
1.  Introduction
Understanding the impacts anthropogenic aerosol perturbations on cloud and precipitation properties is critical 
to improve climate model projections (Intergovernmental Panel on Climate Change,  2014a,  2014b; Seinfeld 
et  al.,  2016). Consequently, substantial efforts have been focused on resolving the sources of aerosol and 
cloud condensation nuclei (CCN) in the present and preindustrial atmospheres (Almeida et al., 2014; Bianchi 
et al., 2021; Carslaw et al., 2017; Kirkby et al., 2016), and their impact on cloud optical properties and lifetime 
(Lohmann & Feichter, 2005; Malavelle et  al., 2017; Quaas et  al., 2020; Stevens & Feingold, 2009; Yli-Juuti 
et al., 2021). Depending on their composition and ambient conditions, the diameters of CCN span from some 
tens of nanometers upwards. In the present atmosphere, about half of CCN-sized particles originate from second-
ary sources that is, new particle formation (NPF) from oxidation and condensation of gaseous-phase precursors 
(Dunne et al., 2016; Merikanto et al., 2009; Spracklen et al., 2008). The corresponding fraction of secondary 
CCN number in the preindustrial atmosphere is around 70% (Gordon et al., 2017).

Abstract  Interactions between atmospheric aerosols, clouds, and precipitation impact Earth's radiative 
balance and air quality, yet remain poorly constrained. Precipitating clouds serve as major sinks for particulate 
matter, but recent studies suggest that precipitation may also act as a particle source. The magnitude of 
the sources versus sinks, particularly for cloud condensation nuclei (CCN) numbers, remain unquantified. 
This study analyzes multi-year in situ observations from tropical and boreal forests, as well as Arctic 
marine environment, showing links between recent precipitation and enhanced particle concentrations, 
including CCN-sized particles. In some cases, the magnitude of precipitation-related source equals or 
surpasses corresponding removal effect. Our findings highlight the importance of cloud-processed material 
in determining near-surface particle concentrations and the value of long-term in situ observations for 
understanding aerosol particle life cycle. Robust patterns emerge from sufficiently long data series, allowing for 
quantitative assessment of the large-scale significance of new phenomena observed in case studies.

Plain Language Summary  Atmospheric aerosols, clouds, and precipitation play a significant role 
in Earth's temperature regulation and air quality. However, understanding their interactions is still a challenge. 
While clouds and precipitation help remove particles from the atmosphere, recent research suggests rain could 
also introduce new particles. The extent of this particle source and its impact on climate are still unknown. 
In this study, we analyzed years of observational data from clean environments, including tropical and boreal 
forests and the Arctic marine boundary layer. We discovered that after precipitation, new particles were 
sometimes added to the surface atmosphere. In some cases, rain introduced as many or even more particles than 
it removed. Our findings highlight the importance of considering how clouds and rain recycle particles when 
studying air quality and climate. Long-term, real-world observations help us understand atmospheric particle 
life cycles and identify consistent patterns, ultimately improving our knowledge of the complex interactions 
between aerosols, clouds, and precipitation.
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Wet scavenging by clouds and precipitation are the most important sinks for atmospheric particulate mass and the 
number concentration of accumulation mode (about 100 nm in diameter) particles (Moran-Zuloaga et al., 2018; 
Ohata et al., 2016; Pöhlker et al., 2018; Seinfeld & Pandis, 2006). The net effect (i.e., the magnitude and sign) of 
clouds and precipitation on aerosol populations can, however, vary due to the complex response of atmospheric 
aerosol dynamics to changes in meteorological conditions. Compared to secondary aerosol production associ-
ated with atmospheric vapors, much less focus and effort has been put onto understanding the net impacts of 
clouds and precipitation on atmospheric aerosol and CCN loadings. This lack of consideration has left one half 
of the feedback related to the life cycle of secondary aerosol particles more poorly constrained than the other 
(i.e., impacts of aerosol populations on clouds and precipitation, see Figure 1) (Isokääntä et al., 2022; Tunved 
et al., 2013; Yli-Juuti et al., 2021). Clouds can indirectly enhance concentrations of ultrafine aerosol in nucleation 
(below about 25 nm in diameter) and Aitken (between about 25 and 100 nm in diameter) modes by removing the 
accumulation mode particles, which are a major sink for nucleation gaseous precursors and for particles formed 
by nucleation (Dal Maso, 2002; Riipinen et al., 2011; Westervelt et al., 2013; Zhang et al., 2012). Targeted obser-
vations indicate direct production of new particles in the vicinity of clouds (Braga et al., 2022; Clarke, 1992; 
Clarke et al., 1999; Ekman et al., 2006; Hegg et al., 1990; Krejci, 2003; Murphy et al., 2015; Wehner et al., 2015) 
and transport of particles and vapors into the boundary layer (BL, Poschl et al., 2010; Prenni et al., 2013; Wang 
et al., 2016; Andreae et al., 2018; Kompalli et al., 2020; Wang, Liu, et al., 2022; Wang, Gordon, et al., 2022). 
While some prior studies have reported clouds and precipitation as a source of new aerosol particles and second-
ary CCN, to our knowledge, none have systematically examined the magnitude of this feedback over extended 
periods and in various environments. This limits quantitative assessment of the importance of this phenomenon. 
Statistical analysis of long-term observations is the only route toward assessing the potential of these phenomena 
in climate-relevant scales—given the high variability and short time atmospheric lifetime of aerosol particles.

The relative magnitudes of the source versus sink processes related to clouds and precipitation in different envi-
ronments are likely driven by regional scale meteorology including the type of precipitation and clouds. Different 
dominant sources of aerosols and their precursors adds to the complexity of the studied system. If the CCN 
production associated with clouds and precipitation is significant compared with the NPF during cloud-free and 
pristine conditions (Kerminen et al., 2012; Riipinen et al., 2012), then the atmospheric system is expected to be 
less sensitive to secondary aerosol production than previously thought (Gordon et al., 2017). Here we study the 
key environmental drivers behind changes in aerosol number size distributions and concentrations of CCN-sized 
particles, focusing on the overall impact of precipitation in tropical, boreal and Arctic environments. The atmos-
pheric composition in these three remote sites is substantially influenced by natural sources. We contrast the 
scavenging effects by precipitation and clouds to (a) the potential role of clouds and precipitation to enhance BL 
aerosol concentration; and (b) the magnitude of the photochemical gas-to-particle aerosol source and consequent 
growth. Finally, we provide quantitative estimates of the net effects of clouds and precipitation on aerosol parti-
cle numbers at the three sites, and discuss the implications of the findings for understanding the key drivers of 
surface-level aerosol observations.

2.  Materials and Methods
2.1.  Measurement Sites and Instrumentation

Three relatively pristine measurement sites were selected to analyze particle number size distribution (PNSD) 
data: Amazon Tall Tower Observatory (ATTO) in the Amazon Rainforest, SMEAR II (Station for Measur-
ing Ecosystem–Atmosphere Relations) at Hyytiälä in the boreal forest (HYY), and Zeppelin Observatory in 
Ny-Ålesund (ZEP), which represents marine Arctic conditions (Hari et al., 2013; Andreae et al., 2015; C. Pöhlker 
et al., 2019; Platt et al., 2022). ATTO measurements cover the particle size range from 10 to 400 nm with a 
temporal resolution of 5 min, obtained from a scanning mobility particle sizer (SMPS) sampling from a mast at 
60 m a.g.l above the forest canopy. The data spans from March 2014 to January 2019. HYY measurements cover 
the size distribution between 3 and 1,000 nm with a temporal resolution of 10 min, obtained from differential 
mobility particle sizer (DMPS) measurements sampled at the surface level. The data spans from January 2005 
to December 2019. ZEP measurements cover the size range from 5 to 809 nm with a time resolution of 15 min, 
obtained from custom made DMPS. The data spans from January 2010 to December 2019. Only measurements 
between the 10–400 nm size range were used for multi-site comparison of PNSDs and PNSDs were resampled 
hourly.
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The atmospheric composition at ATTO varies with seasons due to different air mass origins, precipitation 
patterns, and biomass burning. Wet season (Feb-May) brings clear air masses that experience heavy precipitation 
and originate from the Northeast over unaltered rainforests, followed by a wet to dry transition period (Jun-Jul), 
then dry season (Aug-Nov) with strongly polluted air masses from Southeast due to less precipitation (Figure S1 
in Supporting Information S1) and biomass burning. Concentrations of particles smaller than 50 nm are consist-
ently low throughout the year at ATTO due to infrequent new particle formation events in BL.

The particle concentration and NPF frequency at HYY show strong seasonality (Dal Maso et al., 2005) (Spring: 
Mar-May, Summer: Jun-Aug, Autumn: Sep-Nov and winter: Dec-Feb). Accumulation mode is present all-year 
around, and Aitken mode is also usually present. Spring has the largest NPF frequency (Nieminen et al., 2014), 
and winter has less than 10% NPF days. Gas phase precursors from natural sources, especially monoterpenes 
(Hakola et al., 2012), dominate in HYY during spring and summer. NPF frequency is also influenced by air mass 
sources (Maso et al., 2007), with NPF events increasing when air comes from cleaner regions due to reductions 
in coagulation sink and CS.

ZEP follows the typical Arctic aerosol seasonality, characterized by (a) the Haze period (Mar-May) dominated 
by long-range transported accumulation mode particles, a phenomenon controlled by the reduced wet scavenging 
(Garrett et al., 2011); (b) summer (Jun-Aug), characterized by increased photochemistry and increased precipi-
tation, frequent NPF events and an abundance of Aitken and ultrafine aerosol (Lee et al., 2020) and a decline in 
the accumulation mode (Tunved et al., 2013); (c) the slow-build up season (Oct-Feb), a transition phase, with the 
arrival of the polar night and diminishing photochemistry, combined with a low, but increasing accumulation mode 
and reduced precipitation, potentially allowing precursor gases to build-up (Boyer et al., 2023; Tunved et al., 2013).

2.2.  Hysplit Backward Trajectories

The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) was used to calculate the 
backward trajectories (BTs) of air masses at each station every hour during the PNSD measurement period. 

Figure 1.  Conceptual model of the aerosol life cycle in the presence of precipitating clouds (not in scale). New particle formation (NPF) and consecutive growth 
depend mainly on the amount of solar radiation, precursor gases, condensation and coagulation sinks. Clouds scavenge CCN-sized particles that activate into 
hydrometeors or collide with cloud- and raindrops and ice crystals. Cloud hydrometeors and precipitation can evaporate and release cloud-processed particles and 
precursor gases. As precipitation is associated with downward transport, cloud-processed material and interstitial aerosol can be transported into the boundary layer and 
mix with pre-existing aerosol populations.
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Input meteorological data from the Global Data 5 Assimilation System (GDAS1, 1° × 1° resolution) (Pöhlker 
et al., 2019; Stein et al., 2015) were used for the BT calculations. The starting points of the BTs used for ATTO, 
HYY and ZEP, were respectively: (longitude = 59.0, latitude = −2.14, height = 60 m.a.g.l), (longitude = 24.3, 
latitude = 61.8, height = 100 m.a.g.l) and (longitude = 78.906, latitude = 11.888, height = 250 m.a.g.l). These 
altitudes are all located within BL.

We employed 4-day (96-hr) BTs, aiming to capture meteorological influences on aerosol dynamics. Direct 
effects, like wet scavenging and vertical transport, happen rapidly, while indirect effects, such as the decrease in 
CS and subsequent NPF, manifest over extended periods (see e.g., Dal Maso et al., 2002). The chosen 4-day span 
ensures the encapsulation of these processes while minimizing uncertainties in trajectory calculations for distant 
points from our monitoring stations.

2.3.  Precipitation and Solar Radiation History Along Air Mass Transport

To assess aerosol exposure to precipitation and solar radiation during transport, we integrated data from hourly 
trajectory points leading up to the air mass arrival. In this study the term “precipitation” refers to the liquid equiv-
alent of total precipitation. This data, along with solar radiation rates, was sourced from GDAS1. Recognizing the 
prominence of convective precipitation at ATTO and the reanalysis data limitations, we strategically collocated 
hourly trajectory points with the TRMM 3B42 V7 satellite product (0.25° ×  0.25°, 3-hr resolution) (Michot 
et al., 2018). This method offers a more precise depiction of the precipitation in the tropics.

2.4.  Correlation Analysis Along Backward Trajectories

Spearman correlation coefficients were calculated to evaluate the strength and direction of the monotonic rela-
tionship between particle number concentration and precipitation rate at given time steps along the air mass 
backward trajectories as a function of the particle diameter. p-value of 0.02 was used to assess the significance 
of the strength of the relationship.

2.5.  Comparison of the Impact of Recent Precipitation Versus Solar Radiation on PNSDs

To investigate how precipitation and solar radiation (used here as a proxy for photochemically induced NPF) 
affect particle concentrations and potential particle sources, we examined variables accumulated 6 hours before 
particle concentration measurements. This approach limits indirect (longer-term) precipitation effects related 
to larger particle removal. Median concentrations were calculated for particle size ranges of 10–50 nm (N<50), 
50–400 nm (N>50), and 100–400 nm (N>100) across bins of accumulated precipitation and solar radiation variables 
in their 0–99th percentile range. Bin-median concentrations were then normalized by the median concentration 
of the entire data set to estimate deviations from typical concentrations when precipitation and solar radiation 
vary. Linear least-squares regression was used to determine the strength and significance of the relationships 
and compare parameters across locations. The impact of changes in precipitation and solar radiation on particle 
concentration was assessed by comparing the concentration at zero parameters to the concentration at the 99th 
percentile based on linear regression.

3.  Results
3.1.  Response of Aerosol Concentration to Precipitation History

Figures 2a–2c show the relationship between aerosol number size distribution and 96-hr accumulated precip-
itation along air mass back trajectories, and compares it with the median aerosol population at the three sites 
(see also Figure S1 in Supporting Information S1 for the transport patterns and source regions). A common 
feature across all sites and seasons is the well-known effect of precipitation and the associated clouds in scav-
enging the larger end of the aerosol size distribution. High values of accumulated precipitation led to anoma-
lously low concentrations of accumulation mode particles. The threshold size for this effect is dependent on the 
environment (about 60 nm for ATTO, about 40 nm for HYY depending on season, and about 70 nm for ZEP, see 
also Figure S2 in Supporting Information S1), and influenced by a combination of processes that impact the aero-
sol size distribution and cloud formation, including the main particle sources, and atmospheric conditions such 
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as updraft velocities and aerosol concentrations (Abdul-Razzak & Ghan, 2000; McFiggans et al., 2006). These 
conditions affect the ambient supersaturation, which in turn impacts cloud formation, precipitation intensity and 
type (Figures 2d–2f and Figure S3 in Supporting Information S1). Interestingly, for both dry and wet seasons at 
ATTO, and for the slow build-up season in ZEP, high accumulated precipitation values are linked to anomalously 
high abundances of nucleation and Aitken mode particles (< about 60 nm for ATTO, < about 50 nm for ZEP, 
Figure S2 in Supporting Information S1).

3.2.  Direct and Indirect Effects of Precipitation on PNSD

The effects of recent precipitation differ from the effects of precipitation taking place further upwind from the 
measurement location (Figure 3). The signature of recent precipitation (12–24 hr before the observation site and 
closer) is clearly different from precipitation further away (>24 hr) for all three observation sites. The signature of 
the “older” precipitation is strikingly similar between the three environments: high rain intensities at >12–24 hr 
before air masses arrivals to the station correlate with a lower abundance of the accumulation mode, and a higher 
abundance of Aitken mode (about 40–70 nm and smaller) particles. The latter can be explained by the removal 
of larger particles (as seen in Figure 2), that leads to a reduction in CS and coagulation sink, and an increase in 
the lifetime of Aitken and nucleation mode particles. At all investigated sites, recent precipitation taking place in 
close vicinity (<12hr of air mass transport time) is associated with elevated particle concentrations. The sizes of 
the particles that correlate positively with recent precipitation vary between the sites, being smaller than about 
50 nm for ATTO, between 150 and 400 nm for HYY, and smaller than about 30 nm for ZEP—for the latter, 
however, the positive correlation seems to be present only during the slow build-up season when precipitation is 
higher and CS is low.

The varying size ranges of particles associated with recent precipitation in the different environments indicate 
differences in composition, meteorological conditions, and sources and/or chemical ages of the particles. The 
positive correlation is strongest at ATTO, where Aitken mode particle source related to a downward transport of 
particles during rain events (or their precursors) from higher altitudes has been previously identified based on 
shorter-term observations (J. Wang et al., 2016; Andreae et al., 2018; Machado et al., 2021; Franco et al., 2022). 
For HYY, the observed positive correlation between rather large accumulation mode particles and recent precip-
itation can be linked to cloud-processed aerosol entrainment, as HYY often encounters air masses from SO2-rich 
polluted areas undergoing cloud processing, as detailed by Isokääntä et  al.  (2022). For ZEP, while Tunved 

Figure 2.  The relationship between aerosol particle number size distribution and 96 hr accumulated precipitation (a–c), and the distribution of 96 hr accumulated 
precipitation values for trajectories (d–f) arriving at each of the measurement sites (ATTO, HYY, ZEP). The blue solid lines represent the median size distributions over 
the whole year, the dotted, dashed and dash-dotted lines represent the different seasons (see legends for details, and Figures S2 and S3 in Supporting Information S1 
for seasonality). The median accumulated precipitation values during the last 96 hr for a given size distribution value are depicted using the color scale, normalized to 
the maximum of each site. Note the different x-axis ranges for the sites, indicative of the unique precipitation regimes in these regions. Relationships with accumulated 
solar radiation can be found in Figures S9 and S10 in Supporting Information S1.
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et al., 2013 identified the indirect source effect on smaller particles, to our knowledge, no study has reported the 
direct effect observed in our results. However, the importance of solar radiation for new particle formation and 
consecutive growth to Aitken mode particles has been identified and reported for HYY, ZEP and many other sites 
(Dal Maso, 2002; Größ et al., 2018; Pietikäinen et al., 2014), and it is well-established that photochemistry plays 
a crucial role in forming low-volatility gaseous precursors that can participate in NPF (Kulmala, 2003; McMurry 
& Friedlander, 1979). This begs to investigate the relative magnitude of the precipitation-related particle source 
and compare it with (a) scavenging of CCN-sized particles by precipitation; (b) photochemically-driven particle 
source—can the former be considered a non-negligible source of aerosol and CCN at some sites?

Contrasting dark versus light (for precipitation) and precipitating versus non-precipitating (for solar radiation) 
conditions illustrates that the simultaneous variation of precipitation and solar radiation cannot solely account 
for the aerosol responses observed in Figure 4 (see also Figures S11 and S12 in Supporting Information S1). 
Specifically, for ATTO N<50 does not exhibit a significant or positive response to decreased CS, suggesting an 
immediate influence from the precipitation rather than the secondary effects (Figures S3–S15 in Supporting 
Information S1). For HYY and ZEP N<50 shows a decline with recent accumulated precipitation. The dominant 
positive correlation with solar radiation at these sites underscores the significant role of photochemically-induced 
NPF, which is notably less prevalent at ATTO. Finally, while we have used a linear regression model to compare 
the magnitudes of the various sink and source effects, it should be noted that the dependencies arising from the 
plethora of physical and chemical processes are not strictly linear. These dependencies can be further explored 

Figure 3.  Correlation between precipitation intensity and particle number size distribution at ATTO (a, d, g, j), HYY (b, e, h, k) and ZEP (c, f, i). The color scale 
depicts the Spearman correlation coefficient between precipitation intensity at a given point of the 96 hr trajectories and the aerosol particle number size distribution. 
Stippling indicates statistical significance to the 98% level.
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with robust theoretical knowledge of the key processes and additional, larger, observational data sets. While our 
results demonstrate the immense value of long-enough data series collected in situ from various environments, 
even more data is critical for more robust statistics given the large scatter in the data (see Figures S4 and S5 in 
Supporting Information S1).

For N>50 and N>100 at ATTO and ZEP (b–c), concentrations in air masses experiencing precipitation are consistently 
lower as compared with concentrations without precipitation, and demonstrate a negative slope as precipitation 
increases. At HYY, if compared with no-precipitation conditions, the relative net removal effect of precipitation 
on N>50 and N>100 is weaker than at ATTO and ZEP (b–c). Interestingly, concentrations slightly increase under 
light precipitation compared to no-precipitation (first two points in panel c). These observed enhancements are 
robust, as the majority of data points in HYY is concentrated within this precipitation range (Figures S4 and S5 
in Supporting Information S1). The effect is more pronounced under conditions of high recent light exposure 
(Wang, Liu, et  al.,  2022; Wang, Gordon, et  al.,  2022) and during spring (Figures S6 and S11 in Supporting 
Information S1). This might indicate a source of cloud-processed aerosol contributing to the number concentra-
tions as reported in Isokääntä et al. (2022), occurring simultaneously with the known removal mechanisms. At 
ATTO, the positive response to solar radiation is outweighed by the negative response to precipitation, but solar 
radiation response dominates at ZEP and HYY for N>50 and N>100 (panels b–c vs. e–f). The results are drastically 

Figure 4.  Normalized particle number concentrations of all data points, as a function of 6-hr accumulated (a–c) precipitation and (d–f) solar radiation, for particles 
smaller than 50 nm (N<50), larger than 50 nm (N>50) and larger than 100 nm (N>100). Markers represent normalized median concentrations in bins of accumulated 
variables, and the bar plots show normalized concentration variabilities in the 0th–99th percentiles range of the 6-hr accumulated variables (difference between start 
and end points). Solid lines representing linear regressions, are included for trend visualization. For insights into seasonal relationships, consult Figures S6–S8 in 
Supporting Information S1. Furthermore, Figure S16 in Supporting Information S1 delves into variables accumulated over 96-hr.
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different for N<50 at ATTO, where consistent increase in N<50 particles with increasing precipitation during last 
6 hr explains about +60% variability (panel a, and Table S1). There is thus an important sub-50 nm particle source 
associated with precipitation. Consecutive condensation of vapors in boundary layer can then further enhance 
their contribution to CCN numbers (Stolzenburg et  al.,  2018; Zaveri et  al.,  2022; Zhou,  2002). The positive 
response of N<50 to recent precipitation exceeds the negative response to solar radiation (see panel (a) versus (d)).

4.  Discussion
In this study, we have shown that besides the well-known removal effect of aerosol particles by clouds and precip-
itation, there are also signs of a direct source of boundary layer particles associated with recent (<12–24 hr) accu-
mulated precipitation. A positive correlation between particles of a specific size range and precipitation in the air 
masses arriving at the measurement station was present at all three studied sites (ATTO, HYY and ZEP), and the 
effect was most pronounced for sub-50 nm particles at ATTO. Our method examines the effects of precipitation 
based on their distance along the trajectory, emphasizing the importance of the timing of these events. Traditional 
approach of focusing on accumulated precipitation might inadvertently blend effects where precipitation serves 
as both a source and a sink for aerosol concentrations. While a shorter-term and case-based analysis of the links 
between precipitation, downdrafts and particle numbers have been reported before (Franco et al., 2022; Machado 
et al., 2021; Wang et al., 2016), to our knowledge this is the first time the frequency and relative magnitude of 
such precipitation-related particle concentration enhancement has been presented. By studying the impact of 
precipitation along air mass back trajectories, we were able to subtract the indirect effect of the condensation sink 
reduction by precipitation on the number of small particles. The magnitude of the precipitation-related particle 
source is generally small when compared with the removal effect of CCN-sized particles, but not insignificant. 
For instance, at ATTO, the removal of accumulation particles and the addition of sub-50  nm particles with 
increasing recent precipitation is comparable, and in HYY, the precipitation-related particle source seems to 
compensate for a large fraction of the removal effect of CCN-sized particles in boundary layer.

Our results have implications for example, (a) identifying a potential new replenishing source of CCN observed 
at the ground-level, especially in the tropics; (b) the interpretation of in situ observational data when it comes to 
the source and sink processes driving the observed atmospheric aerosol number size distributions; and (c) the 
representation of aerosol and precursor gas scavenging, processing and recycling by clouds and precipita tion within 
atmospheric models. For the latter, our results suggest that the scavenging and cloud-processing parametrizations 
in models should ideally account also for the replenishment of boundary layer aerosol population due to cloud 
processing and precipitation. Since precipitation patterns are predicted to change in the future (Trenberth, 2011) 
the importance and regional distribution of this mechanism is also likely to change, hence potentially changing the 
atmospheric aerosol populations and aerosol-cloud interactions in the future. The exact theoretical formulation and 
prediction of such process should, however, be based on a process-level understanding of the phenomenon. The 
presented data and analysis does not allow for an ambiguous separation between numerous processes and effects, 
for example, distinguishing impacts of clouds versus precipitation, phase of precipitation, downward transport 
of particles formed at higher altitudes (Andreae et al., 2018; Wang et al., 2016), “recycled” material originating 
from the evaporation of processed cloud hydrometeors (Braga et al., 2022; Isokääntä et al., 2022; Krejci, 2003), in 
situ NPF and processing through atmospheric chemistry in the boundary layer associated with enhanced concen-
trations of reactive species during rain events (Gerken et  al.,  2016), raindrop impaction with surfaces (Joung 
et  al.,  2017; Wang et  al.,  2016), and ion-induced processes (Junninen et  al.,  2008; Kolarž et  al.,  2012; Parts 
et al., 2007; Wimmer et al., 2018). We have demonstrated the value of using long-term observational data sets 
of aerosol size distributions, especially when coupled to meteorological data and remote sensing. To constrain 
the key processes and their importance within the full loop of gas-aerosol-cloud-precipitation interactions, more 
targeted observations of vertical motion in the atmosphere, type of precipitation, vertical profiles and conditions 
close to clouds are needed. The observations must be coupled with detailed cloud-resolving models that account 
for the relevant gas, aerosol and cloud processes on relevant temporal and spatial scales.

Data Availability Statement
The observational and model data used for the statistical analyses in the study are available through the following 
link: https://doi.org/10.5281/zenodo.7907474 (Khadir, 2023a). The Python analysis and visualisation codes are 
compiled in a Jupyter Notebook, accessible through the following link: https://doi.org/10.5281/zenodo.8305875 
(Khadir, 2023b).
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