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______________________________________________________________________________ 

Abstract 

Recognizing goal-directed actions is a computationally challenging task, requiring not only the 
visual analysis of body movements, but also analysis of how these movements causally impact, 
and thereby induce a change in, those objects targeted by an action. We tested the hypothesis 
that the analysis of body movements and the effects they induce relies on distinct neural 
representations in superior and anterior inferior parietal lobe (SPL and aIPL). In four fMRI sessions, 
participants observed videos of actions (e.g. breaking stick, squashing plastic bottle) along with 
corresponding point-light-display stick figures, pantomimes, and abstract animations of agent-
object interactions (e.g. dividing or compressing a circle). Cross-decoding between actions and 
animations revealed that aIPL encodes abstract representations of action effect structures 
independent of motion and object identity. By contrast, cross-decoding between actions and 
point-light-displays revealed that SPL is disproportionally tuned to body movements independent 
of visible Interactions with objects. Lateral occipitotemporal cortex (LOTC) was sensitive to both 
action effects and body movements. Moreover, cross-decoding between pantomimes and 
animations revealed that right aIPL and LOTC represent action effects even in response to implied 
object interactions. These results demonstrate that parietal cortex and LOTC are tuned to physical 
action features, such as how body parts move in space relative to each other and how body parts 
interact with objects to induce a change (e.g. in position or shape/configuration). The high level of 
abstraction revealed by cross-decoding suggests a general neural code supporting mechanical 
reasoning about how entities interact with, and have effects on, each other. 

______________________________________________________________________________ 

 

Introduction 

Action recognition is central for navigating social environments, as it provides the basis for 
understanding others' intentions, predicting future events, and social interaction. Many actions 
aim to induce a change in the world, often targeting inanimate objects (e.g. opening or closing a 
door) or persons (e.g. kissing or hitting someone). Recognizing such goal-directed actions is a 
computationally challenging task, as it requires not only the temporospatial processing of body 
movements, but also processing of how the body interacts with, and thereby induces an effect on, 
the object targeted by the action, e.g. a change in location, shape, or state. While a large body of 
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work has investigated the neural processing of observed body movements as such (Grossman et 
al., 2000; Giese and Poggio, 2003; Puce and Perrett, 2003; Peuskens et al., 2005; Peelen et al., 
2006), the neural mechanisms underlying the analysis of action effects, and how the 
representations of body movements and action effects differ from each other, remain unexplored.  

The recognition of action effects builds on a complex analysis of spatial and temporal relations 
between entities. For example, recognizing a given action as "opening a door" requires the analysis 
of how different objects or object parts (e.g. door and doorframe) spatially relate to each other 
and how these spatial relations change over time. The specific interplay of temporospatial 
relations is usually characteristic for an action type (e.g. opening, as opposed to closing), 
independent of the concrete target object (e.g. door or trash bin), and is referred to here as action 
effect structure (Fig. 1A). In addition, action effects are often independent of specific body 
movements – for example, we can open a door by pushing or by pulling the handle, depending on 
which side of the door we are standing on. This suggests that body movements and the effects 
they induce are at least partially processed independently from each other. Moreover, we argue 
that representations of action effect structures are distinct of conceptual action representations: 
The former capture the temporospatial structure of an object change (e.g. the separation of a 
closing object element), the latter capture the meaning of an action (e.g. bringing an object into 
an opened state to make something accessible) and can also be activated via language (e.g. by 
reading "she opens the box"). Previous research suggests that conceptual action knowledge is 
represented in left anterior LOTC (Watson et al., 2013; Lingnau and Downing, 2015; Wurm and 
Caramazza, 2022) whereas structural representations of action effects have not been investigated 
yet.  

We argue that object- and movement-general representations of action effect structures are 
necessary for the recognition of goal-directed actions as they allow for inferring the induced effect 
(e.g. that something is opened) independently of specific, including novel, objects. Here we test 
for the existence of action effect representations that are neuroanatomically distinct from 
representations of body movements. We argue that both the recognition of body movements and 
the effects they induce rely critically on distinct but complementary subregions in parietal cortex, 
which is associated with visuospatial processing (Goodale and Milner, 1992; Kravitz et al., 2011), 
action recognition (Caspers et al., 2010), and mechanical reasoning about manipulable objects 
(Binkofski and Buxbaum, 2013; Leshinskaya et al., 2020) and physical events (Fischer et al., 2016; 
Fischer and Mahon, 2021). Specifically, we hypothesize that the neural analysis of action effects 
relies on anterior inferior parietal lobe (aIPL), whereas the analysis of body movement relies on 
superior parietal lobe (SPL). aIPL shows a representational profile that seems ideal for the 
processing of action effect structures at a high level of generality: Action representations in 
bilateral aIPL generalize across perceptually variable action exemplars, such as opening a bottle or 
a box (Wurm and Lingnau, 2015; Hafri et al., 2017; Vannuscorps et al., 2019), as well as structurally 
similar actions and object events, for example, a girl kicking a chair and a ball bouncing against a 
chair (Karakose-Akbiyik et al., 2023). Moreover, aIPL is critical for understanding how tools can be 
used to manipulate objects (Goldenberg and Spatt, 2009; Reynaud et al., 2016). More generally, 
aIPL belongs to a network important for physical inferences of how objects move and impact each 
other (Fischer et al., 2016).  
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Also the recognition of body movements builds on visuospatial and temporal processing, but their 
representation should be more specific for certain movement trajectories (e.g. pulling the arm 
toward the body, regardless of the movement's intent to open or close a door). The visual 
processing of body movements has been shown to rely on posterior superior temporal sulcus 
(Grossman et al., 2000; Giese and Poggio, 2003; Puce and Perrett, 2003; Peuskens et al., 2005; 
Peelen et al., 2006). However, recent research found that also SPL, but less so aIPL, encodes 
observed body movements: SPL is more sensitive in discriminating actions (e.g. a girl jumping over 
a box) than structurally similar object events (e.g. a ball bouncing over a box) (Karakose-Akbiyik et 
al., 2023); and point-light-displays (PLDs) of actions, which convey only motion-related action 
information but not the interactions between the body and other entities, can be decoded with 
higher accuracy in SPL compared to aIPL (Yargholi et al., 2023). Together, these findings support 
the hypothesis of distinct neural systems for the processing of observed body movements in SPL 
and the effect they induce in aIPL. 

Using an fMRI-based cross-decoding approach (Fig. 1B), we isolated the neural substrates for the 
recognition of action effects and body movements in parietal cortex. Specifically, we demonstrate 
that aIPL encodes abstract representations of action effect structures independently of motion 
and object identity, whereas SPL is more tuned to body movements irrespective of visible effects 
on objects. Moreover, cross-decoding between pantomimes and animations revealed that right 
aIPL represents action effects even in response to implied object interactions. These findings 
elucidate the neural basis of understanding the physics of actions, which is a key stage in the 
processing hierarchy of action recognition. 

 

 

 

 

Figure 1. (A) Simplified schematic illustration of the action effect structure of "opening". Action effect structures 
encode the specific interplay of temporospatial object relations that are characteristic for an action type 
independently of the concrete object (e.g. a state change from closed to open). (B) Cross-decoding approach to 
isolate representations of action effect structures and body movements. Action effect structure representations 
were isolated by training a classifier to discriminate neural activation patterns associated with actions and testing 
the classifier on its ability to discriminate activation patterns associated with corresponding abstract action 
animations. Body movement representations were isolated by testing the classifier trained with actions on 
activation patterns of corresponding PLD stick figures. 
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Results 

To isolate neural representations of action effect structures and body movements from observed 
actions, we used a cross-decoding approach: In 4 separate fMRI sessions, right-handed 
participants observed videos of actions (e.g. breaking a stick, squashing a plastic bottle) along with 
corresponding point-light-display stick figures, pantomimes, and abstract animations of agent-
object interactions (Fig. 2) while performing a simple catch-trial-detection task (see Methods for 
details).  

To identify neural representations of action effect structures, we first trained a classifier to 
discriminate the neural activation patterns associated with the action videos. Then we tested the 
classifier on its ability to discriminate the neural activation patterns associated with the 
animations. We thereby isolated the component that is shared between the naturalistic actions 
and the animations – the perceptually invariant action effect structure – irrespective of other 
action features, such as motion, object identity, and action-specific semantic information (e.g. the 
specific meaning of breaking a stick).  

 

Figure 2. Experimental design. In 4 fMRI sessions, participants observed 2-second-long videos of 5 actions and 
corresponding animations, PLD stick figures, and pantomimes. For each stimulus type, 8 perceptually variable 
exemplars were used (e.g. different geometric shapes, persons, viewing angles, and left-right flipped versions of 
the videos). A fixed order of sessions from abstract animations to naturalistic actions was used to minimize 
memory and imagery effects.  
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Likewise, to isolate representations of body movements independently of the effect they have on 
target objects, we trained a classifier on naturalistic actions and tested it on the point-light-display 
(PLD) stick figures. We thereby isolated the component that is shared between the naturalistic 
actions and the PLD stick figures – the coarse body movement patterns – irrespective of action 
features related to the target object, such as the way they are grasped and manipulated, and the 
effect induced by the action.  

Additionally, we used pantomimes of the actions, which are perceptually richer than the PLD stick 
figures and provide more fine-grained information about hand posture and movements. Thus, 
pantomimes allow inferring how an object is grasped and manipulated. Using cross-decoding 
between pantomimes and animations, we tested whether action effect representations are 
sensitive to implied hand-object interactions or require a visible object change. 

Cross-decoding of action effect structures and body movements. We first tested whether aIPL is 
more sensitive in discriminating abstract representations of effect structures of actions, whereas 
SPL is more sensitive to body movements. Action-animation cross-decoding revealed significant 
decoding accuracies above chance in left aIPL but not left SPL, as well as in right aIPL and, to a 
lesser extent, in right SPL (Fig. 3A). Action-PLD cross-decoding revealed the opposite pattern of 
results, that is, significant accuracies in SPL and, to a lesser extent, in aIPL. A repeated measures 
ANOVA with the factors ROI (aIPL, SPL), TEST (action-animation, action-PLD), and HEMISPHERE 
(left, right) revealed a significant interaction between ROI and TEST (F(1,24)=35.03, p=4.9E-06), 
confirming the hypothesis that aIPL is more sensitive to effect structures of actions, whereas SPL 
is more sensitive to body movements. Post-hoc t-tests revealed that, for action-animation cross-
decoding in both left and right hemispheres, decoding accuracies were higher in aIPL than in SPL 
(left: t(23) = 1.81, p = 0.042, right: 4.01, p = 0.0003, one-tailed), whereas the opposite effects were 
found for action-PLD cross-decoding (left: t(23) = -4.17 p = 0.0002, right: -2.93, p = 0.0038, one-
tailed). Moreover, we found ANOVA main effects of TEST (F(1,24)=33.08, p=7.4E-06), indicating 
stronger decoding for action-animation vs. action-PLD cross-decoding, and of HEMISPHERE 
(F(1,24)=12.75, p=0.0016), indicating stronger decoding for right vs. left ROIs. An interaction 
between TEST and HEMISPHERE indicated that action-animation cross-decoding was significantly 
stronger in the right vs. left hemisphere (F(1,24)=9.94, p=0.0044). 

These findings were corroborated by the results of a searchlight analysis (Fig. 3B). The whole-brain 
results further demonstrated the overall stronger decoding for action-PLD throughout the action 
observation network, which was expected because of the similarity of movement kinematics 
between the naturalistic actions and the PLDs. Note that we were not interested in the 
representation of movement kinematics in the action observation network as such, but in testing 
the specific hypothesis that SPL is disproportionally sensitive to movement kinematics as opposed 
to aIPL. Interestingly, the action-animation cross-decoding searchlight analysis revealed an 
additional prominent cluster in right LOTC (and to a lesser extent in left LOTC), suggesting that not 
only aIPL is critical for the representation of effect structures, but also right LOTC. We therefore 
include LOTC in the following analyses and discussion. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2024. ; https://doi.org/10.1101/2023.10.04.560860doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560860
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

 

 

Figure 3. Cross-decoding of action effect structures (action-animation) and body movements (action-PLD). (A) 
ROI analysis in left and right aIPL and SPL (Brodmann Areas 40 and 7, respectively; see Methods for details). 
Decoding of action effect structures (action-animation cross-decoding) is stronger in aIPL than in SPL, whereas 
decoding of body movements (action-PLD cross-decoding) is stronger in SPL than in aIPL.   Asterisks indicate 
FDR-corrected significant decoding accuracies above chance (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001). 
Error bars indicate SEM. (B) Mean accuracy whole-brain maps thresholded using Monte Carlo correction for 
multiple comparisons (voxel threshold p=0.001, corrected cluster threshold p=0.05). Action-animation cross-
decoding is stronger in the right hemisphere and reveals additional representations of action effect structures 
in LOTC. 

 

A cluster analysis revealed that action effect representations in aIPL and LOTC formed meaningful 
clusters reflecting the 3 broad categories of object change types (shape/configuration changes, 
location changes, and ingestion), supporting the interpretation that the cross-decoding between 
actions and animations isolated the coarse type of action effect (Fig. S1). A cluster analysis in SPL 
and LOTC for body movements revealed similar representational clusters for bimanual, unimanual, 
and mouth-directed actions. 
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Taken together, these findings show that aIPL encodes abstract, that is, perceptually general 
representations of effect structures independent of motion and object identity (e.g. dividing or 
compressing object), whereas SPL encodes representations of body movements irrespective of 
visible interactions with objects, and that the sensitivity to effect structures is generally stronger 
in the right vs. left hemisphere of the brain. 

 

Representation of implied vs. visible action effects. Humans can recognize many goal-directed 
actions from mere body movements, as in pantomime. This demonstrates that the brain is capable 
of inferring the effect that an action has on objects based on the analysis of movement kinematics 
without the analysis of a visible interaction with an object. Inferring action effects from body 
movements is easier via pantomimes than with PLD stick figures, because the former provide 
richer and more fine-grained body information, and in the case of object manipulations, object 
information (e.g. shape) implied by the pantomimed grasp. Hence, neither pantomimes nor PLDs 
contain visible information about objects and action effects, but this information is more easily 
accessible in pantomimes than in PLDs. This difference between pantomimes and PLDs allows 
testing whether there are brain regions that represent effect structures in the absence of visual 
information about objects and action effects. We tested whether aIPL is sensitive to implied effect 
structures by comparing the cross-decoding of actions and pantomimes (strongly implied hand-
object interaction) with the cross-decoding of actions and PLDs (less implied hand-object 
interaction). This was the case in both aIPL and LOTC: action-pantomime cross-decoding revealed 
higher decoding accuracies than action-PLD cross-decoding (Fig. 4A; (all t(23) > 3.54, all p < 0.0009; 
one-tailed). The same pattern should be observed in the comparison of action-pantomime and 
pantomime-PLD cross-decoding, which was indeed the case (Fig. 3A; (all t(23) > 2.96, all p < 0.0035, 
; one-tailed). These findings suggest that the representation of action effect structures in aIPL does 
not require a visible interaction with an object. However, the higher decoding across actions and 
pantomimes might also be explained by the shared information about hand posture and 
movements, which are not present in the PLDs. A more selective test is therefore the comparison 
of animation-pantomime and animation-PLD cross-decoding; as the animations do not provide 
any body-related information, a difference can only be explained by the stronger matching of 
effect structures between animations and pantomimes. We found higher cross-decoding for 
animation-pantomime vs. animation-PLD in right aIPL and bilateral LOTC (all t(23) > 3.09, all p < 
0.0025; one-tailed), but not in left aIPL (t(23) = 0.73, p = 0.23, one-tailed). Together, this suggests 
that right aIPL and bilateral LOTC are sensitive to implied action effects.  
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Figure 4. Cross-decoding of implied action effect structures. (A) ROI analysis. Cross-decoding schemes involving 
pantomimes but not PLDs (action-pantomime, animation-pantomime) reveal stronger effects in right aIPL than 
cross-decoding schemes involving PLDs (action-PLD, pantomime-PLD, animation-PLD), suggesting that action 
effect structure representations in right aIPL respond to implied object manipulations in pantomime irrespective 
of visuospatial processing of observable object state changes. Same conventions as in Fig. 3. (B) Conjunction of 
the contrasts action-pantomime vs. action-PLD, action-pantomime vs. pantomime-PLD, and animation-
pantomime vs. animation-PLD. Uncorrected t-map thresholded at p=0.01; yellow outlines indicate clusters 
surviving Monte-Carlo-correction for multiple comparisons (voxel threshold p=0.001, corrected cluster 
threshold p=0.05). 
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Discussion 

We provide evidence for neural representations of action effect structures in aIPL and LOTC that 
generalize between perceptually highly distinct stimulus types – naturalistic actions and abstract 
animations. The representation of effect structures in aIPL is distinct from representations of body 
movements in SPL. While body movement representations are generally bilateral, action effect 
structure representations are lateralized to the right aIPL and LOTC. In right aIPL and bilateral 
LOTC, action effect structure representations do not require a visible interaction with objects but 
also respond to action effects implied by pantomime. 

Recognizing goal-directed actions requires a processing stage that captures the effect an action 
has on a target entity. Using cross-decoding between actions and animations, we found that aIPL 
– and surprisingly also LOTC –  encode representations that are sensitive to the core action effect 
structure, that is, the type of change induced by the action. As the animations did not contain 
biological motion or specific object information matching the information in the action videos, 
these representations are independent of specific motion characteristics and object identity. This 
suggests an abstract level of representation of visuospatial and temporal relations between 
entities and their parts that may support the identification of object change independently of 
specific objects (e.g. dividing, compressing, ingesting, or moving something). Object-generality is 
an important feature as it enables the recognition of action effects on novel, unfamiliar objects. 
This type of representation fits the idea of a more general neural mechanism supporting 
mechanical reasoning about how entities interact with, and have effects on, each other (Fischer 
et al., 2016; Karakose-Akbiyik et al., 2023). Action effect structure representations in these regions 
are organized into meaningful categories, that is, change of shape/configuration, change of 
location, and ingestion. However, a more comprehensive investigation is needed to understand 
the organization of a broader range of action effect types (see also Worgotter et al., 2013), which 
will help to unveil the underlying principles of action structure inference. 

In right aIPL and bilateral LOTC, the representation of action effect structures did not depend on 
a visible interaction with objects but could also be activated by pantomime, i.e., an implied 
interaction with objects. This suggests that right aIPL and LOTC do not merely represent 
temporospatial relations of entities in a perceived scene. Rather, the effects in these regions might 
reflect a more inferential mechanism critical for understanding hypothetical effects of an 
interaction on a target object.  

Interestingly, action effect structures appear lateralized to the right hemisphere. This is in line with 
the finding that perception of cause-effect relations, e.g., estimating the effects of colliding balls, 
activates right aIPL (Fugelsang et al., 2005; Straube and Chatterjee, 2010). However, in the context 
of action recognition, the involvement of aIPL is usually bilateral or sometimes left-lateralized, in 
particular for actions involving an interaction with objects (Caspers et al., 2010). Also, mechanical 
reasoning about tools – the ability to infer the effects of tools on target objects based on the 
physical properties of tools and objects, such as shape, weight, etc. – is usually associated with left 
rather than right aIPL (Goldenberg and Spatt, 2009; Reynaud et al., 2016; Leshinskaya et al., 2020). 
Thus, left and right aIPL appear to be disproportionally sensitive to different structural aspects of 
actions and events: Left aIPL appears to be more sensitive to the type of interaction between 
entities, e.g. how a body part or an object exerts a force onto a target object, whereas right aIPL 
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appears to be more sensitive to the effect induced by that interaction. In our study, the animations 
contained interactions, but they did not show precisely how a force was exerted onto the target 
object that led to the specific effects: In all animations, the causer made contact with the target 
object in the same manner. Thus, the interaction could not drive the cross-decoding between 
actions and animations. Only the effects – the object changes – differed and could therefore be 
discriminated by the classification. Two questions arise from this interpretation: Would similar 
effects be observed in right aIPL (and LOTC) if the causer were removed, so that only the object 
change were shown in the animation? And would effects be observed in the left aIPL for 
distinguishable interactions (e.g., a triangle hitting a target object with the sharp or the flat side), 
perhaps even in the absence of the induced effect (dividing or compressing object, respectively)?  

Action effect representations were found not only in aIPL but also LOTC. As it appears unlikely that 
aIPL and LOTC represent identical information, this raises the question of what different functions 
these regions provide in the context of action effect representation. Right LOTC is associated with 
the representation of socially relevant information, such as faces, body parts, and their 
movements (Chao et al., 1999; Pitcher and Ungerleider, 2021).  Our findings suggest that right 
LOTC is not only sensitive to the perception of body-related information but also to body-
independent information important for action recognition, such as object change. It remains to be 
investigated whether there is a dissociation between the action-independent representation of 
mere object change (e.g., in shape or location) and a higher-level representation of object change 
as an effect of an action. Left LOTC is sensitive to tools and effectors (Bracci and Peelen, 2013), 
which might point toward a role in representing putative causes of the observed object changes. 
Moreover, action representations in left LOTC are perceptually more invariant, as they can be 
activated by action verbs (Watson et al., 2013), generalize across vision and language (Wurm and 
Caramazza, 2019), and more generally show signatures of conceptual representation (Lingnau and 
Downing, 2015; Wurm and Caramazza, 2022). Thus, left LOTC might have generalized across 
actions and animations at a conceptual, possibly propositional level (e.g., the meaning of dividing, 
compressing, etc.), rather than at a structural level. Notably, conceptual action representations 
are typically associated with left anterior LOTC, but not right LOTC and aIPL, which argues against 
the interpretation that action-animation cross-decoding captured conceptual action 
representations only, rather than structural representations of the temporo-spatial object change 
type. From a more general perspective, cross-decoding between different stimulus types and 
formats might be a promising approach to address the fundamental question of whether the 
format of certain representations is propositional (Pylyshyn, 2003) or depictive (Kosslyn et al., 
2006; Martin, 2016).   

In contrast to the abstract representation of action effect structures in aIPL, the representation of 
body movements is more specific in terms of visuospatial relations between scene elements, that 
is, body parts. These representations were predominantly found in bilateral SPL, rather than aIPL. 
This is in line with previous studies demonstrating stronger decoding of PLD actions in SPL than in 
aIPL (Yargholi et al., 2023) and stronger decoding of human actions as opposed to object events 
in SPL (Karakose-Akbiyik et al., 2023). Thus, SPL seems to be particularly sensitive to specific 
visuospatial motion characteristics of human movements. An interesting question for future 
research is whether movement representation in SPL is particularly tuned to biological motion or 
equally to similarly complex nonbiological movements. 
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The distinct representations in aIPL and SPL identified here may not only play a role in the 
recognition of others' actions but also in the execution of goal-directed actions, which requires 
visuospatial processing of own body movements and of the changes in the world induced by them 
(Fischer and Mahon, 2021). This view is compatible with the proposal that the dorsal "where/how" 
stream is subdivided into sub-streams for the visuomotor coordination of body movements in SPL 
and the manipulation of objects in aIPL (Rizzolatti and Matelli, 2003; Binkofski and Buxbaum, 
2013). 

In conclusion, our study dissociated important stages in the visual processing of actions: the 
representation of body movements and the effects they induce in the world. These stages draw 
on distinct subregions in parietal cortex – SPL and aIPL – as well as LOTC. These results help clarify 
the roles of these regions in action understanding and more generally in understanding the physics 
of dynamic events. The identification of action effect structure representations in aIPL has 
implications for theories of action understanding (Csibra, 2007; Zentgraf et al., 2011; Kemmerer, 
2021; Fischer, 2024), in particular theories that claim key roles for premotor and inferior parietal 
cortex in motor simulation of observed actions. The recognition of many goal-directed actions 
critically relies on the identification of state change of the action target, which is usually 
independent of body movements and thus not well accounted for by motor theories of action 
understanding. However, this does not rule out additional processes related to action recognition 
in parietal cortex, for example the generation of putative motor reactions (Orban et al., 2021) and 
the prediction of unfolding actions and events, which might also rely on premotor regions 
(Schubotz, 2007). Not all actions induce an observable change in the world. It remains to be tested 
whether the recognition of, e.g., communication (e.g. speaking, gesturing) and perception actions 
(e.g. observing, smelling) similarly relies on structural action representations in aIPL and LOTC. 

 

 

Methods 

Participants. Twenty-five right-handed adults (15 females; mean age, 23.7 years; age range, 20-38 
years) participated in this experiment. All participants had normal or corrected-to-normal vision 
and no history of neurological or psychiatric disease. All procedures were approved by the Ethics 
Committee for research involving human participants at the University of Trento, Italy.  

 

Stimuli. The stimulus set consisted of videos of 5 object-directed actions (squashing a plastic 
bottle, breaking a stick, drinking water, hitting a paper ball, and placing a cup on a saucer) that 
were shown in 4 different formats: naturalistic actions, pantomimes, point light display (PLD) stick 
figures, and abstract animations (Fig. 1). The actions were selected among a set of possible actions 
based on two criteria: (1) The actions should be structurally different from each other as much as 
possible. (2) The action structures (e.g. of dividing) should be depictable as animations, but at the 
same time the animations should be associated with the corresponding concrete actions as little 
as possible to minimize activation of conceptual action representations (e.g. of "breaking a stick"). 
The resulting set of 5 actions belonged to 3 broad categories of changes: shape/configuration 
changes (break, squash), location changes (hit, place), and ingestion (drink).   
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For each action and stimulus format, 8 exemplars were generated to increase the perceptual 
variance of the stimuli. All videos were in RGB color, had a length of 2 s (30 frames per second), 
and a resolution of 400 x 225 pixels. 

Naturalistic actions and corresponding pantomimes were performed by two different persons 
(female, male) sitting on a chair at a table in a neutral setting. The actions were filmed from 2 
different camera viewpoints (approx. 25° and 40°). Finally, each video was mirrored to create left- 
and right-sided variants of the actions.  

For the generation of PLD stick figures, the actions were performed in the same manner as the 
action videos in a motion capture lab equipped with a Qualisys motion-capture system (Qualisys 
AB) comprising 5 ProReflex 1000 infrared cameras (100 frames per second). 13 passive kinematic 
markers (14 mm diameter) were attached to the right and left shoulders, elbows, hands, hips, 
knees, feet and forehead of a single actor, who performed each action two times. Great care was 
taken that the actions were performed with the same movements as in the action and pantomime 
videos. 3D kinematic marker positions were processed using the Qualisys track manager and 
Biomotion Toolbox V2 (van Boxtel and Lu, 2013). Missing marker positions were calculated using 
the interpolation algorithm of the Qualisys track manager. To increase the recognizability of the 
body, we connected the points in the PLDs with white lines to create arms, legs, trunk, and neck. 
PLD stick figures were shown from two angles (25° and 40°), and the resulting videos were left-
right mirrored.  

Abstract animations were designed to structurally match the 5 actions in terms of the induced 
object change. At the same time, they were produced to be as abstract as possible so as to 
minimize the match at both basic perceptual levels (e.g. shape, motion) and conceptual levels. To 
clarify the latter, the abstract animation matching the “breaking” action was designed to be 
structurally similar (causing an object to divide in half) without activating a specific action meaning 
such as “breaking a stick”. In all animations, the agent object (a circle with a smiley) moved toward 
a target object (a rectangle or a circle). The contact with the target object at 1 sec after video onset 
induced different kinds of effects, i.e., the target object broke in half, was compressed, ingested 
(decreased in size until it disappeared), propelled, or pushed to the side. The animations were 
created in MATLAB (Mathworks) with Psychtoolbox-3 (Brainard, 1997). The speeds of all agent and 
target-object movements were constant across the video. To increase stimulus variance, 8 
exemplars per action were generated using two target-object shapes (rectangle, circle), two color 
schemes for the agent-target pairs (green-blue and pink-yellow), and two action directions (left-
to-right, right-to-left). To verify that animations were not associated with the specific action 
meanings of the naturalistic actions we performed a behavioral experiment, in which we asked 14 
participants to describe what kind of actions the animations depict. No participant used verb-noun 
phrases (e.g. "breaking a stick") to describe the animations. Rather, the participants more abstract 
verbs or nouns to describe them (e.g. dividing, splitting, division; Tab. S1). These results suggest 
that the animations were not substantially associated with specific action meanings (e.g. "breaking 
a stick"). 

 

Experimental Design. For all four sessions, stimuli were presented in a mixed event-related design. 
In each trial, videos were followed by a 1 s fixation period. Each of the 5 conditions was presented 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2024. ; https://doi.org/10.1101/2023.10.04.560860doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560860
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

4 times in a block, intermixed with 3 catch trials (23 trials per block). Four blocks were presented 
per run, separated by 8 s fixation periods. Each run started with a 2 s fixation period and ended 
with a 16 s fixation period. In each run, the order of conditions was pseudorandomized to ensure 
that each condition followed and preceded each other condition a similar number of times in each 
run. Each participant was scanned in 4 sessions (animations, PLDs, pantomimes, actions), each 
consisting of 3 functional scans. The order of sessions was chosen to minimize the possibility that 
participants would associate specific actions/objects with the conditions in the animation and PLD 
sessions. In other words, during the first session (animations), participants were unaware that they 
would see human actions in the following sessions; during the second session (PLDs), they were 
ignorant of the specific objects and hand postures/movements. Each of the five conditions was 
shown 48 times (4 trials per block x 4 blocks x 3 runs) in each session. Each exemplar of every video 
was presented 6 times in the experiment. 

 

Task. We used catch-trial-detection task to ensure that participants paid constant attention during 
the experiment and were not biased to different types of information in the various sessions. 
Participants were instructed to attentively watch the videos and to press a button with the right 
index finger on a response-button box whenever a video contained a glitch, that is, when the video 
did not play smoothly but jerked for a short moment (300 ms). Glitches were created by selecting 
a random time window of 8 video frames of the video (excluding the first 10 and last 4 frames) 
and shuffling the order of the frames in that window. The task was the same for all sessions. Before 
fMRI, participants were instructed and trained for the first session only (animations). In all four 
sessions, the catch trials were identified with robust accuracy (animations: 0.73±0.02 SEM, PLDs: 
0.65±0.02, pantomimes: 0.69±0.02, actions: 0.68±0.02). Participants were not informed about the 
purpose and design of the study before the experiment.  

 

Data acquisition. Functional and structural data were collected using a 3 T Siemens Prisma MRI 
scanner and a 64-channel head coil.  Functional images were acquired with a T2*-weighted 
gradient echo-planar imaging (EPI) sequence. Acquisition parameters were a repetition time (TR) 
of 1.5 s, an echo time of 28 ms, a flip angle of 70°, field of view of 200 mm matrix size of 66 x 66, 
voxel resolution 3x3x3 mm. We acquired 45 slices in ascending interleaved odd-even order. Each 
slice was 3 mm thick. There were 211 volumes acquired in each functional run. 

Structural T1-weighted images were acquired using an MPRAGE sequence (Slice number=176, 
TR=2.53 seconds, inversion time= 1.1 second, flip angle= 7°, 256*256 mm field of view, 1x1x1 mm 
resolution). 

 

Preprocessing. Data were analyzed using BrainVoyager QX 2.84 (BrainInnovation) in combination 
with the SPM12 and NeuroElf (BVQXTools) toolboxes and custom software written in Matlab 
(MathWorks). Anatomical scans of individual subjects were normalized to the standard SPM12 EPI 
template (Montreal Neurological Institute MNI stereotactic space). Slice time correction was 
performed on the functional data followed by a three-dimensional (3D) motion correction 
(trilinear interpolation, with the first volume of the first run of each participant as reference). 
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Functional data were co-registered with the normalized anatomical scans followed by spatial 
smoothing with a Gaussian kernel of 8 mm full width at half maximum (FWHM) for univariate 
analysis and 3 mm FWHM for MVPA. 

 

Multivariate pattern classification. For each participant, session, and run, a general linear model 
(GLM) was computed using design matrices containing 10 action predictors (2 for each action; 
based on 8 trials from the first 2 blocks of a run and the second half from the last 2 blocks of a run, 
to increase the number of beta samples for classification), a catch-trial predictor, 6 predictors for 
each parameter of motion correction (three-dimensional translation and rotation) and 6 temporal-
drift predictors. Each trial was modeled as an epoch lasting from video onset to offset (2 s). The 
resulting reference time courses were used to fit the signal time courses of each voxel.  Predictors 
were convolved with a dual-gamma hemodynamic impulse response function. Since there were 3 
runs per session, there were thus 6 beta maps per action condition. 

Searchlight classification was done on each subject in volume space using a searchlight sphere of 
12 mm and an LDA (linear discriminant analysis) classifier, as implemented in the CosmoMVPA 
toolbox (Oosterhof et al., 2016). We also tested for robustness of effects across MVPA parameter 
choices by running the analysis with different ROI sizes (9 mm, 15 mm) and a support vector 
machine (SVM) classifier, which revealed similar findings, that is, all critical findings were also 
found with the alternative MVPA parameters.  

For the within-session analyses, all 5 action conditions of a given session were entered into a 5-
way multiclass classification using leave-one-out cross validation, that is, the classifier was trained 
with 5 out of 6 beta patterns per action and was tested with the held-out beta pattern. This was 
done until each beta pattern was tested. The resulting accuracies were averaged across the 6 
iterations and assigned to the center voxel of the sphere (see Fig. S2 for results of within-session 
decoding). For cross-decoding analyses, a classifier was trained to discriminate the voxel activation 
patterns associated with the 5 action conditions from one session (e.g. actions) and tested on its 
ability to discriminate the voxel activation patterns associated with the 5 action conditions of 
another session (e.g. animations).  The same was done vice versa (training with animations and 
testing with actions), and the accuracies were averaged across the two directions (see Fig. S3 for 
contrasts between cross-decoding directions). In total, there were 6 across-session pairs: action-
animation, action-PLD, action-pantomime, animation-pantomime, pantomime-PLD, animation-
PLD.  

For all decoding schemes, a one-tailed, one-sample t-test was performed on the resulting accuracy 
maps to determine which voxels had a decoding accuracy that was significantly above the chance 
level (20%). The resulting t-maps were corrected for multiple comparisons with Monte Carlo 
Correction as implemented in CosmoMVPA (Oosterhof et al., 2016), using an initial threshold of 
p=0.001 at the voxel level, 10000 Monte Carlo simulations, and a one-tailed corrected cluster 
threshold of p = 0.05 (z = 1.65). 

Conjunction maps were computed by selecting the minimal z-value (for corrected maps) or t-value 
(for uncorrected maps) for each voxel of the input maps. 
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ROI analysis. Regions of interest (ROI) were based on MNI coordinates of the center locations of 
Brodmann areas (BA) associated with the aIPL/supramarginal gyrus (BA 40; Left: -53, -32, 33; right: 
51, -33, 34), SPL (BA 7; left: -18, -61, 55; right: 23, -60, 61), and LOTC (BA 19; left: -45, -75, 11; 
right: 44, -75, 5), using the MNI2TAL application of the BioImage Suite WebApp 
(https://bioimagesuiteweb.github.io/webapp/). For each participant, ROI, and decoding scheme, 
decoding accuracies from the searchlight analysis were extracted from all voxels within a sphere 
of 12 mm around the ROI center, averaged across voxels, and entered into one-tailed, one-sample 
t-tests against chance (20%). In addition, paired t-tests and repeated measures analyses of 
variance (ANOVA) were conducted to test for the differences between ROIs and different decoding 
schemes. The statistical results of t-tests were FDR-corrected for the number of tests and ROIs 
(Benjamini and Yekutieli, 2001). 
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Supplementary Information  
 

 

Fig. S1. Representational similarity of action effect structures and body movements. Pairwise classifications 
of the 5 actions from the action-animation cross-decoding (A) and the action-PLD cross-decoding (C) were 
extracted from each ROI, averaged across voxels, and entered into a cluster analysis using average distance. 
The resulting hierarchical cluster trees are displayed as dendrograms (B, D). In aIPL and LOTC, action effect 
structure representations formed meaningful clusters reflecting the 3 broad categories of change types: 
object shape/configuration changes (break, squash), location changes (hit, place), and ingestion (drink), 
supporting the interpretation that the cross-decoding between actions and animations isolated the coarse 
type of action effect. The cluster analysis in SPL and LOTC for body movements revealed similar 
representational clusters, which probably reflect categories of body movements, that is, bimanual actions 
(break, squash), unimanual actions (hit, place), and drinking as a mouth-directed action. 
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Fig. S2. (A) Univariate activation maps for each session (all 5 actions vs. Baseline; FDR-corrected at p = 0.05) 
and (B) within-session decoding maps (Monte-Carlo-corrected for multiple comparisons; voxel threshold 
p=0.001, corrected cluster threshold p=0.05).  

 

 

Fig. S3. Direction-specific cross-decoding effects. To test whether there were differences between the two 
directions in the cross-decoding analyses, we ran, for each of the 6 across-session decoding schemes, two-
tailed paired samples t-tests between the decoding maps of one direction (e.g. action → animation) vs. the 
other direction (animation → action). Direction effects were observed in left early visual cortex for the 
directions action → animation, PLD → animation, and pantomime → PLD, as well in right middle temporal 
gyrus and dorsal premotor cortex for action → PLD. These effects do not appear to affect the interpretation 
of direction-averaged cross-decoding effects in the main text. Monte-Carlo-corrected for multiple 
comparisons; voxel threshold p=0.001, corrected cluster threshold p=0.05.  
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Table S1: Results of the behavioral pilot experiment. Verbal descriptions of the abstract animations by N=14 
participants. 

Subject break hit ingest move squash 

1 splitting hitting swallowing moving hitting 

2 dividing explosion shrinking passing colliding 

3 break kinetic energy suction touch crash 

4 break press eating press push 

5 divide crash swallow push turn 

6 divide crash sucking pushing squeeze 

7 break accident consume push hit 

8 splitting in two pushing and splitting shrinking slowly pushing pushing 

9 destroying banging introjection hitting squishing 

10 division division absorbing pushing impacting 

11 dividing force absorption action reaction squeezing 

12 divide collide absorb activate squeeze 

13 crash collision eating push push 

14 separation cooperation absorption cause and effect force 
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