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Abstract 

Recognizing goal-directed actions is a computationally challenging task, requiring not only the 
visual analysis of body movements, but also analysis of how these movements causally impact, 
and thereby induce a change in, those objects targeted by an action. We tested the hypothesis 
that the analysis of body movements and the effects they induce relies on distinct neural 
representations in superior and anterior inferior parietal lobe (SPL and aIPL). In four fMRI sessions, 
participants observed videos of actions (e.g. breaking stick, squashing plastic bottle) along with 
corresponding point-light-display stick figures, pantomimes, and abstract animations of agent-
object interactions (e.g. dividing or compressing a circle). Cross-decoding between actions and 
animations revealed that aIPL encodes abstract representations of action effect structures 
independent of motion and object identity. By contrast, cross-decoding between actions and 
point-light-displays revealed that SPL is disproportionally tuned to body movements independent 
of visible interactions with objects. Lateral occipitotemporal cortex (LOTC) was sensitive to both 
action effects and body movements. Moreover, cross-decoding between pantomimes and 
animations suggests that right aIPL and LOTC represent action effects even in response to implied 
object interactions. These results demonstrate that parietal cortex and LOTC are tuned to physical 
action features, such as how body parts move in space relative to each other and how body parts 
interact with objects to induce a change (e.g. in position or shape/configuration). The high level of 
abstraction revealed by cross-decoding suggests a general neural code supporting mechanical 
reasoning about how entities interact with, and have effects on, each other. 
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Introduction 
Action recognition is central for navigating social environments, as it provides the basis for 
understanding others' intentions, predicting future events, and social interaction. Many actions 
aim to induce a change in the world, often targeting inanimate objects (e.g. opening or closing a 
door) or persons (e.g. kissing or hitting someone). Recognizing such goal-directed actions is a 
computationally challenging task, as it requires not only the temporospatial processing of body 
movements, but also processing of how the body interacts with, and thereby induces an effect on, 
the object targeted by the action, e.g. a change in location, shape, or state. While a large body of 
work has investigated the neural processing of observed body movements as such (Grossman et 
al., 2000; Giese and Poggio, 2003; Puce and Perrett, 2003; Peuskens et al., 2005; Peelen et al., 
2006), the neural mechanisms underlying the analysis of action effects, and how the 
representations of body movements and action effects differ from each other, remain unexplored.  

The recognition of action effects builds on a complex analysis of spatial and temporal relations 
between entities. For example, recognizing a given action as "opening a door" requires the analysis 
of how different objects or object parts (e.g. door and doorframe) spatially relate to each other 
and how these spatial relations change over time. The specific interplay of temporospatial 
relations is usually characteristic for an action type (e.g. opening, as opposed to closing), 
independent of the concrete target object (e.g. door or trash bin), and is referred to here as action 
effect structure (Fig. 1A). In addition, action effects are often independent of specific body 
movements – for example, we can open a door by pushing or by pulling the handle, depending on 
which side of the door we are standing on. This suggests that body movements and the effects 
they induce might be at least partially processed independently from each other. In this study, we 
define action effects as induced by intentional agents, but the notion of action effect structures 
might be generalizable to physical changes as such (e.g. an object's change of location or 
configuration, independently of whether the change is induced by an agent or not). Moreover, we 
argue that representations of action effect structures are distinct of conceptual action 
representations: The former capture the temporospatial structure of an object change (e.g. the 
separation of a closing object element), the latter capture the meaning of an action (e.g. bringing 
an object into an opened state to make something accessible) and can also be activated via 
language (e.g. by reading "she opens the box"). Previous research suggests that conceptual action 
knowledge is represented in left anterior LOTC (Watson et al., 2013; Lingnau and Downing, 2015; 
Wurm and Caramazza, 2022) whereas structural representations of action effects have not been 
investigated yet.  

We argue that object- and movement-general representations of action effect structures are 
necessary for the recognition of goal-directed actions as they allow for inferring the induced effect 
(e.g. that something is opened) independently of specific, including novel, objects. Strikingly, 
humans recognize actions even in the absence of any object and body-related information: In the 
animations of Heider and Simmel (1944), the only available cues are abstract geometrical shapes 
and how these shapes move relate to each other and to scene elements. Yet, humans 
automatically and effortlessly attribute actions to these animations (e.g. opening, chasing, hiding, 
kissing), which argues against an inferential process and rather points towards an evolutionary 
optimized mechanism in the service of action recognition. Here we test for the existence of a 
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processing stage in the action recognition hierarchy that encode action effect representations 
independently from representations of body movements. We argue that both the recognition of 
body movements and the effects they induce rely critically on distinct but complementary 
subregions in parietal cortex, which is associated with visuospatial processing (Goodale and 
Milner, 1992; Kravitz et al., 2011), action recognition (Caspers et al., 2010), and mechanical 
reasoning about manipulable objects (Binkofski and Buxbaum, 2013; Leshinskaya et al., 2020) and 
physical events (Fischer et al., 2016; Fischer and Mahon, 2021). Specifically, we hypothesize that 
the neural analysis of action effects relies on anterior inferior parietal lobe (aIPL), whereas the 
analysis of body movement relies on superior parietal lobe (SPL). aIPL shows a representational 
profile that seems ideal for the processing of action effect structures at a high level of generality: 
Action representations in bilateral aIPL generalize across perceptually variable action exemplars, 
such as opening a bottle or a box (Wurm and Lingnau, 2015; Hafri et al., 2017; Vannuscorps et al., 
2019), as well as structurally similar actions and object events, for example, a girl kicking a chair 
and a ball bouncing against a chair (Karakose-Akbiyik et al., 2023). Moreover, aIPL is critical for 
understanding how tools can be used to manipulate objects (Goldenberg and Spatt, 2009; 
Reynaud et al., 2016). More generally, aIPL belongs to a network important for physical inferences 
of how objects move and impact each other (Fischer et al., 2016).  

Also the recognition of body movements builds on visuospatial and temporal processing, but their 
representation should be more specific for certain movement trajectories (e.g. pulling the arm 
toward the body, regardless of the movement's intent to open or close a door). The visual 
processing of body movements has been shown to rely on posterior superior temporal sulcus 
(Grossman et al., 2000; Giese and Poggio, 2003; Puce and Perrett, 2003; Peuskens et al., 2005; 
Peelen et al., 2006). However, recent research found that also SPL, but less so aIPL, encodes 
observed body movements: SPL is more sensitive in discriminating actions (e.g. a girl jumping over 
a box) than structurally similar object events (e.g. a ball bouncing over a box) (Karakose-Akbiyik et 
al., 2023); and point-light-displays (PLDs) of actions, which convey only motion-related action 
information but not the interactions between the body and other entities, can be decoded with 
higher accuracy in SPL compared to aIPL (Yargholi et al., 2023). Together, these findings support 
the hypothesis of distinct neural systems for the processing of observed body movements in SPL 
and the effect they induce in aIPL. 

 

 
 

state(t1) state(t2)

A B similar action effect structure
(independently of motion and 

object identity)

similar body movements
(independently of visible object 

interaction)
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Figure 1. (A) Simplified schematic illustration of the action effect structure of "opening". Action effect structures 
encode the specific interplay of temporospatial object relations that are characteristic for an action type 
independently of the concrete object (e.g. a state change from closed to open). (B) Cross-decoding approach to 
isolate representations of action effect structures and body movements. Action effect structure representations 
were isolated by training a classifier to discriminate neural activation patterns associated with actions (e.g. 
“breaking a stick”) and testing the classifier on its ability to discriminate activation patterns associated with 
corresponding abstract action animations (e.g. “dividing”). Body movement representations were isolated by 
testing the classifier trained with actions on activation patterns of corresponding PLD stick figures. 

 
Using an fMRI-based cross-decoding approach (Fig. 1B), we isolated the neural substrates for the 
recognition of action effects and body movements in parietal cortex. Specifically, we demonstrate 
that aIPL encodes abstract representations of action effect structures independently of motion 
and object identity, whereas SPL is more tuned to body movements irrespective of visible effects 
on objects. Moreover, cross-decoding between pantomimes and animations revealed that right 
aIPL represents action effects even in response to implied object interactions. These findings 
elucidate the neural basis of understanding the physics of actions, which is a key stage in the 
processing hierarchy of action recognition. 

 

Results 
To isolate neural representations of action effect structures and body movements from observed 
actions, we used a cross-decoding approach: In 4 separate fMRI sessions, right-handed 
participants observed videos of actions (e.g. breaking a stick, squashing a plastic bottle) along with 
corresponding point-light-display stick figures, pantomimes, and abstract animations of agent-
object interactions (Fig. 2) while performing a simple catch-trial-detection task (see Methods for 
details).  

To identify neural representations of action effect structures, we trained a classifier to discriminate 
the neural activation patterns associated with the action videos, and then tested the classifier on 
its ability to discriminate the neural activation patterns associated with the animations (and vice 
versa). We thereby isolated the component that is shared between the naturalistic actions and 
the animations – the perceptually invariant action effect structure – irrespective of other action 
features, such as motion, object identity, and action-specific semantic information (e.g. the 
specific meaning of breaking a stick).  

Likewise, to isolate representations of body movements independently of the effect they have on 
target objects, we trained a classifier on naturalistic actions and tested it on the point-light-display 
(PLD) stick figures (and vice versa). We thereby isolated the component that is shared between 
the naturalistic actions and the PLD stick figures – the coarse body movement patterns – 
irrespective of action features related to the target object, such as the way they are grasped and 
manipulated, and the effect induced by the action.  

Additionally, we used pantomimes of the actions, which are perceptually richer than the PLD stick 
figures and provide more fine-grained information about hand posture and movements. Thus, 
pantomimes allow inferring how an object is grasped and manipulated. Using cross-decoding 
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(left: t(23) = 1.81, p = 0.042, right: 4.01, p = 0.0003, one-tailed), whereas the opposite effects were 
found for action-PLD cross-decoding (left: t(23) = -4.17 p = 0.0002, right: -2.93, p = 0.0038, one-
tailed). Moreover, we found ANOVA main effects of TEST (F(1,24)=33.08, p=7.4E-06), indicating 
stronger decoding for action-PLD vs. action-animation cross-decoding, and of HEMISPHERE 
(F(1,24)=12.75, p=0.0016), indicating stronger decoding for right vs. left ROIs. An interaction 
between TEST and HEMISPHERE indicated that action-animation cross-decoding was 
disproportionally stronger in the right vs. left hemisphere (F(1,24)=9.94, p=0.0044).  

 

 
Figure 3. Cross-decoding of action effect structures (action-animation) and body movements (action-PLD). (A) 
ROI analysis in left and right aIPL and SPL (Brodmann Areas 40 and 7, respectively; see Methods for details). 
Decoding of action effect structures (action-animation cross-decoding) is stronger in aIPL than in SPL, whereas 
decoding of body movements (action-PLD cross-decoding) is stronger in SPL than in aIPL.   Asterisks indicate 
FDR-corrected significant decoding accuracies above chance (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001). 
Error bars indicate SEM. (B) Mean accuracy whole-brain maps thresholded using Monte Carlo correction for 
multiple comparisons (voxel threshold p=0.001, corrected cluster threshold p=0.05). Action-animation cross-
decoding is stronger in the right hemisphere and reveals additional representations of action effect structures 
in LOTC. 
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These findings were corroborated by the results of a searchlight analysis (Fig. 3B): Within the 
parietal cortex, action-animation cross-decoding revealed a cluster peaking in right aIPL, whereas 
the parietal clusters for the action-PLD cross-decoding peaked in bilateral SPL. The whole-brain 
results further demonstrated overall stronger decoding for action-PLD throughout the action 
observation network, and in particular in LOTC extending into pSTS (see also Fig. S1 for ROI results 
in LOTC and pSTS), which was expected because of the similarity of movement kinematics between 
the naturalistic actions and the PLDs. Note that we were not interested in the representation of 
movement kinematics in the action observation network as such, but in testing the specific 
hypothesis that SPL is disproportionally sensitive to movement kinematics as opposed to aIPL. 
Interestingly, the action-animation cross-decoding searchlight analysis revealed an additional 
prominent cluster in right LOTC (and to a lesser extent in left LOTC), suggesting that not only aIPL 
is critical for the representation of effect structures, but also right LOTC. We therefore include 
LOTC in the following analyses and discussion. In addition, we observed subtle but significant 
above chance decoding for action-animation in bilateral early visual cortex (EVC; see also Fig. S1). 
This was surprising because the different stimulus types (action videos and animations) should not 
share low-level visual features. However, it is possible that there were coincidental similarities 
between action videos and animations that were picked up by the classifier. To assess this 
possibility, we tested whether the 5 actions can cross-decoded using motion energy features 
extracted from the action videos and animations (Fig. S2). This analysis revealed significant above 
chance decoding accuracy (30%), suggesting that actions and animations indeed contain 
coincidental visual similarities. To test whether these similarities can explain the effects observed 
in V1, we used the motion energy decoding matrix as a model for a representational similarity 
analysis (see Results Section "Representational geometry of action-structure- and body-motion-
related representations"). 

 

Representation of implied vs. visible action effects. Humans can recognize many goal-directed 
actions from mere body movements, as in pantomime. This demonstrates that the brain is capable 
of inferring the effect that an action has on objects based on the analysis of movement kinematics 
without the analysis of a visible interaction with an object. Inferring action effects from body 
movements is easier via pantomimes than with PLD stick figures, because the former provide 
richer and more fine-grained body information, and in the case of object manipulations, object 
information (e.g. shape) implied by the pantomimed grasp. Hence, neither pantomimes nor PLDs 
contain visible information about objects and action effects, but this information is more easily 
accessible in pantomimes than in PLDs. This difference between pantomimes and PLDs allows 
testing whether there are brain regions that represent effect structures in the absence of visual 
information about objects and action effects. We focused on brain regions that revealed the most 
robust decoding of action effect structures, i.e., aIPL and LOTC (see Fig. S3 for results in SPL). We 
first tested for sensitivity to implied effect structures by comparing the cross-decoding of actions 
and pantomimes (strongly implied hand-object interaction) with the cross-decoding of actions and 
PLDs (less implied hand-object interaction). This was the case in both aIPL and LOTC: action-
pantomime cross-decoding revealed higher decoding accuracies than action-PLD cross-decoding 
(Fig. 4A; (all t(23) > 3.54, all p < 0.0009; one-tailed). The same pattern should be observed in the 
comparison of action-pantomime and pantomime-PLD cross-decoding, which was indeed the case 



 9 

(Fig. 3A; (all t(23) > 2.96, all p < 0.0035; one-tailed). These findings suggest that the representation 
of action effect structures in aIPL does not require a visible interaction with an object. However, 
the higher decoding across actions and pantomimes might also be explained by the higher visual 
and motoric similarity between actions and pantomimes, in particular the shared information 
about hand posture and hand movements, which are not present in the PLDs. A more selective 
test is therefore the comparison of animation-pantomime and animation-PLD cross-decoding; as 
the animations do not provide any body-related information, a difference can only be explained 
by the stronger matching of effect structures between animations and pantomimes. We found 
higher cross-decoding for animation-pantomime vs. animation-PLD in right aIPL and bilateral LOTC 
(all t(23) > 3.09, all p < 0.0025; one-tailed), but not in left aIPL (t(23) = 0.73, p = 0.23, one-tailed). 
However, a repeated measures ANOVA revealed no significant interaction between TEST 
(animation-pantomime, animation-PLD) and ROI (left aIPL, right aIPL; (F(1,23)=3.66, p = 0.068).  

Together, these results suggest that right aIPL and bilateral LOTC are sensitive to implied action 
effects. This finding was also obtained in a whole-brain conjunction analysis, which revealed 
effects in right aIPL and bilateral LOTC but not in other brain regions (Fig. 4B).  
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Figure 4. Cross-decoding of implied action effect structures. (A) ROI analysis. Cross-decoding schemes involving 
pantomimes but not PLDs (action-pantomime, animation-pantomime) reveal stronger effects in right aIPL than 
cross-decoding schemes involving PLDs (action-PLD, pantomime-PLD, animation-PLD), suggesting that action 
effect structure representations in right aIPL respond to implied object manipulations in pantomime irrespective 
of visuospatial processing of observable object state changes. Same conventions as in Fig. 3. (B) Conjunction of 
the contrasts action-pantomime vs. action-PLD, action-pantomime vs. pantomime-PLD, and animation-
pantomime vs. animation-PLD. Uncorrected t-map thresholded at p=0.01; yellow outlines indicate clusters 
surviving Monte-Carlo-correction for multiple comparisons (voxel threshold p=0.001, corrected cluster 
threshold p=0.05). 

 

Representational content of brain regions sensitive to action effect structures and body motion. 
To explore in more detail what types of information were isolated by the action-animation and 
action-PLD cross-decoding, we performed a representational similarity analysis.  

We first focus on the representations identified by the action-animation decoding. To characterize 
the representational content in the ROIs, we extracted the classification matrices of the action-
animation decoding from the ROIs (Fig. 5A) and compared them with different similarity models 
(Fig. 5B) using multiple regression. Specifically, we aimed at testing at which level of granularity 
action effect structures are represented in aIPL and LOTC: Do these regions encode the broad type 
of action effects (change of shape, change of location, ingestion) or do they encode specific action 
effects (compression, division, etc.)? In addition, we aimed at testing whether the effects observed 
in EVC can be explained by a motion energy model that captures the similarities between actions 
and animations that we observed in the stimulus-based action-animation decoding using motion 
energy features. We therefore included V1 in the ROI analysis. We found clear evidence that the 
representational content in right aIPL and bilateral LOTC can be explained by the effect type model 
but not by the action-specific model (Fig. 5C; all two-sided paired t-tests between models p < 
0.005). In left V1, we found that the motion energy model could indeed explain some 
representational variance; however, in both left and right V1 we also found effects for the effect 
type model. We assume that there were additional visual similarities between the broad types of 
actions and animations that were not captured by the motion energy model (or other visual 
models; see Supplementary Information). A searchlight RSA revealed converging results, and 
additionally found effects for the effect type model in the ventral part of left aIPL and for the 
action-specific model in the left anterior temporal lobe, left dorsal central gyrus, and right EVC 
(Fig. 5D). The latter findings were unexpected and should be interpreted with caution, as these 
regions (except right EVC) were not found in the action-animation cross-decoding and therefore 
should not be considered reliable (Ritchie et al., 2017). The motion energy model did not reveal 
effects that survived the correction for multiple comparison, but a more lenient uncorrected 
threshold of p = 0.005 revealed clusters in left EVC and bilateral posterior SPL. 
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Figure 5. RSA for the action-animation representations. (A) Classification matrices of ROIs. (B) Similarity models 
used in the RSA. (C) Multiple regression RSA ROI analysis. Asterisks indicate FDR-corrected significant decoding 
accuracies above chance (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001). Error bars indicate SEM.  (D) 
Multiple regression RSA searchlight analysis. T-maps are thresholded using Monte Carlo correction for multiple 
comparisons (voxel threshold p=0.001, corrected cluster threshold p=0.05) except for the motion energy model 
(p = 0.005, uncorrected). 

 

To characterize the representations identified by the action-PLD cross-decoding, we used a model 
of manuality that captures whether the actions are unimanual or bimanual, an action-specific 
model as used in the action-animation RSA above, and a kinematics model that was based on the 
3D kinematic marker positions of the PLDs (Fig. 6B). Since pSTS is a key region for biological motion 
perception, we included this region in the ROI analysis. The manuality model explained the 
representational variance in the parietal ROIs, pSTS, and LOTC, but not in V1 (Fig. 6C; all two-sided 
paired t-tests between V1 and other ROIs p < 0.002). By contrast, the action-specific model 
revealed significant effects in V1 and LOTC, but not in pSTS and parietal ROIs (but note that effects 
in V1 and pSTS did not differ significantly from each other; all other two-sided paired t-tests 
between mentioned ROIs were significant at p < 0.0005). The kinematics model explained the 
representational variance in all ROIs. A searchlight RSA revealed converging results, and 
additionally found effects for the manuality model in bilateral dorsal/medial prefrontal cortex and 
in right ventral prefrontal cortex and insula (Fig. 6D).  
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Figure 6. RSA for the action-PLD representations. (A) Classification matrices of ROIs. (B) Similarity models used 
in the RSA. (C) Multiple regression RSA ROI analysis.  (D) Multiple regression RSA searchlight analysis. Same figure 
conventions as in Fig. 5. 

 

Representational similarity between brain regions. Finally, we investigated how similar the ROIs 
were with regard to the representational structure obtained by the action-animation and action-
PLD cross-decoding. To this end, we correlated the classification matrices for both decoding 
schemes and all ROIs with each other (Fig. 7A) and displayed the similarities between them using 
multidimensional scaling (Fig. 7B) and dendrograms (Fig. 7C).  

The aim for this analysis was two-fold: First, we wanted to assess for the action-animation 
decoding how the representational structure in V1 relates to LOTC and aIPL. If V1 is 
representationally similar to LOTC and aIPL, this might point toward potential visual factors that 
drove the cross-decoding in visual cortex but potentially also in higher-level LOTC and aIPL. 
However, this was not the case: The V1 ROIs formed a separate cluster that was distinct from a 
cluster formed by aIPL and LOTC. This suggests that the V1 represents different information than 
aIPL and LOTC. 

Second, we aimed at testing whether the effects in aIPL for the action-PLD decoding reflect the 
representation of action effect structures or rather representations related to body motion. In the 
former case, the representational organization in aIPL should be similar for the action-animation 
and action-PLD cross-decoding. In the latter case, the representational organization for action-PLD 
should be similar between aIPL and the other ROIs. We found that for the action-PLD decoding, all 
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ROIs were clustered relatively closely together, and aIPL did not show similarity to the action-
animation ROIs, specifically to aIPL. This finding argues against the interpretation that the effects 
in aIPL for the action-PLD cross-decoding were driven by action effect structures. Rather, it 
suggests that aIPL also encodes body motion, which is in line with the RSA results reported in the 
previous section. 

 

 
Figure 7. ROI similarity for action-animation and action-PLD representations. (A) Correlation matrix for the 
action-animation and action-PLD decoding and all ROIs. (B) Multidimensional scaling. (C) Dendrogram plot. 

 

 

Discussion 

We provide evidence for neural representations of action effect structures in aIPL and LOTC that 
generalize between perceptually highly distinct stimulus types – naturalistic actions and abstract 
animations. The representation of effect structures in aIPL is distinct from parietal representations 
of body movements, which were predominantly located in SPL. While body movement 
representations are generally bilateral, action effect structure representations are lateralized to 
the right aIPL and LOTC. In right aIPL and bilateral LOTC, action effect structure representations 
do not require a visible interaction with objects but also respond to action effects implied by 
pantomime. 

Recognizing goal-directed actions requires a processing stage that captures the effect an action 
has on a target entity. Using cross-decoding between actions and animations, we found that aIPL 
and LOTC encode representations that are sensitive to the core action effect structure, that is, the 
type of change induced by the action. As the animations did not contain biological motion or 
specific object information matching the information in the action videos, these representations 
are independent of specific motion characteristics and object identity. This suggests an abstract 
level of representation of visuospatial and temporal relations between entities and their parts that 
may support the identification of object change independently of specific objects (e.g. dividing, 
compressing, ingesting, or moving something). Object-generality is an important feature as it 
enables the recognition of action effects on novel, unfamiliar objects. This type of representation 
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fits the idea of a more general neural mechanism supporting mechanical reasoning about how 
entities interact with, and have effects on, each other (Fischer et al., 2016; Karakose-Akbiyik et al., 
2023). Using multiple regression RSA, we showed that action effect structure representations in 
these regions capture the broad action effect type, i.e., a change of shape/configuration, a change 
of location, and ingestion. However, since this analysis was based on only 5 actions, a more 
comprehensive investigation is needed to understand the organization of a broader range of 
action effect types (see also Worgotter et al., 2013). 

In right aIPL and bilateral LOTC, the representation of action effect structures did not depend on 
a visible interaction with objects but could also be activated by pantomime, i.e., an implied 
interaction with objects. This suggests that right aIPL and LOTC do not merely represent 
temporospatial relations of entities in a perceived scene. Rather, the effects in these regions might 
reflect a more inferential mechanism critical for understanding hypothetical effects of an 
interaction on a target object.  

Interestingly, action effect structures appear lateralized to the right hemisphere. This is in line with 
the finding that perception of cause-effect relations, e.g., estimating the effects of colliding balls, 
activates right aIPL (Fugelsang et al., 2005; Straube and Chatterjee, 2010). However, in the context 
of action recognition, the involvement of aIPL is usually bilateral or sometimes left-lateralized, in 
particular for actions involving an interaction with objects (Caspers et al., 2010). Also, mechanical 
reasoning about tools – the ability to infer the effects of tools on target objects based on the 
physical properties of tools and objects, such as shape, weight, etc. – is usually associated with left 
rather than right aIPL (Goldenberg and Spatt, 2009; Reynaud et al., 2016; Leshinskaya et al., 2020). 
Thus, left and right aIPL appear to be disproportionally sensitive to different structural aspects of 
actions and events: Left aIPL appears to be more sensitive to the type of interaction between 
entities, that is, how a body part or an object exerts a force onto a target object (e.g. how a hand 
makes contact with an object to push it), whereas right aIPL appears to be more sensitive to the 
effect induced by that interaction (the displacement of the object following the push). In our study, 
the animations contained interactions, but they did not show precisely how a force was exerted 
onto the target object that led to the specific effects: In all animations, the causer made contact 
with the target object in the same manner. Thus, the interaction could not drive the cross-
decoding between actions and animations. Only the effects – the object changes – differed and 
could therefore be discriminated by the classification. Two questions arise from this 
interpretation: Would similar effects be observed in right aIPL (and LOTC) if the causer were 
removed, so that only the object change were shown in the animation? And would effects be 
observed in the left aIPL for distinguishable interactions (e.g., a triangle hitting a target object with 
the sharp or the flat side), perhaps even in the absence of the induced effect (dividing or 
compressing object, respectively)?  

Action effect representations were found not only in aIPL but also LOTC. Interestingly, the RSA did 
not reveal substantially different representational content – both regions are equally sensitive to 
the effect type and their representational organization in response to the five action effects used 
in this experiment is highly similar.  As it appears unlikely that aIPL and LOTC represent identical 
information, this raises the question of what different functions these regions provide in the 
context of action effect representation. Right LOTC is associated with the representation of socially 
relevant information, such as faces, body parts, and their movements (Chao et al., 1999; Pitcher 
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and Ungerleider, 2021).  Our findings suggest that right LOTC is not only sensitive to the perception 
of body-related information but also to body-independent information important for action 
recognition, such as object change. It remains to be investigated whether there is a dissociation 
between the action-independent representation of mere object change (e.g., in shape or location) 
and a higher-level representation of object change as an effect of an action. Left LOTC is sensitive 
to tools and effectors (Bracci and Peelen, 2013), which might point toward a role in representing 
putative causes of the observed object changes. Moreover, action representations in left LOTC are 
perceptually more invariant, as they can be activated by action verbs (Watson et al., 2013), 
generalize across vision and language (Wurm and Caramazza, 2019a), and more generally show 
signatures of conceptual representation (Lingnau and Downing, 2015; Wurm and Caramazza, 
2022). Thus, left LOTC might have generalized across actions and animations at a conceptual, 
possibly propositional level (e.g., the meaning of dividing, compressing, etc.), rather than at a 
structural level. Notably, conceptual action representations are typically associated with left 
anterior LOTC, but not right LOTC and aIPL, which argues against the interpretation that action-
animation cross-decoding captured conceptual action representations only, rather than structural 
representations of the temporo-spatial object change type. From a more general perspective, 
cross-decoding between different stimulus types and formats might be a promising approach to 
address the fundamental question of whether the format of certain representations is 
propositional (Pylyshyn, 2003) or depictive (Kosslyn et al., 2006; Martin, 2016).   

In contrast to the abstract representation of action effect structures in aIPL, the representation of 
body movements is more specific in terms of visuospatial relations between involved elements, 
that is, body parts. These representations were predominantly found in bilateral SPL, rather than 
aIPL, as well as in LOTC. This is in line with previous studies demonstrating stronger decoding of 
PLD actions in SPL than in aIPL (Yargholi et al., 2023) and stronger decoding of human actions as 
opposed to object events in SPL (Karakose-Akbiyik et al., 2023). The RSA revealed that SPL, as well 
as adjacent regions in parietal cortex including aIPL and LOTC, are particularly sensitive to 
manuality of the action (uni- vs. bimanual) and the movement kinematics specific to an action. An 
interesting question for future research is whether movement representation in SPL is particularly 
tuned to biological motion or equally to similarly complex nonbiological movements. LOTC was 
not only sensitive to manuality and kinematics, but particularly in discriminating the five actions 
from each other, which suggests that LOTC is most sensitive to capture even subtle movement 
differences.  

The action-PLD cross-decoding revealed widespread effects in LOTC and parietal cortex, including 
aIPL. What type of representation drove the decoding in aIPL? One possible interpretation is that 
aIPL encodes both body movements (isolated by the action-PLD cross-decoding) and action effect 
structures (isolated by the action-animation cross-decoding). Alternatively, aIPL selectively 
encodes action effect structures, which have been activated by the PLDs. A behavioral test showed 
that PLDs at least weakly allow for recognition of the specific actions (Tab. S2), which might have 
activated corresponding action effect structure representations. In addition, the finding that aIPL 
revealed effects for the cross-decoding between animations and PLDs further supports the 
interpretation that PLDs have activated, at least to some extent, action effect structure 
representations.  On the other hand, if aIPL encodes only action effect structures, we would expect 
that the representational similarity patterns in aIPL are similar for the action-PLD and action-
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animation cross-decoding. However, this was not the case; rather, the representational similarity 
pattern in aIPL was more similar to SPL for the action-PLD decoding, which argues against 
substantially distinct representational content in aIPL vs. SPL for the action-PLD decoding. In 
addition, the RSA revealed sensitivity to manuality and kinematics also in aIPL, which suggests that 
the action-PLD decoding in aIPL was at least partially driven by representations related to body 
movements. Taken together, these findings suggest that aIPL encodes not only action effect 
structures, but also representations related to body movements. Likewise, also SPL shows some 
sensitivity to action effect structures, as demonstrated by effects in SPL for the action-animation 
and pantomime-animation cross-decoding. Thus, our results suggest that aIPL and SPL are not 
selectively but disproportionally sensitive to action effects and body movements, respectively. 

The action effect structure and body movement representations in aIPL and SPL identified here 
may not only play a role in the recognition of others' actions but also in the execution of goal-
directed actions, which requires visuospatial processing of own body movements and of the 
changes in the world induced by them (Fischer and Mahon, 2021). This view is compatible with 
the proposal that the dorsal "where/how" stream is subdivided into sub-streams for the 
visuomotor coordination of body movements in SPL and the manipulation of objects in aIPL 
(Rizzolatti and Matelli, 2003; Binkofski and Buxbaum, 2013). 

In conclusion, our study dissociated important stages in the visual processing of actions: the 
representation of body movements and the effects they induce in the world. These stages draw 
on subregions in parietal cortex – SPL and aIPL – as well as LOTC. These results help to clarify the 
roles of these regions in action understanding and more generally in understanding the physics of 
dynamic events. The identification of action effect structure representations in aIPL and LOTC has 
implications for theories of action understanding: Current theories (see for review e.g. Zentgraf et 
al., 2011; Kemmerer, 2021; Lingnau and Downing, 2024) largely ignore the fact that the 
recognition of many goal-directed actions requires a physical analysis of the action-induced effect, 
that is, a state change of the action target. Moreover, premotor and inferior parietal cortex are 
usually associated with motor- or body-related processing during action observation. Our results, 
together with the finding that premotor and inferior parietal cortex are similarly sensitive to 
actions and inanimate object events (Karakose-Akbiyik et al., 2023), suggest that large parts of the 
'action observation network' are less specific for body-related processing in action perception than 
usually thought. Rather, this network might provide a substrate for the physical analysis and 
predictive simulation of dynamic events in general (Schubotz, 2007; Fischer, 2024). In addition, 
our finding that the (body-independent) representation of action effects substantially draws on 
right LOTC contradicts strong formulations of a 'social perception' pathway in LOTC that is 
selectively tuned to the processing of moving faces and bodies (Pitcher and Ungerleider, 2021). 
The finding of action effect representation in right LOTC/pSTS might also offer a novel 
interpretation of a right pSTS subregion thought to specialized for social interaction recognition: 
Right pSTS shows increased activation for the observation of contingent action-reaction pairs (e.g. 
agent A points toward object; agent B picks up object) as compared to two independent actions 
(i.e., the action of agent A has no effect on the action of agent B) (Isik et al., 2017). Perhaps the 
activation reflects the representation of a social action effect - the change of an agent's state 
induced by someone else's action. Thus, the representation of action effects might not be limited 
to physical object changes but might also comprise social effects not induced by a physical 
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interaction between entities. Finally, not all actions induce an observable change in the world. It 
remains to be tested whether the recognition of, e.g., communication (e.g. speaking, gesturing) 
and perception actions (e.g. observing, smelling) similarly relies on structural action 
representations in aIPL and LOTC. 

 

 

Methods 
Participants. Twenty-five right-handed adults (15 females; mean age, 23.7 years; age range, 20-38 
years) participated in this experiment. All participants had normal or corrected-to-normal vision 
and no history of neurological or psychiatric disease. All procedures were approved by the Ethics 
Committee for research involving human participants at the University of Trento, Italy.  

 

Stimuli. The stimulus set consisted of videos of 5 object-directed actions (squashing a plastic 
bottle, breaking a stick, drinking water, hitting a paper ball, and placing a cup on a saucer) that 
were shown in 4 different formats: naturalistic actions, pantomimes, point light display (PLD) stick 
figures, and abstract animations (Fig. 2; informed consent, and consent to publish, was obtained 
from the actor shown in the figure). The actions were selected among a set of possible actions 
based on two criteria: (1) The actions should be structurally different from each other as much as 
possible. (2) The action structures (e.g. of dividing) should be depictable as animations, but at the 
same time the animations should be associated with the corresponding concrete actions as little 
as possible to minimize activation of conceptual action representations (e.g. of "breaking a stick"). 
The resulting set of 5 actions belonged to 3 broad categories of changes: shape/configuration 
changes (break, squash), location changes (hit, place), and ingestion (drink). This categorization 
was not planned before designing the study but resulted from the stimulus selection.  

For each action and stimulus format, 8 exemplars were generated to increase the perceptual 
variance of the stimuli. All videos were in RGB color, had a length of 2 s (30 frames per second), 
and a resolution of 400 x 225 pixels. 

Naturalistic actions and corresponding pantomimes were performed by two different persons 
(female, male) sitting on a chair at a table in a neutral setting. The actions were filmed from 2 
different camera viewpoints (approx. 25° and 40°). Finally, each video was mirrored to create left- 
and right-sided variants of the actions.  

For the generation of PLD stick figures, the actions were performed in the same manner as the 
action videos in a motion capture lab equipped with a Qualisys motion-capture system (Qualisys 
AB) comprising 5 ProReflex 1000 infrared cameras (100 frames per second). 13 passive kinematic 
markers (14 mm diameter) were attached to the right and left shoulders, elbows, hands, hips, 
knees, feet and forehead of a single actor, who performed each action two times. Great care was 
taken that the actions were performed with the same movements as in the action and pantomime 
videos. 3D kinematic marker positions were processed using the Qualisys track manager and 
Biomotion Toolbox V2 (van Boxtel and Lu, 2013). Missing marker positions were calculated using 
the interpolation algorithm of the Qualisys track manager. To increase the recognizability of the 
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body, we connected the points in the PLDs with white lines to create arms, legs, trunk, and neck. 
PLD stick figures were shown from two angles (25° and 40°), and the resulting videos were left-
right mirrored.  

Abstract animations were designed to structurally match the 5 actions in terms of the induced 
object change. At the same time, they were produced to be as abstract as possible so as to 
minimize the match at both basic perceptual levels (e.g. shape, motion) and conceptual levels. To 
clarify the latter, the abstract animation matching the “breaking” action was designed to be 
structurally similar (causing an object to divide in half) without activating a specific action meaning 
such as “breaking a stick”. In all animations, the agent object (a circle with a smiley) moved toward 
a target object (a rectangle or a circle). The contact with the target object at 1 sec after video onset 
induced different kinds of effects, i.e., the target object broke in half, was compressed, ingested 
(decreased in size until it disappeared), propelled, or pushed to the side. The animations were 
created in MATLAB (Mathworks) with Psychtoolbox-3 (Brainard, 1997). The speeds of all agent and 
target-object movements were constant across the video. To increase stimulus variance, 8 
exemplars per action were generated using two target-object shapes (rectangle, circle), two color 
schemes for the agent-target pairs (green-blue and pink-yellow), and two action directions (left-
to-right, right-to-left).  

 

Behavioral experiment. To assess how much the animations, PLD stick figures, and pantomimes 
were associated with the specific action meanings of the naturalistic actions, we performed a 
behavioral experiment. 14 participants observed videos of the animations, PLDs (without stick 
figures), and pantomimes in three separate sessions (in that order) and were asked to describe 
what kind of actions the animations depict and give confidence ratings on a Likert scale from 1 
(not confident at all) to 10 (very confident). Because the results for PLDs were unsatisfying (several 
participants did not recognize human motion in the PLDs), we added stick figures to the PLDs as 
described above and repeated the rating for PLD stick figures with 7 new participants, as reported 
below.  

A general observation was that almost no participant used verb-noun phrases (e.g. "breaking a 
stick") in their descriptions for all stimulus types. For the animations, the participants used more 
abstract verbs or nouns to describe the actions (e.g. dividing, splitting, division; Tab. S1). These 
abstract descriptions matched the intended action structures quite well, and participants were 
relatively confident about their responses (mean confidences between 6 and 7.8). These results 
suggest that the animations were not substantially associated with specific action meanings (e.g. 
"breaking a stick") but captured the coarse action structures. For the PLD stick figures (Tab. S2), 
responses were more variable and actions were often confused with kinematically similar but 
conceptually different actions (e.g. breaking --> shaking, hitting --> turning page, squashing --> 
knitting). Confidence ratings were relatively low (mean confidences between 3 and 5.1). These 
results suggest that PLD stick figures, too, were not substantially associated with specific action 
meanings and additionally did not clearly reveal the underlying action effect structures. Finally, 
pantomimes were recognized much better, which was also reflected in high confidence ratings 
(mean confidences between 8 and 9.2; Tab. S3). This suggests that, unlike PLD stick figures, 
pantomimes allowed much better to access the underlying action effect structures.  
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Experimental Design. For all four sessions, stimuli were presented in a mixed event-related design. 
In each trial, videos were followed by a 1 s fixation period. Each of the 5 conditions was presented 
4 times in a block, intermixed with 3 catch trials (23 trials per block). Four blocks were presented 
per run, separated by 8 s fixation periods. Each run started with a 2 s fixation period and ended 
with a 16 s fixation period. In each run, the order of conditions was pseudorandomized to ensure 
that each condition followed and preceded each other condition a similar number of times in each 
run. Each participant was scanned in 4 sessions (animations, PLDs, pantomimes, actions), each 
consisting of 3 functional scans. The order of sessions was chosen to minimize the possibility that 
participants would associate specific actions/objects with the conditions in the animation and PLD 
sessions. In other words, during the first session (animations), participants were unaware that they 
would see human actions in the following sessions; during the second session (PLDs), they were 
ignorant of the specific objects and hand postures/movements. Each of the five conditions was 
shown 48 times (4 trials per block x 4 blocks x 3 runs) in each session. Each exemplar of every video 
was presented 6 times in the experiment. 

 

Task. We used catch-trial-detection task to ensure that participants paid constant attention during 
the experiment and were not biased to different types of information in the various sessions. 
Participants were instructed to attentively watch the videos and to press a button with the right 
index finger on a response-button box whenever a video contained a glitch, that is, when the video 
did not play smoothly but jerked for a short moment (300 ms). Glitches were created by selecting 
a random time window of 8 video frames of the video (excluding the first 10 and last 4 frames) 
and shuffling the order of the frames in that window. The task was the same for all sessions. Before 
fMRI, participants were instructed and trained for the first session only (animations). In all four 
sessions, the catch trials were identified with robust accuracy (animations: 0.73±0.02 SEM, PLDs: 
0.65±0.02, pantomimes: 0.69±0.02, actions: 0.68±0.02). Participants were not informed about the 
purpose and design of the study before the experiment.  

 

Data acquisition. Functional and structural data were collected using a 3 T Siemens Prisma MRI 
scanner and a 64-channel head coil.  Functional images were acquired with a T2*-weighted 
gradient echo-planar imaging (EPI) sequence. Acquisition parameters were a repetition time (TR) 
of 1.5 s, an echo time of 28 ms, a flip angle of 70°, field of view of 200 mm matrix size of 66 x 66, 
voxel resolution 3x3x3 mm. We acquired 45 slices in ascending interleaved odd-even order. Each 
slice was 3 mm thick. There were 211 volumes acquired in each functional run. 

Structural T1-weighted images were acquired using an MPRAGE sequence (Slice number=176, 
TR=2.53 seconds, inversion time= 1.1 second, flip angle= 7°, 256*256 mm field of view, 1x1x1 mm 
resolution). 

 

Preprocessing. Data were analyzed using BrainVoyager QX 2.84 (BrainInnovation) in combination 
with the SPM12 and NeuroElf (BVQXTools) toolboxes and custom software written in Matlab 
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(MathWorks). Anatomical scans of individual subjects were normalized to the standard SPM12 EPI 
template (Montreal Neurological Institute MNI stereotactic space). Slice time correction was 
performed on the functional data followed by a three-dimensional (3D) motion correction 
(trilinear interpolation, with the first volume of the first run of each participant as reference). 
Functional data were co-registered with the normalized anatomical scans followed by spatial 
smoothing with a Gaussian kernel of 8 mm full width at half maximum (FWHM) for univariate 
analysis and 3 mm FWHM for MVPA.  

 

Multivariate pattern classification. For each participant, session, and run, a general linear model 
(GLM) was computed using design matrices containing 10 action predictors (2 for each action; 
based on 8 trials from the first 2 blocks of a run and the second half from the last 2 blocks of a run, 
to increase the number of beta samples for classification), a catch-trial predictor, 6 predictors for 
each parameter of motion correction (three-dimensional translation and rotation) and 6 temporal-
drift predictors. Each trial was modeled as an epoch lasting from video onset to offset (2 s). The 
resulting reference time courses were used to fit the signal time courses of each voxel.  Predictors 
were convolved with a dual-gamma hemodynamic impulse response function. Since there were 3 
runs per session, there were thus 6 beta maps per action condition. 

Searchlight classification was done on each subject in volume space using a searchlight sphere of 
12 mm and an LDA (linear discriminant analysis) classifier, as implemented in the CosmoMVPA 
toolbox (Oosterhof et al., 2016). We also tested for robustness of effects across MVPA parameter 
choices by running the analysis with different ROI sizes (9 mm, 15 mm) and a support vector 
machine (SVM) classifier, which revealed similar findings, that is, all critical findings were also 
found with the alternative MVPA parameters.  

For the within-session analyses, all 5 action conditions of a given session were entered into a 5-
way multiclass classification using leave-one-out cross validation, that is, the classifier was trained 
with 5 out of 6 beta patterns per action and was tested with the held-out beta pattern. This was 
done until each beta pattern was tested. The resulting accuracies were averaged across the 6 
iterations and assigned to the center voxel of the sphere. Within-session decoding analyses were 
performed as sanity checks to ensure that for all stimulus types, the 5 actions could be reliably 
decoded (Fig. S4). For cross-decoding analyses, a classifier was trained to discriminate the voxel 
activation patterns associated with the 5 action conditions from one session (e.g. actions) and 
tested on its ability to discriminate the voxel activation patterns associated with the 5 action 
conditions of another session (e.g. animations).  The same was done vice versa (training with 
animations and testing with actions), and the accuracies were averaged across the two directions 
(van den Hurk and Op de Beeck, 2019) (see Fig. S5 for contrasts between cross-decoding 
directions). In total, there were 6 across-session pairs: action-animation, action-PLD, action-
pantomime, animation-pantomime, pantomime-PLD, animation-PLD. For searchlight maps of the 
latter four decoding schemes see Fig. S6. 

For all decoding schemes, a one-tailed, one-sample t-test was performed on the resulting accuracy 
maps to determine which voxels had a decoding accuracy that was significantly above the chance 
level (20%). The resulting t-maps were corrected for multiple comparisons with Monte Carlo 
Correction as implemented in CosmoMVPA (Oosterhof et al., 2016), using an initial threshold of 
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p=0.001 at the voxel level, 10000 Monte Carlo simulations, and a one-tailed corrected cluster 
threshold of p = 0.05 (z = 1.65). 

Conjunction maps were computed by selecting the minimal z-value (for corrected maps) or t-value 
(for uncorrected maps) for each voxel of the input maps. 

 

ROI analysis. Regions of interest (ROI) were based on MNI coordinates of the center locations of 
Brodmann areas (BA) associated with the aIPL/supramarginal gyrus (BA 40; Left: -53, -32, 33; right: 
51, -33, 34), SPL (BA 7; left: -18, -61, 55; right: 23, -60, 61), LOTC (BA 19; left: -45, -75, 11; right: 
44, -75, 5), and EVC (BA 17; left -11, -81, 7; right: 11, -78, 9), using the MNI2TAL application of the 
BioImage Suite WebApp (https://bioimagesuiteweb.github.io/webapp/). Coordinates for left and 
right pSTS were taken from a meta analysis for human vs. non-human body movements (Grosbras 
et al., 2012). To keep the ROI size constant across the different ROIs, we used spherical ROIs as in 
our previous studies (Wurm and Caramazza, 2019a, b; Karakose-Akbiyik et al., 2023). A 
visualization of the ROIs projected on the cortical surface can be found in Fig. S7. For each 
participant, ROI, and decoding scheme, decoding accuracies from the searchlight analysis were 
extracted from all voxels within a sphere of 12 mm around the ROI center, averaged across voxels, 
and entered into one-tailed, one-sample t-tests against chance (20%). In addition, paired t-tests 
and repeated measures analyses of variance (ANOVA) were conducted to test for the differences 
between ROIs and different decoding schemes. The statistical results of t-tests were FDR-
corrected for the number of tests and ROIs (Benjamini and Yekutieli, 2001). 

 

Representational similarity analysis (RSA). To analyze the representational content isolated by the 
action-animation and action-PLD cross-decoding, we performed a multiple regression RSA. First, 
we extracted classification matrices from the the action-animation and action-PLD cross-decoding 
maps: For each subject, voxel, and cross-decoding scheme, we extracted the classification 
matrices, symmetrized them, and rescaled them into values between 0 and 1. For each ROI, we 
averaged the matrices across voxels. The classification matrices were converted into neural 
representational dissimilarity matrices (RDMs) by subtracting 1 from them. 

The neural RDMs were then compared with model RDMs using a multiple regression RSA. The 
following models were used for the action-animation RSA: (1) An " effect type" model that 
captures the similarity in terms of action effect type (shape/configuration changes: break, squash; 
location changes: hit, place; and ingestion: drink). (2) A "specific" model that discriminates each 
specific action from each other with equal distance.  (3) A "motion energy" model that was based 
on the stimulus-based action-animation decoding (see Fig. S2) and that captures the similarity of 
animations and actions in terms of motion energy. No critical collinearity was observed (variance 
inflation factors < 2.6, condition indices < 4, variance decomposition proportions < 0.9). The 
following models were used for the action-PLD RSA: (1) A manuality model that captures whether 
the actions were carried out with one vs. both hands (bimanual: break, squash, drink; unimanual: 
hit, place). (2) A "specific" model that discriminates each specific action from each other with equal 
distance. (3) A kinematic model that was based on marker positions of the PLDs. The kinematics 
model was constructed by averaging the kinematic data across the 2 exemplars per PLD, 
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vectorizing the 3D marker positions of all time points of the PLDs (3 dimensions x 13 markers x 200 
time points), computing the pairwise correlations between the 5 vectors, and converting the 
correlations into dissimilarity values by subtracting 1 - r. No critical collinearity was observed 
(variance inflation factors < 3.2, condition indices < 4, variance decomposition proportions < 0.96). 
The multiple regression RSA was first done at the whole-brain level using a searchlight approach: 
For each subject, voxel, and cross-decoding scheme, we extracted the classification matrices and 
converted them into neural RDMs as described above. Each neural RDM was entered as 
dependent variable into a multiple regression, together with the model RDMs as independent 
variables. Note that we included the on-diagonal values of the neural and model RDMs as they 
contain interpretable zero points (Walther et al., 2016), which is necessary for testing the action-
specific model. Resulting beta values were Fisher-transformed and entered into one-tailed one-
sample t-tests. The resulting t-maps were corrected for multiple comparisons with Monte Carlo 
Correction as described above. 

Representational similarity between brain regions. To test how similar the representational 
content of the ROIs for the action-animation and action-PLD decoding are to each other, we used 
informational connectivity analysis (Coutanche and Thompson-Schill, 2013): First, we correlated 
the neural RDMs of all ROIs and decoding schemes with each other. Specifically, we included the 
lower triangle of the RDMs (off-diagonal pairwise distances between actions) and also the on-
diagonal values of the RDMs, which contain the correct classifications (Walther et al., 2016). This 
was done to increase the number of informative data in the correlations. We then converted the 
resulting correlations between ROIs/decoding schemes into distances by subtracting 1 - r, and 
visualized the pairwise distances between ROIs and decoding schemes using multidimensional 
scaling (metric stress) and a dendrogram plot following a cluster analysis (nearest distance). 
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Fig. S1. Cross-decoding of action effect structures (action-animation) and body movements (action-PLD) in 
left and right LOTC, pSTS, and V1 (respectively; see Methods for details on ROI definition). Dark tones show 
effects in left ROIs, light tones show effects in right ROIs. Asterisks indicate FDR-corrected significant decoding 
accuracies above chance (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001). Error bars indicate SEM. 

 

 

 
Fig. S2. Stimulus-based cross-decoding. To investigate to which extent the action-animation and action-PLD 
decoding can be explained by visual features, we carried out a stimulus-based cross-decoding analysis. 
Specifically, the aim was two-fold: First, we aimed at testing what could have caused the action-animation cross-
decoding in early visual cortex. Second, we aimed at testing whether the action-PLD cross-decoding in SPL (and 
other regions thought to be sensitive to body motion) could be explained by lower-level motion features.  

V1 LOTC pSTS

within Animation
acc: 100% (p<0.0001)

within PLD
acc: 100% (p<0.0001)

within Pantomime
acc: 65% (p<0.0001)

within Action
acc: 55% (p<0.0001)

Action-Animation
acc: 30% (p=0.0008)

Action-PLD
acc: 20% (p=0.56)

Action-Pantomime
acc: 37.5% (p<0.0001)

Pantomime-PLD
acc: 22.5% (p=0.32)

Animation-PLD
acc: 20% (p=0.62)

Animation-Pantomime
acc: 20% (p=0.63)
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For each video, motion energy features were extracted as described in (Nishimoto et al., 2011) using Matlab 
code from https://github.com/gallantlab/motion_energy_matlab. To reduce the number of features for the 
subsequent MVPA, we used the motion energy model with 2139 channels. The resulting motion energy features 
were averaged across time and entered into within- and across-decoding schemes as described for the fMRI-
based decoding. For the decoding within stimulus type, we used leave-one-exemplar-out cross-validation, i.e., 
the classifier was train on 7 of the 8 exemplars for each action and tested on the remaining exemplar, etc. For 
the cross-decoding, the classifier was trained on all 8 exemplars of stimulus type A and tested on all 8 exemplars 
of stimulus type B (and vice versa). Significance was determined using a permutation test: For each decoding 
scheme, 10000 decoding tests with shuffled class labels were performed to create a null distribution. P-values 
were computed by counting the number of values in the null distribution that were greater or as great as the 
observed decoding accuracy. The within-stimulus-type decoding served as a control analysis and revealed highly 
significant decoding accuracies for each stimulus type (animations: 100%, PLDs: 100%, pantomimes: 65%, 
actions: 55%), which suggests that the motion energy data generally contains information that can be detected 
by a classifier. The cross-decoding between stimulus types was significantly above chance for action-animation 
and action-pantomime, but not significantly different from chance for the remaining decoding schemes. 
Interestingly, all cross-decoding schemes with PLDs did not perform well and revealed similar classification 
matrices (systematically confusing squash, hit, and place with break and drink). This might be due to different 
feature complexity and motion information at different spatial frequencies for PLDs, which do not generalize to 
the other stimulus types.  

We also tested whether the different stimulus types can be cross-decoded using other visual features. To test 
for pixelwise similarities, we averaged the video frames of each video, vectorized and z-scored them, and 
entered them into the decoding schemes as described above. We found above chance decoding for all within-
stimulus type schemes, but not for the cross-decoding schemes (animations: 55%, PLDs: 80%, pantomimes: 40%, 
actions: 30%, action-anim: 15%, action-PLD: 20%, action-pant: 20%, pant-PLD: 12.5%, anim-PLD: 20%, anim-
pant: 22.5%). To test for local motion similarities, we computed frame-to-frame optical flow vectors (using 
Matlab's opticalFlowHS function) for each video, averaged the resulting optical flow values across frames, 
vectorized and z-scored them, and entered them into the decoding schemes as described above. We found 
above chance decoding for all within-stimulus type schemes and the action-pantomime cross-decoding, but not 
for the other cross-decoding schemes (animations: 75%, PLDs: 100%, pantomimes: 65%, actions: 40%, action-
anim: 15%, action-PLD: 18.7%, action-pant: 38.7%, pant-PLD: 26.2%, anim-PLD: 22.5%, anim-pant: 21.2%).  
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Fig. S3. Cross-decoding of implied action effect structures in SPL. Implied action effect structures should reveal 
higher decoding accuracies in cross-decoding schemes involving pantomimes but not PLDs (action-pantomime, 
animation-pantomime) as compared to cross-decoding schemes involving PLDs (action-PLD, pantomime-PLD, 
animation-PLD). In both left and right SPL, there were no differences for the comparisons of Action-Pant with 
Action-PLD and Pant-PLD, whereas there was stronger decoding for Anim-Pant vs. Anim-PLD.  

This pattern of results is not straightforward to explain: First, the equally strong decoding for Action-Pant, Action-
PLD, and Pant-PLD suggests that SPL is not substantially sensitive to body part details. Rather, the decoding relied 
on the coarse body part movements, independently of the specific stimulus type (action, pantomime, PLD). 
However, the stronger difference between Anim-Pant and Anim-PLD suggests that SPL is also sensitive to implied 
AES. This appears unlikely, because no effects (in left aIPL) or only weak effects (in right SPL) were found for the 
more canonical Action-Anim cross-decoding. The Anim-Pant cross-decoding was even stronger than the Action-
Anim cross-decoding, which is counterintuitive because naturalistic actions contain more information than 
pantomimes, specifically with regard to action effect structures. How can this pattern of results be interpreted? 
Perhaps, for pantomimes and animations, not only aIPL and LOTC but also SPL is involved in inferring (implied) 
action effect structures. However, for this conclusion, also differences for the comparison of Action-Pant with 
Action-PLD and for Action-Pant with Pant-PLD should be found. Another non-mutually exclusive interpretation 
is that both animations and pantomimes are more ambiguous in terms of the specific action, as opposed to 
naturalistic actions. For example, the squashing animation and pantomime are both ambiguous in terms of what 
is squashed/compressed, which might require additional load to infer both the action and the induced effect. 
The increased activation of action-related information might in turn increase the chance for a match between 
neural activation patterns of animations and pantomimes. 

In any case, these additional results in SPL do not question the effects reported in the main text, that is, 
disproportionate sensitivity for action effect structures in right aIPL and LOTC and for body movements in SPL 
and other AON regions. The evidence for implied action effect structures representation in SPL is mixed and 
should be interpreted with caution.  
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Fig. S4. (A) Univariate activation maps for each session (all 5 actions vs. Baseline; FDR-corrected at p = 0.05) 
and (B) within-session decoding maps (Monte-Carlo-corrected for multiple comparisons; voxel threshold 
p=0.001, corrected cluster threshold p=0.05).  
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Fig. S5. Direction-specific cross-decoding effects. To test whether there were differences between the two 
directions in the cross-decoding analyses, we ran, for each of the 6 across-session decoding schemes, two-
tailed paired samples t-tests between the decoding maps of one direction (e.g. action → animation) vs. the 
other direction (animation → action). Direction effects were observed in left early visual cortex for the 
directions action → animation, PLD → animation, and pantomime → PLD, as well in right middle temporal 
gyrus and dorsal premotor cortex for action → PLD. These effects might be due to noise differences 
between stimulus types (van den Hurk and Op de Beeck, 2019) and do not affect the interpretation of 
direction-averaged cross-decoding effects in the main text. Monte-Carlo-corrected for multiple 
comparisons; voxel threshold p=0.001, corrected cluster threshold p=0.05.  
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Fig. S6. (A) Cross-decoding maps for Action-Pantomime, Pantomime-PLD, Animation-Pantomime, and 
Animation-PLD (Monte-Carlo-corrected for multiple comparisons; voxel threshold p=0.001, corrected 
cluster threshold p=0.05). (B) Classification matrices extracted from the cross-decoding maps. 
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Fig. S7. ROIs used in the study. Spherical ROIs were in volume space (12 mm radius); here we projected 
them on the cortical surface for a better comparison with the whole brain maps in the main article. 
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Table S1: Results of behavioral pilot experiment for abstract animations. Verbal descriptions of each 
participant and mean confidence ratings (from 1 = not at all to 10 = very much) ± standard deviations). 

Subject break hit ingest move squash 

1 splitting hitting swallowing moving hitting 
2 dividing explosion shrinking passing colliding 
3 break kinetic energy suction touch crash 
4 break press eating press push 
5 divide crash swallow push turn 
6 divide crash sucking pushing squeeze 
7 break accident consume push hit 
8 splitting in two pushing and splitting shrinking slowly pushing pushing 
9 destroying banging introjection hitting squishing 
10 division division absorbing pushing impacting 
11 dividing force absorption action reaction squeezing 
12 divide collide absorb activate squeeze 
13 crash collision eating push push 
14 separation cooperation absorption cause and effect force 
confidence 7.0 ± 2.1 6.1 ± 2.9 7.8 ± 2.1 6.0 ±2.1 7.7 ± 2.5 

 

 

Table S2: Results of behavioral pilot experiment for PLD stick figures. Same conventions as in S1 

Subject break hit ingest move squash 

1 fix move move put act 
2 shake read drink take squeeze 
3 celebrate knife dancing designing pooping 
4 dropping pushing aside lifting putting shitting 
5 crushing swapping raising putting crushing 
6 crank swipe raise place pressing 
7 no idea turning page drinking taking  knitting 
confidence 4.1 ± 3.6 3.0 ± 2.8 5.1 ± 3.1 4.0 ± 3.6 3.5 ± 3.1 
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Table S3: Results of behavioral pilot experiment for pantomimes. Same conventions as in S1 

Subject break hit ingest move squash 

1 breaking moving away drinking putting compressing 
2 breaking wiping drinking relocating squeezing 
3 twist pushing drinking carrying compressing 
4 break push drink replacing squeeze/press 
5 break push drink move squeeze 
6 breaking pushing drinking pretending pretending 
7 break shove drink put smash 
8 bending  sweeping sth away  drinking cup  replacing object squishing object 
9 smashing putting aside drinking counting squishing 
10 lowering push drinking put folding 
11 bending pushing drinking grabbing squeezing 
12 break let go drink put compress 
13 breaking pushing drinking relocation squeezing 
14 squeezing dusting drinking putting down smushing 
confidence 8.0 ± 2.2 6.9 ± 1.9 9.3 ± 1.4 8.1 ± 2.4 8.3 ± 1.9 
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