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Abstract
The generalization with respect to domain shifts, as they frequently appear in applications such as autonomous driving, is
one of the remaining big challenges for deep learning models. Therefore, we propose an exemplar-based style synthesis
pipeline to improve domain generalization in semantic segmentation. Our method is based on a novel masked noise encoder
for StyleGAN2 inversion. The model learns to faithfully reconstruct the image, preserving its semantic layout through noise
prediction. Random masking of the estimated noise enables the style mixing capability of our model, i.e. it allows to alter the
global appearance without affecting the semantic layout of an image. Using the proposed masked noise encoder to randomize
style and content combinations in the training set, i.e., intra-source style augmentation (ISSA) effectively increases the
diversity of training data and reduces spurious correlation. As a result, we achieve up to 12.4% mIoU improvements on
driving-scene semantic segmentation under different types of data shifts, i.e., changing geographic locations, adverse weather
conditions, and day to night. ISSA is model-agnostic and straightforwardly applicable with CNNs and Transformers. It is also
complementary to other domain generalization techniques, e.g., it improves the recent state-of-the-art solution RobustNet
by 3% mIoU in Cityscapes to Dark Zürich. In addition, we demonstrate the strong plug-n-play ability of the proposed style
synthesis pipeline, which is readily usable for extra-source exemplars e.g., web-crawled images, without any retraining or
fine-tuning. Moreover, we study a new use case to indicate neural network’s generalization capability by building a stylized
proxy validation set. This application has significant practical sense for selecting models to be deployed in the open-world
environment. Our code is available at https://github.com/boschresearch/ISSA.
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1 Introduction

The varying environment with potentially diverse illumi-
nation and adverse weather conditions makes challenging
the deployment of deep learning models in an open-world
(Sakaridis et al., 2021; Zhang et al., 2021a). Therefore,
improving the generalization capability of neural networks
is crucial for safety-critical applications such as autonomous
driving (see for example Fig. 1. While generally the target
domains can be inaccessible or unpredictable at training time,
it is important to train a generalizable model, based on the
known (source) domain, which may offer only a limited or
biased view of the real world (Burton et al., 2017; Shafaei et
al., 2018).

Diversity of the training data is considered to play an
important role for domain generalization, including natural
distribution shifts (Taori et al., 2020). Many existing works
assume that multiple source domains are accessible during
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Fig. 1 Semantic segmentation results of HRNet (Wang et al., 2021b)
on unseen domain (snow), trained on Cityscapes (Cordts et al., 2016)
and tested on ACDC (Sakaridis et al., 2021). The model trained with
our ISSA can successfully segment the truck, while the baseline model
fails completely

training (Hu et al., 2020; Li et al., 2018a; Balaji et al., 2018;
Li et al., 2018b, 2020; Jin et al., 2020; Zhou et al., 2020).
For instance, Li et al. (2018a) applied meta-learning to bet-
ter generalize to unseen domains, where source domains are
divided into meta-source and meta-target domains to sim-
ulate domain shift; Hu et al. (2020) propose multi-domain
discriminant analysis to learn a domain-invariant feature
transformation. However, for pixel-level prediction tasks
such as semantic segmentation, collecting diverse training
data involves a tedious and costly annotation process (Caesar
et al., 2018). Therefore, improving and predicting generaliza-
tion froma single source domain is exceptionally compelling,
particularly for semantic segmentation.

One pragmatic way to improve data diversity is by apply-
ing data augmentation. It has been widely adopted in solving
different tasks, such as image classification (Zhang et al.,
2018a; Zhou et al., 2021; Hendrycks et al., 2019; Verma
et al., 2019; Hong et al., 2021), GAN training with lim-
ited data (Karras et al., 2020a; Jiang et al., 2021), or pose
estimation (Peng et al., 2018; Bin et al., 2020; Wang et al.,
2021a). One line of data augmentation techniques focuses
on increasing the content diversity in the training set, such as
geometric transformation (e.g., cropping or flipping), CutOut
(DeVries & Taylor, 2017), and CutMix (Yun et al., 2019).
However, CutOut and CutMix are ineffective on natural
domain shifts, as reported in (Taori et al., 2020). Style aug-
mentation, on the other hand, only modifies the style—the
non-semantic appearance such as texture and color of the
image (Gatys et al., 2016)—while preserving the semantic
content. By diversifying the style and content combinations,
style augmentation can reduce overfitting to the style-content
correlation in the training set, improving robustness against
domain shifts. Hendrycks corruptions (Hendrycks & Diet-
terich, 2019) provide a wide range of synthetic styles,
including weather conditions. However, they are not always

realistic looking, thus being still far from resembling natu-
ral data shifts. In this work, we propose an exemplar-based
style synthesis pipeline for semantic segmentation, aiming
to improve the style diversity in the training and validation
set without extra labeling effort.

Our exemplar-based style synthesis technique is based on
the inversion of StyleGAN2 (Karras et al., 2020b), which
is the state-of-the-art unconditional Generative Adversarial
Network (GAN) and thus ensures high quality and real-
ism of synthetic samples. GAN inversion allows encoding
a given image to latent variables, and thus facilitates faith-
ful reconstruction with style mixing capability. To realize
the synthesis pipeline, we learn to separate semantic con-
tent from style information based on a single source domain.
This allows to alter the style of an image while leaving the
content unchanged. In particular, we focus on intra-source
style augmentation (ISSA). Namely, our exemplar-based
style synthesismakes use of training samples from the source
domain, extracting their styles and contents followed by ran-
domly mixing them up. In doing so, we can increase the data
diversity and alleviate the spurious correlation in the given
training data.

The faithful reconstruction of images with complex struc-
tures such as driving scenes is non-trivial. Prior methods
(Richardson et al., 2021; Yao et al., 2022; Roich et al., 2022;
Alaluf et al., 2022; Dinh et al., 2022; Šubrtová et al., 2022)
are mainly tested on simple single-object-centric datasets,
e.g., FFHQ (Karras et al., 2019), CelebA-HQ (Karras et al.,
2018), or LSUN (Yu et al., 2015). As shown in (Abdal et
al., 2020), extending the native latent space of StyleGAN2
with a stochastic noise space can lead to improved inversion
quality. However, all style and content information will be
embedded in the noise map, leaving the latent codes inactive
in this setting. Therefore, to enable the precise reconstruction
of complex driving scenes as well as style mixing, we pro-
pose a masked noise encoder for StyleGAN2. The proposed
randommasking regularization on the noise map encourages
the generator to rely on the latent prediction for reconstruc-
tion. Thus, it allows to effectively separate content and style
information and facilitates realistic style mixing, as shown
in Fig. 2.

We further discover an excellent plug-n-play ability of
the proposed style synthesis pipeline, i.e., it can be directly
applied to unseen domains without requiring the re-training
of the encoder or generator. For instance, in Fig. 11, we
employ our pipeline directly on web-crawled images, where
themodel is only trained onCityscapes. This appealing prop-
erty opens up the opportunity to go beyond intra-source
exemplar-based style mixing, and grants us more flexibility
to harness extra-source data for style synthesis. Thus, we also
experiment with extra-source style argumentation (ESSA) to
further improve the generalization performance.
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Besides data augmentation, we explore the usage of the
proposed pipeline for assessing neural networks’ general-
ization capability in Sect. 6. By transferring styles from
unannotated data samples of the target domain to existing
labelled data, we can build a style-augmented proxy set
for validation without introducing extra-labelling effort. We
observe that performance on this proxy set has a strong cor-
relation with the real test performance on unseen target data,
which could be used in practice to select more suitable mod-
els for deployment.

In summary, we make the following contributions:

• We propose a masked noise encoder for GAN inversion,
which enables high quality reconstruction and style mix-
ing of complex scene-centric datasets.

• We exploit GAN inversion for intra-source data augmen-
tation, which can improve generalization under natural
distribution shifts on semantic segmentation.

• Extensive experiments demonstrate that our proposed
augmentationmethod ISSAconsistently promotes domain
generalization performance on driving-scene seman-
tic segmentation across different network architectures,
achieving up to 12.4% mIoU improvement, even with
limited diversity in the source data and without access to
the target domain.

• We discover the plug-n-play ability of our masked noise
encoder, and showcase its potential of direct application
on extra-source data such as web-crawled images.

• We further explore the usage of the proposed pipeline for
assessing models’ generalization performance on unseen
data. By building a style-augmented proxy validation set
on known labelled data, we observe that there is a strong
correlation between the performance on the proxy valida-
tion set and the real test set, which offers useful insights
for model selection without introducing any extra anno-
tation effort.

This paper is an extended version of our previous work
(Li et al., 2023) with more experimental evaluation and dis-
cussion on the potential and two new applications of the
proposed method. In particular, we provide a more detailed
ablation study on the design of the proposed masked noise
encoder (see Tables 3 and 4, Fig. 8. Furthermore, we add
a discussion on the plug-n-play ability of the pipeline and
go beyond intra-source domain to extra-source domain style
mixing. We also conducted new experiments reported in
Tables 11 and 12. Finally, the new application as model gen-
eralization performance indicator is introduced in Sect. 6.

2 RelatedWork

Domain Generalization Domain generalization concerns
the generalization ability of neural networks to a target
domain that follows a different distribution than the source
domain, and prior knowledge of the target domain is inac-
cessible at training. Various methods have been proposed to
approach this problem from different angles, which employ
data augmentation (Khirodkar et al., 2019; Somavarapu et al.,
2020; Huang et al., 2021; Zhou et al., 2021; Li et al., 2022),
domain alignment (Hu et al., 2020; Li et al., 2020; Jin et al.,
2020;Zhouet al., 2020), adversarial training (Li et al., 2018b;
Shao et al., 2019; Rahman et al., 2020; Deng et al., 2020),
meta-learning (Li et al., 2018a; Balaji et al., 2018; Li et al.,
2019a; Zhao et al., 2021), ensemble learning (D’Innocente &
Caputo, 2018; Mancini et al., 2018; Wu & Gong, 2021; Lee
et al., 2022a), or feature decomposition (Wan et al., 2022;
Chen et al., 2022). Particularly, (Qiao et al., 2020;Wang et al.,
2021c; Jia et al., 2020; Ouyang et al., 2022) focus on single
domain generalization problem. While the majority focuses
on image-level tasks, e.g., image classification or person re-
identification, a few recentworks (Choi et al., 2021;Lee et al.,
2022b; Kim et al., 2023, 2022; Zhao et al., 2022) investigate
pixel-level prediction tasks such as semantic segmentation.
RobustNet (Choi et al., 2021) proposes an instance selective
whitening loss to the instance normalization, aiming to selec-
tively remove information that causes a domain shift while
maintaining discriminative features. (Kim et al., 2022) intro-
duces a memory-guided meta-learning framework to capture
co-occurring categorical knowledge across domains. (Lee
et al., 2022b; Kim et al., 2023) make use of extra data in
the wild for feature augmentation. SHADE (Zhao et al.,
2022) proposed to use a style consistency constraint to learn
a style-invariant representation and a retrospection consis-
tency constraint to leverage knowledge from the pretrained
backbone. To assist the training, they perturb features to sim-
ulate style variations.

Another line of work explores feature-level augmentation
(Zhou et al., 2021; Li et al., 2022). MixStyle (Zhou et al.,
2021) and DSU (Li et al., 2022) add perturbation at the
normalization layer to simulate domain shifts at test time.
However, this perturbation can potentially cause a distortion
of the image content, which can be harmful for semantic seg-
mentation (see Sect. 4.3. Moreover, these methods require
a careful adaptation to the specific network architecture. In
contrast, ISSAperforms stylemixingon the image-level, thus
beingmodel-agnostic, and can be applied as a complement to
other methods in order to further increase the generalization
performance.
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Fig. 2 Qualitative results (best view in color and zoom in) of Style-
GAN2 inversion methods on Cityscapes, i.e., pSp (Richardson et al.,
2021), pSp†, Feature-Style encoder (Yao et al., 2022) and our masked
noise encoder. Note, pSp† is an improved version of pSp (Richardson
et al., 2021) introduced by us, training pSp with an additional discrimi-
nator and incorporate synthesized images for better initialization. pSp†

can reconstruct the rough layout of the scene but still struggles to pre-
serve details. The Feature-Style encoder shows a better reconstruction
quality, yet it cannot faithfully reconstruct small objects (e.g. pedes-
trian), and some objects (e.g. the vehicle, bicycle) are rather blurry.
Our masked noise encoder has highest image fidelity, preserving finer
details in the inverted image (Color figure online)

Beyond data augmentation for improving domain gener-
alization, we further explore the usage of our exemplar-based
style synthesis pipeline for assessing the generalization per-
formance. Recently, Zhang et al. (2021b) proposed to predict
generalization of image classifiers using performance on syn-
thetic data produced by a conditional GAN. While this is
limited to the generalization in the source domain, and it is
not straightforward how to apply it on semantic segmenta-
tion task. In contrast to generating image from scratch, We
employ proposed exemplar-based style synthesis pipeline to
augment labelled source data and build a stylized proxy val-
idation sets. We empirically show that such proxy validation
sets can indicate generalization performance, without extra
annotation required.

Data Augmentation Data augmentation techniques can
diversify training samples by altering their style, content, or
both, thus preventing overfitting and improving generaliza-
tion. Mixup augmentations (Zhang et al., 2018a; Dabouei et
al., 2021;Verma et al., 2019) linearly interpolate between two

training samples and their labels, regularizing both style and
content. Despite effectiveness shown on image-level classi-
fication tasks, they are not well suited for dense pixel-level
prediction tasks. CutMix (Yun et al., 2019) cuts and pastes
a random rectangular region of the input image into another
image, thus increasing the content diversity. Geometric trans-
formation, e.g., random scaling and horizontal flipping, can
also serve this purpose. In contrast, Hendrycks corruptions
(Hendrycks&Dietterich, 2019) only affect the image appear-
ance without modifying the content. Their generated images
look artificial, being far from resembling natural data, and
thus offer limited help against natural distribution shifts
(Taori et al., 2020).

StyleMix (Hong et al., 2021) is conceptually closer to
our method, which aims to decompose training images into
content and style representations and then mix them up to
generate more samples. Nonetheless, their AdaIN (Huang
& Belongie, 2017) based style mixing method cannot ful-
fill the pixel-wise label-preserving requirement (see Fig. 10.
Another line of CycleGAN based style transfer methods
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(Hoffman et al., 2018; Voreiter et al., 2020) require the
access to both source and target domain during training, and
thus cannot be employed for domain generalization problem,
where the target domains remain unknown during training
time. Our ISSA is also a style-based data augmentation
technique that leverages the capabilities of a state-of-the-
art GAN to produce natural looking samples. By modifying
solely the style of the input images and maintaining their
content intact, the original ground truth label maps can be
reused. Importantly, this model can be effectively trained on
a single domain without necessitating target data. This is a
crucial property, when employed for data augmentation and
to enhance other network’s generalization performance.

GAN Inversion Showing good results, GAN inversion has
been explored for many applications such as face editing
(Abdal et al., 2019, 2020; Zhu et al., 2020), image restora-
tion (Pan et al., 2022), and data augmentation (Nguyen et al.,
2021; Golhar et al., 2022). StyleGANs (Karras et al., 2019,
2020a, b) are commonly used for inversion, as they demon-
strate high synthesis quality and appealing editing capabil-
ities. Nevertheless, there is a known distortion-editability
trade-off (Tov et al., 2021). Thus, it is crucial to achieve a
curated performance for a specific use case.

GAN inversion approaches can be classified into three
groups: optimization based methods (Creswell & Bharath,
2019; Abdal et al., 2019, 2020; Gu et al., 2020; Kang et al.,
2021; Collins et al., 2020), encoder based models (Richard-
son et al., 2021; Yao et al., 2022; Bartz et al., 2021; Tov et
al., 2021; Wei et al., 2022) methods, and hybrid approaches
(Dinh et al., 2022; Roich et al., 2022; Alaluf et al., 2022;
Chai et al., 2021; Song et al., 2022). Optimization meth-
ods generally have worse editability and need exhaustive
optimization for each input. Thus, in this paper, we use an
encoder based method for our style mixing purpose. The
representative encoder based work pSp encoder (Richardson
et al., 2021) embeds the input image in the extended latent
spaceW+ of StyleGAN. The e4e encoder (Tov et al., 2021)
improves editability of pSp while trading off detail preserva-
tion. Yet, for the semantic segmentation augmentation task,
it is crucial to assure the pixel-wise alignment with ground-
truth label maps. To improve the reconstruction quality, the
Feature-Style encoder (Yao et al., 2022) further replaces the
lower latent code prediction with a feature map prediction.
Recent works explored the usage of additional information
such as labelled regions of interest (Moon & Park, 2022) and
segment masks (Šubrtová et al., 2022), or involved the joint
optimization of the generator (Roich et al., 2022; Hu, 2022).
Our method only requires RGB images and a frozen gener-
ator, meanwhile offers plug-n-play ability on web-crawled
images (see Sect. 5).

Despite much progress, most prior work only show-
cases applications on single object-centric datasets, such

as CelebA-HQ (Karras et al., 2018), FFHQ (Karras et al.,
2019), LSUN (Yu et al., 2015). They still fail on more com-
plex scenes, thus restricting their application in practice. Our
masked noise encoder can fulfil both the fidelity and the style
mixing capability requirements, rendering itself well-suited
for data augmentation for semantic segmentation. To the best
of our knowledge, our approach is the first GAN inversion
method which can be effectively applied as data augmenta-
tion for the semantic segmentation of complex scenes.

3 Method

We introduce our exemplar-based style synthesis pipeline
in Sect. 3.1, which relies on GAN inversion that can offer
faithful reconstruction and style mixing of images. To enable
better style-content disentanglement, we propose a masked
noise encoder for GAN inversion in Sect. 3.2. Its detailed
training loss is described in Sect. 3.3.

3.1 Exemplar-Based Style Synthesis Pipeline

The lack of data diversity and the existence of spurious
correlation in the training set often lead to poor domain gen-
eralization. To mitigate them, the proposed style synthesis
pipeline aims at (1) extracting styles from given exemplars,
and (2) augmenting the training samples in the source domain
with the new styles, while preserving their semantic content.
For data augmentation, it employsGAN inversion to random-
ize the style-content combinations. In doing so, it diversifies
the source dataset and reduces spurious style-content corre-
lations. Because the content of images is preserved and only
the style is changed, the ground truth label maps can be re-
used for training and validation,without requiring any further
annotation effort.

Our style synthesis pipeline is built on top of an encoder-
based GAN inversion, given its fast inference. GANs, such
as StyleGANs (Karras et al., 2019, 2020a, b), have shown the
capability of encoding rich semantic and style information
in intermediate features and latent spaces. For encoder-based
GAN inversion, an encoder is trained to invert an input image
back into the latent space of a pre-trainedGANgenerator. The
encoder is desired to separately encode the style and content
information of the input image. With such an encoder, it can
synthesize new training sampleswith new style-content com-
binations. In particular, we are interested in intra-source style
augmentation (ISSA),where the encoder should take the con-
tent and style codes from different training samples within
the source domain and feed them to the pre-trained generator.
If this encoder-based GAN inversion can also handle unseen
data, wewill further make use the styles of exemplars outside
the source domain, such as web-crawled images, enabling
extra-source style augmentation (ESSA). In both cases, since
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Fig. 3 Method overview. Our encoder is built on top of the pSp encoder
(Richardson et al., 2021), shown in the blue area (A). It maps the input
image to the extended latent space W+ of the pre-trained StyleGAN2
generator. To promote the reconstruction quality on complex scene-
centric dataset, e.g., Cityscapes, our encoder additionally predicts the
noise map at an intermediate scale, illustrated in the orange area (B).

M stands for random noise masking, regularization for the encoder
training.Without it, the noisemap overtakes the latent codes in encoding
the image style, so that the latter cannot make any perceivable changes
on the reconstructed image, thusmaking stylemixing impossible (Color
figure online)

only the styles of the training samples in the source domain
are modified, the newly synthesized training samples already
have their ground truth label maps in place.

StyleGAN2 can synthesize natural looking images resem-
bling scene-centric datasets such as Cityscapes (Cordts et al.,
2016) and BDD100K (Yu et al., 2020). However, existing
GAN inversion encoders cannot provide the desired fidelity
and style mixing capability to enable ISSA and ESSA for
an improved domain generalization of semantic segmenta-
tion. Loss of fine details or inauthentic reconstruction of
small-scale objects would even harm the model’s generaliza-
tion ability. Therefore, we propose a novel encoder design
to invert StyleGAN2, termed masked noise encoder (see
Fig. 3).

3.2 Masked Noise Encoder

We build our encoder upon the pSp encoder (Richardson et
al., 2021). It employs a feature pyramid (Lin et al., 2017) to
extract multi-scale features from a given image, see Fig. 3A.
We improve over pSp by identifying in which latent space to
embed the input image for the high-quality reconstruction of
the images with complex street scenes. Further, we propose
a novel training scheme to enable the style-content disen-
tanglement of the encoder, thus improving its style mixing
capability.

Extended Latent Space The StyleGAN2 generator takes the
latent code w ∈ W generated by an MLP network and ran-

domly sampled additive Gaussian noise maps {ε} as inputs
for image synthesis. As pointed out in (Abdal et al., 2019), it
is suboptimal to embed a real image into the original latent
spaceW of StyleGAN2, due to the gap between the real and
synthetic data distributions. A common practice is to map the
input image into the extended latent space W+. The multi-
scale features of the pSp feature pyramid are respectively
mapped to the latent codes {wk} at the corresponding scales
of the StyleGAN2 generator, i.e., map2latent in Fig. 3A.

Additive Noise Map The latent codes {wk} from the
extended latent space W+ alone are not expressive enough
to reconstruct images with diverse semantic layouts such as
Cityscapes (Cordts et al., 2016) as shown in Fig. 2-(pSp†).
The latent codes of StyleGAN2 are one-dimensional vectors
that modulate the feature vectors at different spatial posi-
tions identically. Therefore, they cannot precisely encode
the semantic layout information, which is spatially varying.
To address this issue, our encoder additionally predicts the
additive noise map ε of the StyleGAN2 at an intermediate
scale, i.e., map2noise in Fig. 3B. The noise map ε has spa-
tial dimensions, making it inherently capable of encoding
more information. It is particularly advantageous when deal-
ingwith content information that varies spatially, as the noise
map can more readily accommodate such information. As
evidenced by the visualization presented in Fig. 5, the noise
map is adept at capturing the semantic content of the scene.
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Fig. 4 Stylemixing effect enabled by random noisemasking (best view
in color). Despite the good reconstruction quality, the encoder trained
without masking cannot change the style of the given Content image.
In contrast, the encoder trained with masking can modify it using the
style from the given Style image (Color figure online)

Fig. 5 Noise map visualization of our masked noise encoder. The noise
map encodes the semantic content of the image

Fig. 6 Style mixing process. The generator G takes the latent codes
{wk

s } of Is and the noise map εc of Ic, and produce the stylized image,
i.e., G(wk

s , εc).

RandomNoise Masking While offering high-quality recon-
struction, the additive noisemap can be too expressive so that
it encodes nearly all perceivable details of the input image.
This results in a poor style-content disentanglement and can
damage the stylemixing capability of the encoder (seeFig. 4).
To avoid this undesired effect, we propose to regularize the
noise prediction of the encoder by random masking of the

noise map. Note that the randommasking as a regularization
technique has also been successfully used in reconstruction-
based self-supervised learning (Xie et al., 2022; He et al.,
2022). In particular, we spatially divide the noise map into
non-overlapping P×P patches, see M in Fig. 3B. Based on
a pre-defined ratio ρ, a subset of patches is randomly selected
and replaced by patches of unit Gaussian random variables
ε ∼ N (0, 1) of the same size. N (0, 1) is the prior distribution
of the noise map at training the StyleGAN2 generator. We
call this encoder masked noise encoder as it is trained with
random masking to predict the noise map.

The proposed random masking reduces the encoding
capacity of the noise map, hence encouraging the encoder to
jointly exploit the latent codes {wk} for reconstruction. Fig-
ure 7 visualizes the style mixing effect. The encoder takes
the noise map εc and latent codes {wk

s } from the content
image and style image, respectively. Then, they are fed into
StyleGAN2 to synthesize a new image, i.e., G(wk

s , εc), as
illustrated in Fig. 6. If the encoder is not trained with random
masking, the new image does not have any perceptible dif-
ference with the content image. This means the latent codes
{wk} encode negligible information of the image. In con-
trast, when being trained with masking, the encoder creates
a novel image that takes the content and style from two dif-
ferent images. This observation confirms the enabling role of
masking for content and style disentanglement, and thus the
improved style mixing capability. The noise map no longer
encodes all perceptible information of the image, including
style and content. In effect, the latent codes {wk} play a more
active role in controlling the style. In Fig. 5, we further visu-
alize the noise map of the masked noise encoder and observe
that it captures well the semantic content of the scene.

Additionally,wediscover that ourmaskednoise encoder is
equipped with strong plug-n-play ability, i.e., readily usable
on novel domainswithout retraining or fine-tuning.As shown
in Fig. 11, the masked noise encoder together with the gen-
erator which is trained on Cityscapes not only reconstruct
unseen domain data (e.g., north polar bear), but also remain
the style mixing capability (e.g., turning bright day into a
sunset scene). This generalization capability allows us to fur-
ther exploit extra-source data for style synthesis, i.e., ESSA.
Except that the styles are extracted from external exemplars,
the style synthesis process of ESSA is identical to ISSA.

3.3 Encoder Training Loss

Mathematically, the proposed StyleGAN2 inversion with the
masked noised encoder EM can be formulated as

{w1, . . . , wK , ε} = EM (x); (3.1)

x∗ = G ◦ EM (x) = G(w1, . . . , wK , ε).
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Fig. 7 Visual examples of style mixing on BDD100K (best view in color) enabled by our masked noise encoder. By combining the latent codes
{wk

s } of Is and the noise map εc of Ic, the synthesized images G(wk
s , εc) preserve the content of Ic with a new style resembling Is (Color figure

online)

The masked noise encoder EM maps the given image x onto
the latent codes {wk} and the noise map ε. The StyleGAN2
generator G takes both {wk} and ε as the input and gener-
ates x∗. Ideally, x∗ should be identical to x , i.e., a perfect
reconstruction.

When training the masked noise encoder EM to recon-
struct x , the original noise map ε is masked before being fed
into the pre-trained G

εM = (1 − Mnoise) � ε + Mnoise � ε, (3.2)

x̃ = G(w1, . . . , wK , εM ), (3.3)

where Mnoise is the random binary mask, � indicates the
Hadamard product, and ε ∼ N (0, 1) is the random Gaussian
noise. x̃ denotes the reconstructed image with the masked
noise εM . The training loss for the encoder is given as

L = Lmse + λ1Llpips + λ2Ladv + λ3Lreg, (3.4)

where {λi } are weighting factors. The first three terms are the
pixel-wise MSE loss, learned perceptual image patch simi-
larity (LPIPS) (Zhang et al., 2018b) loss and adversarial loss

(Goodfellow et al., 2014),

Lmse = ∥
∥(1 − Mimg) � (x − x̃)

∥
∥
2 , (3.5)

Llpips = ∥
∥(1 − M f eat ) � (VGG(x) − VGG(x̃))

∥
∥
2 , (3.6)

Ladv = − log D(G(EM (x))). (3.7)

which are the common reconstruction losses for encoder
training (Richardson et al., 2021; Zhu et al., 2020). Note
that masking removes the information of the given image x
at certain spatial positions, the reconstruction requirement on
these positions should then be relaxed. Mimg and M f eat are
obtained by up- and down-sampling the noisemaskMnoise to
the image size and the feature size of the VGG-based feature
extractor. The adversarial loss is obtained by formulating the
encoder training as an adversarial game with a discriminator
D that is trained to distinguish between reconstructed and
real images.

The last regularization term is defined as

Lreg = ‖ε‖1 +
∥
∥
∥EM

w (G(wgt , ε)) − wgt

∥
∥
∥
2
. (3.8)
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The L1 norm helps to induce sparse noise prediction. It is
complementary to random masking, reducing the capacity
of the noise map. The second term is obtained by using
the ground truth latent codes wgt of synthesized images
G(wgt , ε) to train the latent code prediction EM

w (·) (Yao et
al., 2022). It guides the encoder to stay close to the original
latent space of the generator, speeding up the convergence.

4 Experiments

We start from the experiment setup in Sect. 4.1. Then,
Sects. 4.2 and 4.3 respectively report our experiments on the
masked noise encoder for StyleGAN2 inversion and ISSA for
improved domain generalization of semantic segmentation.

4.1 Experiment Setup

Datasets We conduct extensive experiments on four driv-
ing scene datasets, which are Cityscapes (CS) (Cordts et al.,
2016), BDD100K (BDD) (Yu et al., 2020), ACDC (Sakaridis
et al., 2021) and Dark Zürich (DarkZ) (Sakaridis et al.,
2019). Cityscapes is collected from different cities primarily
in Germany, under good/medium weather conditions dur-
ing daytime. BDD100K is a driving-scene dataset collected
in the US, representing a geographic location shift from
Cityscapes. Besides, it also includes more diverse scenes
(e.g., city streets, residential areas, and highways) and dif-
ferent weather conditions captured at different times of the
day. Both ACDC and Dark Zürich are collected in Switzer-
land. ACDC contains four adverse weather conditions (rain,
fog, snow, night) and Dark Zürich contains night scenes. The
default setting is to use Cityscapes as the source training
data, whereas the validation sets of the other datasets rep-
resent unseen target domains with different types of natural
shifts, i.e., used only for testing. Additionally, we also study
the challenging day-to-night generalization scenario, where
BDD100K-Daytime is used as the source set, ACDC-Night
andDark Zürich are treated as unseen domains. In both cases,
we consider a single source domain for training.

Training Details We experiment with two image resolu-
tions: 128 × 256 and 256 × 512. The StyleGAN2 (Karras
et al., 2020a) model is first trained to unconditionally syn-
thesize images and then fixed during the encoder training.
To invert the pre-trained StyleGAN2 generator, the masked
noise encoder predicts both latent codes in the extendedW+
space and the additive noise map. In accordance with the
StyleGAN2 generator,W+ space consists of 14 and 16 latent
code vectors for the input resolution 128×256 and 256×512,
respectively. The additive noise map is always at the inter-
mediate feature space with one fourth of the input resolution.
We use the same encoder architecture, optimizer, and learn-

ing rate scheduling as pSp (Richardson et al., 2021). Our
encoder is trained with the loss function defined in Eq. (3.4)
with λ1 = 10 and λ2 = λ3 = 0.1. For our random noise
masking, we use a patch size P of 4 with a masking ratio
ρ = 25%. A detailed ablation study on the masking and
noise map of the encoder can be found in Sect. 4.2.

We use the trainedmasked noise encoder to perform ISSA
as described in Sect. 3.1. We experiment with several archi-
tectures for semantic segmentation, i.e., HRNet (Wang et al.,
2021b), SegFormer (Xie et al., 2021), and DeepLab v2/v3+
(Chen et al., 2017a, 2018). The baseline segmentation mod-
els are trained with their default configurations and using the
standard augmentation, i.e., random scaling and horizontal
flipping.

4.2 Masked Noise Encoder

Reconstruction quality Table 1 shows that ourmasked noise
encoder considerably outperforms two strong StyleGAN2
inversion baselines pSp (Richardson et al., 2021) and
Feature-Style encoder (Yao et al., 2022) in all three eval-
uation metrics. The achieved low values of MSE, LPIPS
(Zhang et al., 2018b) and FID (Heusel et al., 2017) indi-
cate its high-quality reconstruction. Both the masked noise
encoder and the Feature-Style encoder adopt the adversarial
loss Ladv and regularization using synthesized images with
ground truth latent codeswgt . Therefore, we also add them to
train pSp and note this version as pSp†.While pSp† improves
over pSp in MSE and FID, it still underperforms compared
to the others. This confirms that inverting into the extended
latent space W+ only allows limited reconstruction quality
on Cityscapes. The Feature-Style encoder (Yao et al., 2022)
replaces the prediction of the low level latent codes with fea-
ture prediction, which results in better reconstructionwithout
severely harming style editability. However, its reconstruc-
tion on Cityscapes is still not satisfying and underperforms to
our masked noise encoder. As noted in (Yao et al., 2022), the
feature size of the Feature-Style encoder is restricted. Using
a larger feature map to improve reconstruction quality can
only be done as a replacement of more latent code predic-
tions. Consequently, it largely reduces the expressiveness of
the latent embedding and leads to extremely poor editability,
being no longer suitable for downstream applications, e.g.,
style mixing data augmentation.

The visual comparison across pSp†, the Feature-Style
encoder and our masked noise encoder is shown in Fig. 2
and is aligned with the quantitative results in Table 1.
pSp† has overall poor reconstruction quality. The Feature-
Style encoder cannot faithfully reconstruct small objects and
restore fine details. In comparison, our masked noise encoder
offers high-quality reconstruction, preserving the semantic
layout and fine details of each class. Having a high-quality
reconstruction is an important requirement for using the
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Table 1 Reconstruction quality on Cityscapes at the resolution 128 ×
256

Method MSE ↓ LPIPS ↓ FID ↓
pSp (Richardson et al., 2021) 0.078 0.348 130.62

pSp† (Richardson et al., 2021) 0.049 0.339 14.60

Feature-Style (Yao et al., 2022) 0.025 0.220 7.14

Ours 0.011 0.124 3.94

Bold values indicate the best performance
MSE, LPIPS (Zhang et al., 2018b) and FID (Heusel et al., 2017)
respectively measure the pixel-wise reconstruction difference, per-
ceptual difference, and distribution difference between the real and
reconstructed images. The proposed masked noise encoder (Ours) con-
sistently outperforms pSp, pSp† and the feature-style encoder. Note,
pSp† is introduced by us, by training pSp with an additional discrimi-
nator and incorporating synthesized images for better initialization

Table 2 The effect of random noise masking on improving domain
generalization via ISSA

Method CS ACDC BDD DarkZ

Baseline 70.47 41.48 45.66 15.25

ISSA w/o masking 69.68 44.63 46.45 17.36

ISSA w/- masking 69.48 47.43 47.87 26.10

Bold values indicate the best performance
We report the mean Intersection over Union (mIoU) of HRNet (Wang et
al., 2021b) trained onCityscapes at the resolution 256×512. BDD100K
(BDD), ACDC, and Dark Zürich (DarkZ) represent different domain
shifts from Cityscapes

encoder for data augmentation. Unfortunately, neither pSp†

nor the Feature-Style encoder achieve satisfactory recon-
struction quality. For instance, they both fail at capturing the
red traffic light in Fig. 2. Using such images for data augmen-
tation can confuse the semantic segmentation model, leading
to performance degradation.

Ablation on themasking effect In Figs. 4 and 7, we visually
observe that random masking offers a stronger perceivable
style mixing effect compared to the model trained without
masking.Next,we test the effect ofmaskingon improving the
domain generalization for the semantic segmentation task.
In particular, we employ the encoder that is trained with and
without masking to perform ISSA. In Table 2, while slightly
degrading the source domain performance of the baseline

Table 3 Ablation on the mask patch size and masking ratio

Patch size Ratio MSE ↓ LPIPS ↓ FID ↓
2 25% 0.005 0.090 1.50

50% 0.008 0.127 2.02

4 25% 0.004 0.089 1.41

50% 0.009 0.129 2.01

Bold values indicate the best performance
The influence of patch size on the reconstruction is minor, while mask-
ing ratio is more important, i.e., higher masking ratio has negative
impact

Table 4 Effect of noise map resolution on reconstruction quality

Noise scale MSE ↓ LPIPS ↓ FID ↓
4 × 8 ∼ 8 × 16 0.041 0.317 14.90

32 × 64 0.008 0.101 2.30

Experiments are done on Cityscapes, 128 × 256 resolution

model on Cityscapes, ISSA improves the domain general-
ization performance on BDD100K, ACDC and Dark Zürich.
As ISSA with masked noise encoder is more effective at
diversifying the training set and reducing the style-content
correlation, it achieves more pronounced gains in Table 2,
e.g., more than 10% improvement in mIoU from Cityscapes
to Dark Zürich.

Ablation onmasking hyperparameters Weconduct an abla-
tion study on the mask patch size P and masking ratio ρ,
shown in Table 3. We observe that the mask patch size is a
relatively insensitive hyperparameter, while higher masking
ratio results in noticeable degradation on the reconstruction
quality. Empirically, the patch size P = 4 with a masking
ratio ρ = 25% achieves the best reconstruction performance.
Therefore, we use the encoder trained with this parameter
combination for our data augmentation ISSA.

Ablation on the noise map resolution We investigate the
effect of noise map size and experimentally observed that
the reconstruction quality benefits the most from using the
noise map at the intermediate feature space with one fourth
of the input resolution. As shown in Table 4, using 32 × 64
noise, i.e., one fourth of the image resolution, achieves bet-

Fig. 8 Influence of the noise map resolution on style-mixing ability. Using higher resolution noise map, e.g., H × W , leads to poor style-mixing
ability. While too low resolution, e.g., H

16 × W
16 , cannot reconstruct the scene faithfully
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Table 5 Comparison of data augmentation for improving domain generalization, i.e., from Cityscapes (train) to ACDC (unseen)

HRNet (Wang et al., 2021b) SegFormer (Xie et al., 2021)

Method CS Rain Fog Snow Night Avg CS Rain Fog Snow Night Avg

Baseline 70.47 44.15 58.68 44.20 18.90 41.48 67.90 50.22 60.52 48.86 28.56 47.04

ColorTransform 69.90 49.35 65.14 52.63 26.56 48.42 68.50 51.58 66.45 52.87 30.33 50.31

CutMix (Yun et al., 2019) 72.68 42.48 58.63 44.50 17.07 40.67 69.23 49.53 61.58 47.42 27.77 46.57

Hendrycks-Weather 69.25 50.78 60.82 38.34 22.82 43.19 67.41 54.02 64.74 49.57 28.50 49.21

Hendrycks-Digital 69.13 50.13 65.71 49.22 24.81 47.47 67.57 55.53 66.46 49.92 30.33 50.56

FDA (Yang & Soatto, 2020) 70.43 49.68 65.19 50.65 26.41 47.98 67.92 51.28 67.03 51.30 28.28 49.47

StyleMix (Hong et al., 2021) 57.40 40.59 49.11 39.14 19.34 37.04 65.30 53.54 63.86 49.98 28.93 49.08

ISSA (Ours) 70.30 50.62 66.09 53.30 30.18 50.05 67.52 55.91 67.46 53.19 33.23 52.45

Oracle 70.29 65.67 75.22 72.34 50.39 65.90 68.24 63.67 74.10 67.97 48.79 63.56

Bold values indicate the best performance
The mean Intersection over Union (mIoU) is reported on Cityscapes (CS), four individual scenarios of ACDC (Rain, Fog, Snow and Night) and
the whole ACDC (Avg.). ColorTransform consists of various color transformations such as altering the contrast, brightness, saturation; luma flip
and hue rotation. Hendrycks-Weather (Hendrycks & Dietterich, 2019) simulates weather conditions in a synthetic manner for data augmentation,
and Hendrycks-Digital is composed of contrast, elastics transformation, pixelation and JPEG corruption. Oracle indicates the supervised training
on both Cityscapes and ACDC, serving as an upper bound on ACDC for the other methods. Note, it is not supposed to be an upper bound on
Cityscapes. Underline denotes worse results than the baseline on ACDC. ISSA performs the best and consistently improves the mIoU in all four
scenarios of ACDC using both HRNet and SegFormer

Table 6 Comparison of data augmentation for improving domain generalization, i.e., fromCityscapes (train) to ACDC, BDD100K and Dark Zürich
(unseen)

HRNet(Wang et al., 2021b) SegFormer (Xie et al., 2021)

Method CS ACDC BDD100K Dark Zürich CS ACDC BDD100K Dark Zürich

Baseline 70.47 41.48 45.66 15.50 67.90 47.04 49.35 24.20

ColorTransform 69.90 48.42 50.22 24.13 68.50 50.31 51.09 25.04

CutMix (Yun et al., 2019) 72.68 40.67 45.57 15.34 69.23 46.57 48.93 22.98

Hendrycks-Weather 69.25 43.19 44.53 18.71 67.41 49.21 49.84 23.44

Hendrycks-Digital 69.13 47.47 47.60 22.32 67.57 50.56 51.11 25.11

FDA (Yang & Soatto, 2020) 70.43 47.98 48.74 22.46 67.92 49.47 50.47 22.45

StyleMix (Hong et al., 2021) 57.40 37.04 39.30 15.85 65.30 49.08 50.49 23.50

ISSA (Ours) 70.30 50.05 50.29 27.24 67.52 52.45 51.92 27.39

Bold values indicate the best performance
ISSA consistently outperforms the other data augmentation techniques across different datasets and network architectures, which is consistent with
the Table 5

ter reconstruction quality than using lower resolution noise
maps. Higher resolution noise map, e.g., full image resolu-
tion, in contrast, can be too expressive and encode nearly
all perceivable details. This results in worse style mixing
capability, as shown in Fig. 8. Therefore, we employ the
intermediate noise map at one fourth of the input resolution
in all of our experiments.

4.3 ISSA for Domain Generalization

Comparison with data augmentation methods Table 5
reports the mIoU scores of Cityscapes to ACDC domain
generalization using two semantic segmentation models, i.e.,
HRNet (Wang et al., 2021b) andSegFormer (Xie et al., 2021).
Qualitative visualization is illustrated in Fig. 9. ISSA is com-

pared with three representative data augmentations methods,
i.e., CutMix (Yun et al., 2019), Hendrycks’s weather and
digital corruptions (Hendrycks & Dietterich, 2019), and
StyleMix (Hong et al., 2021). Remarkably, our ISSA is the
top performingmethod, consistently improvingmIoU in both
models and across all four different scenarios of ACDC, i.e.,
rain, fog, snow and night. Compared to HRNet, SegFormer
is more robust against the considered domain shifts.

In contrast to the others, CutMix mixes up the content
rather than the style. It improves the in-distribution per-
formance on Cityscapes, but this gain does not extend to
domain generalization. Hendrycks’s weather corruptions can
be seen as the synthetic version of Cityscapes under the rain,
fog, and snow weather conditions. While already mimick-
ing ACDC at training, it can still degrade ACDC-Snow by
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Fig. 9 Semantic segmentation results of Cityscapes to ACDC generalization using HRNet. The HRNet is trained on Cityscapes only. The segmenter
trained with ISSA provides more reasonable prediction under adverse weather conditions

Fig. 10 Comparison of StyleMix (Hong et al., 2021) and ISSA.
StyleMix has rather low fidelity, while ISSA can preserve more details

more than 5.8% in mIoU using HRNet. Among the four
Hendrycks’ corruption types (i.e., noise, blur, digital and
weather), Hendrycks-Digital, consisting of contrast, elastics
transformation, pixelation and JPEG, is the best-performing
one, but still underperforms ISSA. StyleMix (Hong et al.,
2021) also seeks to mix up styles. However, it does not work
well for scene-centric datasets, such as Cityscapes. Its poor
synthetic image quality (see Fig. 10) leads to the perfor-
mance drop over the HRNet baseline in many cases, e.g.,
on Cityscapes to ACDC-Fog from 58.68 to 49.11% mIoU.

More evaluation on the generalization performance from
Cityscapes to BDD100K and Dark Zürich is provided in
Table 6, where the observation is consistent with Table 5

Table 7 Comparison of data augmentation techniques for improving
domain generalization using HRNet (Wang et al., 2021b), i.e., from
BDD100K-Daytime to ACDC-Night and Dark Zürich

Method BDD100K ACDC-Night DarkZürich

Baseline 52.97 23.52 23.63

CutMix 54.03 24.37 23.99

Weather 52.10 23.79 24.21

Digital 52.10 24.17 23.24

StyleMix 46.33 19.13 19.27

ISSA(Ours) 53.37 25.93 26.55

Bold values indicate the best performance
BDD100K-Daytime is a subset of BDD100K, which contains 2526
images in daytime under various weather conditions, but not in
dawn/nighttime. Here, we evaluate the domain generalization with
respect to day to night

explained above. In addition to weather changes, we further
compare different data augmentationmethods under themore
challenging day-to-night setting in Table 7. ISSA present
consistent advantages over competing methods, which again
justifies the effectiveness of ISSA on improving generaliza-
tion performance.

Comparison with domain generalization techniques We
further compare ISSA with two advanced feature space style
mixing methods designed to improve domain generalization
performance:MixStyle (Zhou et al., 2021) andDSU (Li et al.,
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Fig. 11 Extra-source exemplar based style synthesis using web-crawled images, where the generator and encoder are only trained on Cityscapes.
Except for the Content 1 image of the first 2 rows, all the others are web-crawled images

Fig. 12 Visualization of interpolation in the style latent space. As illustrated, we can control the style mixing strength and achieve a smooth
transition on both trained Cityscapes and unseen web-crawled images

Table 8 Comparison with feature-level augmentation methods on
domain generalization performance of Cityscapes as the source

Method CS ACDC BDD DarkZ

Baseline (Chen et al., 2017a) 61.73 30.86 34.30 11.62

MixStyle (Zhou et al., 2021) 59.01 36.97 36.27 9.38

DSU (Li et al., 2022) 59.59 38.31 35.53 12.29

ISSA (Ours) 62.20 43.21 42.60 21.56

MixStyle + ISSA 60.17 41.81 42.17 20.56

DSU + ISSA 60.20 43.31 42.24 24.63

Bold values indicate the best performance
Following DSU (Li et al., 2022), we conduct experiments using
DeepLab v2 (Chen et al., 2017a) as the baseline for fair comparison

2022). Both extract the style information at certain normal-
ization layers of CNNs. MixStyle (Zhou et al., 2021) mixes
up styles by linearly interpolating the feature statistics, i.e.,
mean and variance, of different images, while DSU (Li et
al., 2022) models the feature statistics as a distribution and
randomly draws samples from it.

Table 9 Combination of ISSA and RobustNet (Choi et al., 2021)

Method CS ACDC BDD DarkZ

Baseline (Chen et al., 2018) 69.01 44.23 43.27 16.03

RobustNet (Choi et al., 2021) 69.47 47.25 46.94 20.11

+ ISSA 69.45 47.55 48.44 23.09

SHADE (Zhao et al., 2022) 64.24 47.30 46.44 25.37

+ ISSA 63.79 47.64 47.76 25.58

Bold values indicate the best performance
We adopt the experimental setting of RobustNet and use DeepLab v3+
(Chen et al., 2018) as the baseline. Our ISSA is complementary to
RobustNet and further improves its generalization performance

We adopt the experimental setting of DSU with default
hyperparameters, usingDeepLab v2 (Chen et al., 2017a) seg-
mentation networkwith ResNet101 backbone. Table 8 shows
that ISSA outperforms both MixStyle and DSU by a large
margin. We also observe that there is a slight performance
drop on the source domain (i.e., CS) when applying DSU
andMixStyle. As they operate at the feature-level, there is no
guarantee that the semantic content stays unchanged after the
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Table 10 Comparison with UDA methods on Cityscapes to ACDC
generalization

Method Network Use target mIoU

Baseline DeepLabv2 – 30.9

BDL(Li et al., 2019b) ✓ 32.7

CRST (Zou et al., 2019) ✓ 32.8

AdaptSegNet(Tsai et al., 2018) ✓ 33.4

SIM(Wang et al., 2020) ✓ 34.6

MRNet(Zheng & Yang, 2021) ✓ 36.1

ADVENT(Tsai et al., 2019) ✓ 37.7

CLAN(Luo et al., 2019) ✓ 39.0

FDA(Yang & Soatto, 2020) ✓ 45.7

ISSA(Ours) ✗ 43.2

DAFormer(Hoyer et al., 2022) DAFormer ✓ 55.4

ISSA(Ours) SegFormer ✗ 52.5

Remarkably, our domain generalization method (without access to the
target domain, neither images nor labels), is on-par or better than unsu-
pervised domain adaptation (UDA)methods,which requires knowledge
of the target domain during training. Results of UDA methods are
from(Sakaridis et al., 2021)

random perturbation of feature statistics. Thus, the changes
in feature statistics might negatively affect the performance,
as also indicated in (Li et al., 2022). Note that, in contrast,
ISSA operates on the image space. Combining ISSA with
MixStyle and DSU leads to a strong boost in performance of
these methods.

Being model-agnostic, ISSA can be combined with other
networks designed specifically for the domain generalization
of semantic segmentation. To showcase its complementary
nature, we add ISSA on top of two state-of-the-art domain
generalization methods for semantic segmentation, Robust-
Net (Choi et al., 2021) and SHADE (Zhao et al., 2022).
RobustNet proposed a novel instance whitening loss to selec-
tively remove domain-specific style information. SHADE
on the other hand aims to learn style-invariant representa-
tion and preserve knowledge from the pretrained backbone.
Although color transformation has already been used for aug-
mentation in bothmethods andSHADEadditionally employs
feature-level style augmentation, ISSA can introduce more
natural style shifts, thus is able to bring further improvements.
Table 9 verifies the effectiveness of ISSA, which brings
extra gains for RobustNet and SHADE. For RobustNet, the
performance of the challenging day to night scenario, i.e.,
Cityscapes to Dark Zürich is boosted from 20.11 to 23.09%
in mIoU.

Comparisonwithunsuperviseddomain adaptationmethods
We compare our method with multiple unsupervised domain
adaptation (UDA) techniques, which not only have access to
the source domain, but also use extra unlabeled samples of the

Table 11 Comparison on Cityscapes to ACDC generalization using
ISSA with generator and encoder trained on Cityscapes (CS-G-E) and
BDD100K (BDD-G-E), respectively

Method CS Rain Fog Snow Night Avg

Baseline 70.5 44.2 58.7 44.2 18.9 41.5

ISSA: CS-G-E 70.3 50.6 66.1 53.3 30.2 50.1

ISSA: BDD-G-E 70.3 52.2 66.3 52.2 31.0 50.4

Bold values indicate the best performance
Despite never seeing Cityscapes samples, ISSA with BDD-G-E is still
highly effective

Table 12 Utilizing Landscape Pictures as extra-source exemplars for
style augmentation, where the generator and encoder are only trained
on Cityscapes (CS-G-E)

Method CS ACDC BDD DarkZ

Baseline 70.47 41.48 45.66 15.50

ISSA: CS-G-E 70.30 50.05 50.29 27.24

ESSA: CS-G-E 69.85 50.87 51.42 29.06

Bold values indicate the best performance
ESSA can further improve the generalization performance from
Cityscapes to other unseen datasets

target domain. The quantitative comparison of Cityscapes to
ACDC adaptation/generalization is shown in Table 10. Our
methodhas presented competitive performance, evenwithout
using images from the target domain.

5 Plug-n-Play Ability of the Exemplar-Based
Style Synthesis Pipeline

In Sect. 4.3, we have focused on ISSA for improved domain
generalization. Next, we investigate the plug-n-play ability
of our exemplar-based style pipeline, which enables ESSA.
Specifically, the generator and masked noise encoder which
are trained on one dataset can be directly used for mix-
ing styles from other datasets, thus avoiding retraining or
fine-tuning the models. This ability is valuable in two per-
spectives: (1) harnessing external data for improved domain
generalization via ESSA; and (2) saving computationally
complexity.Compared to other data augmentation techniques
such as CutMix (Yun et al., 2019), Hendrycks corruption
(Hendrycks & Dietterich, 2019), our style synthesis requires
training GAN and an encoder, which could take consider-
able computational resources. Therefore, it is of practical
interest if the trained models can be readily useable for novel
domains.

ISSA using arbitrary encoders Favorably, thanks to the plug-
n-play ability of the synthesis pipeline, we observe that ISSA
can still be effective even when encoder and generator are
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Fig. 13 Visual examples of stylized data by transferring style from one unannotated ACDC sample (target domain) to Cityscapes (source domain).
Best view in color (Color figure online)

trained on a different dataset of a similar task, and re-training
is not required. Note that here the source is with respect
to the segmenter training for domain generalization, not the
encoder training. As shown in Table 11, when training the
segmenter on Cityscapes using ISSA, we can directly use
generator and encoder trained on BDD100K without fine-
tuning. Even though the models have not seen any samples
of Cityscapes, they can still reconstruct and augment styles
within Cityscapes, and the effectiveness of ISSA is not com-
promised. This implies that, once the generator and encoder
are trained on one dataset, they are also straightforwardly
applicable for augmenting novel datasets.

Extra-source exemplar based style synthesis Furthermore,
we exploit the usage of extra-source data as the style exem-
plar. Visual examples in Fig. 11 showcase the plug-n-play
style-mixing ability of our encoder on web-crawled images,
where the model is only trained on Cityscapes. It can be
observed that the style of unseen images can still be success-
fully transferred to the content images, which grants us the
opportunity to further utilize images on the web to enhance
the effectiveness of style augmentation beyond intra-source
styles. Also, we illustrate the interpolation capability in the
style latent space on both trainedCityscapes and unseenweb-
crawled image. This property enables more control on the
style mixing strength.

To further explore the usage of images on theweb, we take
Landscape Pictures1 dataset as the extra-source exemplars
for style augmentation. Table 12 justifies that by exploiting

1 https://www.kaggle.com/datasets/arnaud58/landscape-pictures?
resource=download

additional image styles, ESSA can further improve the gen-
eralization performance of ISSA on unseen target domains.

6 Stylized Proxy Validation Set Synthesis

Beyond the usage of data augmentation for network train-
ing, we further explore if our exemplar-based style synthesis
pipeline can be used to assess the generalization capability
of semantic segmentation models for both source and tar-
get domain without extra data annotation effort. Prior work
(Zhang et al., 2021b) has used conditional GAN synthesized
samples to predict generalization performance of image clas-
sifiers in the source domain. However, it remains unclear
how to evaluate the generalization performance on unseen
domains, and apply it on dense prediction tasks. Given the
fact that our masked noise encoder can transfer styles even
fromnovel domains,we utilize this attractive property to gen-
erate a stylized proxy validation set, i.e., combining styles
from the target domain with the contents from the source
domain training samples. For getting their styles, exemplars
from the target domain do not need to be labelled. The exist-
ing ground-truth label maps of the training samples in the
source domain are reused as the ground-truth annotations of
the stylized proxy validation set. Visual examples of trans-
ferring ACDC style using one sample from each weather
condition are provided in Fig. 13.

Experimental Setup We investigate the generalization per-
formance of 95 semantic segmentation models trained on
Cityscapes, where 54 models are obtained from MMSeg-
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mentation (Contributors, 2020) model zoo and the others
are trained by ourselves. The models cover both CNN-
based architectures, e.g., HRNet (Wang et al., 2021b),
DeepLab (Chen et al., 2017b), DANet (Fu et al., 2019),
and transformer-based model, e.g., SegFormer (Xie et al.,
2021), SETR (Zheng et al., 2021). Besides, the models are
trained using different strategies, e.g., various learning rate
schedule, cropping size and data augmentation. We con-
sider generalization performance on both source and target
domain for the correlation study. Specifically, we use the
Cityscapes validation set as the source test set, ACDC and
BDD100K validation sets as the target test data. To verify the
generalization performance on the source domain, we apply
intra-source style augmentation on the Cityscapes training
set and use it as the proxy validation set. For the verifica-
tion of target domain generalization performance, we build a
proxy set by transferring styles from the corresponding tar-
get test dataset. Further, we study the correlation between the
real test performance and performance on the proxy data.

CorrelationMetrics We compute Spearman’s Rank Correla-
tion coefficient (ρ) andKendall RankCorrelation Coefficient
(τ ) to quantitatively measure the correlation strength. The
value of the correlation coefficient varies from [−1, 1]. A
value closer to ±1 indicates strong positive/negative asso-
ciation between the two variables. As the coefficient goes
towards 0, the association becomes looser. Both correlation
coefficients are non-parametric, i.e., no strict assumptions
on the data distribution, and the assessment is based on the
ranking of the data.

Observations In Fig. 14, we show the correlation of perfor-
mance on the intra-source style augmented proxy set and real
Cityscapes test set across different network architectures.We
clearly observe a strong correlation (ρ > 0.95), indicating
that ISSA proxy set can serve as a good indicator for gener-
alization in the source domain.

Furthermore, we report the correlation results of tar-
get domain generalization on two datasets, i.e., ACDC and
BDD100K in each rowof Fig. 15.We compare three different
choices of the proxy set in each column, namely the origi-
nal Cityscapes validation set, intra-source style augmented
Cityscapes validation set and target data style augmented
validation set. Blue and orange dots represent CNN- and
transformer-based backbones, respectively. Quantitatively,
the correlation coefficients of Fig. 15a, d are rather low. Also
from Fig. 15a, some blue points in the upper right corner
has stronger performance on Cityscapes validation set com-
pared to the orange points, but worse onACDC test data. This
suggests that evaluation of the original Cityscapes (source)
validation set cannot properly reflect the generalization per-
formance on the target domain. Therefore, this raises the
concern that by following the traditional way, selecting the

Fig. 14 Correlation between real Cityscapes test performance and
intra-source style augmented proxy performance for 95 models. Spear-
man’s Rank Correlation coefficient (ρ) and Kendall Rank Correlation
Coefficient (τ ) are computed to quantitatively measure correlation
strength. Blue and orange dots represent CNN- and transformer-based
backbones, respectively. We observe that there is a strong correlation
between the real test mIoU and proxy mIoU (Color figure online)

best model based on the source validation performance could
be problematic when the deploying environment involves
data of unknown target domains. By applying intra-source
style augmentation on the Cityscapes validation set, the cor-
relation coefficient has been improved (see Fig. 15b, e). We
hypothesize that style mixing results in better data coverage
and thus can better represent model’s generalization abil-
ity under style shifts. Furthermore, whenever it is possible
to have access to images of the target domain, even though
without annotation, we can utilize styles of the unlabeled
target data and achieve the strongest correlation in Fig. 15c,
f. In addition to the correlation metric, in general models
have highermIoUon theCityscapes validation set, compared
with the intra-source style and target domain style augmented
proxy set. And the mIoU range on the intra-source proxy set
is closer to the one of using target styles, which also justifies
our hypothesis above.

Besides, we also observe an interesting phenomenon from
Fig. 15: all transformer-basedmodels (orange dots) are above
the linear fit. This suggests that transformer-based models
present better generalization ability under natural shifts com-
pared with CNN-based models (blue dots). This is consistent
with the acknowledgement on transformers from prior works
(Naseer et al., 2021; Bai et al., 2021; Zhang et al., 2022).

To sum up, we present a new use case of proposed
exemplar-based style synthesis pipeline, and demonstrate
that stylized samples can be used as a proxy validation set
and a strong indicator for model’s generalization capability
without introducing additional annotation efforts. Based on
this observation, we can better utilize existing annotated data
together with our exemplar-based style synthesis pipeline, to
select models in practice especially when deployment in an
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Fig. 15 Correlation between test performance and proxy performance
for 95 models. We compute Spearman’s Rank Correlation coefficient
(ρ) and Kendall Rank Correlation Coefficient (τ ) to quantitatively mea-
sure correlation strength. Blue and orange dots represent CNN- and
transformer-based backbones, respectively. In each row, we investigate

the correlation between the real test performance, i.e., mIoU of ACDC
and BDD100K, and mIoU of different proxy sets. We observe that
Fig. 15c, f achieve the strongest correlation for each scenario, which
indicates that it is beneficial to build a proper proxy set using styles of
the corresponding test dataset (Color figure online)

open-world environment, where unknown target data com-
monly exists.

7 Conclusion and Discussions

In this paper, we propose a GAN inversion based style
synthesis pipeline for domain generalization in semantic seg-
mentation. The key enabler for our pipeline is the masked
noise encoder, which is capable of preserving fine-grained
content details and allows stylemixing between imageswith-
out affecting the semantic content. In particular, we employ
intra-source style augmentation (ISSA) for learning domain
generalized semantic segmentation using restricted training
data from a single source domain. Extensive experimental
results verify the effectiveness of ISSA on domain general-
ization across different datasets and network architectures.
We further demonstrate the plug-n-play ability of the pro-
posed pipeline. Without requiring retraining the encoder

and generator, our model can be used directly on extra-
source exemplars such as web-crawled images, enabling
extra-source style augmentation (ESSA). It also opens up
applications beyond data augmentation for improved domain
generalization. Specifically, we show that the intra- & extra-
source exemplar-based style synthesis pipeline can be used
for creating proxy validation sets to compare the general-
ization capability of diverse models on both the source and
target domain without extra data annotation effort.

Limitation and future work One limitation of ISSA is that
our style mixing is a global transformation, which cannot
specifically alter the style of local objects, e.g., adjusting
vehicle color from red to black, though when changing
the image globally, local areas are inevitably modified.
Also compared to simple data augmentation such as color
transformation, our pipeline requires higher computational
complexity for training. It takes around 7 days to train the
masked noise encoder on 256×512 resolution using 2GPUs.
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Asimilar amount of time is required for the StyleGAN2 train-
ing. Nonetheless, for data augmentation, it only concerns the
inference time of our encoder, which ismuch faster, i.e., 0.1 s,
compared to optimization based methods such as PTI (Roich
et al., 2022) that takes 55.7 s per image.

In the future, it is challenging yet interesting to extend our
work with more flexible local editing. Our proposed intra- &
extra-source exemplar-based style synthesis is a global trans-
formation, which cannot specifically alter the style of local
objects, e.g., adjusting vehicle color from red to black, though
when changing the image globally, local areas are inevitably
modified. One potential direction is by exploiting the pre-
trained language-vision model, such as CLIP (Radford et al.,
2021). We can synthesize styles conditioned on text rather
than an image. For instance, by providing a text condition
“snowy road", ideally we would want to obtain an image
where there is snow on the road and other semantic classes
remain unchanged. Recent works (Bar-Tal et al., 2022; Hertz
et al., 2022; Kawar et al., 2023) studied local editing condi-
tioned on text. However, CLIP exhibits a strong bias (Bar-Tal
et al., 2022) and may generate undesirable results, and the
edited image may suffer from insufficient alignment with the
other parts of the image. Overall, there is still large room for
improvement on synthesizing images with more controls on
both style and content.
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