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Abstract. We show that the p-adic KZ connection associated with the family of curves
yq = (t − z1) . . . (t − zqg+1) has an invariant subbundle of rank g, while the corresponding
complex KZ connection has no nontrivial proper subbundles due to the irreducibility of its
monodromy representation. The construction of the invariant subbundle is based on new
Dwork–type congruences for associated Hasse–Witt matrices.
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1. Introduction

The Knizhnik–Zamolodchikov (KZ) differential equations are objects of conformal field
theory, representation theory, enumerative geometry, see for example [KZ, Dr, EFK, MO,
V2]. The solutions of the KZ equations have the form of multidimensional hypergeometric
functions, see [SV1]. In this paper we discuss the analog of hypergeometric solutions of the
KZ equations considered over a p-adic field instead of the field of complex numbers.

More precisely, we consider the KZ equations in the special case, in which the complex
hypergeometric solutions are given by the integrals of the form

I(z1, . . . , zqg+1) =

∫

C

R(t, z1, . . . , zqg+1) dt
1/q
√
(t− z1) . . . (t− zqg+1)

(1.1)

where q, g are positive integer parameters, and R(t, z) are suitable rational functions.
In this case the space of solutions of the KZ equations is a qg-dimensional complex vector

space. We also consider the p-adic version of the same differential equations. We assume that
q is a prime number (that is a technical assumption) and show that the qg-dimensional space
of local solutions of these p-adic KZ equations has a remarkable g-dimensional subspace of

solutions which can be p-adic analytically continued as a subspace to a large domain D
(m),o
KZ

in the space where the KZ equations are defined, see Theorems 6.10 and 6.12 for precise
statements. This g-dimensional global subspace of solutions is defined as the uniform p-adic
limit of a g-dimensional space of polynomial solutions of these KZ equations modulo ps as
s → ∞. For q = 2 and g = 1 this construction was deduced in [V5] from the classical
B.Dwork’s paper [Dw], see also [VZ1]. For q = 2 and any g the corresponding construction
was developed in [VZ2].

In [SV2] general KZ equations were considered over the field Fp and their polynomial
solutions were constructed as p-approximations of hypergeometric integrals. In the current
paper that construction is modified to obtain polynomial solutions modulo ps of the KZ

equations related to the integrals in formula (1.1). The polynomial solutions are vectors of
polynomials with integer coefficients. We call them the ps-hypergeometric solutions. While
the complex analytic integrals in (1.1) give the whole qg-dimensional space of all solutions
of the complex KZ equations, the ps-hypergeometric solutions span only a g-dimensional
subspace. Then the p-adic limit of that subspace as s → ∞ gives the desired globally
defined subspace of solutions.

On other p-approximations of hypergeometric periods see [SV2, RV1, RV2, VZ1, VZ2].

In order to prove Theorems 6.10 and 6.12 we develop new matrix Dwork–type congruences
in Section 2. In Section 3 we show how our Dwork–type congruences imply the uniform
p-adic convergence of certain sequences of matrices on suitable domains of the space of
their parameters. In Section 4 we define our KZ equations and construct their complex
holomorphic solutions. In Section 5 we describe the ps-hypergeometric solutions of the same
equations. In Section 6 we formulate and prove the main Theorems 6.10 and 6.12.
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This paper may be viewed as a continuation of the paper [VZ2] where the case q = 2 is
developed.

The author thanks Louis Funar, Toshitake Kohno, Nick Salter, and Wadim Zudilin for
useful discussions. The author thanks Max Planck Institute for Mathematics in Bonn for
hospitality in May-June of 2022.

2. Dwork–type congruences

The Dwork–type congruences were originated by B.Dwork in the classical paper [Dw]. On
Dwork–type congruences see for example [Dw, Me, MV, Vl, VZ1, VZ2].

In this paper p is an odd prime. We denote by Zp[w
±1] the ring of Laurent polynomials

in variables w with coefficients in Zp. A congruence F (w) ≡ G(w) (mod ps) for two Lau-
rent polynomials from the ring is understood as the divisibility by ps of all coefficients of
F (w)−G(w).

For a Laurent polynomial G(w) we define σ(G(w)) = G(wp).

We denote x = (t, z), where t = (t1, . . . , tr) and z = (z1, . . . , zn) are two groups of variables.

2.1. Definition of ghosts. Let e = (e1, . . . , el) be a tuple of positive integers and Λ =
(Λ0(x),Λ1(x), . . . ,Λl(x)) a tuple of Laurent polynomials in Zp[x

±1].
Define V0(x) = Λ0(x). For s = 1, . . . , l, define Vs(x) by the recursive formula

Λ0(x)Λ1(x)
pe1 . . .Λs(x)

pe1+···+es
= Vs(x) + Vs−1(x)Λs(x

pe1+···+es
) +(2.1)

+ Vs−2(x)Λs−1(x
pe1+···+es−1

)Λs(x
pe1+···+es−1

)p
es
+ · · ·+

+ V0(x)Λ1(x
pe1 )Λ2(x

pe1 )p
e2 · · ·Λs(x

pe1 )p
e2+···+es

,

The Laurent polynomials V0(x), . . . , Vl(x) ∈ Zp[x
±1] are called the ghosts associated with the

tuples e and Λ.

For every 0 6 j 6 s 6 l, denote

Ws(x) := Λ0(x)Λ1(x)
pe1 · · ·Λs(x)

pe1+···+es
,

W (j)
s (x) := Λj(x)Λj+1(x)

pej+1
· · ·Λs(x)

pej+1+···+es

.

Then (2.1) can be formulates as

(2.2) Ws(x) = Vs(x) +
s∑

j=1

Vj−1(x)W
(j)
s (xpe1+···+ej

),

or as

(2.3) Ws(x) = Vs(x) +

s∑

j=1

Vj−1(x)σ
e1+···+ej(W (j)

s (x)).

Lemma 2.1. For s = 0, 1, . . . , l, we have Vs(x) ≡ 0 (mod ps).

Proof. In the proof we use the congruence F (xp)p
i−1

≡ F (x)p
i
(mod pi) valid for i > 0.

For s = 0 we have V0(x) = Λ0(x) and no requirements on divisibility. For s = 1, we have

V1(x) = Λ0(x)Λ1(x)
pe1 − V0(x)Λ1(x

pe1 ) = Λ0(x)(Λ1(x)
pe1 − Λ1(x

pe1 )),
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and

(2.4)

Λ1(x
pe1 )

(mod p)
≡ Λ1(x

pe1−1

)p
(mod p2)
≡ Λ1(x

pe1−2

)p
2 (mod p3)

≡ . . .
(mod pe1)
≡ Λ1(x)

pe1 .

This proves the lemma for s = 1.
For s > 1 the proof is by induction on s. Assume that the lemma is proved for all j < s.

Then similarly to (2.4) we obtain Λs(x
pe1+···+ej

)p
ej+1+···+es

≡Λs(x)
pe1+···+es

(mod p1+ej+1+···+es)
and hence

Vj−1(x)Λs(x
pe1+···+ej

)p
ej+1+···+es

≡ Vj−1(x)Λs(x)
pe1+···+es

(mod pj+ej+1+···+es)

≡ Vj−1(x)Λs(x)
pe1+···+es

(mod ps)

since ei > 1 for all i. Then we deduce modulo ps:

Vs(x) = Ws−1(x)Λs(x)
pe1+···+es

−

s−1∑

j=1

Vj−1(x)W
(j)
s−1(x

pe1+···+ej
)Λs(x

pe1+···+ej
)p

ej+1+···+es

− Vs−1(x)Λs(x
pe1+···+es

) ≡

≡

(
Ws−1(x)−

s−1∑

j=1

Vj−1(x)W
(j)
s−1(x

pe1+···+ej
)− Vs−1(x)

)
Λs(x)

pe1+···+es
= 0,

obtaining the required statement. �

For a Laurent polynomial F (t, z) in t, z, let N(F ) ⊂ Rr be the Newton polytope of F (t, z)
with respect to the t variables only.

Lemma 2.2. For s = 0, 1, . . . , l, we have

N(Vs) ⊂ N(Λ0) + pe1N(Λ1) + · · ·+ pe1+···+esN(Λs) .

Proof. This follows from (2.2) by induction on s. �

2.2. Convex polytopes. Let ∆ = (∆0, . . . ,∆l) be a tuple of nonempty finite subsets of Zr

of the same size #∆j = g for some positive integer g.

Definition 2.3. A tuple (N0, N1, . . . , Nl) of convex polytopes in Rr is called (∆, e)-admissible
if for any 0 6 i 6 j < l we have(

∆i +Ni + pei+1Ni+1 + · · ·+ pei+1+···+ejNj

)
∩ pei+1+···+ej+1Zr ⊂ pei+1+···+ej+1∆j+1 .(2.5)

Notice that any sub-tuple (Ni, Ni+1, . . . , Nj) of a (∆, e)-admissible tuple (N0, N1, . . . , Nl)
is (∆′, e′)-admissible where ∆′ = (∆i, . . . ,∆j) and e′ = (ei+1, . . . , ej).

Definition 2.4. A tuple (Λ0(t, z),Λ1(t, z), . . . ,Λl(t, z)) of Laurent polynomials is called (∆, e)-
admissible if the tuple

(
N(Λ0), N(Λ1), . . . , N(Λl)

)
is (∆, e)-admissible.

Example. Let r = 1, n = 13, e = (2, 2, . . . , 2), Γ = {1, 2, 3, 4} ⊂ Z, ∆ = (Γ,Γ, . . . ,Γ),

N = [0, 13(p2 − 1)/3] ⊂ R, F (t1, z) =
∏13

i=1(t1 − zi)
(p2−1)/3. Then the tuple (N,N, . . . , N)

of intervals in R and the tuple of polynomials (F (t1, z), F (t1, z), . . . , F (t1, z)) are (∆, e)-
admissible.
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2.3. Hasse–Witt matrices. For v ∈ Zr denote by Coeffv F (t, z) the coefficient of tv in the
Laurent polynomial F (t, z). This is a Laurent polynomial in z.

Given m > 1 and finite subsets ∆′,∆′′ ⊂ Zr, define the Hasse–Witt matrix of the Laurent
polynomial F (t, z) by the formula

A(m,∆′,∆′′, F (t, z)) :=
(
Coeffpmv−u F (t, z)

)
u∈∆′,v∈∆′′

.(2.6)

Lemma 2.5. Let Λ be a (∆, e)-admissible tuple of Laurent polynomials in

Zp[x
±1] = Zp[t

±1, z±1]. Then for 0 6 s 6 l we have

(i) A(e1 + · · ·+ es+1,∆0,∆s+1, Vs) ≡ 0 (mod ps);

(ii) A
(
e1 + · · ·+ es+1,∆0,∆s+1,Ws

)
=

= A
(
e1,∆0,∆1, V0) · σ

e1
(
A
(
e2 + · · ·+ es+1,∆1,∆s+1,W

(1)
s

))
+

+ A
(
e1 + e2,∆0,∆2, V1) · σ

e1+e2
(
A
(
e3 + · · ·+ es+1,∆2,∆s+1,W

(2)
s

))
+ · · ·+

+ A
(
e1 + · · ·+ es,∆0,∆s, Vs−1) · σ

e1+···+es
(
A
(
es+1,∆s,∆s+1,W

(s)
s

))
+

+ A
(
e1 + · · ·+ es+1,∆0,∆s+1, Vs).

Notice that all these matrices are g × g-matrices.

Proof. Part (i) follows from Lemma 2.1. To prove (ii) consider the identity

Λ0(t, z)Λ1(t, z)
pe1 . . .Λs(t, z)

pe1+···+es
=

s∑

j=1

Vj−1(t, z)Λj(t
pe1+···+ej

, zp
e1+···+ej

)×(2.7)

× Λj+1(t
pe1+···+ej

, zp
e1+···+ej

)p
ej+1

. . .Λs(t
pe1+···+ej

, zp
e1+···+ej

)p
ej+1+···+es

+ Vs(t, z),

which is nothing else but (2.1). Let u ∈ ∆0, v ∈ ∆s+1. In order to calculate the coefficient

of tp
e1+···+es+1v−u in the j-th summand on the right-hand side of (2.7), we look for all pairs

of vectors w ∈ N(Vj−1) and y ∈ N(Λj(t, z) . . .Λs(t, z)
pej+1+···+es+1

) such that

w + pe1+···+ejy = pe1+···+es+1v − u.

Hence u + w ∈ pe1+···+ejZr. On the other hand, it follows from Lemma 2.2 that w ∈
N(Λ0) + pe1N(Λ1) + · · ·+ pe1+···+ej−1N(Λj−1), so that

u+ w ∈ ∆0 +N(Λ0) + pN(Λ1) + · · ·+ pe1+···+ej−1N(Λj−1).

From the (∆, e)-admissibility we deduce that u + w = pe1+···+ejδ for some δ ∈ ∆j , thus
w = pe1+···+ejδ − u, y = pej+1+···+es+1v − δ and

Coeffpe1+···+es+1v−u

(
Vj−1(t, z)Λj(t

pe1+···+ej
, zp

e1+···+ej
) . . .Λs(t

pe1+···+ej
, zp

e1+···+ej
)p

ej+1+···+es)
=

=
∑

δ∈∆j

Coeffpe1+···+ej δ−u(Vj−1(t, z)) ·

· σe1+···+ej
(
Coeffpej+1+···+es+1v−δ

(
Λj(t, z)Λj+1(t, z)

pej+1
. . .Λs(t, z)

pej+1+···+es))
.

This proves (ii). �
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2.4. Congruences. The next results discuss congruences of the type
F1(z)F2(z)

−1 ≡ G1(z)G2(z)
−1 (mod ps), where F1, F2, G1, G2 are g×g matrices whose entries

are Laurent polynomials in z. We consider such congruences when the determinants detF2(z)
and detG2(z) are Laurent polynomials both nonzero modulo p. Using Cramer’s rule we write
the entries of the inverse matrix F2(z)

−1 in the form fij(z)/ detF2(z) for fij(z) ∈ Zp[z
±1]

and do a similar computation for G2(z). This presents the congruence F1(z)F2(z)
−1 ≡

G1(z)G2(z)
−1 (mod ps) in the form

1

detF2(z)
· F (z) ≡

1

detG2(z)
·G(z) (mod ps)(2.8)

for some g×g matrices F (z), G(z) with entries in Zp[z
±1], while (2.8) is nothing else but the

congruence F (z) · detG2(z) ≡ G(z) · detF2(z) (mod ps).

Theorem 2.6. Let (Λ0(t, z),Λ1(t, z), . . . ,Λl(t, z)) be a (∆, e)-admissible tuple of Laurent

polynomials in Zp[x
±1] = Zp[t

±1, z±1].

(i) For 0 6 s 6 l we have

A
(
e1 + · · ·+ es+1,∆0,∆s+1,Λ0(x)Λ1(x)

pe1 · · ·Λs(x)
pe1+···+es)

≡

≡ A
(
e1,∆0,∆1,Λ0(x)

)
· σe1

(
A
(
e2,∆1,∆2,Λ1(x)

))
· · ·σe1+···+es

(
A
(
es+1,∆s,∆s+1,Λs(x)

))

modulo p.
(ii) Assume that the determinants of the matrices A

(
ei+1,∆i,∆i+1,Λi(t, z)

)
, i = 0, 1, . . . , l,

are Laurent polynomials all nonzero modulo p. Then for 1 6 s 6 l the determinant

of the matrix A
(
e2+ · · ·+es+1,∆1,∆s+1,Λ1(x)Λ2(x)

pe2 · · ·Λs(x)
pe2+···+es

)
is a Laurent

polynomial nonzero modulo p and we have modulo ps :

A
(
e1 + · · ·+ es+1,∆0,∆s+1,Λ0(x)Λ1(x)

pe1 · · ·Λs(x)
pe1+···+es)

·(2.9)

· σe1
(
A
(
e2 + · · ·+ es+1,∆1,∆s+1,Λ1(x)Λ2(x)

pe2 · · ·Λs(x)
pe2+···+es))−1

≡

≡ A
(
e1 + · · ·+ es,∆0,∆s,Λ0(x)Λ1(x)

pe1 · · ·Λs−1(x)
pe1+···+es−1

)
·

· σe1
(
A
(
e2 + · · ·+ es,∆1,∆s,Λ1(x)Λ2(x)

pe2 · · ·Λs−1(x)
pe2+···+es−1

))−1
,

where in this congruence for s = 1 we understand the second factor on the right-hand

side as the g × g identity matrix, see formula (2.10) below.

Proof. By Lemma 2.5 we have

A
(
e1 + · · ·+ es+1,∆0,∆s+1,Λ0(x)Λ1(x)

pe1 . . .Λs(x)
pe1+···+es)

≡

≡ A
(
e1,∆0,∆1,Λ0(x)) · σ

e1
(
A
(
e2 + · · ·+ es+1,∆1,∆s+1,Λ1(x)Λ2(x)

pe2 . . .Λs(x)
pe2+···+es))

modulo p. Iteration gives part (i) of the theorem.

If the determinants of the matrices A
(
ei+1,∆i,∆i+1,Λi(t, z)

)
, i = 0, 1, . . . , l, are Laurent

polynomials all nonzero modulo p, then part (i) implies that the determinant

detA
(
e2 + · · ·+ es+1,∆1,∆s+1,Λ1(x)Λ2(x)

pe2 · · ·Λs(x)
pe2+···+es

)
≡

≡
∏s

j=1 det σ
e2+···+ej

(
A
(
ej+1,∆j ,∆j+1,Λj(t, z)

))
(mod p),

is a Laurent polynomial nonzero modulo p. This proves the first statement of part (ii) of the
theorem and allows us to consider the inverse matrices in the congruence of part (ii).
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We prove part (ii) by induction on s. For s = 1, congruence (2.9) takes the form

(2.10)

A
(
e1 + e2,∆0,∆2,Λ0(x)Λ1(x)

pe1
)
· σe1

(
A
(
e2,∆1,∆2,Λ1(x)

))−1
≡ A

(
e1,∆2,∆1,Λ0(x)

)

modulo p. This congruence follows from part (i).

For 1 < s < l we substitute the expressions for A
(
e1+· · ·+es+1,∆0,∆s+1,Λ0(x)Λ1(x)

pe1 · · ·

· · ·Λs(x)
pe1+···+es

)
and A

(
e1 + · · ·+ es,∆0,∆s,Λ0(x)Λ1(x)

pe1 · · ·Λs−1(x)
pe1+···+es−1

)
from part

(ii) of Lemma 2.5 into the two sides of the desired congruence:

A
(∑s+1

a=1 ea,∆0,∆s+1,Λ0(x)Λ1(x)
pe1 · · ·Λs(x)

pe1+···+es
)
·(2.11)

·σe1
(
A
(∑s+1

a=2 ea,∆1,∆s+1,Λ1(x)Λ2(x)
pe2 · · ·Λs(x)

pe2+···+es
))−1

= A
(
e1,∆0,∆1, V0) +

+
∑s

j=2A
(∑j

a=1 ea,∆0,∆j+1, Vj−1) · σ
∑j

a=1 ea
(
A
(∑s+1

a=j+1 ea,∆j,∆s+1,W
(j)
s

))
·

· σe1
(
A
(∑s+1

a=2 ea,∆1,∆s+1,W
(1)
s

))−1
+

+A
(∑s+1

a=1 ea,∆0,∆s+1, Vs

)
· σe1

(
A
(∑s+1

a=2 ea,∆1,∆s+1,W
(1)
s

))−1

and

A
(∑s

a=1 ea,∆0,∆s,Λ0(x)Λ1(x)
pe1 · · ·Λs−1(x)

pe1+···+es−1
)
·(2.12)

·σe1
(
A
(∑s

a=2 ea,∆1,∆s,Λ1(x)Λ2(x)
pe2 · · ·Λs−1(x)

pe2+···+es−1
))−1

= A
(
e1,∆0,∆1, V0) +

+
∑s

j=2A
(∑j

a=1 ea,∆0,∆j+1, Vj−1) · σ
∑j

a=1 ea
(
A
(∑s

a=j+1 ea,∆j ,∆s,W
(j)
s−1

))
·

· σe1
(
A
(∑s

a=2 ea,∆1,∆s,W
(1)
s−1

))−1
.

Since we want to compare these two expressions modulo ps, the last term in (2.11) containing
Vs ≡ 0 (mod ps) can be ignored.

Given j = 2, . . . , s, we use the inductive hypothesis as follows:

A
(∑s+1

a=i+1 ea,∆i,∆s+1,W
(i)
s

)
· σei+1

(
A
(∑s+1

a=i+2 ea,∆i+1,∆s+1,W
(i+1)
s

))−1
≡

≡ A
(∑s

a=i+1 ea,∆i,∆s,W
(i)
s−1

)
· σei+1

(
A
(∑s

a=i+2 ea,∆i+1,∆s,W
(i+1)
s−1

))−1
(mod ps−i)

for i = 1, . . . , j− 1. Applying σ
∑i

a=1 ea to the i-th congruence and multiplying them out lead
to telescoping products on both sides:

σe1
(
A
(∑s+1

a=2 ea,∆1,∆s+1,W
(1)
s

))
· σ

∑j
a=1 ea

(
A
(∑s+1

a=j+1 ea,∆j ,∆s+1,W
(j)
s

))−1
≡

≡ σe1
(
A
(∑s

a=2 ea,∆1,∆s,W
(1)
s−1

))
· σ

∑j
a=1 ea

(
A
(∑s

a=j+1 ea,∆j,∆s,W
(j)
s−1

))−1

modulo ps−j+1. By our assumptions these four matrices are invertible. Therefore, we can
invert them to obtain the congruence

σ
∑j

a=1 ea
(
A
(∑s+1

a=j+1 ea,∆j,∆s+1,W
(j)
s

))
· σe1

(
A
(∑s+1

a=2 ea,∆1,∆s+1,W
(1)
s

))−1
≡(2.13)

≡ σ
∑j

a=1 ea
(
A
(∑s

a=j+1 ea,∆j ,∆s,W
(j)
s−1

))
· σe1

(
A
(∑s

a=2 ea,∆1,∆s,W
(1)
s−1

))−1
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modulo ps−j+1. Since Vj−1 ≡ 0 (mod pj−1), we obtain the congruence

A
(∑j

a=1 ea,∆0,∆j+1, Vj−1) ·

· σ
∑j

a=1 ea
(
A
(∑s+1

a=j+1 ea,∆j,∆s+1,W
(j)
s

))
· σe1

(
A
(∑s+1

a=2 ea,∆1,∆s+1,W
(1)
s

))−1
≡

≡ A
(∑j

a=1 ea,∆0,∆j+1, Vj−1) ·

· σ
∑j

a=1 ea
(
A
(∑s

a=j+1 ea,∆j,∆s,W
(j)
s−1

))
· σe1

(
A
(∑s

a=2 ea,∆1,∆s,W
(1)
s−1

))−1

modulo ps. This shows that the j-th summands in (2.11) and (2.12) are congruent modulo
ps. The theorem is proved. �

Corollary 2.7. Under the assumptions of part (ii) of Theorem 2.6 for 1 6 s 6 l we have :

detA
(
e1 + · · ·+ es+1,∆0,∆s+1,Λ0(x)Λ1(x)

pe1 · · ·Λs(x)
pe1+···+es)

·

· det σe1
(
A
(
e2 + · · ·+ es,∆1,∆s,Λ1(x)Λ2(x)

pe2 · · ·Λs−1(x)
pe2+···+es−1

))
≡

≡ detA
(
e1 + · · ·+ es,∆0,∆s,Λ0(x)Λ1(x)

pe1 · · ·Λs−1(x)
pe1+···+es−1

)
·

· det σe1
(
A
(
e2 + · · ·+ es+1,∆1,∆s+1,Λ1(x)Λ2(x)

pe2 · · ·Λs(x)
pe2+···+es))

modulo ps.

2.5. Derivations. Recall that z = (z1, . . . , zn). Denote

Dv =
∂

∂zv
, v = 1, . . . , n.

Let F1(z), F2(z), G1(z), G2(z) ∈ Zp[z
±1] and ℓ > 1. If

Dv(F1(z)) · F2(z) ≡ Dv(G1(z)) ·G2(z) (mod ps) ,

then

Dv(σ
ℓ(F1(z))) · σ

ℓ(F2(z))−Dv(σ
ℓ(G1(z))) · σ

ℓ(G2(z)) =(2.14)

= Dv(F1(z
pℓ)) · F2(z

pℓ)−Dv(G1(z
pℓ)) ·G2(z

pℓ) =

= pℓzp
ℓ−1

v

(
Dv(F1(z)) · F2(z)−Dv(G1(z)) ·G2(z)

)∣∣
z→zpℓ

≡

≡ 0 (mod ps+ℓ).

Theorem 2.8. Let (Λ0(t, z),Λ1(t, z), . . . ,Λl(t, z)) be a (∆, e)-admissible tuple of Laurent

polynomials in Zp[x
±1] = Zp[t

±1, z±1]. Let D = Dv for some v = 1, . . . , n. Then under the

assumptions of part (ii) of Theorem 2.6 we have

D
(
σℓ
(
A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)))
· σℓ
(
A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

))−1
≡(2.15)

≡ D
(
σℓ
(
A
(∑s

a=1 ea,∆0,∆s,Ws−1

)))
· σℓ
(
A
(∑s

a=1 ea,∆0,∆s,Ws−1

))−1
(mod ps+ℓ)

for 1 6 s 6 l and 0 6 ℓ.

Proof. Notice that it is sufficient to establish the congruences (2.15) for ℓ = 0, as the general
ℓ case follows from (2.14). So, we assume that ℓ = 0 and proceed by induction on s > 0. For
s = 0 the statement is trivially true.
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Using part (ii) of Lemma 2.5 we can write

D
(
A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

))
· A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)−1
=(2.16)

=
∑s+1

j=1D
(
A
(∑j

a=1 ea,∆0,∆j+1, Vj−1

))
· σ

∑j
a=1 ea

(
A
(∑s+1

a=j+1 ea,∆j ,∆s+1,W
(j)
s

))
·

·A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)−1
+

+
∑s+1

j=1A
(∑j

a=1 ea,∆0,∆j+1, Vj−1) ·D
(
σ
∑j

a=1 ea
(
A
(∑s+1

a=j+1 ea,∆j,∆s+1,W
(j)
s

)))
·

·A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)−1

and

D
(
A
(∑s

a=1 ea,∆0,∆s,Ws−1

))
· A
(∑s

a=1 ea,∆0,∆s,Ws−1

)−1
=(2.17)

=
∑s

j=1D
(
A
(∑j

a=1 ea,∆0,∆j+1, Vj−1

))
· σ

∑j
a=1 ea

(
A
(∑s

a=j+1 ea,∆j,∆s,W
(j)
s−1

))
·

·A
(∑s

a=1 ea,∆0,∆s,Ws−1

)−1
+

+
∑s

j=1A
(∑j

a=1 ea,∆0,∆j+1, Vj−1) ·D
(
σ
∑j

a=1 ea
(
A
(∑s

a=j+1 ea,∆j,∆s,W
(j)
s−1

)))
·

·A
(∑s

a=1 ea,∆0,∆s,Ws−1

)−1
.

The summands corresponding to j = s+1 in (2.16) vanish modulo ps and can be ignored
since Vs ≡ 0 (mod ps).

For the same reason

D
(
A
(∑j

a=1 ea,∆0,∆j+1, Vj−1

))
≡ 0 (mod pj−1).(2.18)

We also have

σ
∑j

a=1 ea
(
A
(∑s+1

a=j+1 ea,∆j,∆s+1,W
(j)
s

))
·A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)−1
≡(2.19)

≡ σ
∑j

a=1 ea
(
A
(∑s

a=j+1 ea,∆j,∆s,W
(j)
s−1

))
· A
(∑s

a=1 ea,∆0,∆s,Ws−1

)−1
(mod ps−j+1).

This follows from (2.13), in which we take j +1 and s+1 for j and s and use Ws instead of

W
(1)
s+1.
Multiplying congruences (2.18) and (2.19) we get

D
(
A
(∑j

a=1 ea,∆0,∆j+1, Vj−1

))
· σ

∑j
a=1 ea

(
A
(∑s+1

a=j+1 ea,∆j,∆s+1,W
(j)
s

))
·(2.20)

·A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)−1
≡

≡ D
(
A
(∑j

a=1 ea,∆0,∆j+1, Vj−1

))
· σ

∑j
a=1 ea

(
A
(∑s

a=j+1 ea,∆j,∆s,W
(j)
s−1

))
·

·A
(∑s

a=1 ea,∆0,∆s,Ws−1

)−1
(mod ps).

Congruence (2.20) implies that the first sum in (2.16) is congruent to the first sum in (2.17)
modulo ps.



10 ALEXANDER VARCHENKO

To match the second sums we recall the inductive hypothesis in the form

(2.21)

D
(
σ
∑j

a=1 ea
(
A
(∑s+1

a=j+1 ea,∆j,∆s+1,W
(j)
s

)))
·

· σ
∑j

a=1 ea
(
A
(∑s+1

a=j+1 ea,∆j,∆s+1,W
(j)
s

))−1
≡

≡ D
(
σ
∑j

a=1 ea
(
A
(∑s

a=j+1 ea,∆j ,∆s,W
(j)
s−1

)))
·

· σ
∑j

a=1 ea
(
A
(∑s

a=j+1 ea,∆j ,∆s,W
(j)
s−1

))−1
(mod ps),

and notice that both sides in (2.21) are congruent to zero modulo σ
∑j

a=1 ea by formula (2.14).
Therefore, multiplying congruences (2.21) and (2.19) we obtain

D
(
σ
∑j

a=1 ea
(
A
(∑s+1

a=j+1 ea,∆j ,∆s+1,W
(j)
s

)))
· A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)−1
≡

≡ D
(
σ
∑j

a=1 ea
(
A
(∑s

a=j+1 ea,∆j,∆s,W
(j)
s−1

)))
· A
(∑s

a=1 ea,∆0,∆s,Ws−1

)−1
(mod ps).

Multiplying both sides of this congruence by A
(∑j

a=1 ea,∆0,∆j+1, Vj−1) we conclude that
the second sum in (2.16) is congruent to the second sum in (2.17) modulo ps. The theorem
is proved. �

There are similar congruences for higher order derivatives of the matrices
A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)
. We restrict ourselves with the second order derivatives.

Theorem 2.9. Let (Λ0(t, z),Λ1(t, z), . . . ,Λl(t, z)) be a (∆, e)-admissible tuple of Laurent

polynomials in Zp[x
±1] = Zp[t

±1, z±1]. Then under the assumptions of part (ii) of Theorem

2.6 we have

Du

(
Dv

(
A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)))
· A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)−1
≡(2.22)

≡ Du

(
Dv

(
A
(∑s

a=1 ea,∆0,∆s,Ws−1

)))
· A
(∑s

a=1 ea,∆0,∆s,Ws−1

)−1
(mod ps)

for all 1 6 u, v 6 n and 0 6 s 6 l.

Proof. Notice that, for an invertible matrix F (z) and a derivation D, we have D(F−1) =
−F−1D(F )F−1.

We apply the derivation Du to congruence (2.15) with D = Dv :

Du

(
Dv

(
A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)))
· A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)−1
+

+Dv

(
A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

))
· A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)−1
·

·Du

(
A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

))
· A
(∑s+1

a=1 ea,∆0,∆s+1,Ws

)−1
≡

≡ Du

(
Dv

(
A
(∑s

a=1 ea,∆0,∆s,Ws−1

)))
· A
(∑s

a=1 ea,∆0,∆s,Ws−1

)−1
+

+Dv

(
A
(∑s

a=1 ea,∆0,∆s,Ws−1

))
· A
(∑s

a=1 ea,∆0,∆s,Ws−1

)−1
·

·Du

(
A
(∑s

a=1 ea,∆0,∆s,Ws−1

))
· A
(∑s

a=1 ea,∆0,∆s,Ws−1

)−1

modulo ps. It remains to apply (2.15) with D = Du and D = Dv and ℓ = 0 to see that the
second terms on both sides agree modulo ps. After their cancellation we are left with the
required congruences in (2.22). �
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Remark. The results of Section 2 in the case e = (e1, . . . , el) = (1, . . . , 1) and ∆ =
(∆0, . . . ,∆l) such that ∆0 = · · · = ∆l were obtained in [VZ2].

3. Convergence

3.1. Unramified extensions of Qp. We fix an algebraic closure Qp of Qp. For every m,

there is a unique unramified extension of Qp in Qp of degree m, denoted by Q
(m)
p . This can

be obtained by attaching to Qp a primitive root of 1 of order pm − 1. The norm | · |p on Qp

extends to a norm | · |p on Q
(m)
p . Let

Z(m)
p = {a ∈ Q(m)

p | |a|p 6 1}

denote the ring of integers in Q
(m)
p . The ring Z

(m)
p has the unique maximal ideal

M(m)
p = {a ∈ Q(m)

p | |a|p < 1},

such that Z
(m)
p

/
M

(m)
p is isomorphic to the finite field Fpm.

For every u ∈ Fpm there is a unique ũ ∈ Z
(m)
p that is a lift of u and such that ũpm = ũ.

The element ũ is called the Teichmuller lift of u.

3.2. Domain DB. For u ∈ Fpm and r > 0 denote

Du,r = {a ∈ Z(m)
p | |a− ũ|p < r} .

We have the partition

Z(m)
p =

⋃

u∈Fpm

Du,1 .

Recall z = (z1, . . . , zn). For B(z) ∈ Z[z], define

DB = {a ∈ (Z(m)
p )n | |B(a)|p = 1}.

Let B̄(z) be the projection of B(z) to Fp[z] ⊂ Fpm [z]. Then DB is the union of unit polydiscs,

DB =
⋃

u1,...,un∈Fpm

B̄(u1,...,un)6=0

Du1,1 × · · · ×Dun,1 .

For any k we have

{a ∈ (Z(m)
p )n | |B(ap

k

)|p = 1} =
⋃

u1,...,un∈Fpm

σk(B̄(u1,...,un))6=0

Du1,1 × · · · ×Dun,1 =

=
⋃

u1,...,un∈Fpm

B̄(u1,...,un)6=0

Du1,1 × · · · ×Dun,1 = DB .

Lemma 3.1 ([VZ2, Lemma 6.1]). Let B̄1(z), . . . , B̄k(z) ∈ Fp[z] be nonzero polynomials such

that deg B̄j(z) 6 d, j = 1, . . . , k, for some d. If kd+ 1 < pm, then the set

{a ∈ (Fpm)
n | B̄j(a) 6= 0, j = 1, . . . , f}

is nonempty.



12 ALEXANDER VARCHENKO

3.3. Uniqueness theorem. Let D ⊂ (Z
(m)
p )n be the union of some of the unit polydiscs

Du1,1 × · · · ×Dun,1 , where u1, . . . , un ∈ Fpm.
Let (Fi(z))

∞
i=1 and (Gi(z))

∞
i=1 be two sequences of rational functions on (Fpm)

n. Assume
that each of the rational functions has the form P (z)/Q(z), where P (z), Q(z) ∈ Z[z], and
for any polydisc Du1,1 × · · · ×Dun,1 ⊂ D, we have |Q(ũ1, . . . , ũn)|p = 1, which implies that

|Q(a1, . . . , an)|p = 1, ∀ (a1, . . . , an) ∈ D.

Assume that the sequences (Fi(z))
∞
i=1 and (Gi(z))

∞
i=1 uniformly converge on D to analytic

functions, which we denote by F (z) and G(z), respectively.

Theorem 3.2 ([VZ2]). Under these assumptions, if F (z) = G(z) on an open nonempty

subset of D. Then F (z) = G(z) on D.

3.4. Infinite tuples. Let e = (e1, e2, . . . ) be an infinite tuple of positive integers. Let
∆ = (∆0, . . . ,∆l) be an infinite tuple of nonempty finite subsets of Zr of the same size
#∆j = g for some positive integer g. Let Λ = (Λ0(x),Λ1(x), . . . ) be an infinite tuple of
Laurent polynomials in Zp[x

±1] = Zp[t
±1, z±1].

Assume that the tuple Λ is (∆, e)-admissible.

Assume that each of the tuples e,∆,Λ have only finitely many distinct elements. This
means that there is a finite set of 4-tuples

T = {(ej , ∆̄j, D̃j,Λj) | j = 1, . . . , k}(3.1)

such that for any l > 0 the 4-tuple (el+1,∆l,∆l+1,Λl) equals one of the 4-tuples in T .

Definition 3.3. The (∆, e)-admissible tuple Λ is called nondegenerate, if for any i =
1, . . . , k, the Laurent polynomial

detA
(
ej , ∆̄j , ∆̃j,Λj

)
∈ Zp[z

±1]

is nonzero modulo p.

Recall the notation:

Ws(x) := Λ0(x)Λ1(x)
pe1 · · ·Λs(x)

pe1+···+es
,

W (j)
s (x) := Λj(x)Λj+1(x)

pej+1
· · ·Λs(x)

pej+1+···+es

.

If a (∆, e)-admissible tuple Λ is nondegenerate, then for any 0 6 j 6 s, the Laurent polyno-

mials detA
(∑s+1

a=j+1 ea,∆j,∆s+1,W
(j)
s

)
∈ Zp[z

±1] are not congruent to zero modulo p and we

may consider congruences involving the inverse matrices A
(∑s+1

a=j+1 ea,∆j,∆s+1,W
(j)
s

)−1
.

3.5. Domain of convergence. Assume that Λ is an infinite nondegenerate (∆, e)-admissible
tuple and m is a positive integer. Denote

D(m) = {a ∈ (Z(m)
p )n | | detA

(
ej , ∆̄j, ∆̃j ,Λj(t, a)

)
|p = 1, j = 1, . . . , k}.

Lemma 3.4. For any 0 6 j 6 s and a ∈ D(m) we have∣∣∣ detA
(∑s+1

a=j+1
ea,∆j ,∆s+1,W

(j)
s (t, a)

)∣∣∣
p
= 1.

�
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Corollary 3.5. All entries of A
(∑s+1

a=j+1 ea,∆j,∆s+1,W
(j)
s (t, z)

)−1
are rational functions in

z regular on D(m). For every a ∈ D(m) all entries of A
(∑s+1

a=j+1 ea,∆j ,∆s+1,W
(j)
s (t, a)

)
and

A
(∑s+1

a=j+1 ea,∆j ,∆s+1,W
(j)
s (t, a)

)−1
are elements of Z

(m)
p . �

Theorem 3.6. Let Λ be an infinite nondegenerate (∆, e)-admissible tuple. Consider the

sequence of g × g matrices

(
A
(∑s+1

a=1
ea,∆0,∆s+1,Ws(t, z)

)
· σe1

(
A
(∑s+1

a=2
ea,∆1,∆s+1,W

(1)
s (t, z)

))−1)
s>0

(3.2)

whose entries are rational functions in z regular on the domain D(m). This sequence uni-

formly converges on D(m) as s → ∞ to an analytic g× g matrix with values in Z
(m)
p . Denote

this matrix by AΛ(z). For a ∈ D(m) we have
∣∣∣ detAΛ(a)

∣∣∣
p
= 1(3.3)

and the matrix AΛ(a) is invertible.

Proof. By part (i) of Theorem 2.6 we have | det σe1
(
A
(∑s+1

a=2ea,∆1,∆s+1,W
(1)
s (t, a)

))
|p = 1

for a ∈ D(m). Hence the matrix in (3.2) is a matrix of rational functions in z regular on

D(m). Moreover, if a ∈ D(m), then every entry of this matrix is an element of Z
(m)
p . The

uniform convergence on D(m) of the sequence (3.2) is a corollary of part (ii) of Theorem 2.6.
Equation (3.3) follows from part (i) of Theorem 2.6. The theorem is proved. �

Theorem 3.7. Let Λ be an infinite nondegenerate (∆, e)-admissible tuple, and D = Dv,

v = 1, . . . , n. Given ℓ > 0 consider the sequence of g × g matrices

(
D
(
σℓ
(
A
(∑s+1

a=1
ea,∆0,∆s+1,Ws

)))
· σℓ
(
A
(∑s+1

a=1
ea,∆0,∆s+1,Ws

))−1 )
s>0

whose entries are rational functions in z regular on the domain D. This sequence uniformly

converges on D as s → ∞ to an analytic g × g matrix with values in Z
(m)
p . Denote this

matrix by AΛ,Dσℓ(z).

Proof. The theorem is a corollary of Theorem 2.8. �

Theorem 3.8. Let Λ = (Λ0(x),Λ1(x),Λ2(x), . . . ) be an infinite nondegenerate (∆, e)-admis-

sible tuple. Given ℓ > 0 and 1 6 u, v 6 n, consider the sequence of g × g matrices

(
Du

(
Dv

(
A
(∑s+1

a=1
ea,∆0,∆s+1,Ws

)))
· A
(∑s+1

a=1
ea,∆0,∆s+1,Ws

)−1 )
s>0

whose entries are rational functions in z regular on the domain D. This sequence uniformly

converges on D as s → ∞ to an analytic g × g matrix with values in Z
(m)
p . Denote this

matrix by AΛ,DuDv(z).

Proof. The theorem is a corollary of Theorem 2.9. �
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Let Λ = (Λ0(x),Λ1(x),Λ2(x), . . . ) be an infinite nondegenerate (∆, e)-admissible tuple.
Consider the g × g matrix valued functions AΛ, ∂

∂zu
σ0(z), AΛ, ∂

∂zv
σ0(z) in Theorem 3.7 and

denote them by Au(z), Av(z), respectively. Consider the g × g matrix valued function
AΛ, ∂

∂zu
∂

∂zv
(z) in Theorem 3.8 and denote it by Au,v(z). All the three functions are analytic

on D(m).

Lemma 3.9 ([VZ2, Lemma 3.7]). We have

∂

∂zu
Av = Au,v −AvAu .

�

4. KZ equations and complex solutions

4.1. KZ equations. Let g be a simple Lie algebra with an invariant scalar product. The
Casimir element is Ω =

∑
i hi ⊗ hi ∈ g ⊗ g, where (hi) ⊂ g is an orthonormal basis. Let

V = ⊗n
i=1Vi be a tensor product of g-modules, κ ∈ C× a nonzero number. The KZ equations

is the system of differential equations on a V -valued function I(z1, . . . , zn),

∂I

∂zi
=

1

κ

∑
j 6=i

Ωi,j

zi − zj
I, i = 1, . . . , n,

where Ωi,j : V → V is the Casimir operator acting in the ith and jth tensor factors, see
[KZ, EFK].

This system is a system of Fuchsian first order linear differential equations. The equations
are defined on the complement in Cn to the union of all diagonal hyperplanes.

The object of our discussion is the following particular case. Let n, q be positive integers.
We consider the following system of differential and algebraic equations for a column n-vector
I = (I1, . . . , In) depending on variables z = (z1, . . . , zn) :

∂I

∂zi
=

1

q

∑

j 6=i

Ωij

zi − zj
I, i = 1, . . . , n, I1 + · · ·+ In = 0,(4.1)

where z = (z1, . . . , zn); the n× n-matrices Ωij have the form

Ωij =




...
i ...

j

i · · · −1 · · · 1 · · ·
...

...
j · · · 1 · · · −1 · · ·

...
...




,

and all other entries are zero. This joint system of differential and algebraic equations will
be called the system of KZ equations in this paper.

For i = 1, . . . , n denote

Hi(z) =
1
q

∑
j 6=i

Ωij

zi−zj
, ∇KZ

i = ∂
∂zi

−Hi(z), i = 1, . . . , n.(4.2)
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The linear operators Hi(z) are called the Gaudin Hamiltonians. The KZ equations can be
written as the system of equations,

∇KZ
i I = 0, i = 1, . . . , n, I1 + · · ·+ In = 0.

System (4.1) is the system of the differential KZ equations with parameter κ = q associated
with the Lie algebra sl2 and the subspace of singular vectors of weight n − 2 of the tensor
power (C2)⊗n of two-dimensional irreducible sl2-modules, up to a gauge transformation, see
this example in [V2, Section 1.1], see also [V3].

4.2. Solutions over C. Define the master function

Φ(t, z) = (t− z1)
−1/q . . . (t− zn)

−1/q

and the column n-vector

I(C)(z) = (I1, . . . , In) :=

∫

C

(Φ(t, z)
t− z1

, . . . ,
Φ(t, z)

t− zn

)
dt ,(4.3)

where C ⊂ C− {z1, . . . , zn} is a contour on which the integrand takes its initial value when
t encircles C.

Theorem 4.1. The function I(C)(z) is a solution of system (4.1).

This theorem is a very particular case of the results in [SV1].

Proof. The theorem follows from Stokes’ theorem and the two identities:

−
1

q

(Φ(t, z)
t− z1

+ · · ·+
Φ(t, z)

t− zn

)
=

∂Φ

∂t
(t, z) ,(4.4)

( ∂

∂zi
−

1

q

∑

j 6=i

Ωi,j

zi − zj

)(Φ(t, z)
t− z1

, . . . ,
Φ(t, z)

t− zn

)
=

∂Ψi

∂t
(t, z),(4.5)

where Ψi(t, z) is the column n-vector (0, . . . , 0,−Φ(t,z)
t−zi

, 0, . . . , 0) with the nonzero element at
the i-th place. �

Theorem 4.2 (cf. [V1, Formula (1.3)]). All solutions of system (4.1) have this form. Namely,

the complex vector space of solutions of the form (4.3) is (n− 1)-dimensional.

4.3. Solutions as vectors of first derivatives. Consider the integral

T (z) = T (C)(z) =

∫

C

Φ(t, z) dt.

Then

I(C)(z) = q
(∂T (C)

∂z1
, . . . ,

∂T (C)

∂zn

)
.

Denote ∇T =
(

∂T
∂z1

, . . . , ∂T
∂zn

)
. Then the column gradient vector ∇T of the function T (z)

satisfies the following system of KZ equations

∇KZ
i ∇T = 0, i = 1, . . . , n,

∂T

∂z1
+ · · ·+

∂T

∂zn
= 0.

This is a system of second order linear differential equations on the function T (z).
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5. Solutions modulo powers of p

5.1. Assumptions.

Let p, q, p > q, be prime numbers. Let e be the order of p modulo q, that is, the least
positive integer such that pe ≡ 1 (mod q). Hence (pe − 1)/q is a positive integer. Let
n = gq + 1 for some positive integer g. Assume that pe > n and p > n+ q − 2.

In this paper we consider the system of KZ equations (4.1) with n = gq + 1 and κ = q
and study polynomial solutions of the KZ equations modulo powers of p.

5.2. Polynomial solutions. For an integer s > 1 define the master polynomial

Φs(t, z) =
(
(t− z1) . . . (t− zn)

)(pes−1)/q
.

For ℓ = 1, . . . , g define the column n-vector

Is,ℓ(z) = (Is,ℓ,1, . . . , Is,ℓ.n)

as the coefficient of tℓp
es−1 in the column n-vector of polynomials

(
Φs(t,z)
t−z1

, . . . , Φs(t,z)
t−zn

)
. Notice

that

degt
Φs(t, z)

t− zi
= (gq + 1)

pes − 1

q
− 1 = gpes − 1 +

pes − 1

q
− g.

If ℓ > g, then the polynomial Φs(t,z)
t−zi

does not have the monomial tℓp
es−1.

Theorem 5.1 (cf. [V5, VZ2]). The column n-vector Is,ℓ(z) of polynomials in z is a solution

of the system of KZ equations (4.1) modulo pes.

We call the column n-vectors Is,ℓ(z), ℓ = 1, . . . , g, the pes-hypergeometric solutions of the
KZ equations (4.1).

Proof. We have the following modifications of identities (4.4), (4.5) :

pes − 1

q

(Φs(t, z)

t− z1
+ · · ·+

Φs(t, z)

t− zn

)
=

∂Φs

∂t
(t, z) ,

( ∂

∂zi
+

pes − 1

q

∑

j 6=i

Ωi,j

zi − zj

)(Φs(t, z)

t− z1
, . . . ,

Φs(t, z)

t− zn

)
=

∂Ψi
s

∂t
(t, z),

where Ψi
s(t, z) is the column n-vector (0, . . . , 0,−Φs(t,z)

t−zi
, 0, . . . , 0) with the nonzero element

at the i-th place. Theorem 5.1 follows from these identities. �

Consider the n× g matrix

Is(z) = (Is,1, . . . , Is,g) =
(
Is,ℓ,i

)i=1,...,n

ℓ=1,...,g
,

where Is,ℓ,i stays at the ℓ-th column and i-th row. The matrix Is(z) satisfies theKZ equations,

∇KZ
i Is(z) = 0, i = 1, . . . , n, Is,ℓ,1 + · · ·+ Is,ℓ,n(z) = 0, ℓ = 1, . . . , g,

modulo pes.
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5.3. Coefficients of solutions. Consider the lexicographical ordering of monomials
zd11 . . . zdnn . We have z1 > · · · > zn and so on. For a nonzero Laurent polynomial f(z) =∑

d1,...,dn
ad1,...,dnz

d1
1 . . . zdnn with coefficients in Z , the nonzero summand ad1,...,dnz

d1
1 . . . zdnn

with the largest monomial zd11 . . . zdnn is called the leading term of f(z).

If f(z) and g(z) are two nonzero Laurent polynomials, then the leading term of f(z)g(z)
equals the product of the leading terms of f(z) and g(z).

Lemma 5.2. For l = 1, . . . , g, the leading term of the vector-polynomial I1,ℓ equals

Cℓ · (z1 . . . zq(g−ℓ)+1)
(pe−1)/q/zℓq(g−ℓ)+1,

Cℓ = ±

(
(pe − 1)/q − 1

ℓ− 1

)(
0, . . . , 0, 1,

pe − 1

qℓ
, . . . ,

pe − 1

qℓ

)
,(5.1)

where pe−1
qℓ

is repeated qℓ times, and

(
(pe − 1)/q − 1

ℓ− 1

)
6≡ 0 (mod p).(5.2)

Proof. Formula (5.1) is obtained by inspection. To prove (5.2) consider the p-ary presentation
(pe − 1)/q − 1 = a0 + a1p + . . . with 0 6 ai 6 p− 1. The inequality (5.2) follows from the
inequality a0 > g − 1 and Lucas theorem.

We prove that a0 > g−1 under our assumption p > n+ q−2. Indeed, pe = 1+ q(1+a0)+
qa1p + . . . . Hence 1 + q(1 + a0) > p. Let p = qk + r for some integers k, r, 1 6 r 6 q − 1.
Then 1 + q(1 + a0) > qk+ r or q(1 + a0) > qk+ r− 1 > kq or a0 > k− 1. Hence a0 > g − 1
if k > g.

The inequality p > n+q−2 can be written as kq+r > gq+1+q−2 or kq > gq+q−r−1.
Hence k > g. The lemma is proved. �

Lemma 5.3. Consider the n× g matrix I1(z) = (I1,1, . . . , I1,g) and its g× g minor M(z) in
rows with indices q(g − ℓ) + 1 where ℓ = 1, . . . , g. Then M(z) is a homogeneous polynomial

of degree

dM =
pe − 1

q
·
qg2 + 2g − qg

2
−

g(g + 1)

2
,(5.3)

and the polynomial M(z) is nonzero modulo p.

Proof. Every column of I1,ℓ is a homogeneous polynomial. Hence M(z) is a homogeneous
polynomial. By Lemma 5.2 the leading term of M(z) equals

±

g∏

ℓ=1

(
(pe − 1)/q − 1

ℓ− 1

)
(z1 . . . zq(g−ℓ)+1)

(pe−1)/q/zℓq(g−ℓ)+1 .(5.4)

This expression is nonzero modulo p by Lemma 5.2. Formula (5.4) implies (5.3). �
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6. Congruences for solutions of KZ equations

6.1. Congruences for Hasse–Witt matrices of KZ equations. Let r = 1, n = gq + 1,
e = (e, e, . . . ), where e is defined in Section 5.1. Let

Γ = {1, . . . , g} ⊂ Z, ∆ = (Γ,Γ, . . . ),(6.1)

N = [0, gpe + (pe − 1)/q − g] ⊂ R.

The infinite tuple (N,N, . . . ) of intervals is (∆, e)-admissible, see Definition 2.3.
Recall the polynomial

Φ1(t, z) =
(
(t− z1) . . . (t− zn)

)(pe−1)/q
.

The Newton polytope of Φ1(t, z) with respect to variable t is the interval
N = [0, gp+ (p− 1)/q − g]. We also have

Φs(t, z) = Φ1(t, z) · Φ1(t, z)
pe . . .Φ1(t, z)

pe(s−1)

.

The infinite tuple (Φ1(t, z),Φ1(t, z), . . . ) is (∆, e)-admissible, see Definition 2.4.

For s > 1 consider the Hasse–Witt g × g matrix

A(Φs(t, z)) := A(es,Γ,Γ,Φs(t, z)) =
(
Coeffpesv−u(Φs(t, z))

)
u,v=1,...,g

,

see (2.6). The entries of this matrix are polynomials in z.

Theorem 6.1. The determinant detA(Φ1(t, z)) is a homogeneous polynomial in z of degree

dΦ =
pe − 1

q
·
qg2 + 2g − qg

2
,(6.2)

and the determinant is nonzero modulo p.

Proof. Denote A(Φ1(t, z)) =: (Au,v(z))u,v=1,...,g .

Lemma 6.2. The leading term of Au,v(z) equals

±

(
(pe − 1)/q

v − u

)
(z1z2 . . . zqg+1−qv)

(pe−1)/q/zv−u
qg+1−qv , if v > u,

±

(
(pe − 1)/q

u− v

)
(z1z2 . . . zqg+1−qv)

(pe−1)/qzu−v
qg+2−qv , if v 6 u.

For example, for g = 2 the matrix of leading terms is
(

±(z1 . . . zg+1)
(pe−1)/q ±

(
(pe−1)/q

1

)
z
(pe−1)/q
1 /z1

±
(
(pe−1)/q

1

)
(z1 . . . zq+1)

(pe−1)/qzq+2 ±z
(pe−1)/q
1

)
.(6.3)

Proof. The proof is by inspection. �

The fact that detA(Φ1(t, z)) is a homogeneous polynomial easily follows from the definition
of A(Φ1(t, z)). It is also easy to see that the leading term of the determinant of the matrix
of leading terms of Au,v(z) equals the product of diagonal elements,

±

g∏

v=1

(z1 . . . zqg+1−qv)
(pe−1)/q.(6.4)
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This expression is not congruent to zero modulo p. Counting the degree of the monomial in
(6.4) we obtain (6.2). This proves Theorem 6.1. �

Corollary 6.3. The infinite nondegenerate (∆, e)-admissible tuple (Φ1(t, z),Φ1(t, z), . . . )
satisfies the assumptions of Theorem 2.6. Therefore,

(i) for s > 1 we have

A(Φs(t, z)) ≡ A(Φ1(t, z)) · σ
e(A(Φ1(t, z))) · · ·σ

e(s−1)(A
(
Φ1(t, z))) (mod p) ;(6.5)

(ii) for s > 1 the determinant of the matrix A(Φs(t, z)) is a polynomial, which is nonzero

modulo p, and we have modulo ps :

A(Φs+1(t, z)) · σ
e(A(Φs(t, z)))

−1 ≡ A(Φs(t, z)) · σ
e(A(Φs−1(t, z)))

−1,

where for s = 1 we understand the second factor on the right-hand side as the g × g
identity matrix.

Proof. The corollary follows from Theorems 6.1 and 2.6. �

6.2. Congruences for frames of solutions of KZ equations.

Theorem 6.4. We have the following congruences of n× g matrices.

(i) For s > 1,

Is+1(z) · A(Φs+1(t, z))
−1 ≡ Is(z) ·A(Φs(t, z))

−1 (mod ps) .

(ii) For s > 1 and j = 1, . . . , n,

∂Is+1

∂zj
(z) · A(Φs+1(t, z))

−1 ≡
∂Is
∂zj

(z) · A(Φs(t, z))
−1 (mod ps) .

Proof. Consider the first row of the Hasse–Witt matrix A(Φs(t, z)),(
A1,1(Φs(t, z)), . . . , A1,g(Φs(t, z))

)
, A1,ℓ(Φs(t, z)) = Coeffℓps−1(Φs(t, z)).

For each A1,ℓ(Φs(t, z)) we view the gradient

∇A1,ℓ(Φs(t, z)) =
(∂A1,ℓ(s)

∂z1
, . . . ,

∂A1,ℓ(s)

∂zn

)

as a column n-vector. The resulting n× g matrix of gradients

∇A(s, z) := (∇A1,1(Φs(t, z)), . . . ,∇A1,g(Φs(t, z)))

is proportion to the matrix Is(z), ∇A(s, z) = 1−pes

q
Is(z). By Theorems 2.8 and 2.9 we have

modulo ps,

∇A(s+ 1, z) · A(Φs+1(t, z))
−1 ≡ ∇A(s, z) ·A(Φs(t, z))

−1,
∂
∂zj

(
∇A(s + 1, z)

)
· A(Φs+1(t, z))

−1 ≡ ∂
∂zj

(
∇A(s, z)

)
·A(Φs(t, z))

−1.

These congruences imply the theorem. �

Corollary 6.5. For s > 1 we have

Is(z) · A(Φs(t, z))
−1 ≡ I1(z) · A(Φ1(t, z))

−1 (mod p).
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6.3. Domain of convergence. By Theorem 6.1 the polynomial detA(Φ1(t, z)) ∈ Z[z] is of
degree dΦ and this polynomial is nonzero modulo p. For a positive integer m define

D
(m)
KZ = {a ∈ (Z(m)

p )n | | detA(Φ1(t, a))|p = 1} .

By Lemma 3.1 the domain D
(m)
KZ is nonempty if pm > dΦ. In what follows we assume that

pm > dΦ.

We have | detA(Φs(t, a))
∣∣
p
= 1 for a ∈ D

(m)
KZ . All entries of A(Φs(t, z))

−1 are rational

functions in z regular on D
(m)
KZ . For every a ∈ D

(m)
KZ all entries of A(Φs(t, a)) and A(Φs(t, a))

−1

are elements of Z
(m)
p .

Theorem 6.6. The sequence of g × g matrices
(
A
(
Φs(t, z)

)
· σe
(
A
(
Φs−1(t, z)

))−1)
s>1

,

whose entries are rational functions in z regular on D
(m)
KZ , uniformly converges on D

(m)
KZ as

s → ∞ to an analytic g × g matrix which will be denoted by A(z). For a ∈ D
(m)
KZ we have

∣∣ detA(a)
∣∣
p
= 1

and the matrix A(a) is invertible.

Proof. The theorem follows from Theorem 3.6. �

Theorem 6.7. For i = 1, . . . , n the sequence of g × g matrices

(( ∂

∂zi
A
(
Φs(t, z)

))
· A
(
Φs(t, z)

)−1
)
s>1

,

whose entries are rational functions in z regular on D
(m)
KZ , uniformly converges on D

(m)
KZ as

s → ∞ to an analytic g × g matrix, which will be denoted by A(i)(z).
The sequence of n× g matrices

(
Is(z) · A

(
Φs(t, z)

)−1)
s>1

,

whose entries are rational functions in z regular on D
(m)
KZ , uniformly converges on D

(m)
KZ as

s → ∞ to an analytic n× g matrix which will be denoted by I(z).
For i = 1, . . . , n the sequence of n× g matrices

(∂Is
∂zi

(z) · A
(
s,Φs(t, z)

)−1
)
s>1

,

whose entries are rational functions in z regular on D
(m)
KZ , uniformly converges on D

(m)
KZ as

s → ∞ to an analytic n× g matrix which will be denoted by I(i)(z).
We have

∂I

∂zi
= I(i) − I · A(i) .

Proof. The theorem follows from Theorems 3.7, 3.8, and Lemma 3.9. �
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Theorem 6.8. We have the following system of equations on D
(m)
KZ :

I(i) = Hi · I, i = 1, . . . , n,

where Hi are the Gaudin Hamiltonians defined in (4.2).

Proof. The theorem is a corollary of Theorem 5.1. �

Corollary 6.9. For a ∈ D
(m)
KZ we have

I(a) ≡ I1(a) · A
(
Φ1(t, a)

)−1
(mod p).

Proof. The corollary follows from Corollary 6.5 and Theorem 6.7. �

6.4. Vector bundle L → D
(m),o
KZ . Denote

W = {(I1, . . . , In) ∈ (Q(m)
p )n | I1 + · · ·+ In = 0}.

We consider vectors (I1, . . . , In) as column vectors. The differential operators ∇KZ
i , i =

1, . . . , n, define a connection on the trivial bundle W × D
(m)
KZ → D

(m)
KZ , called the KZ con-

nection. The connection has singularities at the diagonal hyperplanes in (Z
(m)
p )n and is

well-defined over

D
(m),o
KZ = {a = (a1, . . . , an) ∈ (Z(m)

p )n | | detA(Φ1(t, a))|p = 1, ai 6= aj ∀i, j}.

The KZ connection is flat,
[
∇KZ

i ,∇KZ
j

]
= 0 ∀ i, j,

see [EFK]. The flat sections of the KZ connection are solutions of system (4.1) of KZ

equations.

For any a ∈ D
(m)
KZ let La ⊂ W be the vector subspace generated by columns of the n × g

matrix I(a). Then

L :=
⋃

a∈D
(m)
KZ

La → D
(m)
KZ

is an analytic distribution of vector subspaces in the fibers of the trivial bundle W ×D
(m)
KZ →

D
(m)
KZ .

Theorem 6.10 ([VZ2, Theorem 6.7]). The distribution L → D
(m)
KZ is invariant with respect

to the KZ connection. In other words, if s(z) is a local section of L → D
(m)
KZ , then the

sections ∇KZ
i s(z), i = 1, . . . , n, also are sections of L → D

(m)
KZ .

Proof. Let I(z) = (I1(z), . . . , Ig(z)) be columns of the n × g matrix I(z). Let a ∈ D
(m)
KZ .

Let c(z) = (c1(z), . . . , cg(z)) be a column vector of analytic functions at a. Consider a local
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section of the distribution L → D
(m)
KZ , s(z) =

∑g
j=1 cj(z)Ij(z) =: I · c. Then

∇KZ
i s(z) = −Hi · I · c+

∂I

∂zi
· c + I ·

∂c

∂zi

= −Hi · I · c+ (I(i) − I · A(i)) · c+ I ·
∂c

∂zi

= −Hi · I · c+ (Hi · I − I · A(i)) · c+ I ·
∂c

∂zi

= −I · A(i) · c+ I ·
∂c

∂zi
.

Clearly, the last expression is a local section of L → D
(m)
KZ . �

Theorem 6.11. The function a 7→ dim
Q

(m)
p

La is constant on D
(m),o
KZ , in other words, L →

D
(m)
KZ is a vector bundle over D

(m),o
KZ ⊂ D

(m)
KZ .

The proof coincides with the proof of Theorem 6.8 in [VZ2].

Recall that dΦ is the degree of the polynomial detA(Φ1(t, z)) and dM is the degree of the
minor defined in Lemma 5.3.

Theorem 6.12. If pm > dΦ + dM , then the analytic vector bundle L → D
(m),o
KZ is of rank g.

Proof. If pm > dΦ + dM , then the minor M(z) defines a function on D
(m),o
KZ nonzero modulo

p by Lemma 3.1. Then by Corollary 6.9, the n× g matrix valued function I(z) has a g × g

minor nonzero on D
(m)
KZ . This proves the theorem. �

6.5. Remarks.

6.5.1. One may expect that the subbundle L → D
(m),o
KZ can be extended to a rank g sub-

bundle over D
(m)
KZ −D

(m),o
KZ , the union of the diagonal hyperplanes in D

(m)
KZ .

6.5.2. Following Dwork we may expect that locally at any point a ∈ D
(m),o
KZ , the solutions

of the KZ equations with values in L → D
(m),o
KZ are given at a by power series in zi − ai,

i = 1, . . . , n, bounded in their polydiscs of convergence, while any other local solution at a is
given by a power series unbounded in its polydisc of convergence, cf. [Dw] and [V5, Theorem
A.4].

6.5.3. The KZ connection ∇KZ
i , i = 1, . . . , n, over C has no nontrivial proper invariant

subbundles due to the irreducibility of its monodromy representation, see [Fo, Lemma 6].

Thus the existence of the invariant subbundle L → D
(m),o
KZ is a p-adic feature.

6.5.4. The invariant subbundles of the KZ connection over C usually are related to some
additional conformal block constructions, for example see [FSV, SV2, V3, V4]. Apparently

our subbundle L → D
(m),o
KZ is of a different p-adic nature.
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