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Macroscopic dynamics of superfluid 3He with a spatially modulated pair density wave
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We discuss the macroscopic behavior of the superfluid 3He phase (pair density wave phase) with a spatially
modulated pair density wave recently observed experimentally. As an order parameter we assume, based on
the experimental results and a Landau-type model, a variation of the phase of the macroscopic wave function
coupled to spatially modulated plane waves of the macroscopic wave function in the plane perpendicular to the
confinement. As a result we find only one true Goldstone mode in orbit space coupling the superfluid aspects to
the spatial modulations of the order parameter in the plane of the sample. This coupling is predicted to lead to
a propagating mode sharing aspects of second sound and acoustic waves arising from the spatial variations of
the order parameter. Due to the coupling of the phase of the order parameter to in-plane spatial modulations, the
velocity of first sound becomes anisotropic. In addition, the velocities of first and second sound reflect the static
and dynamic coupling terms to the order parameter. Fourth sound in contrast, the velocity of which also becomes
anisotropic, couples only to one static cross coupling associated with density variations and not to any dynamic
cross-coupling terms. Therefore measurements of the fourth sound velocity could be used to measure quite
directly a static cross-coupling term. The situation studied here is thus qualitatively different from that suggested
for supersolid 4He for which one has a solid phase with broken translational symmetry associated with a density
wave as in a usual solid. As for spin space we obtain, neglecting the tiny magnetic dipole interaction and in
the absence of a magnetic field, three pairs of spin waves closely resembling the results of the planar distorted
B phase. Excitations in spin space in the presence of the magnetic dipole interaction and/or an external magnetic
field are also investigated briefly.
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I. INTRODUCTION

In recent experiments on fairly thin layers of superfluid
3He with a typical layer thickness of about 1 µm a new phase
[pair density wave (PDW) phase] has been described with a
spatially modulated superfluid order parameter in the plane
of the layers [1–4]. The experimental techniques used were
measurements of the order parameter distortions with NMR
[1] and microfabricated fourth sound resonators [2–4]. This
was followed up rather recently by a first Ginzburg-Landau-
type description [5].

The spatially modulated superfluid phases in thin layers
of 3He fall into the category, anticipated a long time ago,
for s-wave superconductors with a spatially modulated order
parameter as predicted by FFLO (Fulde, Ferrell, Larkin, and
Ovchinnikov) [6,7]. We note, however, that for these classi-
cal superconductors such a phase has apparently never been
detected experimentally.
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We would like to point out that there is an important dif-
ference in the spatial structure of the order parameter between
the FF state [6] and the LO state [7]. For the FF state a plane-
wave state is used for the order parameter, thereby modulating
the phase of the macroscopic wave function, while for the
LO state the order parameter has a spatial dependence of the
form cos(qr), effectively modulating the amplitude. Through-
out the present paper we will use the plane-wave form of
the order-parameter phase and thus treat the PDW state as an
FF state. A similar approach has been used before for super-
fluid 3He/4He mixtures [8].

It is also worthwhile in the present context to mention
recent experimental developments related to spatially mod-
ulated dipolar supersolids [9–13], which are still of a fairly
small aspect ratio from a continuum perspective, but appear
as a natural candidate for future examinations of a system
with spatially modulated order parameter. Quite recently there
has been substantial theoretical progress regarding the FFLO
state in the field of cold atom optics making use of the
technique of auxiliary field quantum Monte Carlo simula-
tions [14] profiting from methodological advances [15]. It was
shown [16] that for the case of a fairly large two-dimensional
spin-polarized Fermi gas of attractive fermions strong FFLO
correlations emerge in the limit of high density and small spin
polarization.

Here we present a macroscopic description of the spa-
tially modulated phases observed recently in thin layers of
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superfluid 3He, for which the phase of the order parameter
is spatially modulated. In addition to recent experimental
results the work described here has been stimulated by the
microscopic descriptions of Aoyama [17] and in the group of
Sauls [18].

The spatial variations of the order-parameter phase repre-
sent a qualitative difference to all the other phases observed
and analyzed for superfluid 3He in the bulk [19–22] as
well as in aerogels [23–30], including the superfluid phases,
which have been found to exist stably only for sufficiently
high magnetic fields, namely, the A1 phase in the bulk
[20,21] and the two new phases found quite recently in
strongly anisotropic aerogels in sufficiently high magnetic
fields [31].

There is also an important aspect that sets apart the su-
perfluid phases described here from the classical FFLO-type
description of superconductors [6,7] and from the FF state in
superfluid 3He/4He mixtures [8]: in the phases analyzed here
in detail the additional spin degrees of freedom of the order
parameter can give rise to spin waves.

We use the approach of macroscopic dynamics in the same
spirit as it has been applied to other superfluid systems starting
with Khalatnikov for superfluid 4He [32]. These applications
to the superfluid phases of 3He include in the bulk the A, B,
and A1 phases [33–41] as well as the more recently discovered
superfluid phases of 3He in strongly anisotropic aerogels, both
without (including, in particular, the polar phase) [42] and in
sufficiently high magnetic fields [43].

We emphasize that this technique is not confined to su-
perfluid systems, but has been applied to numerous other
condensed matter systems with spontaneously broken con-
tinuous symmetries [44–46] including magnetic systems
[47], liquid crystals [45,46,48], and solids [44,45]. In some
cases the classical hydrodynamic variables, conserved quan-
tities, and variables associated with spontaneously broken
continuous symmetries, are supplemented by macroscopic
variables, that are not strictly hydrodynamics, but relax on
a sufficiently long timescale [32,46]. For the systems inves-
tigated here this aspect plays a role for the effects of the
magnetic dipole interaction and of small external magnetic
fields [34,35].

Finally we note an important difference to the supersolid
phase anticipated for solid 4He [49,50]. The order param-
eter studied there is completely different from that of the
superfluid phase of 3He studied here. In particular, for the
superfluid solid phase in 4He a displacement field is arising
as an independent variable. In the context of hydrodynamics
and macroscopic dynamics such a supersolid phase has been
studied by Saslow [51] and Liu [52].

The paper is organized as follows. In Sec. II we present
the relevant variables due to conservation laws and due to
broken symmetries. The macroscopic orbital dynamics of the
spatially modulated phase is discussed in detail in Sec. III.
This includes, in particular, an analysis of the influence of
the spatial modulations on the structure of soundlike exci-
tations. The spin dynamics along with a discussion of the
coupling to external magnetic fields and the magnetic dipole
interactions is described in Sec. IV. In Sec. V we give a
summary.

II. THE RELEVANT MACROSCOPIC VARIABLES
FOR THE PDW PHASE

A. Preliminaries

In this paper we will use linearized hydrodynamics
[45,46,53] to describe the macroscopic behavior of the spa-
tially modulated superfluid 3He under spatial confinement
(PDW phase) as it has been experimentally observed and
modeled in the framework of a Landau-type energy recently.
We will derive the balance equations describing the be-
havior of the system in the low-frequency, long-wavelength
limit. Low frequencies in this context means small com-
pared to all collisional frequencies while wavelengths are
considered to be long if they are large compared to all mi-
croscopic lengths. Naturally these conditions for the purely
hydrodynamic regime impose rather severe constraints on
the frequencies and wave vectors for which this approach is
strictly valid. Nevertheless, the hydrodynamic description and
its generalization to include variables that relax on a long, but
finite timescale have turned out to be rather useful also for the
superfluid phases of 3He [21].

The conserved quantities in superfluid 3He are ρ (mass
density), ε (energy density), and gi (momentum density) just
as in any normal fluid. The Latin indices refer to vector
components in a suitable Cartesian frame (orbital space). All
variables are related to the entropy density σ by the Gibbs
relation,

dεc = T dσ + μdρ + vn
i dgi (1)

thereby defining the thermodynamic quantities, temperature
T , chemical potential μ, and normal velocity vn

i .

B. Hydrodynamic variables due to internal structures
that break symmetries

Since the 3He atoms have spin 1
2 each, there is the mag-

netization density, sν . The frame to describe the orientation
of spins is a priori not the same as that of, e.g., the flow
variables. Therefore it is customary to use in “spin space” a
different Cartesian frame indicated by greek indices. It turns
out that, neglecting the tiny magnetic dipole-dipole interaction
(spin-orbit coupling), the orientations of spin and orbital space
are independent and the hydrodynamics in orbital and spin
space can be developed separately.

In the absence of a magnetic field sν is a conserved quan-
tity, but acquires a source term in its dynamic equation due to
the field. The energy density

dεs = χνμd∇μsν + h′
νdsν ≡ hνdsν, (2)

where h′
ν is zero in the absence of a magnetic field. In linear

order one can simply condense the notation by using the
conjugate hν ≡ h′

ν − ∇μχνμ.
In superfluid 3He the neutral He atoms combine to form

Cooper pairs similar to those found in superconductors which
can be viewed as composite bosons. While the electrons in
superconductors are in a spin-singlet s-wave state, the He
atoms are in a spin-triplet p-wave state. This fact clearly
distinguishes the two situations: The pair of electrons has no
internal structure, but the pair of He atoms is intrinsically
anisotropic. Because of the spin-triplet and p-wave pairing the
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order parameter Tν j has to be a complex 3 × 3 matrix whose
expectation value can in general be written as [39,54]

〈Tν j (c, r)〉 = F (|c|)Aν j (r),

Aν jA
∗
ν j = 1, (3)

where ν is an index in spin space, j an index in orbital space,
r is the position vector of the center of gravity, and c is the
relative vector between the two He atoms.

The normalization amplitude F describes the degree of
ordering and is considered a microscopic variable, which does
not appear in the macroscopic dynamics of the system.

The order parameter for the homogeneous planar distorted
B phase (PDB) reads [1,2,5]

AB
ν j (z) = [

�h(z)
(
ex
νex

j + ey
νey

j

) + �v (z)ez
νez

j

]
exp(iϕ̃), (4)

where ex,y,z
j and ex,y,z

ν are the components of a Cartesian triad
of unit vectors in orbit and spin space, respectively. The rela-
tive orientation of the two triads is arbitrary.

The z direction (in orbit space) is normal to the confine-
ment layer plane, given by the x-y plane. The horizontal gap
in this plane is �h(z), while �v (z) is the vertical gap along the
z direction. The superfluid phase is ϕ̃. It is important to note
that the phase variation is odd under time reversal.

Equation (4) contains the planar B phase as a special case
for �v ≡ 0 and the isotropic B phase for �v = �h. The order
parameter AB

ν j (z) is invariant under SO(2)Lz+Sz rotations of the
orbital and spin coordinates about the z axis. It factorizes in
the spin and orbit space variables.

In the PDW phase there is a periodic variation of the
superfluid order parameter in the layer plane and the full order
parameter can be written as

Aν j (z, r⊥) = AB
ν j (z)exp(−i q · rh) (5)

[5] with the two-dimensional position vector rh = (x, y) and
where q is related to the momentum density of the superfluid
condensate [17]. It has the same symmetry signatures as a
velocity, changing sign under time reversal as well as under
spatial inversion. We take q as a constant on the macroscopic
level, i.e., fluctuations have already relaxed to zero on a mi-
croscopic timescale.

In the following we neglect biaxiality effects and assume
uniaxial symmetry coming exclusively from q lying in the
plane of the sample, and with ẑ the layer normal.

The vector q = (q1, q2) defines the spatial structure of the
modulations in the PDW phase, e.g., q1 = qx, q2 = qy for a

quadratic structure and q1 =
√

3
2 qx + 1

2 qy, q2 = −
√

3
2 qx + 1

2 qy

for a hexagonal one.
The order parameter in Eq. (5) contains the effective phase

ϕ = ϕ̃ − q · rh that consists of a part related to gauge transfor-
mations and a part due to periodic in-plane variations. Thus,
both operations, gauge transformations, ϕ̃ → ϕ̃0 + δϕ̃, and
translations in the plane, rh → r0

h + uh, will change the order
parameter Aν j due to

δϕ = δϕ̃ − q·uh. (6)

We emphasize that in the present context the behavior of ϕ

and q under time reversal and parity is an intrinsic property
of the equilibrium phase, in contrast to externally driven sys-
tems under the influence of an external force. It is therefore

only possible with respect to q to change the behavior under
time reversal and spatial inversion simultaneously in order to
preserve the symmetry properties of q and thus also of δϕ.
This aspect will become evident again further below when dis-
cussing the normal modes of the present spatially modulated
phase of superfluid 3He.

We note that ϕ is not fixed energetically, and is therefore
the additional hydrodynamic variable. This Goldstone mode,
the linear combination between a gauge transformation and a
translation, one can call a relative broken translation/gauge
symmetry, along the same lines of reasoning as Stern and Liu
[8] for the FF state [6].

Instead of the phase variable, only its gradients can enter
the energy and the hydrodynamic description

vs
i = h̄

2m
∇iϕ = h̄

2m
(∇iϕ̃ − q j∇iu j ) (7)

thereby also guaranteeing translational invariance.
The two triads of unit vectors in orbit and spin space, eν

and e j , do not allow one to identify any preferred direction,
neither in spin space nor in orbit space, just as for the ordinary
B phase. Neglecting the very small dipole-dipole interaction,
the relative orientation of the two triads in equilibrium, de-
scribed by a rotation matrix between the two frames, nν j is
not fixed energetically, just as in the bulk B phase. Therefore,
deviations δnν j are the hydrodynamic variables (as in the B
phase) and enter the energy density as

dεPBW
B = 
n

ν jkd∇ jnνk . (8)

Due to the special properties of a rotation matrix, e.g.,
nνinμi = δνμ and nνinν j = δi j , the δnν j contains three inde-
pendent variables according to the three spontaneously broken
rotational symmetries. They can also be parametrized by a
unit vector describing the rotation direction plus the rotation
angle. nν j is even under time reversal and even under spatial
inversion.

The three rotation angles of spin space relative to orbit
space leave the overall rotation invariance generated by the
total angular momentum, J, unbroken.

The small deviations from the equilibrium rotation matrix,
nν j , consistent with the properties of a rotation matrix, can be
described by three rotation angles

δ�α = 1
2εαμνn0

μ jδnν j, (9)

which are the expectation values of the operators

δ�̂α (�x) = 3
4εαμν

[
A∗0

μ j Âν j (�x) + A0
μ j Â

+
ν j (�x)

]
(10)

with the commutator relations

〈[δ�̂α, L̂β ]〉 = −〈[δ�̂α, Ŝβ ]〉 = −ih̄δαβ (11)

and where

〈[δ�̂α, N̂]〉 = 0 (12)

since rotations in spin space do not break gauge invariance.
Thus we have in total four Goldstone modes, three for

the relative motion of orbit and spin space and precisely one
for the combination of broken gauge symmetry and broken
translational symmetry as associated with the hexagonal two-
dimensional density waves in the plane of the sample.
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III. THE ORBITAL DYNAMICS OF THE PDW PHASE

In the preceding section we have characterized the hydro-
dynamic variables characteristic of the PDW phase. Here we
will derive macroscopic equations for this superfluid phase
making use of linear irreversible thermodynamics including
the local formulation of the first and second law of thermo-
dynamics as well as symmetry properties. The latter includes
the behavior under parity, time reversal, and Galilei transfor-
mations, as well as under rotations and translations.

To derive the full set of dynamic equations is then a
two-step procedure [46,55]. First one writes down the Gibbs
relation, the local formulation of the first law of thermody-
namics, for the hydrodynamic variables. This way one defines
the thermodynamic conjugate quantities or thermodynamic
forces. The thermostatic behavior is then obtained by expand-
ing the generalized energy into the hydrodynamic variables
taking into account all symmetry properties. By then taking
the (variational) derivative of the generalized energy with
respect to the variables one obtains the thermodynamic forces.

In the second step one writes down first the dynamic equa-
tions for the three types of variables in macroscopic dynamics:
conservation laws for the conserved variables and balance
equations for the variables associated with spontaneously
broken continuous symmetries and with macroscopic vari-
ables, which relax on a long, but finite timescale. These
dynamic equations contain currents and quasicurrents asso-
ciated with the dynamics of the variables. To close the system
of equations in the framework of linear irreversible thermo-
dynamics one then expresses the current and quasicurrents
in relations linear in the thermodynamic forces. In addition,
one splits all currents and quasicurrents into reversible (no en-
tropy generation) and into irreversible contributions [positive
entropy (or heat) generation]. The irreversible contributions
in the currents and quasicurrents can be derived from a dis-
sipation function, which is an expansion quadratic in the
thermodynamic forces, by taking a (variational) derivative
with respect to the thermodynamic forces. When splitting
the currents and quasicurrents into reversible and irreversible
contributions the behavior under time reversal plays a crucial
role.

In this section on the derivation of the macroscopic dy-
namics of the PDW phase we will comment in some detail
on the points outlined above. It seems worthwhile to mention
that this program has been carried out before for the three
superfluid phases arising in 3He in the bulk: the superfluid
A phase [33,34,37–39] and the superfluid B phase [35,39], as
well as for the superfluid A1 phase [36,40,41], which arises
only in a magnetic field.

Throughout the bulk of this section we focus on the orbital
dynamics of the PDW phase and comment on the influence of
the spin degrees of freedom and their coupling to the orbital
degrees of freedom in Sec. IV.

A. Statics and thermodynamics

To obtain the static properties of our system we formulate
the local first law of thermodynamics relating changes in
the entropy density σ to changes in the hydrodynamic and
macroscopic variables discussed above. According to the dis-
cussions in Sec. II, Eqs. (1) and (7), we get the Gibbs relation

for the variables acting in orbital space

dε = T dσ + μdρ + vn
i dgi + λs

i dvs
i . (13)

The thermodynamic conjugates, temperature, T , chemical po-
tential, μ, normal velocity, vn

i , and λs
i , are defined as partial

derivatives of the energy density with respect to the appropri-
ate variables [46]. Rotational invariance of the energy requires
vn

i g j + λs
i v

s
j = vn

j gi + λs
jv

s
i .

Let us list the symmetry properties used: Scalar quantities
ε, σ , ρ, and their conjugates, are even under parity and even
under time reversal. The (polar) vectors gi, vs

i , and their con-
jugates, as well as qi, are odd under parity and odd under time
reversal.

The spin degrees of freedom will be discussed in Sec. IV
below.

The relations between variables and conjugates can be
derived from an energy functional, E = ∫

ε dV , which must
be invariant under time reversal as well as under parity and,
in addition, must be invariant under rigid rotations and rigid
translations, and be covariant under Galilei transformations.

We find in harmonic approximation

ε = 1

2
ρ0

(
ρs

ρn

)
i j

vs
i v

s
j + 1

2

(
1

ρn

)
i j

gig j −
(

ρs

ρn

)
i j

vs
i g j

+ 1

2
cρρ (δρ)2 + 1

2
cσσ (δσ )2 + cσρ (δσ )(δρ)

+ q̄i(d
σ δσ + dρδρ)

(
ρ0v

s
i − gi

)
(14)

with q̄i ≡ h̄
2m qi

The first line has the standard two-fluid structure of su-
perfluids, where the density material tensors take the uniaxial
form ρs

i j = ρs
⊥(δi j − q̂iq̂ j ) + ρs

‖q̂iq̂ j with q̂ = q̄/|q̄| the unit
vector along q̄. The second line contains the scalar variables
of a simple fluid and the third line shows the coupling between
the two different sets of variables. Such a coupling is possible
in the PDW phase, since q̄i is odd under time inversion. It
only involves longitudinal components of vs

i and gi, with the
consequence that the thermodynamic coupling coefficients dσ

and dρ are scalars. Such a behavior has not been found before
for any of the other superfluid phases of 3He, but has been
pointed out for the possible FF state for superfluid 3He-4He
solutions by Stern and Liu [8].

A Galilei transformation of Eq. (13) leads to the condition

g = ρvn + λs, (15)

which is already incorporated in the energy density ε, as can
be verified by using the explicit expressions for the conjugate
quantities

vn
i ≡

(
∂ε

∂gi

)
...

=
(

1

ρn

)
i j

g j −
(

ρs

ρn

)
i j

vs
j

−q̄i(d
σ δσ + dρδρ), (16)

λs
i ≡

(
∂ε

∂vs
i

)
...

= ρ0

(
ρs

ρn

)
i j

vs
j −

(
ρs

ρn

)
i j

g j

+q̄iρ0(dσ δσ + dρδρ), (17)

μ ≡
(

∂ε

∂ρ

)
...

= cρρδρ + cσρδσ + dρ q̄i
(
ρ0v

s
i − gi

)
, (18)

δT ≡
(

∂ε

∂σ

)
...

= cσσ δσ + cσρδρ + dσ q̄i
(
ρ0v

s
i − gi

)
. (19)
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The energy density must be convex and its minimum de-
scribes the equilibrium state for the PDW phase. Generally,
this imposes some restrictions on the material parameters
involved. In particular, ρs

� < ρ0, (dρ )2 < (ρs
�/ρ0)cρρ , and

(dσ )2 < (ρs
�/ρ0)cσσ for � ∈ {⊥, ‖} guarantees thermody-

namic stability.

B. Dynamic equations and reversible contributions

To determine the dynamics of the variables in orbit space
we take into account that the first class of our set of variables,
the conserved quantities, obey a local conservation law, while
the dynamics of the other two classes of variables can be de-
scribed by a simple balance equation, where the counter term
to the temporal change of the quantity is called a quasicurrent.
For the set of linearized dynamical equations we get

ρ̇ + ∇i
(
ρ0v

n
i + λs

i

) = 0, (20)

σ̇ + σ0∇iv
n
i + ∇i jσD

i = 2R

T
, (21)

ġi + ∇i p + q̄i∇ jλ
s
j + ∇ jσ

D
i j = 0, (22)

v̇s
i + ∇iμ + q̄ j∇iv

n
j + ∇iI

D
ϕ = 0 (23)

with q̄i ≡ h̄
2m qi.

With the help of Eq. (15) it is easy to see that the momen-
tum density, gi, also acts as the density current in Eq. (20), as it
should. The pressure p in Eq. (22) is given by −∂E/∂V , with
E the total energy (cf. Ref. [46]), and reads for our system

d p = σdT + ρdμ. (24)

The entropy production, R/T , with R the dissipation function,
acts as a source term in Eq. (21). The dissipative parts of
the currents (with superscript D) and R will be determined
in Sec. III C.

Those parts of the currents that have the same behavior
under time reversal as the time derivative of the appropriate
variables are reversible. In particular, ρ̇ and σ̇ are odd, while
ġi and v̇s are even under time reversal. According to the
second law of thermodynamics, reversible processes must not
increase the entropy, meaning R = 0 and σ being a conserved
quantity.

The reversible part of Eq. (23) follows from taking into
account h̄

2m
˙̃ϕ + μ = 0 [32,53] and u̇i = vn

i , according to trans-
lational invariance.

Using the Gibbs relation, Eq. (13), it is obvious that the
contributions ∇iμ in Eq. (23) and λs

i in Eq. (20) compensate
each other to give R = 0. Similarly, the contribution q̄ j∇iv

n
j in

Eq. (23) requires the contribution q̄i∇ jλ
s
j in Eq. (22), due to

R = 0. The latter occurrence of λs
i signals that the superfluid

broken symmetry in the PDW phase not only comprises the
phase variable but also a translation. Note that the reversible
contributions ∇i(ρ0v

n
i ) in Eq. (20) and ∇i p in Eq. (22) are

compensated by all the other transport contributions (not
shown in the linearized dynamic equations) [46].

We first discuss the structure of the propagating modes,
first and second sound ∼exp (iωt ) exp (ik · r) to lowest order
ω ∼ k, disregarding their damping with ω ∼ ik2 contained in
jσD
i , σ D

i j , and ID
ϕ . Dealing with second sound it is customary

to switch from the entropy density σ to the entropy per mass

density s ≡ σ/ρ as variable, leading to the linearized dynamic
equation

ρ0ṡ − s0∇iλ
s
i = 0. (25)

Starting with first sound we take the time derivative of Eq. (20)
and together with Eqs. (22) and(25) we get

ρ̈ = �p + s0

ρ0
q̄∇‖ṡ (26)

with q̄ ≡ |q̄| and ∇‖ = q̂i∇i. For q̄ = 0, the well-known
first sound velocity c2

10 = (∂ p/∂ρ)s is found, when, as
usual, the conventional thermodynamic static cross coupling
(∂ p/∂s)ρ is neglected. The existence of the q̄ term signals
the (anisotropic) coupling to second sound due to the broken
relative gauge/translational symmetry.

For second sound we take the time derivative of Eq. (25)
and express λ̇s

i via Eq. (17) by the dynamic equations for gi

and vs
i . For the moment we neglect the static couplings due to

the existence of q̄ [by taking dρ = 0 = dσ in Eqs. (16)–(19)]
with the result

s̈ =
(

ρs

ρn

)
i j

∇i∇ j

(
s2

0

ρ2
0

T − s0q̄ vn
‖

)
− ρs

‖
ρn

‖
q̄ ∇‖ṡ. (27)

Without the direction q̄i the well-known (isotropic) sec-
ond sound velocity c2

20 = (ρs/ρn)(s2
0/ρ

2
0 )(∂T/∂s)ρ is found,

when, as usual, (∂T/∂ρ)σ is neglected. The existence of q̄i

renders second sound to be anisotropic due to the anisotropy
of the superfluid densities. In addition, there is a contribution
∼ṡ and a coupling to vn

‖ . The former is responsible for the
fact that the second sound velocity along the direction of q̄i is
different from that of the opposite direction (along −q̄i). This
situation resembles externally driven systems, although in the
present case the velocity q̄i is intrinsic.

The coupling to vn
‖ requires the use of an additional dy-

namic equation for vn
‖ , which is obtained by taking the time

derivative of Eq. (16) and employing Eqs. (22), (23), and (25)
with the result

ρn
‖ v̇

n
‖ = −ρn

‖
ρ0

∇‖ p − s0ρ
s
‖

ρ2
0

∇‖T − ρ0

s0
q̄ ṡ + ρs

‖q̄ ∇‖vn
‖ . (28)

The variable vn
‖ is coupled to ρ (via p) and to s (via T ) and

directly to ṡ. Thus, all three variables are coupled, although
there is no coupling to ρ in Eq. (27), nor to vn

‖ in Eq. (26). As
a result, first and second sound and ∇‖vn

‖ are generally coupled
excitations on the ω ∼ k level.

For waves traveling perpendicular to qi, there is ∇‖ = 0
and first sound is decoupled and unaffected by the broken
relative gauge/translational symmetry. Second sound velocity
acquires a q̄2 contribution

ω2 = ρs
⊥

ρn
⊥

(
s2

0

ρ2
0

(∂T/∂s)ρ + ρ0

ρ‖
q̄2

)
k2
⊥ (29)

and the variable vn
‖ is not independent, since s0ρ

n
‖ v̇

n
‖ = −ρ0q̄ṡ.

The solution of the dispersion relation for general wave
directions cannot be given in closed form. An approximate
formula for small q̄ shows that first sound is affected by
the dynamic couplings due to the broken gauge/translational
symmetry to order q̄2, while second sound acquires contribu-
tions linear in q̄.
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Up to this point we have neglected the static couplings dρ

and dσ in Eqs. (16)–(19). The main effect of these contribu-
tions is a considerable increase of complexity of the dispersion
relation, but generally no novel effects are introduced com-
pared to the dynamic couplings. An exception is fourth sound.

Fourth sound is found in superfluid systems, when the
normal velocity is clamped (vn

i = 0), e.g., in narrow pores or
very thin capillaries. There is gi = λs

i and momentum con-
servation, Eq. (22), does not hold. As a result, we get in
our case the dynamic equations ρ̇ + ∇iλ

s
i = 0, σ̇ = 0, and

v̇s
i + ∇iμ = 0 that do not show any influence of the broken

gauge/translational symmetry. Of the static Eqs. (16)–(18)
that now read λs

i = ρs
i jv

s
j and δμ = cρρδρ + dρ q̄ρn

‖v
s
‖, only

the second one contains the static coupling dρ .
Fourth sound, given by

ρ̈ − ρs
i j∇i∇ jμ = 0, (30)

is the sole propagating excitation with ω ∼ k for vn
i = 0.

Without dρ the well-known anisotropic fourth sound velocity
is found:

c2
f = cρρ (ρs

⊥k2
⊥ + ρs

‖k2
‖ )/k2 (31)

with cρρ = (∂μ/∂ρ)ρ . It describes a coupled excitation of
density fluctuations and ∇iv

s
i . The full dispersion relation

reads

ω2 = c2
f k2 + cρρdρ q̄ρn

‖k‖
ω + dρ q̄ρn

‖k‖
(32)

and involves density fluctuations, ∇iv
s
i and ∇‖vs

‖. Fourth
sound allows one to detect the static cross couplings, since
there are no dynamic ones.

C. Irreversible dynamics and entropy production

In Eqs. (20)–(23) we have already incorporated the re-
versible contributions within the framework of linearized
macroscopic dynamics, which leaves only the dissipative cur-
rents (superscript D) and the entropy production R to be
determined. The dissipative parts of the currents have the
opposite sign under time reversal as the time derivatives of
the variables. According to the second law of thermodynamics
for irreversible processes, R > 0 is required. With the help of
the full set of dynamic equations the Gibbs relation, Eq. (13),
leads to an expression bilinear in the currents and thermody-
namic conjugates,

2R = − jσD
i ∇iT − σ D

i j Ai j − ID
φ ∇iλ

s
i > 0, (33)

where Ai j = (1/2)(∇iv
n
j + ∇ jv

n
i ).

We can use the dissipation function R as a Lyapunov func-
tional to derive the irreversible currents and quasicurrents.
This automatically includes the famous reciprocity rules for
dissipative cross couplings [55]. One can expand the function
R into the thermodynamic forces using the same symmetry

arguments as in the case of the energy density. We obtain

R = 1
2κi j (∇iT )(∇ jT ) + 1

2νi jkl Ai jAkl + ζ (∇iλ
s
i )

(∇ jλ
s
j

)
+ ζ n

i jAi j
(∇kλ

s
k

) + �D
i jkA jk (∇iT ) + q̂k


D
(∇ jλ

s
j

)
(∇kT ).

(34)

The second rank tensors κi j and ζ n
i j take the form

αi j = α‖q̂iq̂ j + α⊥δ⊥
i j with δ⊥

i j = δi j − q̂iq̂ j (35)

and the viscosity tensor νi jkl has the standard uniaxial form
containing five viscosities, like in a nematic liquid crystal [46]
with q̂i replacing the nematic director. The second contribu-
tion in the second line of Eq. (34) requires an odd number of
q̂i factors resulting in

�D
i jk = �D

1 (q̂kδ
⊥
i j + q̂ jδ

⊥
ik ) + �D

2 q̂iδ
⊥
jk + �D

3 q̂iq̂ j q̂k . (36)

The condition R > 0 requires κ‖ζ > (
D)2, κ‖ν3 > (�D
3 )2,

κ‖ν1 > (�D
2 )2, and κ⊥ν5 > (�D

1 + �D
2 )2 with the viscosity

components defined as the elastic moduli in Ref. [56].
To obtain the dissipative parts of the currents and quasi-

currents we take the partial derivatives with respect to the
appropriate thermodynamic force

jσD
i = −

(
∂R

∂ (∇iT )

)
...

= −κi j∇ jT − �D
i jkA jk − q̂i


D∇kλ
s
k,

(37)

σ D
i j = −

(
∂R

∂Ai j

)
...

= −νi jkl Akl − ζ n
i j∇kλ

s
k − �D

ki j∇kT, (38)

ID
ϕ = −

(
∂R

∂ (∇kλ
s
k )

)
...

= −ζ∇kλ
s
k − ζ n

i jAi j − q̂k

D∇kT .

(39)

The broken gauge/translation symmetry allows the existence
of dissipative cross couplings of the heat current with the
stress tensor as well as with the phase current.

Inspecting the time-reversal behavior of the dissipative cur-
rents we can verify that all contributions have the opposite
sign under time reversal as the corresponding time derivative
of the associated variable. Looking at the heat conduction term
∼κi j∇ jT and the viscous term ∼νi jkl Akl this behavior for the
heat current and the stress tensor is already familiar from the
hydrodynamics of a simple fluid.

IV. MACROSCOPIC SPIN DYNAMICS OF THE PDW PHASE

According to the discussion in Sec. II there are additional
degrees of freedom: The magnetization sν , and the rotation
matrix nν j describing (three) relative rotations between spin
and orbit space. Neglecting the small spin-orbit coupling, the
rotations are Goldstone modes. Spin-orbit coupling will be
treated perturbatively [35], at the end of this section. The spin
dynamics of the PDW phase is somewhat similar to that of the
PDB phase [42]. Therefore we can be brief here.

Therefore, the appropriate Gibbs relations, Eqs. (2) and (8),
read

dε = 
n
ν jkd∇ jnνk + hνdsν (40)

with the conjugate quantities

hν = (1/χ )νμsμ, (41)


n
νik = Mνμi jkl∇ jnμl (42)
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that do not show any cross coupling, in particular none with
orbit space variables.

The preferred direction in orbit space q̄i is manifest in spin
space as q̄ν = nνiq̄i and leads to the uniaxial form of second-
rank tensors

(1/χ )νμ = χ−1
⊥ (δνμ − q̂ν q̂μ) + χ−1

‖ q̂ν q̂μ. (43)

The material tensor Mνμi jkl contains five moduli M1 . . . M5. It
is restricted by the fact that only ∇ j
ν jk enters the dynamics
and that nμl behaves as a rotation matrix (as does 
ν jk with
respect to ν and k). The final form is given in the Appendix,
Eq. (A1).

The dynamic equations

ṡν + ∇kJνk = 0, (44)

ṅνi + Zνi = 0 (45)

have the form of a conservation law and a balance equa-
tion, respectively. According to general spin dynamics the
reversible parts of the currents are [35]

JR
νi = γ ενμλn0

λ j

n
μi j, (46)

ZR
νi = γ ενμλn0

μihλ (47)

and describe a cross coupling between the two degrees of
freedom due to the gyromagnetic ratio γ .

Dissipative dynamics enters only by higher order gradient
terms, which we will not consider here in detail.

The resulting phonon-type modes are anisotropic, which
becomes apparent by the occurrence of k2

‖ = q̂ν q̂μ∇ν∇μ. In
particular, the mode involving transverse spin excitations
(q̄νενμλ∇μsλ) has the dispersion relation

ω2
1 = γ 2

χ⊥

(
E1k2

⊥ + E2k2
‖
)
, (48)

where E1,2 are given in the Appendix, Eqs. (A2) and (A3).
In addition, the other two modes, the longitudinal one

(involving ∇νsν) and a second transverse one (involving q̂νsν),
are coupled. The dispersion relations are found as the solu-
tions of the quadratic algebraic equation

(
ω2

2,3 − γ 2

χ‖
A

)(
ω2

2,3 − γ 2

χ⊥
F

)
+ γ 4

χ2
⊥

Ck2
‖ = 0, (49)

where the functions A, F,C are all of the form A1k2
⊥ + A2k2

‖
[for details cf. Eqs. (A4)–(A6)]. Obviously, the coupling of
these two modes is due to the anisotropy and vanishes in the
isotropic case, e.g., in the superfluid B phase of 3He.

Taking into account spin-orbit coupling the relative ori-
entation of spin and orbit spaces is no longer arbitrary, but
fixed in equilibrium. Therefore, a distinction between greek
and latin subscripts is no longer necessary. A general rotation
matrix

ni j = cos ϑ (δi j − did j ) + did j + sin ϑεi jkdk (50)

contains the rotation angle ϑ and the direction of the rotation
axis di. First, the spin-orbit coupling fixes the equilibrium
value ϑ0 = cos−1(1/4) [19]. The energy for deviations from

equilibrium

εso = B

2
(ϑ − ϑ0)2 = B

8 sin2 ϑ0

(
nii − n0

ii

)2
(51)

is rather small. It is customary to derive spin hydrodynamics
under the full threefold broken symmetry, and add εso at the
end [35].

Second, the preferred direction in orbit space, q̄i, has to be
the rotation axis and in equilibrium d0

i = q̄i. Thus, there is a
finite energy for deviations δdi = di − d0

i ,

εsod = D

2
(δdi )

2 = D

8 sin2 ϑ0
[q̄ j (n ji − ni j )]

2 (52)

with D > 0. The fact that q̄i and, thus, di are time-reversal
negative, has no effect for the static considerations here.

The spin-orbit energy εso, Eq. (50), results in a gap in the
longitudinal spin-wave branch

ω2
2(k → 0) = γ 2

χ‖
B ≡ B̃ (53)

that is manifest in NMR as the longitudinal shift. This mode
is coupled to one of the transverse modes (ω3) even without
spin-orbit coupling.

Finally, the energy εsod, Eq. (52), gives rise to gaps in the
transverse spin modes (εi jk q̂ jsk) of the form

ω2
1,3(k → 0) = γ 2

χ⊥

1 + cos ϑ0

2 sin2 ϑ0
D ≡ D̃. (54)

There is no spontaneously broken rotational symmetry left
and all modes acquire a gap. In addition, all three spin-wave
modes are coupled.

Such a situation is found in the (isotropic) B phase of 3He
only after having applied an external magnetic field. In the
PDW phase an external field, Hi, will not induce qualitatively
new features to the spin-wave modes. In particular, the gaps of
the modes are then given, for a field parallel to q̄i, by ω2

1 = D̃
and ω2

3 = D̃ + ω2
L and, for a transverse field by ω2

2 = B̃ + ω2
L,

where ωL = γ H is the Larmor frequency.

V. SUMMARY AND PERSPECTIVE

In this paper we have studied the macroscopic behavior of
the spatially modulated PDW state of superfluid 3He observed
experimentally in thin layers. Making use of the available ex-
perimental results and microscopic models, we have used the
spatially modulated phase of the macroscopic wave function
as an order parameter. This leads to the remarkable result
that only one Goldstone mode in orbit space exists, coupling
the superfluid aspects to the spatial modulations of the order
parameter in the plane of the sample. We find that this type of
Goldstone mode leads to a propagating mode sharing aspects
of second sound and acoustic waves arising from the spatial
variations of the order parameter.

In contrast to all other superfluid systems studied so far,
we observe that even to lowest order in the wave vector first
and second sound no longer decouple from the component of
the momentum density parallel to the preferred direction in
the plane, q. In addition, due to the coupling of the phase
of the order parameter to in-plane spatial modulations, even
the velocity of first sound becomes anisotropic. We also find
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that the velocities of first and second sound contain both, the
static and dynamic coupling terms to the order parameter. For
clamped normal fluid, we find that for fourth sound only one
static cross coupling associated with density variations enters
the velocity. Therefore we predict that measurements of the
fourth sound velocity could be used to measure the influence
of this static cross-coupling term.

The analysis of the structure of sound modes, in particular
of the velocity of first, second, and fourth sound, might very
well serve as a key instrument to identify experimentally the
presence of a FF phase. This question has been a central
issue in the field for a number of years (cf. Ref. [57] for a
review of this challenge). Along these lines the investigation
of collective modes and the speed of sound has been studied in
detail about a decade ago using more microscopic techniques.
As an example we mention Ref. [58] where the Kadanoff
and Baym method using field-theoretical Green’s functions
has been applied to study the FFLO state. It was shown in
Ref. [58] that the velocities of sound waves in two spatial
dimensions become anisotropic for the FFLO state. Here we
have demonstrated in the truly hydrodynamic limit in three
dimensions, using an approach combining symmetry argu-
ments and irreversible thermodynamics, that the velocities
of first, second, and fourth sound become anisotropic due
to the order parameter of the FF state selecting a preferred
direction. Thus the analysis presented here can serve as a
powerful tool to identify experimentally the presence of the
long sought after FF state. Finally we emphasize the unique
feature of fourth sound velocity becoming anisotropic exclu-
sively due to a static cross coupling associated with density
variations.

We have also discussed an important difference to the su-
persolid phase anticipated for solid 4He. In the latter case the
order parameter is rather different from the one studied here
for the superfluid phase of 3He for a spatially modulated pair
density wave. In particular, for the superfluid solid phase in
4He a displacement field is arising as an independent variable.

As for spin space we obtain, among other results, three
pairs of propagating spin waves provided the magnetic dipole
interaction and external fields are neglected. These results
resemble quite closely those for the PDB phase.

Our results thus indicate a combination of certain as-
pects of a FF-type state with two-dimensional in-plane order

parameter variations of square or hexagonal symmetry with
various types of spin waves showing some similarities to those
found in the distorted superfluid 3He-B.

As a perspective it seems important to achieve experi-
mentally large enough monodomains of the new superfluid
phase to identify the symmetry of the order parameter struc-
ture in the planes of the samples. This would also facilitate
study on the influence of the static cross coupling on the
velocity of fourth sound.

Although the preferred direction of the aerogel enters the
spin space dynamics, when the spin-orbit coupling is taken
into account, the elastic deformations of the aerogel do not.
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APPENDIX: SPIN-WAVE VELOCITIES

The material tensor Mνμi jkl introduced in Eq. (42)
reads [42]

Mνμi jkl = M1δνμδi jδkl + M3q̂ν q̂μδi jδkl

+ M4δνμq̂iq̂ jδkl + M5q̂ν q̂μq̂iq̂ jδkl

+ M2(εkipε jlt + εk j pεilt )n
0
νpn0

μt . (A1)

The abbreviations introduced in the dispersion relations for
the spin waves, Eqs. (48) and (49), are given by [42]

E1 = 2M1 + M3, (A2)

E2 = 2M4 + M5 (A3)

and

A = 2
(
M1k2 + M4k2

‖
) + 8

(
1 − χ‖

χ⊥

)
M2k2, (A4)

F = (2M1 + M3 + 8M2)k2 + (2M4 + M5)k2
‖ , (A5)

C = 8M2

(
[8M2 + M3]k2 + M5k2

‖ + 2

(
χ‖
χ⊥

− 1

)

× (
M1k2 − M4k2

‖
))

. (A6)
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