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SUMMARY 19 

The default mode network (DMN), a set of brain regions in parietal, temporal and frontal cortex, 20 
is implicated in many aspects of complex thought and behavior. However, understanding the role 21 
of the DMN is complicated because is implicated in functional states that bridge traditional 22 
psychological categories and that may have antagonistic features, notably perceptually-decoupled 23 
mind-wandering vs perceptually-driven decision making. Here, we leverage post mortem histology 24 
and high field in vivo neuroimaging to show how the anatomy of the DMN helps to explain its 25 
broad functional associations. The DMN contains cytoarchitecture associated with unimodal, 26 
heteromodal, and memory-related processing, an architecture that can enable complex behaviours 27 
dependent on integration of perception and memory. Anatomically, the DMN contains regions 28 
receptive to input from sensory cortex and a core that is relatively insulated from environmental 29 
input, a division that may explain the network’s role in internally- and externally-focussed states. 30 
Finally, the DMN is unique amongst cortical networks in balancing its output across the levels of 31 
sensory processing hierarchies, a pattern that may help coordinate and homogenise distributed 32 
neural function. Together, our study establishes an anatomical foundation for mechanistic accounts 33 
of how the DMN contributes to human thought and behaviour by integrating experiences of the 34 
inner and outer worlds.  35 
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MAIN 36 
The default mode  network (DMN) is a distributed set of brain regions in the frontal, temporal, and 37 
parietal lobes with strongly correlated fluctuations in function1–3. It is among the most important, 38 
yet challenging discoveries of modern neuroscience4,5. This network is notable for its associations 39 
with distinctively human features of cognition, including our sense of self6, declarative memory7, 40 
daydreaming8,9, creativity10, conceptual combinations11, social cognition12, and it is at the core of 41 
prominent theories of psychiatric13 and neurological illness14. Theories on the role of the DMN 42 
initially focused on internally-oriented cognition and its antagonism with “task-positive” 43 
networks15,16, but increasing evidence shows DMN activity is related to the content of external 44 
stimuli17,18 as well as externally-oriented task demands9,11,19, and DMN subregions can co-45 
fluctuate with regions of “task-positive” networks20–22. Thus, the conceptual challenge posed by 46 
the DMN is understanding how a neural system can be involved in so many different states, 47 
particularly since many are seemingly antagonistic, such as perceptually-driven decision making23 48 
and perceptually-decoupled mind-wandering24–26. 49 
 50 
Recent perspectives have argued that resolving the role of the DMN in cognition depends on 51 
understanding its anatomy16,27,28. At a macroscale, DMN regions are maximally distant from 52 
primary sensory and motor areas29. This topography may allow neural activity in the DMN to be 53 
decoupled from perception of the here and now27, as neural signals are incrementally transformed 54 
across cortical areas from those capturing details of sensory input towards more abstract features 55 
of the environment30,31. These observations suggest neural activity in the DMN has the potential 56 
to be both distinct from sensory input, while also incorporating abstract representations of the 57 
external world. This, together, could explain its involvement across such diverse contexts27. 58 
Although this topographical perspective, in principle, accounts for its broad involvement in human 59 
cognition, we lack a detailed explanation of how the neural circuitry within the DMN enables this 60 
hypothesised role32. 61 
 62 
We set out to describe the microarchitecture and wiring of this system to provide a set of 63 
anatomical constraints on views of how the DMN contributes to cognition. We capitalise on a 64 
combination of quantitative post mortem histology and multimodal in vivo neuroimaging to map 65 
DMN microarchitecture, and examine how microarchitecture contributes to its structural and 66 
functional embedding in the brain. In particular, we leverage (i) an established atlas of 67 
cytoarchitectural taxonomy (“cortical types”)33,34, (ii) whole-brain 3D histology for fine-grained 68 
cytoarchitectonic mapping35,36 and (iii) multimodal in vivo neuroimaging for approximations of 69 
structural wiring and functional flow. Finally, (iv) using ultrahigh-field 7 Tesla (7T) MRI, we 70 
demonstrate how the discovered relationship between microarchitecture, connectivity and function 71 
of the DMN exist within an individual. 72 
 73 
CYTOARCHITECTURAL HETEROGENEITY 74 
The DMN is generally agreed to encompass the (1) parahippocampal cortex, (2) precuneus and 75 
posterior cingulate cortex, (3) a caudal region of the inferior parietal lobule, (4) middle temporal 76 
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cortex, (5) inferior frontal and (6) medial prefrontal cortex16,37,38. Throughout our primary 77 
analyses, we use the most common atlas of the default mode network2 (Figure 1A). In 78 
supplementary analyses, we show the replicability of key findings with alternative delineations of 79 
the DMN. 80 
 81 
The most noticeable difference in cytoarchitecture across the cortex is the degree of laminar 82 
differentiation. Degree of laminar differentiation is highest in primary sensory areas and decreases 83 
along the cortical mantle in a graded manner, reaching a low in agranular cortex, which neighbours 84 
hippocampal and piriform allocortex. This gradient of laminar differentiation is synopsised by six 85 
cortical types, originally defined by Von Economo33,34(Figure 1A). Patterns of projections also 86 
systematically vary along this gradient39–42, forming a hierarchical architecture spanning from 87 
primary sensory areas to the prefrontal cortex and hippocampus43–45. Notably, the cortical types 88 
(synonymous with the levels of sensory hierarchies) are hypothesised to reflect different 89 
specialisations of the underlying cortical microcircuits, ranging from externally-focused sensory 90 
areas through unimodal and heteromodal cortex to internally-focused agranular areas46,47. This 91 
relationship, theorised primarily on neurophysiological evidence in non-human primates and 92 
lesion studies in humans47,48, is supported here by meta-analytical decoding of the cortical types, 93 
using activation maps from thousands of functional MRI studies (Supplementary Figure 1).  94 
 95 
Based on overlap of the DMN atlas with a cytoarchitectonic atlas of cortical types33,34, we found 96 
the DMN contains five of six cortical types (Figure 1A). This make-up was distinctive, relative to 97 
other functional networks (Supplementary Table 1, all Kolgomorov-Smirnoff tests>0.11, 98 
p<0.001). The DMN contains cortical types commonly associated with processing of sensory 99 
information and its progressive integration (eulaminate-I, II, and III), but it also contains 100 
dysgranular and agranular cortex that are often linked to processes such as memory47 101 
(Supplementary Figure 1). These cortical types are not equally represented within the DMN, 102 
however (χ2=1497, p<0.001). Approximately 90% of the DMN is eulaminate. The high proportion 103 
of eulaminate may be expected given the prevalence of these types across the whole cortex (84%; 104 
Supplementary Table 1). To evaluate how these cortical types are represented in the DMN, we 105 
compared the proportion of cortical types within the DMN and within 10,000 rotated versions of 106 
the DMN. The rotated versions are generated by randomly spinning the functional network atlas 107 
on a spherical representation of the cortex, providing a null distribution of outcome statistics that 108 
account for the network’s size and distribution. In doing so, we found that the DMN over-109 
represents eulaminate-I (18% increase; pspin=0.006), classically known as “heteromodal” cortex, 110 
which is hypothesised to process information from multiple sensory domains47(Supplementary 111 
Figure 1). This distinctive composition of cortical types was evident regardless of slight alterations 112 
to the DMN atlas, such as defining the DMN by deactivations during tasks, task-based independent 113 
component analysis or combining individual-specific DMN annotations (Supplement Figure 2). 114 
The broad range of cortical types, combined with the over-representation of eulaminate-I in the 115 
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DMN, is consistent with a role of this network in integration of information from multiple systems 116 
including those linked to sensory and memory processes. 117 
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Figure 1: Cytoarchitectural heterogeneity of the DMN. A) Upper left. The most common atlas of the DMN, used 118 
in primary analyses and shown on the cortical surface3. Lower left. Cytoarchitectonic atlas of cortical types33,34. Upper 119 
middle. Histogram depicts the frequency of cortical types within the DMN. + is indicative of significant over-120 
representation and – is under-representation, relative to whole cortex proportions. Lower middle. The schematic 121 
highlights prominent features that vary across cortical types, including the location/size of largest pyramidal neurons 122 
(triangles), thickness of layer IV, existence of sublayers in V-VI (grey dashed lines), regularity of layer I/II boundary 123 
(straightness of line). Kon=koniocortical. Eul=eulaminate. Dys=dysgranular. Ag=agranular. Right. Circular plot 124 
represents the spread of the DMN from externally- to internally-driven cortical types. B) 7404 coronal slices of cell-125 
body-stained sections (20 μm thickness) were reconstructed into a 3D human brain model, BigBrain35. C) Example 126 
cortical patch shows depth-wise variations in cell-body-staining in BigBrain. D) The principal eigenvector (E1) 127 
projected onto the inflated BigBrain surface shows the patterns of cytoarchitectural differentiation within the DMN. 128 
Subregion names are provided in F. E) Line plots represent cell-body-staining intensity by intracortical depth (from 129 
pial to white matter boundary) at different points along E1. Cortical points with lower E1 (blue) have peaked cellular 130 
density in mid-deep cortical layers, indicative of pronounced laminar differentiation, whereas cortical points with 131 
higher E1 (red) have more consistent cellular density across cortical layers, illustrating lower laminar differentiation. 132 
F) The topography of E1 in each subregion shown as 3D surface plots, with E1 as the z-axis. The x- and y-axes are 133 
defined by Isomax flattening of each subregion. Left boxplots show the proportion of variance in E1 explained by 134 
spatial axes (x,y) for each subregion and for models of increasing complexity (2nd-4th order polynomial regression). 135 
Boxplot range depicts hemisphere differences in adjusted R2, while the centre point is the adjusted R2 averaged across 136 
hemispheres. Right boxplots show “waviness”49 of E1 in each subregion. Together, these metrics quantify how 137 
cytoarchitectural landscapes vary between subregions from a relatively simple gradient in the parahippocampus, well-138 
explained by the spatial regression model and with low waviness, to marked fluctuations in the dorsal prefrontal 139 
cortex, characterised by high waviness and poor regression model performance. PHPC=parahippocampus. 140 
Prec.=precuneus. IP=inferior parietal. MT=middle temporal. IF=inferior frontal. PFC=prefrontal cortex.  141 
 142 
Having established that the DMN contains a broad array of cortical types, we adopted data-driven 143 
approaches to characterise more fine-grained spatial patterns of cytoarchitectural variation. We 144 
transformed the functional network atlas2 to a 3D cell-body-stained post mortem human brain35 145 
using specially tailored cortical registration procedures36,50. Using intracortical profiles of cell-146 
body-staining intensity (Figure 1C,E), we assessed cytoarchitectural variability within the DMN. 147 
We mapped patterns of cytoarchitectural variation via unsupervised non-linear manifold learning51 148 
(Figure 1D, see also Supplementary Figure 3). The first eigenvector of this manifold (E1), 149 
hereafter referred to as the cytoarchitectural axis, described a shift in the shape of the underlying 150 
cytoarchitectural profiles from peaked to flat (Figure 1E) and reflects differences in how cellular 151 
density varies within the cortex (Figure 1C). The cytoarchitectural axis is anchored on one end by 152 
unimodal eulaminate-III cortex (e.g. retrosplenial and posterior middle temporal) and on the other 153 
by agranular cortex (e.g. medial parahippocampus and anterior cingulate). Thus, the endpoints of 154 
the cytoarchitectural axis are the most extreme cortical types found within the DMN 155 
(Supplementary Figure 3). Beyond the endpoints, however, the cytoarchitectural axis deviates 156 
from the gradient described by cortical types33,47,52(Supplementary Figure 3), nor does it 157 
discriminate between subregions of the DMN, nor does it follow an anterior-posterior gradient as 158 
seen in neuronal density53. Instead, we observed a mosaic of different spatial topographies across 159 
DMN subregions, where neighbouring microcircuits are sometimes distinct and distant 160 
microcircuits are sometimes similar. Our data-driven approach, thus, indicates that the 161 
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organisation within the DMN is unlike those across sensory hierarchies and is less constrained by 162 
large-scale spatial gradients54,55. 163 
 164 
Looking closer at the topography of cytoarchitecture highlights the (dis)similarity of neighbouring 165 
microcircuits within the DMN. Given the ubiquity of connectivity between neighbouring 166 
microcircuits in the cortex56, topography provides important information on the form of 167 
communication within spatially-contiguous subregions. Subregions of the DMN evidently vary in 168 
terms of their cytoarchitectural topography (Figure 1F), and we quantified these differences using 169 
two complementary measures: smoothness and waviness. We captured the smoothness of the 170 
microarchitectural landscape by evaluating the proportion of variance in the cytoarchitectural axis 171 
that could be accounted for by spatial axes and the waviness by measuring deviations from the 172 
mean, a common technique in mechanical engineering57. We found that subregions significantly 173 
differ in terms of both smoothness and waviness (smoothness: 2nd/3rd/4th order; F=14.5/14.9/20.1, 174 
p<0.004; waviness: F=20.6, p=0.001). Smoothness was particularly high in the parahippocampus, 175 
showing that its cytoarchitectural axis follows a relatively smooth gradient here, as may be 176 
predicted from previous anatomical research58,59. Conversely, the prefrontal cortex exhibits 177 
especially high waviness, which aligns with classic observations in the tract-tracing literature in 178 
non-human animals and recent functional connectivity studies showing “interdigitated” 179 
connectivity patterns within this region60–62. This analysis establishes that the DMN contains 180 
distinct cytoarchitectural patterns representative of different hypothesised ways that neural signals 181 
can be integrated in the cortex: The mesiotemporal gradient has been associated with progressive 182 
convergence of information63,64, whereas prefrontal interdigitation is thought to support linking 183 
information from disparate sources60. 184 
 185 
RECEIVERS ON THE PERIPHERY AND AN INSULATED CORE 186 
Thus far, our analyses provided evidence that the DMN contains highly variable types and 187 
arrangements of microcircuits, which is consistent with the hypothesis that a wide range of neural 188 
signals can be integrated within the regions that make up this network. Next, we explored how the 189 
anatomical features of the DMN relate to its connectivity and whether this can explain its 190 
involvement in both perceptually-coupled and -decoupled states23–26. We hypothesised that 191 
connectivity would co-vary with the cytoarchitectural axis (E1, Figure 1D), because propensity 192 
for connectivity increases with cytoarchitectural similarity40,65,66. Nevertheless, this principle is 193 
based on sensory hierarchies45,47,67, and it so far remained unclear whether, and how, it would 194 
generalise to the DMN. 195 
 196 
First, we measured communication efficiency along white matter tracts68 using high-field diffusion 197 
magnetic resonance imaging (MRI) tractography . We found that the propensity to communicate 198 
with other cortical areas (indexed by average “navigation efficiency”, see Methods for details) 199 
varied within the DMN [coefficient of variation (CoV)=18%]. Navigation efficiency with the rest 200 
of the cortex was significantly higher towards one end of the DMN’s cytoarchitectural axis, 201 
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specifically those areas of the DMN with more peaked cytoarchitectural profiles (r=-0.60, 202 
pspin=0.001, Figure 2Ai). This effect was particularly pronounced for communication with 203 
perceptually-coupled cortical types (koniocortical/eulaminate-III/eulaminate-II; r=-0.64/-0.60/-204 
0.30, pspin<0.025, Figure 2Ai). Thus, the organisation of the DMN, revealed by cytoarchitectural 205 
analysis, also reflects a constraint on communication supported by white matter tracts, especially 206 
for communication between the DMN and cortical areas engaged in sensory and unimodal 207 
processing. 208 
 209 
Next, we examined the consequences of this structural organisation on the flow of information in 210 
the cortex. We applied a generative model of effective connectivity70 to resting state fMRI 211 
timeseries of 400 isocortical parcels71, then selected DMN parcels as targets for functional input 212 
analyses and DMN parcels as seeds for functional output analyses. Functionally-estimated input 213 
and output varied within the DMN (CoV=24% and 29%, respectively). Average strength of input 214 
was significantly higher to those areas of the DMN with more peaked cytoarchitectural profiles 215 
(r=-0.41, pspin<0.001), in line with the structural analysis. Examination of type-specific 216 
connectivity showed limited discrimination between cortical types, whereby inputs from 217 
externally- and internally-focused cortical types were all concentrated on DMN areas with peaked 218 
cytoarchitectural profiles (Figure 2Aii-iii, Supplementary Table 2). Thus, multiple inputs 219 
converge upon a subset of DMN subunits, while a subset of DMN subunits, those with flat 220 
cytoarchitectural profiles, remained relatively insulated from cortical input. Output did not co-vary 221 
with the cytoarchitectural axis (r=-0.05, pspin=0.069, Figure 2Aii-iii). These findings were 222 
consistent in a replication dataset and when including subcortical structures and the hippocampus 223 
in the model (Supplementary Table 2). Together, these analyses suggest the DMN comprises two 224 
microarchitecturally distinct subsets - one with highly efficient tract-based communication with 225 
cortical areas implicated in perception and action while receiving convergent input from across all 226 
levels of sensory hierarchies, and another that exhibits less efficient tract-based communication 227 
with the rest of the cortex and is relatively insulated from input signals from sensory systems 228 
(Figure 2B). 229 
 230 
A UNIQUE BALANCE OF OUTPUT 231 
Focusing on the anatomy of the DMN revealed its distinctive pattern of cytoarchitectural 232 
heterogeneity, which constrains how it communicates with other systems. Now, we turn our 233 
attention to how these anatomical properties contribute to the unique position of the DMN in the 234 
large-scale functional organisation of the cortex by understanding how extrinsic connectivity of 235 
the DMN is distributed across cortical types. 236 
 237 
First, we discovered that the DMN communicates in a balanced manner with all cortical types. 238 
Compared to all other functional networks, the DMN exhibits the most balanced efficiency of 239 
communication across cortical types (i.e., lowest KL divergence from null model, Supplementary 240 
Figure 4, see Supplementary Table 3 for full statistics). Importantly, using our functional model, 241 
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we could specify that output of the DMN is balanced across the cortical types, but input is not 242 
(Figure 2Ci, see Supplementary Table 3 for full statistics and replication). In other words, the 243 
DMN outputs signals in approximately equal strength to all types of cortex (i.e. all levels of sensory 244 
hierarchies). Of all the functional systems in the human cortex, only the DMN exhibited this 245 
balance in output across cortical types (Figure 2Cii). The spatial distribution, internal 246 
heterogeneity and connectivity of the DMN, thus, engender a unique ability to receive temporally 247 
distinct signals and then send neural signals that influence all levels of the sensory hierarchies in 248 
a similar manner. 249 

 250 
Figure 2: Organisation of DMN connectivity. A) Above. Scatterplots show the correlation of the cytoarchitectural 251 
axis (E1) with average extrinsic (i) structurally-modelled navigation efficiency, (ii) functionally-modelled input and 252 
(iii) functionally-modelled output. Below. Bar plots shows the linear correlation coefficient (r) of E1 with average 253 
connectivity to each cortical type. The stability of the correlation coefficient was calculated by repeating the procedure 254 
in 10 folds, each including 90% of datapoints. Error bars indicate the standard deviation of the r value across folds. 255 
Significant (*) negative r values indicate that DMN nodes with peaked profiles have (i) higher navigation efficiency 256 
with externally-focused cortical types, and (ii) stronger input from most cortical types. Kon=koniocortical. 257 
Eul=eulaminate. Dys=dysgranular. Ag=agranular. B) Multi-modal model of DMN organisation shows the dual 258 
character of the DMN, including areas with convergent input and insulated areas. All points in the scatterplot represent 259 
units of the DMN, are coloured by position along the cytoarchitectural axis (also y-axis) and are organised along the 260 
x-axis based on weighted average of type-specific navigation efficiency. Top 75% of functionally-defined inputs are 261 
shown. C) (i) Coloured ridge plots show probability distributions of connectivity between the DMN and each cortical 262 
type. Notably, for functional output the DMN exhibits overlapping, normal distributions, whereas for functional type-263 
wise differences are evident. ii. Focusing on functional output, coloured ridge plots show distributions for all networks, 264 
illustrate more balance between types in the DMN. Right. The imbalance of connectivity to distinct cortical types was 265 
evaluated as the Kullback-Leibler (KL) divergence from a null model with equal connectivity to each type. The 266 
coloured dots show the empirical KL divergence for each network and the grey density plots show the null distribution 267 
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of KL divergence values based on 10,000 spin permutations. Permutation testing indicated that the DMN is unique, 268 
among functional networks in balancing output across cortical types. 269 
 270 
CORRESPONDENCE OF MICROARCHITECTURE AND CONNECTIVITY WITHIN AN INDIVIDUAL 271 
To demonstrate that our findings generalise to single individuals, we acquired high-resolution 272 
quantitative T1 (qT1) relaxometry MRI, alongside diffusion weighted and functional MRI in eight 273 
healthy individuals using an ultrahigh-field 7 Tesla MRI system. Methods were identical to those 274 
described above, except that histology was replaced by qT1. We hypothesised  that qT1, sensitive 275 
to cortical myelin, could recapitulate regional differences in cytoarchitecture, because cortical 276 
areas and intracortical layers defined on cyto- or myelo-architecture align72,73, and our previous 277 
work has shown strong correspondence of principal axes of microstructural differentiation derived 278 
from histology and qT1 MRI52. While the qT1 and histological datasets differ in terms of biological 279 
sensitivity (myelin vs cell bodies) and resolution (500μm vs 100μm), the patterns of 280 
microarchitectural differentiation in the DMN significantly overlapped between the modalities 281 
(ravg=0.32, pavg<0.001), for example highlighting microstructural differences of the prefrontal 282 
cortex from the lateral temporal region (Figure 3A). Notably, the topography of microarchitectural 283 
differentiation was similar in both qT1 and histological datasets, varying from a smooth gradient 284 
in the mesiotemporal lobe to higher waviness in the prefrontal cortex (Figure 3B). Indeed, 285 
subregion smoothness (ravg=0.51, pavg=0.09) and waviness (ravg=0.90, pavg<0.001) were strongly 286 
correlated between the datasets. 287 

 288 
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Figure 3: A) (i) The principal eigenvector of microstructural variation in the DMN (E1) was extracted from myelin-289 
sensitive quantitative MRI (qT1)74, in line with the procedure employed on the histological dataset (“BigBrain”), 290 
revealing strikingly similar patterns. B) The roughness of MRI-derived microstructural differentiation varied between 291 
subregions in line with histological evidence. The parahippocampus exhibited a graded transition from high-to-low 292 
E1, reflected by high smoothness and low waviness, whereas the prefrontal cortex exhibited an undulating landscape 293 
with high waviness. C) Using individual-specific measures, we consistently found that cortical points with higher E1 294 
were associated with (left) lower average navigation efficiency, (centre) especially lower navigation efficiency with 295 
perceptually-coupled cortical types, and (right) lower functional input. Thus, in line with histological evidence, the 296 
MRI-based approach highlights that a subsection of the DMN is relatively insulated from external input. Line plots 297 
are presented with 95% confidence interval shading.  298 
 299 
In line with the primary analyses, we also observed a higher communication efficiency between 300 
DMN subregions and the rest of the cortex towards one end of the microstructural axis (ravg=-0.38, 301 
pavg-spin=0.015), and this effect was especially pronounced with regards to communication to 302 
perceptually-coupled cortical types (koniocortical/eulaminate-III: ravg=-0.40/0.37, pavg-303 
spin=0.044/0.089). Functional input also tended to decrease along the microstructural axes (ravg=-304 
0.26, pavg-spin=0.101). Together, these individual-level analyses reinforce the notion that the 305 
microarchitectural axis of the DMN discriminates a zone of multi-modal convergence from a core 306 
that is relatively insulated from external input (Figure 3C). 307 
 308 
DISCUSSION 309 
Historically, anatomical details of brain systems have helped to constrain accounts of their 310 
function45,75. Our study extended this perspective to the human default mode network (DMN), one 311 
of the most extensively studied yet least well understood systems. Leveraging post mortem 312 
histology and ultrahigh field in vivo MRI, we provide a novel account of how the “hardware” of 313 
the DMN can theoretically allow it to contribute to a broad range of cognitive states16,27,38,38. 314 
Indeed, we observed that the DMN contains diverse microcircuits that are specialised for modality-315 
specific, transmodal, and self-generated processing33,47,76. This versatility is important because it 316 
enables direct exchange of the DMN with both sensory systems interacting with the outside world 317 
and self-generated memory processes67. In addition, we observed that the DMN contains regions 318 
that receive input from multiple other cortical regions and a core that is relatively insulated from 319 
input. The associations between external and internal modes of cognition and the DMN may thus 320 
be explained by shifting the functional balance from input-oriented to more insulated regions. Such 321 
a mechanism would also align with functional imaging studies showing regional differentiation 322 
within the DMN for different tasks38,77, such as reading vs. mind-wandering78. 323 
 324 
Neuroanatomical insights provide a foundation of how the DMN architecture shapes aspects of 325 
cognition. For instance, the topography of cytoarchitecture sheds light on the different forms of 326 
information integration, because more than 90% of cortico-cortical connections are between 327 
neighbouring microcircuits56. We observed microarchitectural gradients in the mesiotemporal 328 
subregion, a pattern previously linked to sequential transformation of signals from low- to higher-329 
order representations29,79 and a gradual shift in functional connectivity from the “multiple demand” 330 
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network to fronto-temporal pole areas58,80. In contrast, the interwoven layout of different 331 
microcircuits within prefrontal subregions, related to interdigitation60,61, may provide a structural 332 
substrate to support domain specialisation62,81,82 and cross-domain integration60. The unique 333 
presence of both graded and interdigitated motifs within the DMN suggests that when these regions 334 
function as a collective, they could theoretically contribute to whole brain function in a manner 335 
that combines two different types of integration. As our replication analysis using ultrahigh-field 336 
MRI systems has shown, these fine-grained insights into microarchitecture, connectivity, and 337 
function persist at an individual-level and in vivo. In other words, they can be seen using 338 
microstructural and functional data in a single subject and not just based on population level 339 
imaging data or singular post mortem resources such as the one studied here. Extending these 340 
methods to in vivo imaging also opens unprecedented possibilities to interrogate how 341 
microarchitecture and its inter-individual variation manifest in cognition and behaviour in future 342 
studies. 343 
 344 
Our investigation of DMN microarchitecture can help to discern the network’s relationship to 345 
cortical hierarchies. Established by foundational research in non-human animals and increasingly 346 
confirmed in the human brain, hierarchies are a recurring motif in cortical organisation42,43. 347 
Hierarchical architectures are related to inter-regional variations in temporal dynamics83,84 and 348 
neural representations, in particular the construction of abstract neural codes in regions of 349 
association cortex30,47. Sensory hierarchies are well-documented in the neuroscientific literature45, 350 
and their properties can be confirmed directly through the stimulation of sensory systems. 351 
However, hierarchies in association networks are more challenging to determine55, in part due to 352 
the lack of a ground truth of their ‘bottom’ and ‘top’. In lieu of such functional evidence, our 353 
microarchitectural findings are invaluable, as they show that the DMN entails two properties of 354 
hierarchies, namely connectivity organisable by distinct levels as well as the existence of an apex 355 
that is relatively insulated from external input. Unlike sensory hierarchies, however, which 356 
increasingly intersect at upper levels, the internal organisation of the DMN is less constrained by 357 
spatial gradients and exhibits more balanced interfacing with multiple levels of sensory systems 358 
as well as the limbic system. One may speculate that this unique architecture helps to unify neural 359 
activity across brain systems or verify predictions of the world against memory in real time27,85. 360 
By expanding the conceptualisation of hierarchies beyond sensory systems, we hope to illuminate 361 
the diverse nature of information processing in the brain, which is critical to understanding the 362 
implementation of human cognition.  363 
 364 
In sum, this work provided a novel account on the DMN’s unique architecture that consolidates 365 
seemingly disparate principles of neuroanatomy, showing how hierarchical and parallel processing 366 
co-exist and interact in the human brain. In this way, our study offers a potential solution to how 367 
the architecture of the human brain may enable the formation of abstract representations and uses 368 
these to inform cognition across a range of domains. Specifically, the functional multiplicity of the 369 
DMN is pillared upon its internal heterogeneity, possession of receivers and more insulated 370 
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subunits as well as its balanced communication with all levels of sensory hierarchies. Together, 371 
this set of unique features outlines an anatomical landscape within the DMN that may explain why 372 
the DMN is involved in states that cross traditional psychological categories and that can have 373 
opposing features. In the future, this architecture may provide a foundation to understand how the 374 
DMN contributes to uniquely human capacities such as intelligence, memory, as well as conscious 375 
experience. 376 
 377 
METHODS 378 
Histological data 379 
An ultra-high resolution 3D reconstruction of a sliced and cell-body-stained post mortem human 380 
brain from a 65-year-old male was obtained from the open-access BigBrain repository on 381 
September 1, 2020 [https://bigbrain.loris.ca/main.php;35]. The post mortem brain was paraffin-382 
embedded, coronally sliced into 7,400 20μm sections, silver-stained for cell bodies86 and digitised. 383 
Manual inspection for artefacts (i.e., rips, tears, shears, and stain crystallisation) was followed by 384 
automatic repair procedures, involving non-linear alignment to a post mortem MRI of the same 385 
individual acquired prior to sectioning, together with intensity normalisation and block 386 
averaging87. The 3D reconstruction was implemented with a successive coarse-to-fine hierarchical 387 
procedure88. We downloaded the 3D volume at 100μm resolution, which was the highest resolution 388 
available for the whole brain. Computations were performed on inverted images, where intensity 389 
reflects greater cellular density and soma size. Geometric meshes approximating the outer and 390 
inner cortical interface (i.e., the GM/CSF boundary and the GM/WM boundary) with 163,842 391 
matched vertices per hemisphere were also obtained89. 392 
 393 
We constructed 50 equivolumetric surfaces between the outer and inner cortical surfaces . The 394 
equivolumetric model compensates for cortical folding by varying the Euclidean distance, ρ, 395 
between pairs of intracortical surfaces throughout the cortex to preserve the fractional volume 396 
between surfaces91. ρ was calculated as follows for each surface 397 

𝜌 = !
"!"##	"$%

	 ∙ (	−𝐴%& +	)𝛼𝐴'()* + (1 − 	𝛼)𝐴%&* 	)	 (1)	398 

where α represents fraction of the total volume of the segment accounted for by the surface, while 399 
Aout and Ain represent the surface area of the outer and inner cortical surfaces, respectively. Vertex-400 
wise staining intensity profiles were generated by sampling cell-staining intensities along linked 401 
vertices from the outer to the inner surface. Smoothing was employed in tangential and axial 402 
directions to ameliorate the effects of artefacts, blood vessels, and individual neuronal 403 
arrangement. The tangential smoothing across depths was enacted for each staining profile 404 
independently, using an iterative piece-wise linear procedure that minimises shrinkage [3 405 
iterations92]. Axial surface-wise smoothing was performed at each depth independently and 406 
involved moving a 2-vertex FWHM Gaussian kernel across the surface mesh using SurfStat93. The 407 
staining intensity profiles are made available in the BigBrainWarp toolbox36. 408 
 409 
 410 
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Comparison of cortical atlases 411 
Functional networks were defined using a widely used atlas2. The atlas reflects clustering of 412 
cortical vertices according to similarity in resting state functional connectivity profiles, acquired 413 
in 1000 healthy young adults. Cortical types were assigned to Von Economo areas34,94, based on a 414 
recent re-analysis of Von Economo micrographs33. Several features were used to identify the type, 415 
including “development of layer IV, prominence (denser cellularity and larger neurons) of deep 416 
(V–VI) or superficial (II–III) layers, definition of sublayers (e.g., IIIa and IIIb), sharpness of 417 
boundaries between layers, and presence of large pyramids in superficial layers” 33. Cortical types 418 
synopsise degree of granularity, from high laminar elaboration in koniocortical areas, six 419 
identifiable layers in eulaminate III-I, poorly differentiated layers in dysgranular and absent layers 420 
in agranular.  421 
 422 
The proportion of DMN vertices assigned to each cortical type was calculated on a common 423 
surface template, fsaverage595. The equivalence of cortical type proportions in the DMN and each 424 
other functional network was evaluated via pair-wise Kolgomorov-Smirnoff tests. Significant 425 
over- or under-representation of each cortical type within the DMN was evaluated with spin 426 
permutation testing96. Spin permutation testing, used throughout following statistical analyses, 427 
involves generating a null distribution by rotating one brain map 10,000 times and recomputing 428 
the outcome of interest. Then, we calculate 𝑝+,%& = 1 −	-	(/0,%1%2345,/10()3)%'&+)

)')34	,/10()3)%'&+
  and/or 𝑝+,%& =429 

1 −	-	(/0,%1%2347,/10()3)%'&+)
)')34	,/10()3)%'&+

97. The null distribution preserves the spatial structure of both brain 430 

maps, which establishes the plausibility of a random alignment of the maps explaining their 431 
statistical correspondence. Generally, we deemed significance p<0.05 for one-tailed tests and 432 
p<0.025 for two-tailed tests. Additionally, we used Bonferroni correction when multiple univariate 433 
comparisons were made using the same response variable. In the case of the over- or under-434 
representation of specific cortical types within the DMN, we randomly rotated the cortical type 435 
atlas, then generated null distributions, representing the number of vertices within the DMN 436 
assigned to each type. 437 
 438 
The robustness of cytoarchitectural heterogeneity to the DMN definition was assessed with three 439 
alternative atlases. Given the origins of the DMN as a “task-negative” set of regions4,5, the first 440 
alternative atlas involved identifying regions that are consistently deactivated during externally-441 
oriented tasks. In line with a recent review27, we used pre-defined contrast maps from 787 healthy 442 
young adults of the Human Connectome Project (“HCP_S900_GroupAvg_v1 Dataset”). Each map 443 
represents the contrast between BOLD response during a task and at baseline. Fifteen tasks were 444 
selected to correspond to early studies of the DMN5 [Working Memory (WM)–2 Back, WM-0 445 
Back, WM-Body, WM-Face, WM-Place, WM-Tool, Gambling-Punish, Gambling-Reward, 446 
Motor-Average, Social-Random, Social-Theory of Mind, Relational-Match, Relational-Relation, 447 
Emotion-Faces, Emotion-Shapes]. For each contrast, task-related deactivation was classed as z-448 
score≤-5, which is consistent with contemporary statistical thresholds used in neuroimaging to 449 
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reduce false positives98. The second alternative atlas represented an independent component 450 
analysis of 7,342 task fMRI contrasts. The DMN was specified as the fourth component. The 451 
volumetric z-statistic map for that component was projected to the cortical surface for analysis. 452 
Thirdly, A probabilistic atlas of the DMN was calculated as the percentage of contrasts with task-453 
related deactivation. The second alternative atlas represented the probability of the DMN at each 454 
vertex, calculated across 1029 individual-specific functional network delineations99. For each 455 
alternative atlas, we calculated the proportions of cortical types across a range of probabilistic 456 
thresholds (5-95%, at 5% increments) to determine whether the discovered cytoarchitectural 457 
heterogeneity of the DMN was robust to atlas definition.  458 
 459 
Data-driven cytoarchitectural axis within the DMN 460 
The functional network atlas was transformed to the BigBrain surface using a specially optimised 461 
multimodal surface matching algorithm36,50. The pattern of cytoarchitectural heterogeneity in the 462 
DMN was revealed using non-linear manifold learning. The approach involved calculating pair-463 
wise product-moment correlations of BigBrain staining intensity profiles, controlling for the 464 
average staining intensity profile within the DMN. Negative values were zeroed to emphasise the 465 
non-shared similarities. Diffusion map embedding of the correlation matrix was employed to gain 466 
a low dimensional representation of cytoarchitectural patterns51,96. Diffusion map embedding 467 
belongs to the family of graph Laplacians, which involve constructing a reversible Markov chain 468 
on an affinity matrix. Compared to other nonlinear manifold learning techniques, the algorithm is 469 
relatively robust to noise and computationally inexpensive100,101. A single parameter α controls the 470 
influence of the sampling density on the manifold (α = 0, maximal influence; α = 1, no influence). 471 
As in previous studies29,52,96, we set α = 0.5, a choice retaining the global relations between data 472 
points in the embedded space. Notably, different alpha parameters had little to no impact on the 473 
first eigenvector (spatial correlation of eigenvectors, r>0.99).  474 
 475 
The DMN comprised 71,576 vertices on the BigBrain surface, each associated with approximately 476 
1mm2 of surface area. Pair-wise correlation and manifold learning on 71,576 data points was 477 
computationally infeasible, however. Thus, we performed a 6-fold mesh decimation on the 478 
BigBrain surface to select a subset of vertices that preserve the overall shape of the mesh. Then, 479 
we assigned each non-selected vertex to the nearest maintained vertex, determined by shortest path 480 
on the mesh (ties were solved by shortest Euclidean distance). Staining intensity profiles were 481 
averaged within each surface patch of the DMN, then the dimensionality reduction procedure was 482 
employed. Subsequent analyses focused on the first eigenvector (E1), which explained the most 483 
variance in the affinity matrix (approximately 28% of variance). Additionally, we repeated this 484 
analysis with a highly conservative delineation of the DMN (generated by using the intersection 485 
of the three abovementioned alternative atlases), thereby demonstrating that slight variations in 486 
atlas definition do not impact the organisation of cytoarchitecture that we discovered in the 487 
network. 488 
 489 
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Local variations in E1 were examined within spatially contiguous regions of the DMN. 490 
Quantitative description of E1 topography within each subregion was achieved with two 491 
complementary approaches. First, to characterise the smoothness and complexity of the landscape, 492 
we fit polynomial models between E1 and two spatial axes102. The spatial axes were derived from 493 
an Isomax flattening of each subregion, resulting in a 2D description of each subregion. We 494 
compared adjusted R2 between subregions within each polynomial order (quadratic, cubic and 495 
quartic) using a one-way ANOVA, whereby each subregion was represented by a left and right 496 
hemisphere observation. Second, to characterise the bumpiness of subregion landscapes, we 497 
adopted an approach from material engineering for characterising the roughness of a surface49,57. 498 
Specifically, we calculated “waviness”, the ratio of the number of vertices in the subregion by 499 
absolute average deviation of E1 from the mean. As above, we compared waviness between 500 
subregions using a one-way ANOVA.  501 
 502 
MRI acquisition and processing – Primary analyses 503 
Primary MRI analyses were conducted on 40 healthy adults from the microstructure informed 504 
connectomics (MICs) cohort (14 females, mean±SD age=30.4±6.7, 2 left-handed)103. Scans were 505 
completed at the Brain Imaging Centre of the Montreal Neurological Institute and Hospital on a 506 
3T Siemens Magnetom Prisma-Fit equipped with a 64-channel head coil. Two T1w scans with 507 
identical parameters were acquired with a 3D-MPRAGE sequence (0.8mm isotropic voxels, 508 
TR=2300ms, TE=3.14ms, TI=900ms, flip angle=9°, iPAT=2, matrix=320×320, 224 sagittal slices, 509 
partial Fourier=6/8). T1w scans were visually inspected to ensure minimal head motion before 510 
they were submitted to further processing. A spin-echo echo-planar imaging sequence with multi-511 
band acceleration was used to obtain DWI data, consisting of three shells with b-values 300, 700, 512 
and 2000s/mm2 and 10, 40, and 90 diffusion weighting directions per shell, respectively (1.6mm 513 
isotropic voxels, TR=3500ms, TE=64.40ms, flip angle=90°, refocusing flip angle=180°, 514 
FOV=224×224 mm2, slice thickness=1.6mm, multiband factor=3, echo spacing=0.76ms, number 515 
of b0 images=3). One 7 min rs-fMRI scan was acquired using multiband accelerated 2D-BOLD 516 
echo-planar imaging (3mm isotropic voxels, TR=600ms, TE=30ms, flip angle=52°, 517 
FOV=240×240mm2, slice thickness=3mm, multiband factor=6, echo spacing=0.54ms). 518 
Participants were instructed to keep their eyes open, look at a fixation cross, and not fall asleep. 519 
Two spin-echo images with reverse phase encoding were also acquired for distortion correction of 520 
the rs-fMRI scans (phase encoding=AP/PA, 3mm isotropic voxels, FOV=240×240mm2, slice 521 
thickness=3mm, TR=4029 ms, TE=48ms, flip angle=90°, echo spacing=0.54 ms, bandwidth= 522 
2084 Hz/Px). 523 
 524 
An open access tool was used for multimodal data processing104. Each T1w scan was deobliqued 525 
and reoriented. Both scans were then linearly co-registered and averaged, automatically corrected 526 
for intensity nonuniformity105, and intensity normalized. Resulting images were skull-stripped, and 527 
non-isocortical structures were segmented using FSL FIRST106. Different tissue types (cortical and 528 
subcortical grey matter, white matter, cerebrospinal fluid) were segmented to perform 529 
anatomically constrained tractography107. Cortical surface segmentations were generated from 530 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2023. ; https://doi.org/10.1101/2021.11.22.469533doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469533
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16 

native T1w scans using FreeSurfer 6.095,108,109. DWI data were pre-processed using MRtrix110,111. 531 
DWI data underwent b0 intensity normalization, and were corrected for susceptibility distortion, 532 
head motion, and eddy currents. Required anatomical features for tractography processing (e.g., 533 
tissue type segmentations, parcellations) were non-linearly co-registered to native DWI space 534 
using the deformable SyN approach implemented in Advanced Neuroimaging Tools (ANTs)112. 535 
Diffusion processing and tractography were performed in native DWI space. We performed 536 
anatomically-constrained tractography using tissue types segmented from each participant’s pre-537 
processed T1w images registered to native DWI space107. We estimated multi-shell and multi-538 
tissue response functions113 and performed constrained spherical-deconvolution and intensity 539 
normalisation114. We initiated the tractogram with 40 million streamlines (maximum tract 540 
length=250; fractional anisotropy cutoff=0.06). We applied spherical deconvolution informed 541 
filtering of tractograms (SIFT2) to reconstruct whole brain streamlines weighted by cross-sectional 542 
multipliers115. The reconstructed cross-section streamlines were averaged within 400 spatially 543 
contiguous, functionally defined parcels71, also warped to DWI space. The rs-fMRI images were 544 
pre-processed using AFNI116 and FSL106. The first five volumes were discarded to ensure magnetic 545 
field saturation. Images were reoriented, motion corrected and distortion corrected. Nuisance 546 
variable signal was removed using an ICA-FIX classifier117 and by performing spike regression. 547 
Native timeseries were mapped to individual surface models using a boundary-based 548 
registration118 and smoothed using a Gaussian kernel (FWHM=10mm, smoothing performed on 549 
native midsurface mesh) using workbench119. For isocortical regions, timeseries were sampled on 550 
native surfaces and averaged within 400 spatially contiguous, functionally defined parcels71. For 551 
non-isocortical regions, timeseries were averaged within native parcellations of the nucleus 552 
accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen, and thalamus106. 553 
 554 
MRI acquisition and processing – Secondary analyses 555 
Secondary MRI analyses were conducted in 100 unrelated healthy adults (66 females, mean±SD 556 
age=28.8±3.8 years) from the minimally preprocessed S900 release of the Human Connectome 557 
Project (HCP) . MRI data were acquired on the HCP’s custom 3T Siemens Skyra equipped with a 558 
32-channel head coil. Two T1w images with identical parameters were acquired using a 3D-559 
MPRAGE sequence (0.7mm isotropic voxels, TE=2.14ms, TI=1000ms, flip angle=8°, iPAT=2, 560 
matrix=320×320, 256 sagittal slices; TR=2400ms,). Two T2w images were acquired using a 3D 561 
T2-SPACE sequence with identical geometry (TR=3200ms, TE=565ms, variable flip angle, 562 
iPAT=2). A spin-echo EPI sequence was used to obtain diffusion weighted images, consisting of 563 
three shells with b-values 1000, 2000, and 3000s/mm2 and up to 90 diffusion weighting directions 564 
per shell (TR=5520ms, TE=89.5ms, flip angle=78°, refocusing flip angle=160°, FOV=210×180, 565 
matrix=178×144, slice thickness=1.25mm, mb factor=3, echo spacing=0.78ms). Four rs-fMRI 566 
scans were acquired using multi-band accelerated 2D-BOLD echo-planar imaging (2mm isotropic 567 
voxels, TR=720ms, TE=33ms, flip angle=52°, matrix=104×90, 72 sagittal slices, multiband 568 
factor=8, 1200 volumes/scan, 3456 seconds). Only the first session was investigated in the present 569 
study. Participants were instructed to keep their eyes open, look at a fixation cross, and not fall 570 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2023. ; https://doi.org/10.1101/2021.11.22.469533doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469533
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 17 

asleep. Nevertheless, some subjects were drowsy and may have fallen asleep121, and the group-571 
averages investigated in the present study do not address these inter-individual differences.  572 
 573 
MRI data underwent HCP’s minimal preprocessing119. Cortical surface models were constructed 574 
using Freesurfer 5.3-HCP95,108,109, with minor modifications to incorporate both T1w and T2w122. 575 
Diffusion MRI data underwent correction for geometric distortions and head motion119. 576 
Tractographic analysis was based on MRtrix3110,111. Response functions for each tissue type were 577 
estimated using the dhollander algorithm123. Fibre orientation distributions (i.e., the apparent 578 
density of fibres as a function of orientation) were modelled from the diffusion-weighted MRI 579 
with multi-shell multi-tissue spherical deconvolution114, then values were normalised in the log 580 
domain to optimise the sum of all tissue compartments towards 1, under constraints of spatial 581 
smoothness. Anatomically constrained tractography was performed systematically by generating 582 
streamlines using second order integration over fibre orientation distributions with dynamic 583 
seeding115,124. Streamline generation was aborted when 40 million streamlines had been accepted. 584 
We applied spherical deconvolution informed filtering of tractograms (SIFT2) to reconstruct 585 
whole brain streamlines weighted by cross-sectional multipliers. The reconstructed cross-section 586 
streamlines were averaged within 400 spatially contiguous, functionally defined parcels71, also 587 
warped to DWI space. The rs-fMRI timeseries were corrected for gradient nonlinearity, head 588 
motion, bias field and scanner drifts, then structured noise components were removed using ICA-589 
FIX, further reducing the influence of motion, non-neuronal physiology, scanner artefacts and 590 
other nuisance sources117. The rs-fMRI data were resampled from volume to MSMAll functionally 591 
aligned surface space125,126 and averaged within 400 spatially contiguous, functionally defined 592 
parcels71. 593 
 594 
Modelling structural connectivity with navigation efficiency 595 
Extrinsic connectivity of DMN subunits was mapped using structural connectomes, derived from 596 
diffusion-based tractography. Edge weights of the structural connectomes, representing number of 597 
streamlines, were remapped using a log-based transformation: [ −log10(W/(max(W) + 598 
min(W>0))]. This log-based transformation attenuates extreme weights and ensures the maximum 599 
edge weight is mapped to a positive value. Euclidean distances were calculated between the 600 
centroid coordinate of each parcel. Communication in the structural connectome was modelled 601 
using navigation69, also known as greedy routing127. Navigation combines the structural 602 
connectome with physical distances, providing a routing strategy that recapitulates invasive, tract-603 
tracing measures of communication68. In brief, navigation involves step-wise progression from 604 
node i to node j, where each step is determined by spatial proximity to j. Navigation is the sum 605 
distances of the selected path and navigation efficiency (Enav) its inverse; providing an intuitive 606 
metric of communication efficiency between two regions. Navigation efficiency was calculated 607 
within each hemisphere separately, then concatenated for analyses.  608 
 609 
 610 
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Modelling functional input and output with effective connectivity  611 
The position of the DMN in large-scale cortical dynamics was explored with regression dynamic 612 
causal modelling [rDCM;70], a scalable generative model of effective connectivity that allows 613 
inferences on the directionality of signal flow, openly available as part of the TAPAS software 614 
package128. The rDCM was implemented using individual rs-fMRI timeseries. Additionally, an 615 
extended version of the rDCM was generated with non-isocortical regions, specifically the nucleus 616 
accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen, and thalamus.  617 
 618 
Influence of cytoarchitecture on connectivity 619 
Each parcel was labelled according to functional network, modal cortical type and, if part of the 620 
DMN, average E1 value. Parcel-average E1 values were calculated by transforming the 621 
parcellation scheme to the BigBrain surface and averaging within parcel36,50. The following 622 
analyses were repeated for Enav, effective connectivity derived input and effective connectivity 623 
derived output.  624 
 625 
First, we selected DMN rows and non-DMN columns of the connectivity matrix. Then, we 626 
performed product-moment correlations between E1 and average connectivity to assess the 627 
association of the cytoarchitectural axis with connectivity. Next, we stratified the non-DMN 628 
columns by cortical type, averaged within type and calculated product-moment correlation 629 
between type-average connectivity and E1, providing more specific insight into the relation of the 630 
cytoarchitectural axis with connectivity of certain types of microcircuits. For each modality, the 631 
correlations were compared to 10,000 spin permutations. P-values were Bonferroni corrected for 632 
seven comparisons, resulting in significance threshold of p<0.004 (two-sided test with alpha value 633 
of 0.05). 634 
 635 
Finally, we estimated the imbalance in connectivity to each cortical type by calculating average 636 
connectivity to each type, then calculating the Kullback–Leibler (KL) divergence from a null 637 
model with equal average connectivity to each type. The imbalance analysis was repeated for each 638 
functional network. In each case, only extrinsic connections were included in the calculations. For 639 
each modality and each network, we tested whether the KL divergence value was lower than 640 
10,000 spin permutations. P-values were Bonferroni corrected for seven comparisons, resulting in 641 
significance threshold of p<0.007 (one-sided test with alpha value of 0.05).  642 
 643 
Individual-level replication with high-field MRI 644 
In the replication, we sought to address two key limitations of the primary analyses. First, due to 645 
the unique nature of the BigBrain dataset, cytoarchitectural mapping was based on a single 646 
individual, limiting our knowledge of the generalisability of the discovered patterns. Secondly, 647 
structural and functional connectivity measurements represented population-averages, thus we 648 
were not able to conclude whether the discovered correspondences between cytoarchitecture and 649 
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connectivity are evident within an individual. To overcome these limitations, we sought to 650 
replicate key findings at an individual-level using high-resolution, ultrahigh-field MRI. 651 
 652 
Individual-level replication analyses were conducted on 8 healthy adults (5 females, mean±SD 653 
age=28±6.3, 1 left-handed). Scans were completed at the Brain Imaging Centre of the Montreal 654 
Neurological Institute and Hospital on a 7T Siemens Magnetom Terra System equipped with a 655 
32/8 channel receive/transmit head coil. Two qT1 scans were acquired across two scanning 656 
sessions with identical 3D-MP2RAGE sequences (0.5mm isotropic voxels, TR=5170ms, 657 
TE=2.44ms, T11/2=1000/3200ms, flip angles=4°, matrix=488×488, slice thickness=0.5mm, partial 658 
Fourier=0.75). qT1 maps from the second session were linearly registered to the qT1 maps from 659 
the first session, then averaged, to enhanced the signal to noise ratio. A spin-echo echo-planar 660 
imaging sequence with multi-band acceleration was used to obtain DWI data, consisting of three 661 
shells with b-values 300, 700, and 2000s/mm2 and 10, 40, and 90 diffusion weighting directions 662 
per shell, respectively (1.1mm isotropic voxels, TR=7383ms, TE=70.6ms, flip angle=90°, 663 
matrix=192×192, slice thickness=1.1mm, multiband factor=2, echo spacing=0.26ms, number of 664 
b0 images=3, partial Fourier=0.75). One 6 min rs-fMRI scan was acquired using multi-echo, 665 
multiband accelerated 2D-BOLD echo-planar imaging (1.9mm isotropic voxels, TR=1690ms, 666 
TE1/2/3=10.8/27.3/43.8ms, flip angle=67°, matrix=118x118, multiband factor=3, echo 667 
spacing=0.54ms, partial Fourier=0.75). Participants were instructed to keep their eyes open, look 668 
at a fixation cross, and not fall asleep. Two multiband accelerated spin-echo images with reverse 669 
phase encoding were also acquired for distortion correction of the rs-fMRI scans. 670 
 671 
The 7T dataset was processed in the same manner as the primary MRI dataset, with two exceptions. 672 
qT1 maps were used, rather than T1w images, to construct cortical surfaces, and nuisance variable 673 
signal was removed from rs-fMRI using an approach that is specially tailored to multi-echo fMRI 674 
(“tedana”)129, instead of ICA-FIX, which is optimsed for single-echo data. Subsequently, we 675 
extracted intracortical profiles from qT1 volumes and determined the principal eigenvector of 676 
microstructural differentiation (E1) for each individual using the same procedure as for the 677 
histological data. 678 
 679 
The replication focused on three key results from the primary analysis: (i) DMN subregions differ 680 
in terms of the topography of microarchitectural differentiation, which is evident in the roughness 681 
of E1. In particular, subregions vary from a gradient in the mesiotemporal lobe to a fluctuating 682 
landscape in the prefrontal cortex. (ii) Navigation efficiency decreases along E1, and this effect is 683 
especially pronounced for perceptually-coupled cortical types (koniocortical and eulaminate III). 684 
(iii) Functional input decreases along E1. For each result, we compared statistical outcomes of the 685 
primary analysis, derived from BigBrain and population-average connectivity, with individual-686 
level statistical outcomes, derived from the 7T dataset, using product-moment correlations. We 687 
report rho and p-values averaged across individuals.   688 
  689 
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DATA AVAILABILITY  690 
All data that support the findings of this study are openly available. BigBrain is available with 691 
LORIS (https://bigbrain.loris.ca/main.php) with preprocessed BigBrain data available in through 692 
the BigBrainWarp GitHub repository (https://github.com/caseypaquola/BigBrainWarp). The 693 
MICS dataset is available with CONP Portal (https://portal.conp.ca/dataset?id=projects/mica-694 
mics) and the HCP dataset is available with Connectome DB (https://db.humanconnectome.org/).  695 
 696 
CODE AVAILABILITY 697 
Custom code for this study, as well as data necessary for reproduction, are openly available on 698 
GitHub (https://github.com/caseypaquola/DMN). 699 
 700 
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SUPPLEMENTARY INFORMATION 992 
 993 

 994 
 995 
Supplementary Figure 1: Meta-analytic functional decoding of the cortical type atlas supports the association, 996 
described in literature reviews47, between the gradient of cortical types and a shift in function from primary sensory 997 
to unimodal to heteromodal to memory-related processes. Using meta-analytic maps of thousands of functional 998 
MRI130,131, we extracted terms that were consistently associated with increased activity within the specific cortical 999 
type (threshold z-statistic>2). The size of each word reflects the relative strength of its association with the cortical 1000 
type. Only psychological constructs were retained in the term lists (thus excluding anatomical terms, e.g. “V1”, and 1001 
experiment-related terms, e.g. “healthy controls”). Decoding was performed within spatially contiguous subregions 1002 
for Kon, Eu-III and Eu-II, because no terms exceeded the threshold when the subregions were combined, due to the 1003 
distinctive unimodal functions of each subregion.  1004 
 1005 
 1006 
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 1007 
 1008 
Supplementary Figure 2: Cytoarchitectural heterogeneity in the DMN replicated with alternative atlases. A) The diverse 1009 
cytoarchitectural composition of the DMN was also evident using alternative atlas definitions. Stacked boxplots illustrate the 1010 
number of vertices assigned to each cortical type within the atlas with increasingly conservative thresholds for inclusion in the 1011 
DMN represented along the x-axis. i) DMN based on consistency of deactivation during perceptually-driven tasks. Vertex-wise 1012 
change in the BOLD response were calculated across 787 subjects in Human Connectome Project during fifteen perceptually-1013 
driven tasks. Surface projections show the consistency of deactivations (z≤-5) across the tasks27. ii) Association (z-statistic) of each 1014 
vertex to the DMN derived from an independent component analysis of 7,342 task contrasts132. iii) Probability of the DMN at each 1015 
vertex, calculated across 1029 individual-specific functional network delineations99. Proportion of the DMN assigned to each 1016 
cortical type, where the DMN is defined variably based on different consistency thresholds. B) Using an intersection of the three 1017 
approaches in part A, we created a highly conservative delineation of the DMN. Specifically, vertices were included in the 1018 
conservative atlas if (i) deactivations were observed in more than a quarter of perceptually-driven tasks, (ii) contribution to the 1019 
task-ICA exceeded a z-statistic of 1 and (iii) assignment to the DMN was observed in more than a quarter of individuals. 1020 
Subsequently, we replicated the procedure in the primary analysis to extract the principal cytoarchitectural axis. Notably, similar 1021 
patterns of cytoarchitectural differentiation are evident in this conservative delineation of the DMN. The conservative 1022 
cytoarchitectural axis also captures a variation from peaked to flat profiles. 1023 
 1024 
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 1025 
Supplementary Figure 3: A) First five eigenvectors projected on the inflated BigBrain surface. For line plots on the right, staining 1026 
intensity profiles were averaged within 100 bins of the respective eigenvector and coloured by eigenvector position. B) i. Raincloud 1027 
plot shows the distribution of E1 across cortical types. ii. Cortical type assignment (1:6) was rescaled to the range of E1 then 1028 
subtracted from E1, producing a deviation map that highlights where the type-based and data-driven depictions of DMN 1029 
cytoarchitecture differ. Negative values indicate lower E1 than expected by a linear relationship with cortical type, whereas positive 1030 
values indicate higher than predicted E1. Thus, the E1 pattern is distinct to the gradient of laminar elaboration that is captured by 1031 
the cortical types. Both are anchored by koniocortex on one side and agranular cortex on the other, but they differ in the ordering 1032 
of eulaminate and dysgranular areas. 1033 
  1034 
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 1035 
 1036 
Supplementary Figure 4: Comparison of functional networks based on extrinsic connectivity to different cortical types. 1037 
Coloured ridge plots on the left of each panel show probability distributions of connectivity between the functional networks and 1038 
extrinsic cortical types. We evaluated the imbalance of connectivity across cortical types using the Kullback-Leibler (KL) 1039 
divergence from a null model with equal connectivity to each type. On the right of each panel, coloured dots show the empirical 1040 
KL divergence for each network and the grey density plots show the null distribution of KL divergence values based on 10,000 1041 
spin permutations. A) The DMN exhibits the most balanced navigation efficiency across cortical types, compared to other 1042 
functional networks. The balance of the DMN did not reach a level of significance relative to spin permutations, but spin 1043 
permutations account for the size and distribution of the network, thus we may infer it is the large size and wide distribution of the 1044 
network that enable the DMN to strike a balance in communication across cortical types. B) Input to the DMN is not balanced with 1045 
regards to cortical types. Stronger input comes from heteromodal, eulaminate I cortex, which aligns with the over-representation 1046 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2023. ; https://doi.org/10.1101/2021.11.22.469533doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469533
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 30 

of this cortical type within the DMN. C) The DMN is unique amongst functional networks in exhibiting balanced output to all 1047 
cortical types, which is further supported by the balance of the DMN reaching significance in spin permutation testing.  1048 
  1049 
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Supplementary Table 1: Cortical types by functional network 1050 
 1051 

 Kon Eu-III Eu-II Eu-I Dys Ag Total vertices KS statistic1 
Visual 0.29 0.41 0.17 0.10 0 0.03 2750 0.36, p<0.001 

Somatomotor 0.10 0.54 0.31 0.04 <0.01 0.01 3751 0.20, p<0.001 

DAN <0.01 0.40 0.53 0.06 0 0 2188 0.29, p<0.001 

VAN 0.02 0.18 0.50 0.13 0.08 0.09 2285 0.13, p<0.001 

Limbic 0 0.24 0.28 0.11 0.26 0.10 1426 0.27, p<0.001 

Frontoparietal 0 0.18 0.56 0.23 <0.01 0.04 2314 0.11, p<0.001 

Default mode <0.01 0.32 0.31 0.28 0.02 0.07 3765  

Total vertices 1218 6400 6805 2572 648 836   

 1052 
1Kolmogorov-Smirnov tests for independence of samples were calculated between each network and the DMN. 1053 
 1054 
Note: entries in the centre of the table are proportions, which are provided relative to the functional network (ie: 29% of the visual 1055 
network is koniocortical), thereby the rows approximately sum to 1 (given rounding errors).  1056 
 1057 
Kon=koniocortical. Eu=eulaminate. Dys=dysgranular. Ag=agranular. DAN=dorsal attention network. VAN=ventral attention 1058 
network. 1059 
  1060 
  1061 
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Supplementary Table 2: Correlation of DMN connectivity with cytoarchitectural axis 1062 
 1063 

Measure of 
connectivity 

Dataset All non-
DMN 

Koniocortical Eulaminate-
III 

Eulaminate-
II 

Eulaminate-
I 

Dysgranular Agranular 

ENAV 

(Structural 
model) 

MICS r=-0.60, 
p<0.001 

r=-0.64, 
p<0.001 

r=-0.60, 
p<0.001 

r=-0.37, 
p=0.006 

r=-0.29, 
p=0.066 

r=0.08, 
p=0.672 

r=0.17, 
p=0.847 

HCP r=-0.37, 
p<0.001 

r=-0.45, 
p<0.001  

r=-0.64, 
p<0.001 

r=-0.23, 
p=0.145 

r=-0.16, 
p=0.198 

r=0.06, 
p=0.380 

r=0.30, 
p=0.080 

Input 
(Functional 
model) 

MICS r=-0.41, 
p<0.001 

r=-0.36, 
p<0.001 

r=-0.45, 
p<0.001 

r=-0.21, 
p<0.001 

r=-0.44, 
p<0.001 

r=-0.23, 
p=0.014 

r=-0.37, 
p<0.001 

HCP r=-0.40, 
p<0.001 

r=-0.23, 
p=0.020 

r=-0.49, 
p<0.001 

r=-0.31, 
p<0.001 

r=-0.18, 
p=0.063 

r=-0.20, 
p=0.091 

r=-0.20, 
p=0.019 

Output 
(Functional 
model) 

MICS r=-0.18, 
p=0.069 

r=-0.09, 
p=0.302 

r=-0.22, 
p=0.026 

r=0.13, 
p=0.025 

r=0.07, 
p=0.424 

r=-0.15, 
p=0.284 

r=-0.04, 
p=0.411 

HCP r=-0.31, 
p=0.004 

r=-0.33, 
p=0.003 

r=-0.41, 
p<0.001 

r=-0.19, 
p=0.016 

r=-0.26, 
p=0.032 

r=-0.14, 
p=0.396 

r=-0.29, 
p=0.012 

Input 
(Extended 
functional 
model) 

MICS r=-0.45, 
p<0.001 

r=-0.42, 
p<0.001 

r=-0.54, 
p<0.001 

r=-0.22, 
p<0.001 

r=-0.41, 
p<0.001 

r=-0.23, 
p=0.086 

r=-0.23, 
p=0.061 

HCP r=-0.39, 
p<0.001 

r=-0.28, 
p=0.004 

r=-0.47, 
p<0.001 

r=-0.29, 
p=0.011 

r=-0.20, 
p=0.007 

r=-0.12, 
p=0.310 

r=-0.13, 
p=0.180 

Output 
(Extended 
functional 
model) 

MICS r=-0.12, 
p=0.200 

r=-0.18, 
p=0.131 

r=-0.02, 
p=0.035 

r=0.02, 
p=0.220 

r=-0.23, 
p=0.725 

r=0.04, 
p=0.058 

r=0.15, 
p=0.857 

HCP r=-0.36, 
p<0.001 

r=-0.32, 
p=0.001 

r=-0.43, 
p<0.001 

r=-0.23, 
p=0.033 

r=-0.21, 
p=0.004 

r=-0.12, 
p=0.240 

r=-0.19, 
p=0.061 

 1064 
Note: p-values reflect a two-sided comparison with 10,000 permutations. Significance (in bold) was deemed where 1065 
p<0.004, which reflects a Bonferroni correction for seven two-side tests (each row of the table), with an alpha level 1066 
of 0.05.  1067 
  1068 
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Supplementary Table 3: Imbalance of connectivity across cortical types 1069 
 1070 

Measure of 
connectivity 

Dataset Visual Somato-
motor 

Dorsal 
attention 

Ventral 
attention 

Limbic Fronto-
parietal 

Default 
mode 

ENAV 

(Structural 
model) 

MICS KL=0.069, 
p=0.827 

KL=0.011, 
p=0.117 

KL=0.026, 
p=0.879 

KL=0.006, 
p=0.132 

KL=0.063, 
p>0.999 

KL=0.007, 
p=0.037 

KL=0.001, 
p=0.176 

HCP KL=0.091, 
p=0.389 

KL=0.032, 
p=0.144 

KL=0.082, 
p=0.949 

KL=0.027, 
p=0.352 

KL=0.086, 
p>0.999 

KL=0.028, 
p=0.036 

KL=0.007, 
p=0.201 

Input 
(Functional 
model) 

MICS KL=0.003, 
p=0.033 

KL=0.024, 
p=0.660 

KL=0.021, 
p=0.828 

KL=0.032, 
p>0.999 

KL=0.048, 
p>0.999 

KL=0.025, 
p=0.477 

KL=0.048, 
p=0.910 

HCP KL=0.033, 
p=0.411 

KL=0.032, 
p=0.809 

KL=0.017, 
p=0.548 

KL=0.092, 
p>0.999 

KL=0.019, 
p=0.677 

KL=0.039, 
p=0.822 

KL=0.022, 
p=0.827 

Output 
(Functional 
model) 

MICS KL=0.012, 
p=0.224 

KL=0.062, 
p=0.987 

KL=0.050, 
p>0.999 

KL=0.106, 
p>0.999 

KL=0.014, 
p=0.108 

KL=0.040, 
p=0.761 

KL=0.003, 
p=0.001 

HCP KL=0.043, 
p=0.326 

KL=0.131, 
p>0.999 

KL=0.056, 
p=0.861 

KL=0.096, 
p>0.999 

KL=0.018, 
p=0.128 

KL=0.031, 
p=0.423 

KL=0.004, 
p<0.001 

Input 
(Extended 
functional 
model) 

MICS KL=0.013, 
p=0.221 

KL=0.017, 
p=0.695 

KL=0.004, 
p=0.999 

KL=0.064, 
p>0.999 

KL=0.040, 
p=0.924 

KL=0.029, 
p>0.999 

KL=0.013, 
p=0.841 

HCP KL=0.111, 
p=0.869 

KL=0.092, 
p=0.695 

KL=0.116, 
p=0.978 

KL=0.194, 
p>0.999 

KL=0.036, 
p=0.052 

KL=0.091, 
p=0.834 

KL=0.045, 
p=0.001 

Output 
(Extended 
functional 
model) 

MICS KL=0.040, 
p=0.513 

KL=0.051, 
p=0.887 

KL=0.085, 
p>0.999 

KL=0.108, 
p>0.999 

KL=0.022, 
p=0.209 

KL=0.061, 
p>0.999 

KL=0.008, 
p<0.001 

HCP KL=0.056, 
p=0.337 

KL=0.158, 
p>0.999 

KL=0.117, 
p=0.978 

KL=0.150, 
p>0.999 

KL=0.029, 
p=0.078 

KL=0.073, 
p=0.612 

KL=0.032, 
p<0.001 

 1071 
Note: p-values reflect a one-sided comparison with 10,000 permutations. Significance (in bold) was deemed where 1072 
p<0.007, which reflects a Bonferroni correction for seven one-side tests (tests within a row of the table), with an 1073 
alpha level of 0.05. 1074 
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