8: Selection of the processing methods affected estimated values of SNR and phase synchronization as
indicated by shifts in the empirical probability density functions. Only pipelines with anatomical definitions
of ROIs (No Mask) are displayed. (A) SNR was higher when LCMV was used as compared to eLORETA.
(B) Filtering in a narrow frequency band led to smaller values of ImCoh within hemispheres. (C) Method for
extraction of ROI time series affected values of within-hemisphere coherence. (D) LCMV led to smaller values
of across-hemisphere ImCoh compared to eLORETA. (E) Same as B, but for ImCoh across hemispheres. (F)
Same as C, but for across-hemisphere coherence.
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Value Inverse Method ROI Method ROI Method Source Mask Band
LCMV | eLORETA 3SVD | 1SVD AVG-F | 1SVD With | Without NB | BB

SNR 8.01* -1.85 1.1 1.29 —

WH ImCoh -1.9 3.31* 2.48 -4.16* -2.15
WH LagCoh -3.55* -1.51 2.16 -1.53 -7.5*
WH Coherence 0.42 -5.55* -2.07 3.71* -1.18

AH ImCoh -4.91* 3.28* -0.13 -0.64 -17.33*
AH LagCoh -3.24* 1.69 -1.02 -1.33 -13.46*
AH Coherence 0.96 -1.42 -2.21 -1.83 -2.5

WH ImCoh | SNR -2.83 3.54* 2.37 -4.33* -2.16
WH LagCoh | SNR -6.95* -0.65 1.61 -2.05 -7.27*
WH Coherence | SNR 0.14 -5.47* -2.11 3.66* -1.17

AH ImCoh | SNR -6.81* 3.74* -0.4 -0.95 -17.42*
AH LagCoh | SNR -4.92* 2.06 -1.25 -1.59 -13.17*
AH Coherence | SNR 0.53 -1.31 -2.25 -1.88 -2.48

Table 2: Summary of the observed effects (t-values) of different processing methods on the estimated values of
SNR and phase synchronization. Significant effects are highlighted in bold, and stars indicate that the effects
remained significant after Bonferroni correction for multiple (𝑚 = 6) comparisons. Columns correspond to
different processing steps, and a positive t-value for 𝑌 |𝑋 denotes that SNR or PS was higher when 𝑌 was used
compared to 𝑋. X | SNR denotes that a correction for SNR was applied. WH and AH stand for within- and
across-hemisphere, respectively.

from a multi-session BCI training based on a cursor control paradigm. The performance of
the participants was assessed with the accuracy of completed trials and improved significantly
for some but not all participants throughout the training. Overall, the mean accuracy was
comparable to other BCI studies and similar to the 70% threshold, which is commonly used
to identify good performers (e.g., in Sannelli et al. (2019) and Leeuwis et al. (2021)). While
the increase in group-average performance was not prominent between sessions 2 and 10, a
considerable level of intra-individual variability of performance was observed. We used linear
mixed models to account for this variability and investigate the relationship between SNR,
PS, and BCI performance, as well as longitudinal changes in SNR and PS due to training.
We performed the analysis in sensor space using the Laplacian transform and in source space,
combining several processing pipelines in a multiverse analysis. In the following, we discuss the
results of the study and their prospective applications.

4.1. SNR in the context of sensorimotor BCI training
Previous studies have shown that the signal-to-noise ratio of the mu rhythm estimated at C3
and C4 channels after the Laplacian transform correlated with the accuracy of BCI control
(Blankertz et al., 2010a; Acqualagna et al., 2016; Sannelli et al., 2019). We also observed a
positive correlation between Laplace SNR and accuracy after averaging over all sessions, which
reflects a between-subject effect of SNR on performance. Additionally, we observed a within-
subject effect of Laplace SNR on accuracy. That is, not only do participants with a higher SNR
of the mu rhythm tend to perform better, but the same participant tends to perform better on
the days when SNR is higher as well.

In general, larger SNR is associated with stronger lateralization of the mu rhythm during imag-
inary movements, leading to a higher classification or control accuracy (Maeder et al., 2012).
Our results show that this finding, previously observed primarily for the single experimen-
tal sessions, generalizes to longitudinal settings and has two important consequences. First,
changes in overall performance should be controlled for the changes in SNR to make conclusions
about other possible neurophysiological factors. Second, experimental adjustments leading to
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an increase in SNR might also translate to a performance improvement. It is important to
note that SNR might affect BCI performance at least in two different ways. On the one hand,
participants with low SNR of the mu rhythm might not be able to perform vivid imaginary
movements and modulate their brain activity strongly enough. In this case, “quasi-movements”
(i.e., real movements minimized to such an extent that they cannot be detected by objective
measures) could be used to train participants to perform the motor imagery better (Nikulin
et al., 2008). On the other hand, high SNR of the mu rhythm might translate into a more
reliable feedback signal, which would in turn allow participants to train the imaginary move-
ments more efficiently. If this is the case, training for participants with low SNR of the mu
rhythm could be based on other features of brain activity that might provide a higher SNR.
For example, Tao et al. (2021) has shown that motor imagery led to a decrease in inter-trial
phase coherence during steady-state stimulation of the median nerve. Moreover, there is still
a considerable amount of unexplained variance in BCI performance, which could be attributed
to other psychological (such as motivation or concentration) and lifestyle (sports or musical
instrument training) factors. These factors remain a subject of extensive research in the BCI
community (Hammer et al., 2012; Jeunet et al., 2015) and could also be manipulated to improve
BCI performance.

Furthermore, we investigated whether Laplace SNR itself could change throughout sensorimotor
BCI training but observed no evidence of longitudinal changes. This result could be related
to the structure of the cursor control tasks. Typically, post-effects of BCI or neurofeedback
are observed when the whole training is based on a fixed direction of modulation of brain
activity, for example, up-regulation of alpha power (Zoefel et al., 2011). In contrast, cursor
control tasks in the analyzed dataset always contained trials with mutually opposite ways of
modulation of the mu rhythm (left- versus right-hand imaginary movements or motor imagery
versus relaxation). Therefore, on average, task-related modulation of the mu rhythm may
not have a cumulative effect across many sessions. In addition, Popov et al. (2023) have also
reported an excellent (ICC = 0.83) test-retest reliability of the periodic component of the
alpha power in the sensorimotor regions. While this finding goes in line with the absence of
longitudinal changes in SNR in the analyzed dataset, there still was a within-subject effect
of SNR on BCI performance. This result could be explained if SNR is a trait feature that is
affected by measurement-related effects (e.g., different placement of the electrodes) on different
training days. Nevertheless, measurement-related effects could, in turn, make the detection of
longitudinal changes in SNR harder.

In our study, both the positive effect of SNR on accuracy and the absence of longitudinal
changes in SNR were robust to the selection of the processing steps in the multiverse analysis,
as the results were the same for all of the considered pipelines. Taken together with all the
existing evidence for the role of SNR in BCI training, this result might suggest that the effect of
SNR on accuracy is strong enough to overcome the variability in the estimation of SNR across
different pipelines.

4.2. Phase synchronization in the context of sensorimotor BCI training
The absence of longitudinal changes in SNR is critical for discussing changes in other measures
that were shown to be correlated with SNR such as phase synchronization or long-range tem-
poral correlations (Samek et al., 2016; Vidaurre et al., 2020). Since a decrease in SNR typically
leads to the attenuation of the aforementioned measures, their changes (e.g., due to learning,
arousal, etc.) should be controlled for the concurrent changes in SNR.

In the current study, we analyzed three linear PS measures to combine the interpretability
of coherence (as it reflects the strength of interaction) and robustness to zero-lag interactions
provided by ImCoh and LagCoh. The estimation of PS was performed in the source space, and
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several processing pipelines were combined in a multiverse analysis to assess the variability of
the PS values and associated statistical effects. For most pipelines, we observed a peak in the
mu range of the PS spectra, which reflects an interaction that is specific to mu oscillations.

In line with several previous studies (Bayraktaroglu et al., 2013; Vidaurre et al., 2020), we
observed a positive correlation between the values of SNR and phase synchronization. On the
one hand, higher SNR improves phase estimation and may spuriously lead to higher values of PS
(Muthukumaraswamy and Singh, 2011). On the other hand, a higher PS between two neuronal
populations is likely to co-occur with a higher level of synchronization within the populations,
which would be manifested in higher SNR values (Schneider et al., 2021). Most likely, both
factors contribute to a positive correlation between SNR and PS values. This correlation was
very robust to the selection of the pipeline for PS measures that are not sensitive to zero-
lag spurious interactions due to volume conduction (ImCoh and LagCoh). Effects of SNR on
coherence were less consistent, which could be related to the remaining spatial leakage (i.e.,
signal mixing), especially in the case of nearby regions within the same hemisphere. Overall,
our findings confirm that it is necessary to control for changes in SNR when analyzing phase
synchronization.

We observed a significant positive within-subject effect of within- and across-hemisphere ImCoh
and LagCoh on BCI performance. It was significant in the joint analysis and for a few separate
pipelines in the split analysis. While this finding goes in line with the results of (Vidaurre
et al., 2020), we observed no evidence for a between-subject effect (Fig. S1), which could serve
as a direct replication. Also, all of the effects were not significant after correction for SNR.
While motor imagery leads to a modulation of amplitude (ERD/ERS), it might not necessarily
require phase synchronization as strongly as other tasks involving precise bilateral coordination
(Shih et al., 2021). Our results suggest that phase synchronization was not related to BCI
performance in the analyzed dataset.

Despite not showing high consistency between pipelines, there was a significant increase in
across-hemisphere coherence throughout the training. This result could speak in favor of the
optimization of the interaction between motor areas due to the training. However, since ImCoh
and LagCoh did not show the same effect, there is not enough evidence to conclude that this
increase is driven by a genuine interaction.

Overall, the findings related to phase synchronization were not as robust to the selection of
the pipeline as they were for SNR. Hence, along with the recommendation from Mahjoory
et al. (2017), it is necessary to include at least several analysis pipelines to account for the
between-pipeline variability of PS values.

4.3. Effects of the processing methods on the estimated values of SNR and PS
The multiverse analysis also allowed us to compare SNR and PS values that were obtained by
applying different combinations of methods for source space analysis to the same data. Since
there is no ground truth available for real data, this comparison does not allow us to determine
which methods work better or worse (Feuerriegel and Bode, 2022). Nevertheless, below we
describe several observations that could be validated in simulations and used in future studies.

Inverse Modeling. SNR was higher on average when LCMV was used for inverse modeling
as compared to eLORETA. Since LCMV is a data-driven approach, it might better adapt to
different subjects and sessions and thereby extract oscillatory activity with higher SNR than
eLORETA. Surprisingly, the difference in SNR between pipelines with LCMV and eLORETA
was especially prominent for low values of SNR. However, it is not clear whether the im-
provement in the SNR of the extracted signal is due to better extraction of activity from the
investigated ROIs or the remaining spatial leakage from other ROIs. At the same time, LCMV
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led to a decrease in ImCoh and LagCoh compared to eLORETA. Previous studies (Mahjoory
et al., 2017; Pellegrini et al., 2023) also observed the impact of the inverse method on the esti-
mated PS values. While the reasons behind this decrease in PS are not clear, it is important to
note that the selection of the inverse method also played a role in the split multiverse analysis.
In particular, the effects of within-hemisphere ImCoh and LagCoh on BCI performance were
significant only for pipelines that included LCMV (Fig. 6A).

Extraction of ROI Time Series. ROI time series were obtained by aggregation of time series of
individual sources within the ROI, and the selection of the aggregation method affected all PS
measures. In particular, for the within-hemisphere case, the first SVD component seemed to
capture the remaining effects of volume conduction to a great extent, as indicated by the lack
of a peak in the spectra of coherence (Fig. 5A) and the values of coherence that are very close
to 1 (Fig. 8C). In contrast, when three SVD components were used for the calculation of the
connectivity, a peak in the spectra was present, and coherence was generally lower, while ImCoh
had higher values. This result might be caused by the averaging of pairwise connectivity values
between different SVD components, which is more likely to result in a non-zero phase lag. Still,
by including more than one component per ROI in the analysis, one might ensure that a genuine
interaction between ROIs is captured. This observation goes in line with the recommendation
to consider 3-4 SVD components per ROI from (Pellegrini et al., 2023). Averaging with sign
flip, in general, led to similar PS values as 1SVD but seemed to capture the remaining effects
of volume conduction less, as reflected by lower coherence and higher ImCoh (the effects were
not significant after correcting for multiple comparisons).

Filtering. Filtering in a narrow band led to a decrease in all considered PS measures, but
the reasons behind that are not clear. While it should not be caused by different ways of
calculating PS (via the Fourier transform or via the analytic signal), simulations might be
required to understand this result in detail.

ROI Definition. We investigated whether reducing anatomical definitions of ROIs to a subset of
task-relevant sources could make the estimated SNR and PS values even more task-specific. The
definition of the ROI played a role only for the estimation of within-hemisphere PS, potentially
by reducing the size of the ROI and variability in the reconstructed time series of individual
sources. Thereby, the effects of volume conduction became pronounced even stronger (higher
coherence and lower ImCoh).

Overall, the combination of LCMV and several SVD components (the pipeline that was also
recommended in a recent study by Pellegrini et al. (2023)) seems to provide higher SNR and
capture interactions that are specific to the frequency band of interest even for nearby ROIs
within the same hemisphere. However, the effects of different processing steps might still depend
on the location (within- or across-hemisphere in our case) and the size of the interacting ROIs
(Mahjoory et al., 2017).

4.4. Limitations
The current analysis was limited to four sensorimotor ROIs and did not include the whole-brain
connectivity patterns as, for example, in (Corsi et al., 2020). This selection was based on previ-
ous studies showing that motor imagery BCI primarily leads to activation of the sensorimotor
areas that we analyzed (Nierhaus et al., 2021). These ROIs contained the highest amount of
task-relevant sources in the analyzed dataset as well (Table S1), thereby additionally validating
the selection. As described before, there are several open questions regarding the estimation of
connectivity, correlation with behavior, correction for SNR, and interpretation of the results.
Analyzing only selected ROIs made it feasible to address these challenges by considering several
options for each question.
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There also exist other methods that were not included in the multiverse analysis to ensure
computational feasibility, e.g., dynamic imaging of coherent sources (DICS; Gross et al. (2001))
for inverse modeling or fidelity weighting (Korhonen et al., 2014) for aggregation of ROI time
series. However, the amount of pipelines considered in the current analysis already provides
additional insights compared to a single pipeline. Still, it is important to keep in mind that even
if similar results are obtained with multiple pipelines, it does not directly imply the genuineness
of these results.

The final limitation is related to the longitudinal analysis. While the group-level improvement
in performance was significant, group-average accuracy was similar across most sessions, which
might reflect little evidence of training effects. Nevertheless, we utilized the observed within-
subject variability and employed linear mixed models to estimate the effects of interest.

4.5. Conclusions
Overall, we observed that SNR had an effect on BCI performance both on the between- and
within-subject levels: Participants with higher SNR tended to perform better, and the same
participant also tended to perform better on the days when SNR was higher. Therefore, inter-
ventions that are suitable for increasing SNR might lead to an improvement in performance.
Additionally, multiverse analyses allowed us to analyze the robustness of the investigated ef-
fects to the selection of the pipeline. The results suggest that SNR was a primary factor of
the observed performance variability (as it robustly predicted accuracy and covaried with con-
nectivity), while connectivity effects became non-significant after controlling for SNR and were
less consistent across different pipelines. We observed no evidence of longitudinal changes in
SNR and only weak evidence of an increase in the strength of the interaction between hemi-
spheres during the training. At the same time, values of SNR and phase synchronization were
significantly affected by the selection of the pipeline for source space analysis. Therefore, it is
necessary to include several pipelines in the analysis to assess how robust the observed effects
are and how high the between-pipeline variability is. This paper can serve as a template for
future multiverse analyses as it represents an end-to-end fully repeatable pipeline from raw
data to publishable report, and all the underlying data and scripts are publicly available.

Data and Code Availability

EEG recordings are publicly available at https://doi.org/10.6084/m9.figshare.13123148,
and a detailed description of the dataset is provided in (Stieger et al., 2021). Analysis scripts
are available at https://github.com/ctrltz/bci-brain-connectivity. Preprocessing data
that is necessary to reproduce the analysis (indices of bad trials, channels, and ICA components,
ICA weights, excluded sessions, etc.) are available at https://osf.io/tcvyd.
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