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Abstract: We present a multi-objective optimization framework for the design of an algal 
biorefinery with multiple target products. Four environmental endpoint indicators and the economic 
performance are used as objective functions following the life cycle assessment (LCA) methodology. 
The process alternatives are modeled as a superstructure covering a total of 720 feasible routes. 
The proposed method optimizes not only the superstructure route but simultaeously discrete and 
continuous parameters within the process units. A multi-objective genetic algorithm (MOGA) is used 
to solve this nonlinear mixed-integer optimization problem to design the extraction procedures for 
all macromolecular fractions. For the extractions, liquid–liquid equilibria (LLE) are predicted with 
quantum chemical calculations. A microalgae biorefinery for the marine diatom Phaeodactylum 
tricornutum is considered as case study, including the cultivation and extraction-supported 
fractionation of the wet algal biomass to harvest the target products eicosapentaenoic acid (EPA), 
laminarin and fucoxanthin. 2-Butanol proved to be the preferred solvent for the initial extraction 
step of wet biomass. Nutrients and solvent production cause most of the environmental impact 
of the overall process. A Python package for integrating LCA with multi-objective superstructure 
optimization is provided as open source software. It is applicable to any process system design 
task involving environmental objectives. © 2023 The Authors. Biofuels, Bioproducts and Biorefining 
published by Society of Industrial Chemistry and John Wiley & Sons Ltd.

Supporting information may be found in the online version of this article.
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Introduction

I
n recent decades, microalgae have attracted attention 
as a sustainable biomass resource. In contrast to crops, 
microalgae cultivation does not require arable land. 

Sustainability benefits include avoidance of land competition 
with food crops and lower demand for fresh water. 
Microalgae cells contain varying amounts of carbohydrates, 
lipids and proteins, including molecules of high nutritional or 
pharmaceutical value such as Ω-3-fatty acids, polysaccharides 
or pigments. Following a biorefinery approach, in this work, 
we consider the production of multiple marketable products 
from the same feedstock for full valorization of the biomass. 
However, the optimal design of a microalgal biorefinery is 
challenging. The sequential processing steps, starting with 
the cultivation, up to the separation of the target products, 
are highly interdependent and each processing step could be 
performed by several process units. Furthermore, economic 
and environmental interests commonly compete. In this study 
we therefore present a framework for global superstructure 
optimization. A biorefinery producing algae-based products 
might cause significant environmental impact during 
cultivation, harvesting and downstream processing, since 
nutrients, flocculants, solvents, heat and electrical energy 
are needed. To evaluate and compare overall environmental 
sustainability, life cycle assessment (LCA) enjoys widespread 
popularity. In order to not only analyze but also improve 
process sustainability for emerging technologies, the 
dynamically generated LCA results can be used as objective 
functions for life cycle optimization (LCO). We present here 
an optimized biorefinery, which produces and fractionates the 
wet algal biomass of Phaeodactylum tricornutum.

Sustainability analysis and LCA 
modeling

The life cycle assessment is an established method to estimate 
environmental impacts by a production system. The ISO 
standards 140 40 and 140 44 define the framework to carry 
out an LCA. The standards outline the overall approach and 
the iterative stages of the analysis: goal and scope definition; 
life cycle inventory (LCI, data collection); life cycle impact 
assessment (LCIA) and interpretation.

In this study, the system boundary for the LCA follows 
the cradle-to-gate principle: we consider the biomass 
cultivation, harvesting, extraction, separation, and 
purification (removal of solvents) of commercial high-
value products inside the system boundary. Construction, 
maintenance and dismantling of production facilities 

are excluded. Since the marine diatom Phaeodactylum 
tricornutum contains several marketable substances, we 
analyze here the potential to produce multiple products. In 
this study, product compositions are not defined a priori 
but left for the optimizer. The functional unit is therefore 
defined as monetary value (EUR 1) of marketable products 
portfolio (one or more products together creating EUR 1 
of revenue). In economic terms, this is called total revenue. 
The environmental impacts are reported in relation to the 
functional unit. Accordingly, we aim to identify environment-
friendly product portfolios with promising economic returns.

Life cycle assessment model and impact 
analysis

The quantities of nutrients, solvents or additives, energy 
demand and disposal of materials are estimated based on 
literature data or obtained by process simulations. The 
LCA background data are taken from the Ecoinvent 3.7.11 
database. Using the Ecoinvent data, all elementary flows 
related from or to the materials and energy supply for the 
whole supply chains was prepared applying the OpenLCA2 
software.

For the life cycle impact assessment (LCIA), we follow 
the European product environmental footprint (PEF) 
methodology,3 which features 16 midpoint impact categories 
and use global normalization factors.4 The PEF impact 
categories, the emission–damage pathways and resource–
depletion models are given in Supporting Information, 
Table S1. We grouped the normalized impact category results 
into four endpoint environmental optimization objectives 
(climate change, human health, ecosystem quality, resources) 
using the PEF weighting factors to weight the impact 
categories within the environmental objectives.

Superstructure architecture and 
optimization objectives

Designing a complex separation flow scheme for an algal 
biorefinery is challenging. Traditionally, in an early-stage 
process conception, candidate routes are evaluated without 
precise mass and energy balances, having only rough 
estimations, for example for the molecular distribution, 
partition and energy demand. However, a more reliable 
analysis of the pathways is possible only with quantitative 
process flow sheet simulations relying on precise mass and 
energy balances, using thermodynamically consistent phase 
equilibrium models for separations. Furthermore, in an LCA, 
information regarding the exact emissions and composition 
of the side and waste streams are of particular importance. 
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However, they are rarely available during the preliminary 
process design stage, and they are obtained reliably by 
physical tail pipe measurements of existing units.

Superstructure optimization can be applied to process 
system design to identify the most favorable processing routes 
and operational decisions by maximizing the profit or other 
objectives. Gebreslassie et al.5 and Gong and You6 included 
sustainability metrics in the superstructure optimization for an 
algae-based biorefinery producing biofuel. However, these studies 
consider one economic and only one environmental goal, namely 
global warming potential (GWP). The optimization problems in 
Gebreslassie et al.5 and Gong and You6 were restricted to a closed 
mathematical form and formulated as a conventional mixed 
integer nonlinear programming (MINLP) problem with a two-
dimensional optimization vector.

A superstructure model consists of two main components: 
processes and flows. In the language of graph theory, 
the processes are nodes, which are connected by edges 
representing the flows. For illustration, a schematic network 
graph is shown in Supporting Information, Fig. S1. The 
alternatives, for example selection of chemicals for one 
processing step, constitute a layer. Figure 1 illustrates the 
network graph naming the layers and all potential process 
units for the present biorefinery. To exemplify a layer, the 
flocculation methods using either AlCl3 (C2), Al2SO4 (C3), 
chitosan (C4), or pH change (C5) establish layer C, also 
including the option to omit the use of any flocculation 
chemicals (C1, empty). The superstructure allows the 
complete crosslinking between the processes of the previous 
layer as well as of the next layer. The flows are modeled as 
vectors of partial flows constituting of species, which can be a 

chemical substance (e.g. NaSO4), biomacromolecular fraction 
(e.g. protein), energy form (e.g. electricity) or other forms of 
resources (e.g. land use). A complete list of the species used in 
this study is given in Supporting Information, Table S2.

A unique feature of our optimization framework is that 
it attempts to find the optimal superstructure route and 
simultaneously the most favorable in-process parameters 
(e.g., water/solvent ratios for extractions or operating 
temperatures). Furthermore, the framework allows the 
system to either have one or multiple outputs, splitting the 
superstructure into optional substructures (branches) leading 
to various products.

The life cycle impact assessment (LCIA) results are linked 
with the process design by optimizing four environmental 
goals plus the profit as a five-dimensional objective function 
vector. The optimization problem is formulated as follows:

where

The objective function �⃗f  consists of the four 
environmental goals: climate, health, ecosystem and 
resources. To exemplify, six impact categories contribute to 

(1)min�⃗f
(
�⃗x
)

(2)�⃗f
�
�⃗x
�
=

⎡⎢⎢⎢⎢⎢⎢⎣

f climate
�
�⃗x
�

f health
�
�⃗x
�

f ecosystem
�
�⃗x
�
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�
�⃗x
�
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�
�⃗x
�

⎤
⎥⎥⎥⎥⎥⎥⎦

and �⃗x =

�
�⃗x choice
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�

Figure 1. Superstructure network graph for the case study: Wet extraction biorefinery for Phaeodactylum tricornutum. Cultivation 
modus: high (open pond 0.06 wt%), low (open pond 0.03 wt%) biomass concentration. i-BuOH, isobutanol; MeAc, methyl acetate; 
EtAc, ethylacetate; MTBE, methyl tert-butyl ether; CPME, cyclopentyl methyl ether; CP, cyclopentane; PBR, photobioreactor.
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the goal function ecosystem: (1) freshwater and (2) terrestrial 
acidification, (3) terrestrial, (4) freshwater, and (5) marine 
eutrophication as well as (6) the freshwater ecotoxicity. 
Supporting Information, Table S1 lists the impact categories 
contributing to each environmental goal. The optimization 
variable, vector �⃗x, consists of the superstructure process 
choices, �⃗x choice, and the operational parameters in the 
process units, �⃗x param.

As there are five objective functions, we obtain a set of 
Pareto-optimal solutions – where one Pareto-optimal solution 
is defined as a solution in which no objective can be further 
improved without impairing another one. The final selection 
of a recommended design depends on the relative weighting 
of the objective functions, which is a human value decision. 
After the optimization, this decision can be taken with full 
knowledge of the entire Pareto set following an a posteriori 
decision-making approach.7

Algorithm selection

As a conventional MINLP solver aims to find the exact 
global optimum, the respective optimization problems need 
to adhere to a strict mathematical form, e.g. (piecewise) 
continuity, differentiability, and quasi-convexity. However, the 
objective function vector �⃗f

(
�⃗x
)
 in our study contains various 

nonalgebraic operations (e.g. the solution of an embedded 
linear sum assignment problem), leading to a noncontinuous, 
nonconvex optimization problem. We therefore apply a global 
population-based metaheuristic.8 This allows the approximate 
solution to be found without requirements to the model 
other than pointwise evaluation. For such problems, multi-
objective genetic algorithms are highly effective.9 We selected 
the well-established nondominated sorting genetic algorithm 2 
(NSGA-II).10

The superstructure framework is implemented in Python 
using the open source framework for multi-objective 
optimization Pymoo. The Pymoo Python library provides 
an efficient implementation of NSGA-II. It is highly flexible, 
allowing us to implement custom sampling, crossover, and 
mutation methods to handle our mixed-integer search space.

Sampling, mutation, and crossover

As a genetic algorithm, NSGA-II is inspired by biological 
evolution to approximate the optimal results. Initially, a 
population of random solutions (individuals) is generated 
(sampling). In this context, the optimization variable �⃗x is 
considered a genotype, while the objective function �⃗f

(
�⃗x
)
 

represents the phenotype. In each iteration (generation), the 
genotype is randomly modified (mutation) and genotypes of 

different individuals are combined (crossover). In the next 
step, the phenotypes are compared and the best (in the sense 
of nondominated) individuals form the population of the next 
generation.

The start population is sampled using uniform distributions 
within the respective variable bounds xi ∼ U

(
xmin
i

, xmax
i

)
 

and a population size of 201 individuals. For mutation, 
different methods need to be used for the different variable 
types: Integer variables are increased or decreased by 1 with 
a probability of pinteger each (respecting the variable bounds). 
Boolean variables are flipped with a probability of pboolean.  
Continuous variables are mutated by adding a normally 
distributed random variable Z ∼ N

(
0, �2

)
 centered on zero 

with a standard deviation of � (again respecting the variable 
bounds).

In the case study, the algorithm converges reliably with the 
hyperparameters pinteger = pboolean = � = 0.2, which are 
chosen as default values for the framework.

Economical metrics and product value 
estimation

One important objective in this study is to achieve the 
highest possible operating margin (OM), which can be 
defined in terms of operating cost (OC) and total revenue 
(TR): OM = 1 −OC∕TR. In order to maximize operating 
margin, OC∕TR is minimized and constitutes the fifth 
optimization objective f5

(
�⃗x
)
. The expected selling prices 

of the products are estimated using wholesale offers as 
guidelines. The market value of natural substances can be 
modeled as a function of purity and for the case study, they 
were interpolated linearly from available wholesale offers 
(see Supporting Information, Table S3). In this framework, 
each product flow is modeled as being marketed for the 
target substance, which respectively yields the highest 
selling price, considering the calculated process-dependent 
purity. Other valuable substances that might be present 
in the same product flow are not included in the pricing 
estimation but are considered instead as (nontoxic) 
impurities.

The operating costs were calculated as shown in Eqn 3, 
with Ḟ representing a vector of mass and energy flows into 
(makeup) or out of (emission) the production system and 
p representing purchasing/disposal prices per species. In 
the case study, disposal costs were assumed to be negligible, 
pdisposal = 0.

(3)OC =
⟨
ppurchase, Ḟ

makeup
⟩
+
⟨
pdisposal, Ḟ

emission
⟩
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Integration of LCA results

Similar to the economic costs, environmental impacts are 
calculated as a linear function of mass and energy flows 
(Eqn 4). However, here the coefficients A are matrices with 
the species (i.e. chemicals and energy forms) as columns 
and LCIA categories (e.g. global warming potential) as rows. 
This yields a vector L̇ of LCIA results. Here, impacts from 
emissions were included in the analysis.

In our Python package, Eqns 3 and 4 are implemented 
with one additional dimension each to account for the 
contributions of the individual processing units. However, the 
sectoral contributions are relevant only for post-hoc analysis 
and do not influence optimization, so for the optimization we 
simplified the mathematical execution.

The individual LCIA results, structured as coefficient 
matrices A were extracted from the Ecoinvent database 
using the openLCA program over the IPC interface.11 As 
LCIA is a linear operation, the calculation of LCIA results 
for all relevant candidate species prior to the overall life 
cycle inventory (LCI) is possible. This improves calculation 
performance significantly without changing the results. 
It allows fast online assessment of the LCA during 
optimization. The details for the calculation procedure are 
given in the supporting information.

For each environmental goal (climate, health, ecosystem, 
and resources), the respective impact categories are then 
aggregated (L̃i) and related to the functional unit, namely the 
total revenue (Eqn 5). This constitutes all the environmental 
objective functions:

Biorefinery optimization

With high industrial relevance in the marine bioeconomy, 
we optimize a biorefinery valorizing wet algal biomass of 
the diatom P. tricornutum. However, the methodological 
framework we presented above, is not limited to this case 
study but is easily applicable to other comparable separation 
processes in the chemical or biotechnical industry.

Biorefinery for wet algal biomass

Depending on the strain, P. tricornutum cells contain 
varying amounts of carbohydrates, lipids, and proteins, 
including specific molecules with extreme high nutritional 

or pharmaceutical values such as polyunsaturated fatty acids, 
polysaccharides, or pigments. Conventionally, the algal 
biomass is dried, and the utilization is focused on a single target 
molecule, while residual algal biomass is used in low value 
applications, e.g. as animal feed or for anaerobic digestion.12

In our biorefinery approach, the biomacromolecules (e.g. 
lipids, carbohydrates and proteins) are fractionated, and 
multiple marketable products are utilized. This way, the 
algal biomass is maximally exploited, which leads to optimal 
economic and environmental efficiency. P. tricornutum 
has several marketable high-value products: the pigment 
fucoxanthin, polyunsaturated eicosapentaenoic fatty acid 
(EPA) and laminarin, a β-glucan polysaccharide with health-
supporting properties.13

For the cultivation of P. tricornutum in pasteurized sea 
water, we consider three alternative N-sources (NaNO3, 
NaNO2, and urea).14 Seawater is one important makeup 
flow into the system. After insertion into the system, it is 
considered a mixture of water and NaCl. Experimental 
results from open pond (OP) or photobioreactor (PBR) 
cultivation under Mediterranean climate conditions14 are 
used to estimate the growth rate of the algal biomass. The 
composition of fatty acids and their polarity originated from 
an earlier study.15 Four optional cultivation conditions were 
assessed, and the corresponding area requirements and 
productivities are shown in Table 1.

The biomass composition (ash, carbohydrate, protein and 
lipid amount) and the concentration of marketable products 
(laminarin, fucoxanthin and EPA) depend on the applied N 
source (layer A in Fig. 1), reactor type (OP or PBR in layer 
B) and the growth modus (A = high or B = low in Table 1). All 

(4)L̇ = Aproduction
⋅ Ḟ

makeup
+ Aemission

⋅ Ḟ
emission

(5)�⃗fi
(
�⃗x
)
=

�Li
(
�⃗x
)

TR
(
�⃗x
) Table 1. Land demand, electric energy 

demand and biomass growth productivity 
for four cultivation options. OP = open pond, 
PBR = photobioreactor. Growth modus: A 
high and B low. Subscripts DW = dry weight, 
med = culture medium.
Property OP A OP B PBR A PBR B
Obtained BM conc. 
Wt%a

0.06 0.03 0.1 0.06

Culture mass  
(kgmed m−2 land)

100d 100d 51.5d 51.5d

Electricity 32b 32b 95.5c 95.5c

kJ kg−1
med

Productivity gDW 
kg−1

med d−1a
0.14 0.14 0.035 0.035

aYang et al.15

bSarat Chandra et al.16

cPorcelli et al.17

dFor direct land use for LCA, data from Silva Benavides et al.14
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correlating equations for the biomass composition depending 
on medium and cultivation conditions are obtained from the 
literature (summarized in Supporting Information, Table S4). 
To concentrate the cultivation broth, a flocculant (layer C) 
can be selected. The dynamics of algal biomass concentration 
are specific to the flocculant,18 and the flocculation 
and centrifugation parameters are listed in Supporting 
Information, Table S5. The wet algal biomass is separated 
from the aqueous cultivation medium by centrifugation 
(layer D), and the biomass is concentrated up to a level of 
20% dry weight (DW).

Recycling of the cultivation medium is essential in a 
biorefinery, contributing significantly to the economic and 
environmental sustainability. Recycling reduces the demand 
of makeup chemicals in addition to lowering the amount of 
sewage produced.

However, the culture medium recycling ratio is not 
unlimited as the used culture medium gets contaminated 
by extracellular metabolites. We therefore included the 
recyclability factor rmax ∈ [1, 0].

In the optimization, the recycling poses a remarkable 
challenge, because some disposal flows could possibly be 
recycled and a best assignment of disposals needs to be 
found. The economic value of the recycling stream was 
taken as decisive factor for the recycling optimization. The 
mathematical approach to solve the arising linear sum of 

assignment problem (LSAP) to optimize the recycling is given 
in the supporting information.

The biorefinery flowsheet is illustrated schematically 
in Fig. 2. The proposed process system separates lipids, 
pigments, proteins, and carbohydrates from wet biomass, 
omitting the energy intensive drying. The first extraction 
(unit Extr-I in Fig. 2) is carried out for undisrupted, wet cells. 
As described in detail in our previous study,19 the water/
solvent ratio in Extr-I is adjusted initially to establish only one 
liquid phase. After a desired extraction time, subsequently 
the water/organic solvent ratio is decreased by inserting 
additional organic solvent into Extr-I to establish a separation 
into aqueous and organic liquid phases. Following the 
prediction as elaborated in an earlier work,19 the two-liquid 
phase system is expected to form an autonomous partition of 
carbohydrates and polar molecules. Based on computational 
predictions,19 it could be expected that solid residual biomass 
is left over after Extr-I.

For the solid residual biomass separated by filtration, bead 
milling was selected as most suitable cell disruption method 
assuming an electrical energy demand of 0.14 kWh kg−1.20 
After cell disruption, the residual solid biomass is conducted 
to the second extraction unit, Extr-II. Here, predominantly 
neutral lipids, i.e. triglycerides and fucoxanthin are separated 
from remaining carbohydrates using the optimizer-
selected solvent (superstructure selection in layer I). After 

Figure 2. The conceptual process design to separate marketable fractions of the marine diatom Phaeodactylum tricornutum. 
The superstructure is optimized in order to identify the economically most profitable product portfolio with simultaneous 
selection of the most environmentally benign solvents for extractions.
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the extractions, the products are recovered by vacuum 
evaporation and the organic solvents are recycled.

Following the first extraction, Extr-I (layer F), the water 
and organic solvent soluble molecules are separated and 
dried (branches G1-I1 and G2-I2, correspondingly). The 
solid residual biomass is utilized following one of the paths/
branches G3-H3-I3, G3-H3-I4 or G3-H3-I3. In a separate 
optimization run, the optimizer was allowed to omit the 
branches (valorization of solid biomass) completely, leading 
possibly to less revenue but in the same time to lower costs 
and environmental impact.

Estimation of solubility, phase separation, 
partition coefficients, and solvent recovery

In the computational screening,19 eight solvent candidates 
are identified for unit Extr-I and three for Extr-II. The solvent 
selection is challenging in the early stage process design, 
because a process flow sheet simulation requires the knowledge 
of thermodynamic properties to simulate the liquid–liquid 
equilibrium (LLE) for the solvent/water mixtures and the 
partition of the exploitable components between the phases. 
The experimental LLE information, or reliable interaction 
parameters for mutual solubility estimation were lacking for a 
few solvent/water mixtures. We predicted the binary solvent/
water phase equilibria computationally following the quantum 
chemical approach (COSMO-RS, conductor like screening 
model for real solvents) similar to an earlier publication.19 
The solubility and the partition coefficients of the biomass 
constituents (neutral and polar lipids, fucoxanthin, protein, and 
carbohydrates) in the respective solvent-mixtures were predicted 
using the COSMO-RS and reference molecules were used as 
model compounds for protein and carbohydrate fractions. The 
COSRMO-RS estimated solubilities of the biomass constituents 
are given in Supporting Information, Table S6.

Solvent evaporation was simulated using the simulation tool 
DWSIM21 to estimate the solvent specific energy demand. 
The thermodynamic compound data and the UNIQUAC/
UNIFAC-parameters (for cyclopentyl methyl ether, CPME) 
for the solvents were taken from ChemSep data base22 to 
estimate the activity coefficients for vapor–liquid equilibrium 
(VLE). For the heat sensitive fucoxanthin, we assumed 
a maximum temperature tolerance of 37 °C (requiring 
subatmospheric pressure). The solvent use contributes 
significantly to the costs and environmental impact, 
therefore we take the solvent-to-biomass ratio as subject to 
optimization. We assumed that a maximum of 75% of the 
solvent amount was recyclable.

The Ecoinvent database did not contain the life cycle 
impact information for all the candidate solvents. To 

estimate the environmental interventions, therefore, a 
few assumptions were made: for cyclopentane (CP), the 
LCI data of cyclohexane, and for CPME, the LCI data for 
methyl cyclopentane were taken as substitutes. For the 
land use impact category, industrial area was selected, and 
the Italian grid mix was assumed as electric energy supply, 
corresponding to the selected Mediterranean cultivation 
conditions.

Results and discussion

The superstructure consists of 720 unique paths, while the 
Boolean and continuous parameters in the process units 
create a multidimensional search space for each path. To 
visualize the high number of feasible solutions, Fig. 3 shows 
500 randomly sampled feasible solutions as a pairwise scatter 
plot. The majority of generated solutions are unanimously 
suboptimal, i.e. configurations are far from optimal in all 
impact goals at the same time. For example, excessive solvent 
use is not only expensive (economy category, expressed as 
high cost/revenue ratio) but it is climate-damaging at the 
same time. As Fig. 3 shows, the sampled solutions therefore 
form linear-resembling correlations. Furthermore, the 
economic objective shows a calculated cost/revenue value 
up to 300 for a nonoptimized point (a randomly sampled 
solution). Most of the points are unanimously suboptimal. 
Such a point is mathematically feasible (allowed), but 
operationally very far from economically feasible. This 
clearly demonstrates the need for the optimization presented 
below. To note, the Pareto-optimal points are located in the 
immediate vicinity of the origin in Fig. 3.

Using the NSGA-II algorithm, we mapped out the Pareto-
optimal frontier with 201 solutions, covering it as uniformly 
as possible using the crowding distance metric.10 Clusters of 
optimal points can be observed resulting from the discrete 
variables (e.g. superstructure path or a selected solvent), 
where the variation of continuous variables is responsible for 
the extent of the clusters, see Fig. 4.

Optimal superstructure path

All optimal results follow the same superstructure path 
leading to several marketable products: aqueous and 
organic phase from both extraction units, Extr-I and Extr-II 
respectively (see Fig. 5).

In layer A, an inexpensive N source, urea, was the optimal 
selection, because our model predicts this leading to high 
concentrations of EPA. This is in line with the experimental 
findings of Perez-Lopez et al. (2014).23 They reported 
that the use of urea as an N source causes clearly lower 
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environmental burdens in acidification and eutrophication 
than NaNO3. In layer B, open ponds are preferred over 
closed photobioreactors despite larger land use and lower 
biomass productivity, due to the lower electrical energy 
demand,24,25 compared to photobioreactors. Growth modus 
A – leading to a high biomass concentration (see Table 1) – is 
the preferred cultivation modus here. In layer C, omission 
of flocculant chemicals was found to be optimal. The use of 
flocculation would clearly reduce the cost for centrifugation 
(layer D). However, any of the flocculation chemicals 
increase heavily the environmental burdens as they leave 
the process mainly as disposed culture medium (emissions). 
Furthermore, the use of flocculants limits the recyclability 
of the culture medium, leading to higher overall nutrient 
costs and emissions. This conclusion agrees fully with our 
previous findings.18,26 In layers D and E, the centrifugation 

and biomass washing are mandatory processing steps without 
alternatives in our model. Centrifugation is necessary to 
remove the excess water, and washing to lower the flocculants 
or nutrient fraction in algal biomass.

For the extraction step performed on wet biomass, Extr-I 
corresponding to layer F, out of seven solvent candidates, 
2-butanol was identified as the most favorable in all optimal 
routes. First, the high water amount in the miscibility 
range of 2-butanol/water solution is favorable because 
it lowers organic solvent demand, and enables solvent/
water recycle to a high extent. Second, according to the 
COSMO-RS predictions, 2-butanol preferentially solves 
the polar lipids rather than the neutral lipids and pigments, 
which remain in the solid residue. Similarly, proteins and 
carbohydrates are soluble in the aqueous 2-butanol mixture, 
and subsequently they are recoverable in the aqueous phase 

Figure 3. Five hundred randomly sampled feasible solutions in the five-dimensional objective space presented as projections 
in two-space combinations of all objective functions. All objective functions (environmental impacts and economics 
expressed as production cost/revenue) are to be minimized, and the best solutions approach the origin.
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after the 2-butanol – water phase separation. Coincidentally, 
2-butanol was identified previously as the most promising 
solvent for microalgae wet extraction by a computational 
screening.19 For the second extraction, Extr-II, we used the 
same methodology to screen for solvents with high solubility 
of neutral lipids. All solvents with a predicted neutral lipid 
solubility equal or higher to that of hexane were considered. 

Cyclopentyl methyl ether and methyl tert-butyl ether (MTBE) 
were identified as promising solvents.

Layers G (solvent recovery) and H (cell disruption) are 
unavoidable; the solvent recovery is mandatory to separate 
the products from solvents. To recover the products from the 
solid fraction; similarly, the cell disruption is compulsory. 
For layer I, the extraction of the solid biomass (Extr-II) and 

Figure 4. The Pareto frontier in objective space, (a) projected on two-dimensional spaces spanned by each combination of 
two different objective functions; (b) enlarged illustration for the projection space: economy – resource. Three distinct groups 
related to the solvent selection for the extraction of the residue solid. Example solutions are marked with a green cross 
(CPME, x) or red plus (MTBE, +).

Figure 5. Optimizer-selected process units and solvents in the superstructure for the exemplary Pareto optimal 
solutions corresponding to x and + in Fig. 4. All Pareto-frontier points follow the same path until layer H: In layer I 
the solvent for Extr-II is MTBE (+) or CMPE (x). All branches on the recovery (layer G) are present in the exemplary 
solutions (no branch cut-off).
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subsequent removal of the solvent, we can report various 
optimal decisions depending on our valuation of the 
objectives. Two exemplary optimal solutions are highlighted 
with + and x in Fig. 4, which differ in the applied solvent for 
Extr-II. CPME (x) and MTBE (+) are the solvents in these 
exemplary solutions in Fig. 4. Cyclopentyl methyl ether leads 
to the lowest impact regarding the ecosystem and climate, 
due to low environmental burdens during the production of 
the solvent. However, CPME is significantly more expensive 
than MTBE and cyclopentane, which makes a remarkable 
difference in the economic outcome. Here, the revenue 
ratio would be lower, i.e. 0.2139 instead of 0.4452 when 
CPME is substituted by MTBE as solvent in Extr-II (layer I), 
respectively. At the same time, all the other criteria show only 
minor dependence on the solvent selection – for example, 
for the climate objective, the numeric value changes from 
0.0023 to 0.0024 when CPME is substituted by MTBE. The 
economic dependence on the solvent choice is mainly due to 
the differences in the purchasing costs.

The cluster with the lowest operating costs (using solvent 
cyclopentane in the Extr-II, see Fig. 4) is associated with less 
optimal values in all four environmental impact category 
goals.

Optimal process model parameters

Parallel to the identification of the superstructure path, 
a number of discrete and continuous parameters in the 
models describing the processing unit are optimized. In 
cultivation (layer B) the cultivation conditions leading to 
high biomass concentration are preferred as they led to a 
high overall lipid content. Cultivation achieving low biomass 
concentration leads to a larger protein fraction, which was 
less preferred in the optimization. The Ω-3 fatty acid EPA 
is a very valuable biorefinery product available in the lipid 
fraction, which explains the superstructure selection to 
prefer high biomass concentration with high overall lipid 
content. Natural pigments and lipids are the compounds with 

the most influence on the overall revenue from microalgal 
biomass.12 The proteins in P. tricornutum are safe for human 
consumption, but they do not have special pharmaceutical 
or nutritional value. The proteins with their preserved 
techno-functionality are the most challenging and costly 
products to extract, and therefore they do not play a role in 
P. tricornutum biomass valorization.12 The water-soluble 
proteins could be utilized as food (EUR 5 kg−1 ), the water-
insoluble proteins as animal feed (EUR 0.75 kg−1).27 In this 
study, however, the potential revenue from selling the protein 
fraction was considered negligible.

In layers F and I, the amount of solvent is a continuous 
variable. The resulting amounts of 2-butanol/water mixture 
range from 25.1 kg to 38.2 kg kg−1

DM in the Pareto-set 
depending on the weighting of the objective functions. It 
is important to note that 25.1 kg is the lower bound for the 
solvent amount set in optimization, so the Pareto frontier is 
touching this bound. The solvent/biomass (20% dry weight) 
mass ratio was constraint, because lower mass ratios than 
that would induce an immediate phase separation to aqueous 
and organic phases, which is undesired initially in Extr-I. 
However, the solvent amount could possibly be further 
lowered if an additional dewatering process is designed for 
the water removal. In the Extr-II unit, comparable to Extr-I, 
the optimal amounts of solvent/water mixtures was limited 
by the pre-defined lower bound. The obtained Pareto-optimal 
solvent amounts in Extr-II were 78.8 kg (MTBE), 59.8 kg 
(CPME) or 112.0 kg (cyclopentane) per kgDM.

Table 2 summarizes the marketable products in the three 
branches. The purity of the products was freely optimized, 
and expected revenue of marketable products was estimated 
based on their purity. The product quantities and qualities 
in Table 2 correspond to one of the optimal solutions (x in 
Fig. 4). The most valuable product in the present biorefinery 
is laminarin, which is available as the aqueous product of 
LL1 (shown in Fig. 2) after the aqueous phase vaporization. 
The estimated yield of laminarin in this product stream is 
predicted to be 81.9%. The optimized purity of the β-glucan 

Table 2. Available and marketable products, their purity and the predicted selling prices.
Source Available products Marketable product Estimated 

purity/%
Predicted 

revenue EUR kg−1

Aqueous phase I Laminarin
Carbohydrates

Laminarin 33.0 40.0

Organic phase I Polar EPA, pigments Polar EPA 20.8 1.99

Solid residue: Organic phase II Lipids neutral, fucoxanthin Fucoxanthin 7.3 1.68

Solid residue: Aqueous phase II Proteins, carbohydrates, 
laminarin

-a - -

aNot marketable as laminarin, EPA or fucoxanthin; other methods of valorization are possibly marketable.
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is 33.0 wt%, which corresponds to a predicted price of EUR 
39.97 kg−1.

After vaporization of the organic phase (mostly 
2-butanol), the polar-bound portion of the fatty acid EPA is 
the second marketable product from LL1. The EPA purity of 
20.8 wt% with a selling price of EUR 1.99 kg−1 is predicted. 
A minor proportion of fucoxanthin is present in this 
fraction but it is considered neither marketable nor value 
adding in this context.

After the optimization we can conclude that it is profitable 
to utilize the residual solid biomass. After the extraction 
with CPME, neutral lipids and fucoxanthin are present in 
the organic phase obtained from the unit LL2. Fucoxanthin, 
with an expected purity of 7.34% and a predicted price 
of EUR 1.68 kg−1, is the valuable, marketable product 
from this stream. The aqueous phase of LL2 contains very 
low concentrations of the defined marketable products, 
which makes the further purification and valorization less 
promising. The aqueous phase after LL2 therefore does not 
contribute to the revenue.

Figure 6 illustrates the environmental impacts of one 
Pareto-optimal solution expressed for the 16 predefined 
categories constituting the PEF methodology. The values 
are normalized by global averages and the contributions 
of the process units are differentiated by colors. The 
highest relative impact is created in the categories fossil 

resource use and carcinogenic effects on human health. 
The high overall energy demand during the production of 
the nutrients and solvents, and the electrical energy used 
during cultivation, contribute significantly to the impact. 
The freshwater eutrophication impact is mainly caused by 
the disposal of used culture medium (shown as impact by 
the centrifugation unit in Fig. 6). Significant improvements 
would be achievable by increasing the recycling ratio of 
nutrients and solvents. However, tolerable recycling ratios 
of solvents or cultivation media is crucial, depending on 
the algae species, and reliable empirical data are lacking on 
maximal feasible recycling rates in the present processes. 
Furthermore, in a real process, the release of waste nutrients 
to environment is mitigated by careful sewage treatment.

Several categories (e.g. climate change, acidification 
or noncarcinogenic effects on human health) show 
correlating differentiated contributions, which is 
explained by the remarkable contribution of energy 
demand on these impact categories. The energy demand 
influences significantly all four environmental impact 
goals as well as economic performance. Many decisions 
therefore do not evoke tradeoffs, and this leads to the 
relatively small Pareto frontier as displayed in Fig. 4. 
Furthermore, the nutrient (urea) production for the algae 
cultivation is a significant contributor in many of the 
categories as shown in Fig. 6.

Figure 6. Normalized impact contributions (LCIA) for an exemplary optimal solution (x in Fig. 4) for 16 categories following the 
PEF methodology. Colors indicate the sectoral contributions. Impact groups (Fig. 4): CC, climate change; HH, human health; 
EQ, ecosystem quality; RE, resources. Global normalization factors and the PEF weighting factors used in the grouping.
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Conclusions

A multi-objective superstructure optimization was applied 
successfully to design an environmentally friendly biorefinery 
for wet algal biomass by minimizing environmental impacts 
(LCA) and maximizing the economic operating margin. 
The multi-objective genetic algorithm NSGA-II found the 
Pareto-optimal configurations efficiently. Both superstructure 
route decisions and continuous and discrete parameters 
were optimized simultaneously, as demonstrated here for a 
biorefinery case study for marine diatom P. tricornutum. For 
wet algal biomass, the initial extraction with 2-butanol is a 
highly promising approach, because it enables to separate 
laminarin and the Ω-3 fatty acid EPA bound in polar cell 
structures. From the solid residue, fucoxanthin is recoverable 
as a marketable product. The high energy demand required 
for the multi-step separation procedures was the main 
contributor for the environmental impacts. Furthermore, 
nutrient and solvent selection, recycle ratios of cultivation 
medium and the recovery of the solvents increased 
significantly various environmental impacts.

The open source Python package developed for this work 
can easily be used for other process design tasks involving 
sustainability objectives. The framework is independently 
applicable for general superstructure optimization problems, 
optionally including the optimization of environmental 
impacts via life cycle optimization.

It is available at: https://git.mpi-magde​burg.mpg.de/pse-
group/​struc​timize.
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