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PERFECT POINTS OF ABELIAN VARIETIES

EMILIANO AMBROSI

ABSTRACT. Let p be a prime number, k a finite field of characteristic p > 0 and K/k
a finitely generated extension of fields. Let A be a K-abelian variety such that all the

isogeny factors are neither isotrivial nor of p-rank zero. We give a necessary and sufficient

condition for the finite generation of A(Kperf) in terms of the action of End(A) ⊗ Qp

on the p-divisible group A[p∞] of A. In particular we prove that if End(A) ⊗ Qp is a

division algebra then A(Kperf) is finitely generated. This implies the “full” Mordell-Lang

conjecture for these abelian varieties. In addition, we prove that all the infinitely p-divisible

elements in A(Kperf) are torsion. These reprove and extend previous results to the non

ordinary case.

1. INTRODUCTION

Let p be a prime number and k a finite field of characteristic p > 0. Let K/k be a

finitely generated extension of fields (e.g. Fp(t)/Fp), fix an algebraic closure K ⊆ K and

write K ⊆ Kperf for the perfect closure of K , i.e. the smallest perfect field containing K
(or, equivalently, the field obtained adding to K all the pn-roots of its elements). Let A be

a K-abelian variety. Motivated by applications to the “full” Mordell-Lang conjecture, in

this paper we study the structure of A(Kperf) using p-adic cohomology. The main novelty

of our approach is the use of “mixed” p-divisible groups and overconvergent F-isocrystals

associated to elements in A(Kperf).

1.1. Motivation. In recent years there has been a remarkable interest in the study of the

groupA(Kperf), see e.g. [AD22, BL22, D’A23, GM06, Ghi10, Rös15, Rös20, Xin21].

This interest is mainly motivated by its relation with the “full” Mordell-Lang conjecture

(see e.g. [GM06, Conjecture 1.2]). Roughly, this conjecture states that if Γ ⊆ A(K) is a

finite rank subgroup and X ⊆ AK is an irreducible K-subvariety, then X(K) ∩ Γ is not

Zariski dense, unless X is a “special” (e.g. the translate of an abelian subvariety of A).

The characteristic zero version of the Mordell-Lang conjecture ML is a celebrated theo-

rem of Faltings ([Fal91]) for finitely generated subgroups, extended to the finite rank ones

by Hindry ([Hin88]). In our positive characteristic setting, the conjecture has been proved

in [Hru96] under the extra assumption that Γ ⊗ Zp is a finitely generated Zp-module.

However the case of arbitrary subgroups of finite rank has proven to be more elusive and

few results are known.

In [GM06], Ghioca and Moosa reduced the “full” conjecture to the case in which the

subgroup Γ is included A(Lperf), for K ⊆ L a finite field extension. Combining this with
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2 EMILIANO AMBROSI

the fact that the conjecture is known when Γ is finitely generated, the following question

arise naturally.

Question 1.1.1. When is A(Kperf) finitely generated? What is the structure ofA(Kperf)?

Our main result (Theorem 1.3.1.2) roughly states that whetherA(Kperf) is finitely gen-

erated or not depends only on the action of End(A) ⊗ Qp on the p-divisible group of A
and on the p-rank of the isogeny factors of A. As a corollary of our result, one gets the

Mordell-Lang conjecture for a sufficiently generic abelian variety with Newton polygon of

positive p-rank. To simplify the exposition, we assume for the rest of the introduction that

A is simple and we refer the reader to main text (and in particular to Theorem 3.1.1) for

the general case.

1.2. Perfect points. Let us recall that, while A(K) is finitely generated by the Lang-

Néron theorem ([LN59]), it is well known that A(Kperf) is not always finitely generated.

For example, ifA(K) contains a non-torsion element andA is defined up to isogeny over k
or A is of p-rank 0, thenA(Kperf) is not finitely generated. Even worst, Helm constructed

in [Hel22] an ordinary abelian variety without isotrivial isogeny factors such thatA(Kperf)
is not finitely generated. So, to have finite generation, one has to impose further conditions.

On the positive side, it is well known that the torsion subgroupA(Kperf)tors ⊆ A(Kperf)
is finite (see for example [GM06, Page 7]), so that the interesting part to study is its tor-

sion free quotient A(Kperf)tf := A(Kperf)/A(Kperf)tors. Since the ith-power Frobenius

F i : A→ A(pi) and the Verschiebung V i : A(pi) → A induce a factorization

A(pi) A A(pi) such that A(Kperf) =
⋃
i∈NA

(pi)(K),

pi

V i F i

where the union is taken along the injections F i : A(K) →֒ A(pi)(K), one has that

(1.2.1) A(K)[1/p] = A(Kperf)[1/p].

Hence, to study A(Kperf), one is reduced to understand how much the non-torsion ele-

ments of A(K) become pn-divisible in A(Kperf). There are essentially two phenomena

that can make A(Kperf) not finitely generated:

(a) there might be a sequence {xn}n∈N of non torsion elements xn ∈ A(K) such that

xn becomes pn-divisible but not pn+1-divisible, or

(b) there might be a non-torsion element x ∈ A(K) that becomes infinitely p-divisible

in A(Kperf).

Both cases can happen and our main result says that the occurring of (a) depends only on

the action of End(A)⊗ Qp on the p-divisible group of A and the occurring of (b) only on

the p-rank of A.

1.3. Main results.

1.3.1. Main result. To state our main result, recall that the p-divisible group A[p∞] of A
fits into a canonical connected-étale exact sequence

(1.3.1.1) 0→ A[p∞]0 → A[p∞]→ A[p∞]ét → 0

with A[p∞]0 (resp. A[p∞]ét) a connected (resp. étale) p-divisible group. Then we prove:

Theorem 1.3.1.2. Assume thatA(K)⊗Q 6= 0 (and recall thatA is assumed to be simple).

Then:
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(1) A(Kperf) is not finitely generated if and only if and there exists an idempotent

0 6= e ∈ End(A) ⊗ Qp (i.e. e2 = e) that acts as 0 on (the isogeny class of)

A[p∞]ét;

(2) Every infinitely p-divisible point is torsion if and only if A is of positive p-rank.

Remark 1.3.1.3. Let us recall that, since A is simple, End(A) ⊗ Q is a division alge-

bra, hence the idempotent appearing in Theorem 1.3.1.2(1) has to live in End(A) ⊗ Qp \
End(A) ⊗ Q. As often happens, it is much easier to construct Qp-linear combination of

endomorphisms of A (i.e. elements in End(A) ⊗ Qp) than actual endomorphisms of A
(i.e. elements in End(A)). This kind of phenomena appears for example in the proof of

the Tate conjecture for endomorphism of abelian varieties over finite fields ([Tat66]).

Beyond the ordinary case, these seem to be the first general results towards the under-

standing of the torsion free part of A(Kperf). Coming back to (a) and (b) of the previous

Section 1.2, Theorem 1.3.1.2 says that case (a) happens if and only if there exists an idem-

potent as in Theorem 1.3.1.2(1) and case (b) happens if and only if the p-rank of A is 0.

As an immediate corollary we get the following.

Corollary 1.3.1.4. If A has positive p-rank and End(A) ⊗ Qp is a simple algebra, then

A(Kperf) is finitely generated.

Since for every Newton stratum of positive p-rank of the moduli space of abelian va-

rieties of fixed dimension the generic member has End(AK) ≃ Z, Corollary 1.3.1.4, to-

gether with the main results of [Hru96] and [GM06], implies the Mordell-Lang conjecture

for such a generic abelian variety.

1.3.2. Comparison with previous results. We compare Theorem 1.3.1.2 with some of the

previously known results, assuming that (A is simple and) A(K)⊗Q 6= 0.

As already mentioned, if A is isogenous to an abelian variety defined over k, A(Kperf)
is not finitely generated. This is coherent with Theorem 1.3.1.2(1), since in this case the

sequence (1.3.1.1) splits canonically up to isogeny and this splitting is induced, by the p-

adic Tate conjecture for abelian varieties, from an idempotent e ∈ End(A)⊗Qp. Similarly,

the fact that if A is of p-rank 0 then A(Kperf) is not finitely generated, is coherent with

Theorem 1.3.1.2(1), taking e = IdA.

When A is ordinary, Theorem 1.3.1.2 was essentially already known, since (2) follows

from [Rös20, Theorem 1.4] and (1) combining [Rös20, Theorem 1.1]) with [D’A23, Theo-

rem 1.1.3] (and their proofs). Always in the ordinary case, if Dim(A) ≤ 2, then A(Kperf)
is always finitely generated: this can be either deduced from [Rös20, Theorem 1.2 (g)]) or

from Theorem 1.3.1.2(2).

Remark 1.3.2.1. Most of the results recalled in this section also holds replacing k with

k, assuming that AK is not isogenous to an abelian variety defined over k. Also our

Theorem 1.3.1.2 holds replacing k with k, as we show in Theorem 3.4.1, by elaborating

the arguments used in the proof of Theorem 1.3.1.2.

1.4. Strategy. Our proof is mostly cohomological, in the sense that we work with p-

divisible group and crystals. To lift our cohomological results to End(A) and End(A) ⊗
Qp, we use the assumption that K is finitely generated over a finite field, to be able to

apply the p-adic Tate conjecture for abelian varieties.

1.4.1. p-adic Abel-Jacobi maps. To prove Theorem 1.3.1.2, we start, in Section 2, consid-

ering various Abel-Jacobi maps. By using the short exact sequence 0 → A[pn] → A
pn

−→
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A→ 0 one constructs a Abel-Jacobi map

AJ : A(K)⊗Q→ Ext1(Qp/Zp, A[p
∞])⊗Qp.

Composing with the quotient map A[p∞]→ A[p∞]ét, we get a morphism

AJét : A(K)⊗Q→ Ext1(Qp/Zp, A[p
∞])⊗Qp → Ext1(Qp/Zp, A[p

∞]ét)⊗Qp

which we call the étale Abel-Jacobi map, and we consider its Qp-linearization

AJét
p : A(K)⊗Qp → Ext1(Qp/Zp, A[p

∞]ét)⊗Qp,

which we call the p-adic étale Abel-Jacobi map. In Proposition 2.1.2.1 we prove that every

infinitely p-divisible element is torsion if and only if AJét is injective and that A(Kperf)

is finitely generated if and only if AJét
p is injective. Hence we can translate the two state-

ments of Theorem 1.3.1.2 into two statements on “mixed” p-divisible groups associated to

elements in A(K)⊗Qp and A(K)⊗Q.

Remark 1.4.1.1. Since the two properties of having a non torsion infinitely p-divisible

point and having a finitely generated group of perfect points are codified by two different

maps (one Qp-linear and the other Q-linear), it is natural to consider two different state-

ments in Theorem 1.3.1.2. This is slightly different from what one could aspects from ap-

parently similar motivic conjectures (see e.g. Jansen injectivity conjecture ([Jan94, Conj.

9.15])). Roughly, this shows that the behavior of AJét
p is not motivic, since AJét

p might not

be injective even when AJét is.

1.4.2. p-divisible groups and crystals. For x ∈ A(K)⊗Qp, let

(1.4.2.1)

0→ A[p∞]→Mx[p
∞]→ Qp/Zp → 0 and 0→ A[p∞]ét →Mx[p

∞]ét → Qp/Zp → 0

be the exact sequences of p-divisible groups representing AJp(x) and AJét
p (x). By the

finite generation of A(K), we know that first does not split and we want to understand

when and why second splits. To do this, we spread out A → K to an abelian scheme

A → X over some smooth connected k-variety X with function field K and we consider

the category F-Isoc(X) of F-isocrystals and the fully faithful controvariant Dieudonné

functor ([BBM82])

D : pDiv(X)Q → F-Isoc(X).

By fully faithfulness, we translate the splitting properties of (1.4.2.1) into analogous split-

ting properties of an exact sequence of F-isocrystals. As in [AD22], the advantage of

doing this is that we can prove in Proposition 3.3.3.1 that the image via D : pDiv(X)Q →
F-Isoc(X), of the first sequence in (1.4.2.1) lies inside the much better behaved subcate-

gory F-Isoc†(X) ⊆ F-Isoc(X) of overconvergent F-isocrystals.

Since D(A[p∞]) is semisimple in F-Isoc†(X), we can apply recent advances in p-

adic cohomology ([Tsu23] and its improvement done in [D’A23]) to construct, from the

splitting of AJét
p , an idempotent in End(A[p∞]) ⊗ Qp with the desired properties, which,

since K is finitely generated over a finite field, lifts to End(A) ⊗ Qp, by the p-adic Tate

conjecture for abelian varieties.

This is enough to conclude the proof of 1.3.1.2(1), but to complete the proof of Theorem

1.3.1.2(2) one needs to show that such a splitting can not exist if the sequence (1.4.2.1)

comes from an x ∈ A(K) ⊗ Q and not from a random x ∈ A(K) ⊗ Qp. This follows

from Proposition 2.2.3.2 which shows that even if End(A[p∞]) can be big and with lots of

idempotempotent, one always has that End(Mx[p
∞])⊗Qp ≃ Qp if x ∈ A(K)⊗Q. This

is essentially due to the geometric origin of Mx[p
∞], which makes Mx[p

∞] much more
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rigid for a x ∈ A(K) ⊗ Q than for a random x ∈ A(K) ⊗ Qp. This extra rigidity is the

reason for difference between the two different parts of Theorem 1.3.1.2.

1.5. Organisation of the paper. In Section 2 we study various p-adic Kummer and Abel-

Jacobi maps, their relation with the group of perfect points and with the extensions of

p-divisible groups. In Section 3 we use this to prove Theorem 1.3.1.2 assuming the over-

convergence result Proposition 4.1.2. Finally, in Section 4 we prove this overconvergence

result.

2. ABEL-JACOBI AND ÉTALE ABEL-JACOBI MAPS

Let S be a noetherian Fp-scheme and let A → S be an abelian scheme. We write

SHfppf(S) for the category of fppf sheaves in abelian groups on S. Write A(S)tors ⊆
A(S) for the torsion subgroup of A(S), A(S)tf := A(S)/A(S)tors for its torsion free

quotient and

A(S)p∞ := {x ∈ A(S) such that for every n ∈ N there exists a yn ∈ A(S) with pnyn = x}

for its subgroup of infinitely p-divisible elements.

2.1. Kummer maps.

2.1.1. Kummer map. For every n ∈ N, the exact sequence

0→ A[pn]→ A
pn

−→ A→ 0

in SHfppf(S), induces an injective morphism

Kumn : A(S)/pn →֒ H1
fl(S,A[p

n])

and taking the projective limit and tensoring with Q, we get a commutative diagram

A(S)⊗Q

A(S)⊗Qp (lim
←−n

A(S)/pn)⊗Q (lim
←−n

H1
fl(S,A[p

n]))⊗Q.

Kum

Kump

We call Kum: A(S) ⊗ Q → (lim
←−n

H1
fl(S,A[p

n])) ⊗ Q the Kummer map and Kump:

A(S) ⊗ Qp → (lim
←−n

H1
fl(S,A[p

n])) ⊗ Q the p-adic Kummer map. By construction, one

has the following lemma, which we state for further references.

Lemma 2.1.1.1.

(1) Kum is injective if and only if A(S)p∞ ⊆ A(S)tors;
(2) If A(S)tf is finitely generated, then Kump is injective.

Proof. Statement (1) follows by tensoring with Q the short exact sequence

0→ A(S)p∞ → A(S)→ lim
←−
n

H1
fl(S,A[p

n]).

For (2), one uses that if A(S)tf is finitely generated, then the kernel of A(S) ⊗ Zp →
lim
←−n

A(S)/pn is torsion, so that the map A(S)⊗Qp → (lim
←−n

A(S)/pn)⊗Q is injective.

�
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2.1.2. Étale Kummer maps. Assume now that S = Spec(K) is the spectrum of a field and

write Kperf for the perfection of K . Then, the quotient maps A[pn] → A[pn]ét induce a

commutative diagram

A(K)⊗Q

A(K)⊗Qp (lim
←−n

H1
fl(k,A[p

n]))⊗Q (lim
←−n

H1
fl(K,A[p

n]ét))⊗Q ≃ H1
ét(K,Tp(A))⊗Q,

Kum

Kumét

Kump

Kumét
p

where Tp(A) := lim←−nA(K)[pn] is the p-adic étale module of A and H1
ét(K,Tp(A)) is its

first continuous étale cohomology group. We call Kumét: A(K)⊗Q→ H1
ét(K,Tp(A))⊗

Q the étale Kummer map and Kumét
p : A(K)⊗Qp → H1

ét(K,Tp(A))⊗Q the p-adic étale

Kummer map. The following proposition links the properties of Kumét and Kumét
p with

the study of A(Kperf).

Proposition 2.1.2.1.

(1) A(Kperf)p∞ ⊆ A(Kperf)tors if and only if Kumét is injective;

(2) A(Kperf)tf is finitely generated if and only if A(K)tf is finitely generated and

Kumét
p is injective.

Proof. Let us recall that

(a) Since K ⊆ Kperf is purely inseparable, for every finite étale group scheme G the

natural map H1(K,G)→ H1(Kperf , G) is an isomorphism (see e.g. [Sta20, Tag

04DZ]);

(b) If L is a perfect field, then H1
fl(L,H) → H1

fl(L,H
ét) is injective for every finite

group scheme H over L, since H1
fl(L,G) = 0 for every finite connected group

scheme G (see e.g. [Čes15, Lemma 2.7 (a)]).

Hence (1) and the only if part of (2) follows from Lemma 2.1.1.1 and the commutative

diagram for ? ∈ {∅, p}:

A(K)⊗Q? (lim
←−n

H1
fl(K,A[p

n]))⊗Q H1
ét(K,Tp(A))) ⊗Q

A(Kperf)⊗Q? (lim
←−n

H1
fl(K

perf , A[pn])) ⊗Q H1
ét(K

perf , Tp(A)))⊗Q,

≃ ≃

where the left vertical isomorphism follows from (1.2.1), the right vertical isomorphism

from (a) and the bottom right injection from (b).

So we are left to prove that if A(K)tf is finitely generated and Kumét
p is injective then

A(Kperf)tf is finitely generated. Since A(K)tf [1/p] = A(Kperf)tf [1/p] is a finitely

generated Z[1/p]-module, it is enough to show that A(Kperf)tf ⊗ Zp is a finitely gen-

erated Zp-module. Since the kernel of Kumét
p is a torsion group by assumption and

A(K)⊗Q = A(Kperf)⊗Q, the groupA(Kperf)tf⊗Zp injects in the torsion free quotient
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of the image of Kumét
p . Hence it is enough to show that the image of A(Kperf) ⊗ Zp in

H1(Kperf , Tp(A)) ≃ H1(K,Tp(A)) lies in a finitely generated sub Zp-module.

Since A(K)tf is finitely generated, we can choose a set x1, . . . xr ∈ A(K) which gen-

erates A(K)tf and write Tp(Mxi
) for the Zp-linear π1(K)-representation corresponding

to the exact sequence Kumét(xi)
(2.1.2.2)

0→ Tp(A)→ Tp(Mxi
)→ Zp → 0 in H1(K,Tp(A)) ≃ Ext1K(Zp, Tp(A))

Let

Π ⊆ GL(Tp(Mx1
)) × · · · ×GL(Tp(Mxr

))

be the image of π1(K
perf) acting on Tp(Mx1

)× · · · × Tp(Mxr
) and write Kperf ⊆ L for

the Galois extension corresponding to the closed subgroup Ker(π1(K
perf) ։ Π).

Since Π is a closed subgroup of GL(Tp(A)), it is a compact p-adic Lie group by

[DdSMS91, Corollary 9.36]. In particular, by [Ser64, Prop. 9],H1(Π, Tp(A)) ⊆ H1(Kperf , Tp(A))
is a finitely generated Zp-module. We are left to show that the image of A(Kperf) ⊗ Zp
in H1(Kperf , Tp(A)) lies in H1(Π, Tp(A)). Since H1(Π, Tp(A)) is a sub Zp-module of

H1(Kperf , Tp(A)), it is enough to show that the image ofA(Kperf) lies inH1(Π, Tp(A)).
The inflation-restriction exact sequence

(2.1.2.3)

0 H1(Π, Tp(A)) H1(π1(K
perf), Tp(A)) H1(π1(L), Tp(A))

reduces us to show that the composition

φ : A(Kperf)→ H1(π1(K
perf), Tp(A))→ H1(π1(L), Tp(A))

is the zero map. Since π1(L) acts trivially on Tp(Mxi
), it acts trivially Tp(A), so that

H1(π1(L), Tp(A)) = Hom(π1(L),Z
p(A)
p )

is torsion free, hence it is enough to show that for every non torsion x ∈ A(Kperf), there

exists an n such that φ(pnx) = 0. Since, by (1.2.1), for every x ∈ A(Kperf), there exists

an n such that pnx ∈ A(K), it is enough to show that the map

φ′ : A(K)tf → H1(π1(L), Tp(A))

is zero.

Since A(K)tf is generated by x1, . . . , xr, it is enough to show that φ′(xi) = 0 for

every 1 ≤ i ≤ r. But the exact sequence corresponding to φ′(xi) is the restriction of the

exact sequence (2.1.2.2) to π1(L). By construction this sequence is an exact sequence of

trivial π1(L)-representations hence it splits as π1(L)-module for all the xi ∈ A(K). Hence

φ′(xi) = 0 and this concludes the proof. �

2.2. Interpretation in terms of Abel-Jacobi maps. In this section, we compare the Kum-

mer map with an Abel-Jacobi map constructed via p-divisible groups and 1-motives.

Write pDiv(S) for the category of p-divisible group over S and pDiv(S)⊗ Q for its

isogeny category.

2.2.1. p-divisible group associate to a point. Let s ∈ A(S) be a section. Since s : S → A
corresponds to a morphism of fppf S-groups schemes s : Z → A, we can consider the

1-motive [s : Z→ A]. We now recall how to associate to [s : Z→ A] a p-divisible group

Ms[p
∞] over S (see for example [ABV05, Section 1.3] for more details). Define

Ms[p
n] :=

Ker(s+ pn : Z×S A→ A)

Im((pn,−s) : Z→ Z×S A)
,
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so that there is an exact sequence

(2.2.1.1) 0→ A[pn]→Ms[p
n]→ Z/pnZS → 0

of finite flat S-group schemes. Define

Ms[p
∞] = lim

−→
n

Ms[p
n]

so that Ms[p
∞] is a p-divisible group fitting into an exact sequence

(2.2.1.2) 0→ A[p∞]→Ms[p
∞]→ (Qp/Zp)S → 0.

We let [Ms[p
∞]] be the corresponding class in Ext1(Qp/Zp, A[p∞]).

2.2.2. Comparison with the Kummer class. Since H1
fl(S,A[p

n]) ≃ Ext1(Z/pnZ, A[pn]),
where the latter is the group of extension A[pn] by Z/pnZ as Z/pnZ-sheaf, the Kummer

map can be interpreted as a morphism

Kum : A(S)→ lim
←−
n

Ext1(Z/pnZ, A[pn]).

On the other hand, since Hom(Z/pnZ, A[pn]) is finite, taking pn-torsion we get a natural

injective morphism

ϕ : Ext1(Qp/Zp, A[p
∞]) →֒ lim

←−
n

Ext1(Z/pnZ, A[pn]).

In the next lemma, which follows essentially from the constructions involved, we prove

that ϕ([Ms[p
∞]) and Kum(s) represent the same class

Lemma 2.2.2.1. There is an equality Kum(s) = ϕ([Ms[p
∞]]).

Proof. It is enough to show that, for every n, the sequence (2.2.1.1) identifies with the

class of Kum(s) ∈ H1
fl(S,A[p

n]) ≃ Ext1(Z/pnZ, A[pn]). By definition, the A[pn]-
torsor Kum(s) ∈ H1

fl(S,A[p
n]) is the pullback of the inclusion of s →֒ A along the

multiplication by pn : A→ A.

Let Z/pnZ[Kum(s)] be the freeZ/pnZ-sheaf on [Kum(s)], let deg : Z/pnZ[Kum(s)]→
Z/pnZ be the “degree” map sending

∑
nizi to

∑
ni and write B := Ker(deg).

By construction (see e.g. [Sta20, 03AJ]), the sequence

(2.2.2.2) 0→ A[pn]→ K̃um(s)→ Z/pnZ→ 0,

in Ext1(Z/pnZ, A[pn]) corresponding to Kum(s), is obtained by pushing out the exact

sequence

0→ B → Z/pnZ[Kum(s)]→ Z/pnZ→ 0,

along the map B → A[pn] sending the generators of the form x− x′ to the unique a such

that x+ a = x′. The isomorphism of the sequence (2.2.2.2) with the sequence (2.2.1.1) is

then induced by the map K̃um(s)→Mx[p
n] obtained by the universal property of pushout

using the natural inclusion A[pn] ⊆ {0} × A ⊆ Z × A and the map Z[Kum(s)] → A
sending s ∈ Kum(s) to (1,−s) ∈ Z×A. �

Hence, for now on, if S = Spec(K) is the spectrum of a field, we interpret, for ? ∈
{∅, p} and ∆ ∈ {∅, ét} the Kummer maps as (p-adic, étale) Abel-Jacobi maps

AJ∆? : A(K)⊗Q? → Ext1(Qp/Zp, A[p
∞]∆)⊗Q.

We can then rephrase the work done in this section in the following corollary, which is a

direct consequence of Proposition 2.1.2.1 and Lemma 2.2.2.1.
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Corollary 2.2.2.3.

(1) A(Kperf)tf is finitely generated if and only if A(K)tf is finitely generated and

AJét
p is injective;

(2) A(Kperf)p∞ ⊆ A(Kperf)tors if and only if AJét is injective.

2.2.3. Rigidity of the Abel-Jacobi extension. Suppose that S = Spec(K) for a finitely

generated field K over Fp. We give a first application of the interpretation of Kum in

terms of p-divisible groups, proving that the extensions in the image of AJ are more rigid

than a general extension in the image of AJp. This sets an important difference between

the maps AJ and AJp and it is the reason why one has to consider two different statements

in Theorem 1.3.1.2.

We begin with an easy but important lemma, which is the only place in which some

assumption on the geometry of A is used.

Lemma 2.2.3.1. Assume that A is simple and x ∈ A(K) is a non torsion point. Then the

map

ψx : End(A)→ A(K)

sending f to f(x) is injective.

Proof. Take any morphism f : A → A such that f(x) = 0. If f : A → A is not the zero

map then, since A is simple, Ker(f) is finite. On the other hand x is in Ker(f) which is a

contradiction with the fact that x is not torsion. �

Then one has the following result, which is a consequence of the Tate conjecture for

abelian varieties and a concrete incarnation of the Tate-conjecture for 1-motives.

Lemma 2.2.3.2. IfA is simple and x ∈ A(K) is not torsion, thenEndpDiv(K)(Mx[p
∞]) ≃

Zp.

Proof. Applying the functor HompDiv(K)(Mx[p
∞],−) to the exact sequence (2.2.1.2) we

get an exact sequence

0→ HompDiv(K)(Mx[p
∞], A[p∞])→ EndpDiv(K)(Mx[p

∞])→ HompDiv(K)(Mx[p
∞],Qp/Zp).

Since HompDiv(K)(A[p
∞],Qp/Zp) = 0, applying the functor HompDiv(K)(−,Qp/Zp)

to (2.2.1.2) one sees that HompDiv(K)(Mx[p
∞],Qp/Zp) ≃ EndpDiv(K)(Qp/Zp) ≃ Zp.

Hence, it is then enough to prove that

HompDiv(K)(Mx[p
∞], A[p∞]) = 0.

SinceHompDiv(K)(Qp/Zp, A[p
∞]) = 0, applying the functorHompDiv(K)(−, A[p

∞])
to the exact sequence (2.2.1.2) we get an exact sequence

0→ HompDiv(K)(M [p∞], A[p∞])→ EndpDiv(K)(A[p
∞])→ Ext1pDiv(K)(Qp/Zp, A[p

∞]).

Since HompDiv(K)(M [p∞], A[p∞]) is torsion free, we are left to show that the natural

map

EndpDiv(K)(A[p
∞])⊗Q→ Ext1pDiv(K)(Qp/Zp, A[p

∞])⊗Q

is injective.

Consider the commutative diagram

End(A) ⊗Qp A(K)⊗Qp

EndpDiv(K)(A[p
∞])⊗Q Ext1pDiv(K)(Qp/Zp, A[p

∞])⊗Q

ψx⊗Id

≃ AJp
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where ψx ⊗ Id is induced by the map ψx : End(A) → A(K) sending a morphism f to

f(x). Since K if finitely generated, A(K) is a finitely generated group, hence by Lemma

2.1.1.1AJp is injective. By the p-adic Tate conjecture for abelian varieties proved in [dJ98,

Theorem 2.6], the left vertical map is an isomorphism. So, since A is simple, we conclude

by using Lemma 2.2.3.1. �

2.2.4. Kummer class and semiabelian schemes. Let s ∈ A(S). As a second application of

the interpretation of Kum in terms of p-divisible groups we give a geometric interpretation

of the Cartier dual of the class of [Mx[p
∞]]. This will be important to prove Proposition

3.3.3.1. The dual of the 1-motive [Z→ A] is a semiabelian scheme

0→ Gm,S → Gs → A∨ → 0,

whereA∨ is the dual abelian variety, and the p-divisible groupGs[p
∞] of Gs is the Cartier

dualMs[p
∞]∨ ofMs[p

∞] (see for example [ABV05, Section 1.3]). Hence, the class of the

dual of the extension (2.2.1.2) in Ext1(A∨[p∞], µp∞) is the extension

0→ Gm[p∞]→ Gs[p
∞]→ A∨[p∞]→ 0,

associated to the p-divisible group of a semi-abelian S-scheme Gs → S.

3. ON THE INJECTIVITY OF THE ÉTALE ABEL-JACOBI MAP

In this section we prove the main theorem of the paper (Theorem 3.1.1) and its geomet-

ric variant (Theorem 3.4.1) assuming an overconvergence result (Proposition 4.1.2) which

will be proved in the next Section 4 (since it relies on different techniques).

3.1. Notation and statements. We assume that k is a finite field, K/k is a finitely gener-

ated field extension and A a K-abelian variety. Write p(A) (resp. r(A)) for the p-rank of

A (resp. the rank of A(K), which is finite by the Lang-Néron theorem) and if A1, . . . , An
are the simple isogeny factors of A, set p(A)min (resp. r(A)min) as the minimum of p(Ai)
(resp. of r(Ai)). If e ∈ End(A) ⊗ Qp, we write e[p∞] ∈ End(A[p∞]) ⊗ Qp (resp.

e[p∞]ét ∈ End(A[p∞]ét)⊗Q) for the induced morphism. Finally, set

A(S)p∞ := {x ∈ A(S) such that for every n ∈ N there exists a yn ∈ A(S) with pnyn = x}.

In this section we prove the following.

Theorem 3.1.1. Assume that r(A)min > 0. Then:

(1) A(Kperf) is not finitely generated if and only if and there exists an idempotent

0 6= e ∈ End(A)⊗Qp (i.e. e2 = e) such that 0 = e[p∞]ét ∈ End(A[p∞]ét)⊗Qp;

(2) A(Kperf)p∞ ⊆ A(Kperf)tors if and only if p(A)min > 0 .

Since A(Kperf)tors is finite by [GM06, Page 7], thanks to Corollary 2.2.2.3, Theorem

1.3.1.2 is equivalent to the following.

Theorem 3.1.2. Assume that r(A)min > 0. Then:

(1) The morphism

AJét
p : A(K)⊗Qp → Ext1pDiv(K)(Qp/Zp, A[p

∞]ét)⊗Q

is not injective if and only there exists an idempotent 0 6= e ∈ End(A)⊗Qp such

that 0 = e[p∞]ét ∈ End(A[p∞]ét)⊗Q;

(2) The morphism

AJét : A(K)⊗Q→ Ext1pDiv(K)(Qp/Zp, A[p
∞]ét)⊗Q

is not injective if and only if p(A)min = 0.
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3.2. Preliminaries and the first implication.

3.2.1. Reduction to A simple. Since the assumptions and the conclusions are stable by

products and isogenies of abelian varieties, we can assume that A is simple (that will be

used to apply Lemmas 2.2.3.1 and 2.2.3.2) and r(A) > 0. Since the statements with

p(A) = 0 are trivial, we can assume that p(A) > 0.

3.2.2. First implication. We first prove the if part of Theorem 3.1.2(1). Assume that there

exists an idempotent 0 6= e ∈ End(A)⊗Qp such that e[p∞]ét = 0 in End(A[p∞]ét)⊗Qp
. Chose an n such that pne =: u ∈ End(A)⊗Zp. Since e[p∞]ét = 0 and End(A[p∞]ét) is

torsion free, also u[p∞]ét = 0. Take a non torsion x ∈ A(K) (which exists by assumption).

Since A is simple, by Lemma 2.2.3.1, the map

ψx ⊗ IdQp
: End(A) ⊗Qp → A(K)⊗Qp

is injective, where ψx : End(A) → A(K) is the map sending f to f(x). Hence e(x) 6= 0
therefore u(x) 6= 0. The commutative diagram

A(K)⊗Qp Ext1pDiv(K)(Qp/Zp, A[p
∞]ét)⊗Q

A(K)⊗Qp Ext1pDiv(K)(Qp/Zp, A[p
∞]ét)⊗Q

AJét
p

u u=0

AJét
p

shows that u(x) goes to zero in Ext1pDiv(K)(Qp/Zp, A[p
∞]ét) ⊗ Q . This concludes the

proof of the if part of Theorem 3.1.2(1).

3.2.3. Reduction to Proposition 3.2.3.1. We are left to prove the only if part of Theorem

3.1.2(1) and 3.1.2(2). We first show that the following Proposition 3.2.3.1 implies Theorem

3.1.2.

Proposition 3.2.3.1. Let x ∈ A(K) ⊗ Qp be such that AJp(x) = 0. Then there exists

an idempotent 0 6= e ∈ End(Mx[p
∞]) ⊗ Qp which preserves the sub p-divisible group

A[p∞] ⊆ Mx[p
∞] and it induces a non-zero idempotent e[p∞] ∈ End(A[p∞]) ⊗ Qp

acting as 0 on Ax[p
∞]ét.

Assume that Proposition 3.2.3.1 holds. Then Theorem 3.1.2(2) follows from it and

Lemma 2.2.3.1. To deduce Theorem 3.1.2(1), we use that, by the p-adic Tate conjecture

for abelian varieties proved in [dJ98, Theorem 2.6], the natural map

End(A)⊗Qp
≃
−→ EndpDiv(K)(A[p

∞])⊗Qp

an isomorphism, so that e[p∞] is induced by a non-zero idempotent in End(A)⊗Qp acting

as 0 on Ax[p
∞]ét. Hence we are left to prove Proposition 3.2.3.1.

3.3. Proof of Proposition 3.2.3.1.

3.3.1. Spreading out. Let x ∈ A(K)⊗Qp be such that AJp(x) = 0. To prove Proposition

3.2.3.1 we can replace x with pnx hence we may and do assume that x ∈ A(K) ⊗ Zp is

not torsion. Let

(3.3.1.1) 0→ A[p∞]→Mx[p
∞]→ Qp/Zp → 0

and

(3.3.1.2) 0→ A[p∞]ét →Mx[p
∞]ét → Qp/Zp → 0
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be the extensions associated to AJp(x) and AJ ét
p (x) respectively. Since AJ ét

p (x) = 0, the

exact sequence (3.3.1.2) splits. Replacing k with a finite field extension, we can assume

that k is algebraically closed in K and take an affine smooth geometrically connected k-

variety X with function field K . Replacing X with a dense open subset, we can assume

thatA extends to an abelian scheme A→ X with constant Newton polygon and that, since

A(K) is finitely generated, the natural map A(X)⊗Zp → A(K)⊗Zp is an isomorphism.

In particular, x extends to a non-torsion element t ∈ A(X) ⊗ Zp. By [dJ95], the natural

functor

pDiv(X)⊗Q→ pDiv(K)⊗Q

is fully faithful, so that our assumption is equivalent to the fact that the sequence

(3.3.1.3) 0→ A[p∞]ét
X →Mt[p

∞]ét
X → Qp/Zp → 0

splits in pDiv(X)⊗Q and we know (by Lemma 2.1.1.1) that the exact sequence

(3.3.1.4) 0→ A[p∞]X →Mt[p
∞]X → Qp/Zp → 0

does not split.

3.3.2. F-isocrystals. Let F-Isoc(X) be the category of F-isocrystals over X (as defined

for example in [Mor19, Section A.1]). By [Ked22, Corollary 4.2], every F-isocrystals E

with constant Newton polygon admits a slope filtration

0 = Es ⊆ Es+1 · · · ⊆ Er−1 ⊆ Er = E

such that Ei/Ei−1 is isoclinic of some slope si ∈ Q with si < si+1. By [BBM82], there is

a fully faithful controvariant functor D : pDiv(X)⊗Q→ F-Isoc(X). Write

E := D(A[p∞]); O
crys
X := D(Qp/Zp); Et := D(Mt[p

∞]X),

so that E and Et have constant Newton polygon by the preliminary reduction. Recall that

the slopes appearing in a F-isocrystal associated to a p-divisible group are between 0 and

1 and that a p-divisible group is étale if and only after applying D has constant slope 0.

Hence

E1 := D(A[p∞]ét
X) and Et,1 := D(Mt[p

∞]ét
X)

are the sub F -isocrystals of minimal slope of E and Et, respectively. Then the sequences

(3.3.1.3) and (3.3.1.4) are sent to exact sequences

(3.3.2.1) 0→ O
crys
X → Et → E→ 0 and

(3.3.2.2) 0→ O
crys
X → Et,1 → E1 → 0.

By fully faithfulness of D : pDiv(X) ⊗ Q → F-Isoc(X) and the assumption, the se-

quence (3.3.2.2) splits and (3.3.2.1) does not split.

3.3.3. Overconvergence. Let F-Isoc†(X) be the category of overconvergent F-isocrystals

over X (see for example [Ber96, Definition 2.3.6]). By [Ber96, Theorem 2.4.2], every F -

isocrystals is convergent, hence there is a natural functor Φ : F-Isoc†(X)→ F-Isoc(X).

Recall that, by [Ked04], the functor Φ : F-Isoc†(X) → F-Isoc(X) is fully faith-

ful, so that we can identify F-Isoc†(X) with a full subcategory of F-Isoc(X). If G in

F-Isoc(X) is in the essential image of Φ : F-Isoc†(X) → F-Isoc(X) we say that it is

overconvergent and we write G† for its (unique) overconvergent extension. By [Éte02], E

is overconvergent. As a consequence of Proposition 4.1.2, that will be proved in Section 4,

and the geometric interpretation of Et given in Section 2.2.4, we can show that Et is also

overconvergent.
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Proposition 3.3.3.1. The F-isocrystal Et is overconvergent.

Proof. Since inside Ext1F-Isoc(X)(E,O
crys
X ) the class of Et is a Qp-linear combination of

classes Ev with v ∈ A(X) and the morphismExt1F-Isoc†(X)(E
†,O†

X)→ Ext1F-Isoc(X)(E,O
crys
X )

is Qp-linear, we can assume that t ∈ A(X). It is then enough to show that E∨
t
(1) (where

(−)∨ is the dual F-isocrystals and (−)(1) is the Tate twist) is overconvergent. By Section

2.2.4 and the compatibility of the functor D with dualities ([BBM82, (5.3.3.1)]), one has

that E∨
t
(1) identifies with D(G[p∞]), where G[p∞] is the p-divisible group of an algebraic

groupG which is an extension

0→ Gm → G→ A→ 0

of an abelian variety and a Gm. Then the overconvergence of E∨
t
(1) follows from Propo-

sition 4.1.2, that we will prove in the next Section 4. �

Since E and Et are overconvergent and the functor Φ : F-Isoc†(X) → F-Isoc(X) is

fully faithful, the non-split exact sequence (3.3.2.1) lifts to a non-split exact sequence

(3.3.3.2) 0→ O
†
X → E

†
t

π
−→ E† → 0.

On the other hand, by construction, the exact sequence (3.3.2.2) is obtained by applying

Φ : F-Isoc†(X)→ F-Isoc(X) to (3.3.3.2) and then base changing it along E1 → E.

3.3.4. Minimal slope conjecture. Chose a splitting s : E1 → Et,1 of the sequence (3.3.2.2).

Consider the smallest overconvergent object Ẽ† contained in E
†
t

and containing s(E1).

Since p(A) > 0, we have Ẽ† 6= 0. By the recent work [Tsu23] and its improvement

done in [D’A23, Theorem 4.1.3], one has s(E1) = Ẽ1 so that Ẽ† ∩ O
crys
X = 0. Hence the

natural composite map

Ẽ† →֒ E
†
t

π
−→ E†

is injective and it induces an isomorphism π : Ẽ† ≃
−→ π(Ẽ†). By construction, the sequence

(3.3.3.2) splits after base change along π(Ẽ†) ⊆ E†.

Since the sequence (3.3.3.2) does not split, π(Ẽ†) 6= E†. By a result of Pál ([Pál22, The-

orem 1.2]), the overconvergent F-isocrystals E† is semisimple hence there is a projection

ẽ : E† → E† onto π(Ẽ†). Since Ẽ contains s(E1), the non-zero idempotent 1 − ẽ acts as

zero on E1. By the faithfulness of the composite functor F-Isoc†(X)
Φ
−→ F-Isoc(X)

D
−→

pDiv(X)⊗Q, we get a a non-zero idempotent e[p∞] in End(A[p∞])⊗Qp acting as zero

on A[p∞]ét. Observe that the composite map

E
†
t

π
−→ E† ẽ

−→ π(Ẽ†)
π−1

−−→ Ẽ† ⊆ E
†
t

is a projection onto Ẽ†. Hence there exists a non-zero idempotent e ∈ End(E†
t
) ≃

EndpDiv(K)(Mx[p
∞])⊗Qp which induces the non-zero idempotent in e[p∞] ∈ End(A[p∞])⊗

Qp acting as 0 on Ax[p
∞]ét. This concludes the proof of Proposition 3.2.3.1.

3.4. Geometric variant. Write L := kK ⊆ K for the field generated by k and K
in K. Let TrK/k(A) be the (K/k)-trace of AK (i.e. the biggest k-isotrivial quotient

AK → TrK/k(A) of AK ). A modification of the previous arguments gives us the follow-

ing geometric variant.

Theorem 3.4.1. Assume that r(A)min > 0. Then:
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(1) If TrK/k(A) = 0, then A(Lperf) is not finitely generated if and only if there exists

an idempotent 0 6= e ∈ End(AL)⊗Qp such that 0 = e[p∞]ét ∈ End(AL[p
∞]ét)⊗

Qp;

(2) A(Lperf)p∞ ⊆ A(Lperf)tors if and only if p(A)min > 0.

Proof. Since A(L)tf is finitely generated by the Lang-Néron theorem and the action of

π1(K) on End(A) factors through a finite quotient, there exists a finite extension K ⊆
K ′ ⊆ L such that A(K ′) ⊗ Q = A(L) ⊗ Q and End(AK′) = End(AL). For ? ∈ {∅, p}
we consider the commutative diagrams

A(K ′)⊗Q? Ext1pDiv(K′)(Qp/Zp, A[p
∞]ét)⊗ Q H1(π1(K

′), Tp(A))⊗Q

A(L)⊗Q? Ext1pDiv(L)(Qp/Zp, A[p
∞]ét)⊗Q H1(π1(L), Tp(A)) ⊗Q

≃

≃

φ

≃

Moreover, if Tr(A) = 0 then A(Lperf)tors is finite by [AD22]. Since A(L)tf is finitely

generated, by Corollary 2.2.2.3 and Theorem 3.1.2 it is enough to show that φ is injective.

Since π1(L) ⊆ π1(K
′) is an normal subgroup, the Hochschild-Serre spectral sequence

gives us an exact sequence

0→ H1(π1(K
′)/π1(L), Tp(A)

π1(L))⊗Q→ H1(π1(K
′), Tp(A))⊗Q→ H1(π1(L), Tp(A))⊗Q.

Since π1(K
′)/π1(L) is pro-cyclic , one has

H1(π1(K
′)/π1(L), Tp(A)

π1(L))⊗Q ≃ (Tp(A)
π1(L) ⊗Q)π1(K′)/π1(L)

where the last term are the coinvariants. But since A(Kperf)[p∞] is finite, one has

(Tp(A)
π1(L)⊗Q)π1(K

′)/π1(L) = (Tp(A)⊗Q)π1(K
′) = 0 = (Tp(A)

π1(L)⊗Q)π1(K′)/π1(L),

and this concludes the proof. �

4. OVERCONVERGENCE

4.1. Statement. Let X be a smooth geometrically connected variety over a finite field k
of characteristic p and let

(4.1.1) 0→W → G→ A→ 0

be an extension of an abelian X-scheme A by a torus W over X . By applying the

Dieudonné functorD : pDiv(X)⊗Q→ F-Isoc(X) to the exact sequence 0→W [p∞]→
G[p∞]→ A[p∞]→ 0, we get an exact sequence

0→ D(A[p∞])→ D(G[p∞])→ D(W [p∞])→ 0.

The main result of this section is the following.

Proposition 4.1.2. The F -isocrystal D(G[p∞]) is overconvergent.

To prove Proposition 4.1.2, we reduce to the case in which X is a curve and the abelian

scheme has everywhere semistable reduction. Then, in Section 4.3, we use a result of

Trihan ([Tri08]) to reduce to prove a semistability result forG[p∞]. We conclude the proof

in Sections 4.4 and 4.5, proving this semistability.
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4.2. Preliminary reductions. By [GKU21, Lemma 4.2], to prove overconvergence, we

can freely replace X with a smooth variety Y admitting a dominant morphism Y → X .

So we can assume that W ≃ Gmm,X and that A(X)[n] ≃ (Z/nZ)2g for some fixed

n ≥ 3 coprime with p. By [DK73, Proposition 4.7, Exposé IX, Pag. 48], this last con-

dition implies that, for every smooth curve C and every morphism C → X , the abelian

scheme A ×X C has everywhere semistable reduction. Moreover, by de Jong’s alteration

theorem ([dJ98]), we can assume that X admits a compactification whose complemen-

tary is a normal crossing divisor. In this situation, by [dJ98, 2.5] and [Tri08, Corollary

3.14], for every smooth curve C and every morphism f : C → X , the F-isocrystals

f∗D(A[p∞]) ≃ D(A×X C[p∞]) has everywhere semistable reduction. Therefore we can

apply the cut by curve criterion for overconvergence proved in [GKU21, Lemma 6.7] to

reduce to the case in which X is a curve. So from now we assume that X is a curve with

smooth compactificationX and A has every everywhere semistable reduction.

4.3. Passing to p-divisible groups. For every x ∈ X − X we let Sx be the spectrum

of the completion of X in x and ηx the generic point of Sx. Write Aηx and Gηx for the

base change of A → X and G → X trough ηx → X . By [Tri08, Theorem 4.5], to prove

Proposition 4.1.2, it is enough to show that for every x ∈ X − X , the p-divisible group

Gηx [p
∞] is semistable, i.e. that there exists a filtration

Gηx [p
∞]t ⊆ Gηx [p

∞]f ⊆ Gηx [p
∞]

such that:

(1) Gηx [p
∞]f and Gηx [p

∞]/Gηx [p
∞]t extend to p-divisible groups G[p∞]x,1 and

G[p∞]x,2 overSx. In this case, by [dJ98], the natural mapGηx [p
∞]f → Gηx [p

∞]/Gηx [p
∞]t

extends to a map G[p∞]x,1 → G[p∞]x,2;

(2) Ker(G[p∞]x,1 → G[p∞]x,2) is a multiplicative p-divisible group andCoker(G[p∞]x,1 →
G[p∞]x,2) is an étale p-divisible group.

Since the situation is now entirely local, we drop the subscript x from the notation.

4.4. Construction of the filtration. By [BLR90, Proposition 7, Pag. 292] and its proof,

there exists an exact sequence of smooth group S-schemes with connected fibers

0→W → G
0 → A

0 → 0,

where A → S be the Néron-model of Aη and A0 → S is its connected component of the

identity, having as generic fiber the sequence

0→Wη → Gη → Aη → 0.

Since Aη has semistable reduction, the special fiber A0
s fits into an exact sequence

0→ T → A0
s → B → 0

with T a k-torus and B a k-abelian variety. Let A0[pn]f ⊆ A0[pn] be the maximal sub-

group which is finite over S and A0[pn]t ⊆ A0[pn]f be the unique lifting of the finite

subgroup T [pn] ⊆ A0
s[p

n] to A0[pn]f . For ? ∈ {t, f}, we define G0[pn]? ⊆ G0[pn] via the

following cartesian diagram with exact rows:

(4.4.1)

0 W [pn] G0[pn]? A0[pn]? 0

0 W [pn] G0[pn] A0[pn] 0.

�
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Taking the direct limit with n and applying [DK73, Proposition 5.6, Exposé IX, Pag. 180]

and [Mes72, (2.4.3)], we get a filtration G0[p∞]t ⊆ G0[p∞]f ⊆ G0[p∞], of p-divisible

groups. Set

G[p∞]tη := G0[p∞]tη; G[p∞]fη := G0[p∞]fη; A[p∞]tη := A0[p∞]tη; A[p∞]fη := A0[p∞]fη;

so that there are filtrations

G[p∞]tη ⊆ G[p
∞]fη ⊆ Gη[p

∞] and A[p∞]tη ⊆ A[p
∞]fη ⊆ Aη[p

∞].

4.5. End of the proof. By [DK73, Exposé IX], the inclusions A[p∞]tη ⊆ A[p∞]fη ⊆
Aη[p

∞] produce a filtration of A[p∞]η giving semistable reduction for Aη[p
∞], in the

sense that:

(1) A[p∞]fη and Aη[p
∞]/A[p∞]tη extend to p-divisible groups A[p∞]1 and A[p∞]2

over S (see [DK73, Proposition 5.6, Pag. 380, Exposé IX]).

(2) If fA : A[p∞]1 → A[p∞]2 denotes the natural induced map, then Ker(fA) is a

multiplicative p-divisible group and Coker(fA) is an étale p-divisible group (This

follows from the orthogonality theorem [DK73, Proposition 5.2, Pag. 372, Exposé

IX], which implies that Ker(fA) ≃ A0[p∞]t and Coker(fA) ≃ ((A∨)0[p∞]t)∨,

where A∨ is Néron-model of the dual abelian A∨
η and (A∨[p∞]t)∨ is the Cartier

dual of A∨[p∞]t).

To conclude the proof we now deduce for (1) and (2) above that the same properties holds

for the filtration G[p∞]tη ⊆ G[p
∞]fη ⊆ Gη[p

∞].

(1) By constructionG[p∞]fη extends overS to the p-divisible groupG[p∞]1 := G0[p∞]f .

On the other hand, the diagram (4.4.1) shows thatGη[p
∞]/G[p∞]tη ≃ Aη[p

∞]/A[p∞]tη.

So that we can set G[p∞]2 := A[p∞]2.

(2) Let f : G[p∞]1 → G[p∞]2 be the induced morphism. We are left to prove that

Ker(f) and Coker(f) are p-divisible groups and Ker(f) is multiplicative and

Coker(f) is étale. This can be deduced from the analogues properties for A[p∞]1
and A[p∞]2, thanks to the commutative diagram with exact rows and columns:

0 W [p∞] Ker(f) Ker(fA) 0

0 W [p∞] G[p∞]1 A[p∞]1 0

G[p∞]2 A[p∞]2

Coker(f) Coker(fA).

≃

≃
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