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We theoretically and computationally investigate bulk photovoltaic effects, with a specific focus on shift-
current and injection-current. Initially, we perform a numerical analysis of the direct current (dc) induced by a
laser pulse with a one-dimensional model, utilizing mean-field theories such as time-dependent Hartree–Fock
and time-dependent Hartree methods. Our numerical results, obtained with mean-field theories, reveal that the dc
component of the current, as a second-order nonlinear effect, exists even after irradiation with linearly polarized
light as a second-order nonlinear effect, indicating the generation of injection-current. Conversely, when we
employ the independent-particle approximation, no injection-current is generated by linearly polarized light.
To develop the microscopic understanding of injection-current within the mean-field approximation, we further
analyze the dc component of the current with the perturbation theory, employing the mean-field approximations,
the independent-particle approximation, and the exact solution of the many-body Schrödinger equation. The
perturbation analysis clarifies that the injection-current induced by linearly polarized light under the mean-field
approximations is an artifact caused by population imbalance, created through quantum interference from
unphysical self-excitation pathways. Therefore, investigation of many-body effects on the bulk photovoltaic
effects have to be carefully conducted in mean-field schemes due to potential contamination by unphysical dc
current. Additionally, we perform the first-principles electron dynamics calculation for BaTiO3 based on the
time-dependent density functional theory, and we confirm that the above findings from the one-dimensional
model calculation and the perturbation analysis apply to realistic systems.
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I. INTRODUCTION

The bulk photovoltaic effect, the conversion of light into an
electric current, underpins technological applications within
modern society. Among the various mechanisms associated
with the photovoltaic effect, the anomalous bulk photovoltaic
effect in homogeneous materials has been intensively studied
from both a fundamental and technological points of view
[1–3]. This effect, formerly referred to as the anomalous
photovoltaic effect in inversion symmetry broken materials
[4–9] and nowadays identified as the shift-current [10], is a
second-order nonlinear optical effect that generates a direct
current (dc) in the presence of light.

Historically, theoretical examinations of the shift-current
encountered a divergence problem in the nonlinear suscep-
tibility at the low-frequency limit. This issue was addressed
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by developing an explicit expression for the nonlinear sus-
ceptibility, using perturbation theory within the framework of
the independent-particle approximation [10]. This expression,
once coupled with first-principles electronic structure calcu-
lations, has been used extensively to analyze the shift-current
in real materials [11–15]. Concurrently, experimental research
on the shift-current has broadened, offering a variety of in-
sights [16–21].

Despite the considerable interest in these phenomena, the
majority of theoretical investigations into shift-currents in ac-
tual materials have been limited to the independent-particle
approximation. Recently, there have been several attempts to
elucidate the role of many-body effects on the microscopic
mechanisms of shift-current. For example, Chan et al. sug-
gested substantial enhancement of the shift-current due to
excitonic effects, utilizing the GW plus Bethe–Salpeter ap-
proach [22]. The study was further extended to a monolayer
and nanotubes of boron nitride [23]. Furthermore, Kaneko
et al. proposed an enhancement of the photovoltaic effect in
excitonic insulators via collective excitations [24]. These stud-
ies indicate that many-body effects could have a pivotal role in
enhancing photovoltaic effects. Nevertheless, the understand-
ing of many-body effects in the microscopic mechanisms of
the photovoltaic effects is still incomplete. For further devel-
opment of detailed understanding of the many-body effects,
it is crucial to assess the applicability of different theoretical
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approximations to accurately interpret these phenomena. Be-
yond the independent-particle approximation, one of the most
successful methods to study nonlinear optical phenomena in
real materials is time-dependent density functional theory
(TDDFT) [25], and it has been applied to study nonlinear
optical phenomena in both low-order and highly nonlinear
regimes [26–32]. However, the application of TDDFT to the
study of shift-current is very limited. Therefore, it is im-
portant to develop the theoretical basis to apply TDDFT to
shift-current. Although TDDFT is a formally exact theoretical
framework, a practical calculation based on TDDFT with
decent approximations can be seen as an effective mean-
field theory. Furthermore, a mean-field theory is a natural
extension of the independent-particle approximation since
the independent-particle approximation is nothing but the
omission of the time dependence of the mean field from a
mean-field theory. Hence, it is crucial to develop the basic
understanding of the properties of mean-field theories to the
bulk photovoltaic effect.

In this study, we conduct a numerical investigation of
the bulk photovoltaic effects with a one-dimensional model,
employing mean-field theories such as the time-dependent
Hartree–Fock (TDHF) and time-dependent Hartree (TDH)
methods, to assess the suitability of mean-field approx-
imations. We also analyze the bulk photovoltaic effects
through perturbation theory utilizing the independent-particle
approximation, mean-field approximation, and the exact
many-body Schrödinger equation. Our results indicate that
the photoinduced current under the mean-field approxima-
tion displays qualitatively different behaviors compared with
both the independent-particle approximation and the exact
Schrödinger equation. Specifically, the mean-field approxima-
tion generates the dc current as the second-order nonlinear
effect even after irradiation of linearly polarized light, which
neither the independent-particle approximation nor the ex-
act Schrödinger equation can describe. This suggests that
the mean-field approximation could artificially induce the
injection-current under linearly polarized light. Consequently,
analyses of the bulk photovoltaic effect using a mean-field
approximation could significantly overestimate the effect due
to this artifact, as the divergence of the susceptibility tensor of
the injection-current could completely overcome the suscep-
tibility of the intrinsic shift-current. Additionally, we perform
the electron dynamics calculations for BaTiO3 based on time-
dependent density functional theory (TDDFT) to confirm the
findings from the one-dimensional model and the perturbation
analysis apply to realistic systems.

The paper is organized as follows: In Sec. II, we describe
theoretical and numerical methods for investigating the bulk-
photovoltaic effect. In Sec. III, we show the numerical results
obtained by the method introduced in Sec. II and discuss the
qualitative difference among the results obtained with differ-
ent approaches. In Sec. IV, we analyze the bulk photovoltaic
effect based on perturbation theory and explore the micro-
scopic origin of the qualitative difference among different
approximations. In Sec. V, we perform the first-principles
electron dynamics calculation to analyze the shift-current
and confirm the findings from the previous sessions for a
realistic material. Finally, our findings are summarized in
Sec. VI.

II. METHODS

In this study, the one-dimensional TDHF method is mainly
utilized to simulate light-induced electron dynamics in solids.
Each electronic orbital consisting a Slater determinant obeys
the following TDHF equation:

ih̄
∂

∂t
ub,kx (x, t ) =

[
1

2me

(
−ih̄

∂

∂x
+ h̄kx + eAx(t )

)2

+vion(x) + vH (x, t ) + v̂F (t )

]
ub,kx (x, t ),

(1)

where b is the band index, kx is the Bloch wave number,
and ub,kx (x, t ) represents the periodic part of the Bloch wave
function which satisfies ub,kx (x + a, t ) = ub,kx (x, t ), with the
lattice constant a. Here, Ax(t ) is a homogeneous vector poten-
tial related to an external electric field as Ex(t ) = −dAx(t )/dt .
The ionic potential is denoted vion(x), and the spatial periodic-
ity is imposed as vion(x + a) = vion(x). In this study, the ionic
potential, vion(x), is defined as

vion(x) =
∫ ∞

−∞
dx′w(x − x′)ρion(x′), (2)

where ρion(x) is the ionic charge density. Here, w(x) denotes
the one-dimensional soft-Coulomb interaction and is defined
as

w(x) = β
e2√

x2 + a2
0

, (3)

where β is a dimensionless adjustable parameter, and a0 is the
Bohr radius. Therefore, for this study, the softening param-
eter of the soft-Coulomb potential is set to a0. To introduce
the standard Hartree potential vH (x, t ) and the Fock operator
v̂F (t ), the one-body reduced density matrix and the one-body
density are defined as

ρDM (x, x′, t ) = 2

Nk

∑
b=occ

∑
kx

ub,kx (x, t )u∗
b,kx

(x′, t )

× exp

[
i

(
kx + eA(t )

h̄

)
(x − x′)

]
, (4)

ρ(x, t ) = ρDM (x, x, t ), (5)

where Nk is the number of k points in the calculation. We note
that the sum of the index b is taken only for the occupied or-
bitals (occ) since the time-dependent Hartree-Fock method is
based on a single Slater determinant. This feature is common
for various mean-field theories as well as the time-dependent
density functional theory. Using the one-body density, ρ(x, t ),
the Hartree potential is defined as

vH (x, t ) =
∫ ∞

−∞
dx′w(x − x′)ρ(x, t ). (6)
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FIG. 1. Computed band structure of the one-dimensional model
of a bulk with broken inversion symmetry with the static Hartree–
Fock method. The two spin-degenerate occupied bands are described
as the red solid line, whereas the conduction bands are described as
the blue solid line.

Furthermore, the Fock operator is defined using the one-
body density matrix as follows:

v̂F (t )ub,kx (x, t ) = − 1

2

∫ ∞

−∞
dx′w(x − x′)ρDM (x, x′, t )

×exp

[
−i

(
kx + eA(t )

h̄

)
(x − x′)

]
ub,kx (x′, t ).

(7)

By solving the TDHF equation, Eq. (1), we can eluci-
date the electron dynamics induced by the vector potential
Ax(t ). Furthermore, by utilizing the time-dependent electron
orbitals, ub,kx (x, t ), we can evaluate physical quantities within
the time domain. For instance, the induced electric current can
be calculated as follows:

J (t ) = − 2e

aNk

∑
b,kx

∫ a

0
dxu∗

b,kx
(x, t )v̂x(t )ub,kx (x, t ), (8)

where the velocity operator v̂x(t ) is defined as

v̂x(t ) = 1

me

[
−ih̄

∂

∂x
+ h̄kx + eAx(t )

]
. (9)

To model a solid-state system with broken inversion sym-
metry, we employ the following ionic charge distribution,
denoted as ρion(x):

ρion(x) =
∞∑

n=−∞

[
−3δ(x + na) − δ

(
x + a

3
+ na

)]
. (10)

In this study, the lattice constant a is set to 4.0352 Å,
analogous to that of BaTiO3 [33], a material typically utilized
for investigating shift-current. To impose charge neutrality, we
incorporate four electrons within the unit cell for this study.
Furthermore, we set the dimensionless parameter β of the
soft-Coulomb interaction to 0.2915 a.u. so as to reproduce the
band gap of BaTiO3 with the model calculation.

Figure 1 shows the band structure obtained by solving
the static Hartree–Fock equation under the conditions stated
above. The red solid line denotes the two filled bands (valence
bands), while the blue solid line illustrates the empty band

(conduction bands). The calculated band-gap at the � point
(kx = 0) is 3.2 eV.

For the subsequent calculations in Sec. III, the real-space
coordinate x within the unit cell (0 � x � a) is discretized
into 16 grid points. Similarly, the first Brillouin zone is divided
into 1025 k points.

III. RESULTS

A. Linear optical properties

To develop insights into optical responses of solids, we first
revisit linear optical properties of the system with mean-field
approximations. For this purpose, we calculate the electron
dynamics in the presence of an impulsive distortion given by

Ax(t ) = A0�(t ), (11)

where �(t ) is the Heaviside step function, and A0 is the
amplitude of the distortion. We note that the vector potential
given by Eq. (11) corresponds to an impulsive electric field
as Ex(t ) = − d

dt Ax(t ) = −A0δ(t ). In this study, we set A0 to
10−4 a.u. so that the induced current is proportionate to the
amplitude A0, resulting in the linear response.

The TDHF equation, Eq. (1), is solved with the vector po-
tential as defined in Eq. (11). The static Hartree–Fock method
is utilized to compute the ground state of the system, which
is subsequently used as the initial condition for Eq. (1). The
induced current, J (t ), is computed using Eq. (8).

Assuming that the amplitude A0 is sufficiently small
enough to ignore all the nonlinear contributions, the optical
conductivity σ (ω) of the system can be evaluated as

σ (ω) = − 1

A0

∫ Tsim

0
dtJ (t )eiωtW

(
t

Tsim

)
, (12)

where Tsim represents the simulation time period, and W (x)
is a window function introduced to suppress numerical noise
in the Fourier transform resulting from finite simulation time.
For practical calculations to analyze the linear responses, the
simulation time, Tsim, is set to 20 fs. Furthermore, to reduce the
numerical errors due to the finite simulation time, we employ
the following form of the window function in this study:

W (x) = cos4

(
π

2
x

)
. (13)

Figure 2 shows the real-part of the conductivity of the one-
dimensional solid-state system, computed with the parameters
described in Sec. II. The red solid line represents the results
obtained by using the TDHF method, revealing a distinctive
peak structure below the band gap of 3.2 eV. This peak can be
understood as the excitation to an excitonic state.

To obtain insights into the characteristics of the mean-
field approximation within the context of the linear optical
response, we introduce two distinct approximations to the
TDHF method. The first approximation is the independent-
particle approximation, denoted as TDHF-IP, which freezes
the time-dependence of the Hartree potential and Fock oper-
ator in the TDHF method. The second approximation is the
time-dependent Hartree approximation, denoted as TDH.

When employing the TDHF-IP approach, the static
Hartree-Fock method is employed to prepare wave functions
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FIG. 2. Real-part of conductivity σ (ω) of the one-dimensional
solid-state model. The result obtained using the TDHF method is
described as red solid line, the result obtained using the independent-
particle approximation is described as blue dashed line, and the result
obtained using the TDH method is described as green dotted line.
(The computed band gap, Eg, of the system is 3.2 eV, indicated by
the black dotted line.)

and eigenvalues as the initial conditions for the time propaga-
tion. In this approximation, we neglect the time dependencies
of vH (x, t ) and v̂F (t ) by replacing the time-dependent one-
body density matrix, ρDM (x, x′, t ), with ρDM (x, x′, 0) for the
computation of vH (x, t ) and v̂F (t ). Therefore, within the
TDHF-IP approximation, we disregard the time dependencies
of the mean-field potential completely. The resulting dynam-
ics can be interpreted as those of an independent-particle
system under a corresponding external potential.

By contrast, the TDH method removes the Fock operator,
v̂F (t ), from the TDHF process during both the preparation
of the ground state and the time propagation of the system.
Consequently, the mean-field potential consists solely of the
Hartree potential, vH (x, t ). This approximation provides one
of the simplest mean-field approximations for quantum many-
body systems.

In Fig. 2, the blue dashed line represents the result obtained
from the TDHF-IP method, while the green dotted line de-
notes the result obtained from the TDH method. The TDHF-IP
result indicates the vanishing of the excitonic peak below
the gap, with the spectral weight of the excitonic peak ab-
sorbed by the above-gap absorption, thus reflecting a nature of
independent-particle systems—the absence of excitons. The
TDH method yields a spectral structure similar to that of
TDHF-IP but with a substantial redshift. Such similar spectral
structures imply that the TDH method does not capture the
excitonic contribution to the excitation spectrum. The redshift
of the spectrum in the TDH method reflects the band-gap
reduction caused by the exclusion of the exchange interaction.
These insights confirm the widely accepted understanding in
condensed-matter physics: the static contribution of the Fock
operator enlarges the gap, while the dynamical contribution
of the Fock operator describes the excitonic response of the
lowest optical transition [34]. Hence, the TDHF method is
already qualitatively sufficient to describe an excitonic effect
[35,36]. Employing these three methods, we further analyze
nonlinear optical responses in the subsequent section.

B. Second-order nonlinear optical responses:
Shift-current and injection-current

Having revisited the mean-field characteristics within lin-
ear optical responses, we extend our investigation to nonlinear
optical phenomena, with a specific focus on the second-order
nonlinear optical effects, namely, shift-current and injection-
current [10]. To obtain insights into these second-order
nonlinear optical phenomena, we first review the nonlinear
susceptibility in the frequency domain, and the corresponding
current dynamics in the time domain.

In this analysis, we consider a one-dimensional case to
maintain simplicity, although the approach can be straight-
forwardly generalized to two- or three-dimensional systems.
The second-order nonlinear polarization P(2)(t ), induced by
an electric field E (t ), can be described as [37]

P(2)(t ) =
∫ ∞

−∞
dt ′

∫ ∞

−∞
dt ′′χ (2)(t − t ′, t − t ′′)E (t ′)E (t ′′),

(14)

where χ (2)(t − t ′, t − t ′′) represents the second-order nonlin-
ear susceptibility in the time domain. By applying the Fourier
transform to Eq. (14), we derive the following relation:

P̃(2)(ω� ) = 1

2π

∫ ∞

−∞
dω′

∫ ∞

−∞
dω′′δ(ω� − ω′ − ω′′)

× χ̃ (2)(ω� ; ω′, ω′′)Ẽ (ω′)Ẽ (ω′′)

= 1

2π

∫ ∞

−∞
dω′χ̃ (2)(ω� ; ω′, ω� − ω′)

× Ẽ (ω′)Ẽ (ω� − ω′), (15)

where P̃(2)(ω), χ̃ (2)(ω; ω′, ω′′), and Ẽ (ω) are the Fourier
transformations of P(2)(t ), χ (2)(t − t ′, t − t ′′), and E (t ), re-
spectively.

Optical rectification, shift-current, and injection-current
constitute second-order nonlinear dc optical responses.
These phenomena can be characterized based on the diver-
gent behavior of the second-order nonlinear susceptibility,
χ̃ (ω�,ω′, ω′′). In the low-frequency limit (ω� = ω′ + ω′′ →
0), the nonlinear susceptibility can be described as [10]

χ̃ (ω�,ω′, ω′′) = χ̃ (2)
rec (ω′, ω′′) + σ̃

(2)
sft (ω′, ω′′)

−iω�

+ η̃
(2)
inj (ω′, ω′′)

d14(−iω� )2
, (16)

where χ̃ (2)
rec (ω′, ω′′), σ̃

(2)
sft (ω′, ω′′), and η̃

(2)
inj (ω′, ω′′) denote reg-

ular analytic functions, corresponding to optical rectification,
shift-current, and injection-current, respectively.

For a deeper understanding of these nonlinear optical
phenomena, a time-domain behavior of induced responses
complements their divergent behavior of the susceptibilities
in the frequency domain. We conduct this exploration by
analyzing the dynamics induced by a laser pulse represented
as

E (t ) = f (t ) cos (ω0t ), (17)

where f (t ) is the envelope function of the laser pulse, and
ω0 is the average frequency. For this analysis, we assume that
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the envelope function f (t ) exhibits slow temporal variation,
and that the Fourier transform of Eq. (17) is concentrated
predominantly around ω = ω0.

We initiate our analysis with the polarization, P(2)
rec (t ), asso-

ciated with optical rectification. The polarization induced by
the pulse of Eq. (17) can be evaluated as follows:

P(2)
rec (t ) = 1

2π

∫ ∞

−∞
dωP̃(2)

rec (ω)e−iωt

= 1

2π

∫ ∞

−∞
dωχ̃ (2)

rec (ω′,−ω′)Ẽ (ω′)Ẽ (ω − ω′)e−iωt

≈ 1

2π
χ̃ (2)

rec (ω0,−ω0)
∫ ∞

−∞
dωẼ (ω′)Ẽ (ω − ω′)e−iωt

= χ (2)
rec (ω0,−ω0)E2(t ). (18)

Here, we adopted the assumption that the Fourier transform
of E (ω) is predominantly localized around ω = ω0. By isolat-
ing the low-frequency component of Eq. (18), we extract the
dc-like component of P(2)

rec (t ) as

P(2)
rec,dc(t ) = χ (2)

rec (ω0,−ω0) f 2(t ). (19)

The results demonstrate that the polarization associated
with optical rectification is directly proportional to the square
of the envelope function, f (t ). Similar analysis can be
performed for the current J (2)

sft,dc(t ) associated with the shift-

current, and the acceleration K (2)
inj,dc(t ) associated with the

injection-current. This investigation yields the following re-
lation:

J (2)
sft,dc(t ) = d

dt
P(2)

sft,dc(t ) = σ
(2)
sft (ω0,−ω0) f 2(t ), (20)

K (2)
inj,dc(t ) = d2

dt2
P(2)

inj,dc(t ) = η
(2)
inj (ω0,−ω0) f 2(t ). (21)

Figure 3 shows a graphical representation of the time-
domain behaviors of optical rectification, shift-current, and
injection-current as described by Eqs. (19)–(21). The time
profile of a sample laser pulse is depicted in Fig. 3(a), with
the envelope function of the laser pulse represented by a black
dashed line. The time profile of the polarization for opti-
cal rectification and shift-current is shown in Fig. 3(b). The
polarization associated with optical rectification shifts only
during laser irradiation, whereas the polarization associated
with shift-current remains finite even after the laser field ends.
Figure 3(c) shows the time profile of the currents associated
with shift- and injection-currents. The shift-current is only
induced during laser irradiation, while the injection-current
remains finite even after the laser field ends. This behavior
of the injection-current can be understood by the fact that
the acceleration K (2)

inj,dc(t ) associated with the injection-current
shifts only during laser irradiation, as displayed in Fig. 3(d).

Guided by the time-domain behavior of the second-order
nonlinear optical responses as shown in Fig. 3, we then nu-
merically examine the impact of mean-field approximations
on these nonlinear responses by employing the TDHF method.

For practical calculations, we compute the electron dynam-
ics induced by the vector potential

Ax(t ) = −E0

ω0
cos (ω0t + φCEP) cos4

[
π

Tpulse
t

]
(22)
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FIG. 3. Schematics of the second-order nonlinear optical re-
sponses. (a) The time-profile of an applied example pulse is shown.
(b) The polarizations associated with the optical rectification (red)
and the shift-current (green) are shown as a function of time. (c) The
induced currents associated with the shift-current (green) and the
injection-current (blue) are shown. (d) The acceleration associated
with the injection-current is shown.

in the domain −Tpulse/2 � t � Tpulse/2, and zero outside this
domain. Here, E0 is the peak field strength, ω0 is the mean
frequency, φCEP is the carrier envelope phase (CEP), and Tpulse

is the pulse duration. In this work, we set E0 to 2 × 10−4 a.u.,
ω to 3.3 eV/h̄, and Tpulse to 40 fs. We determined the field
strength E0 such that the resulting dc-like current is dominated
by second-order nonlinear optical responses. Furthermore, we
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choose the photon energy h̄ω0 to exceed the band gap, fulfill-
ing the condition to induce the shift-current [10].

We treat φCEP as a tunable parameter to extract the dc-like
component of the induced current. We denote the current
induced by the laser field of Eq. (22) as Jx(t, φCEP), explicitly
noting φCEP dependence. To extract dc-like component of the
induced current, we consider the CEP average of the induced
current as

Jx,dc(t ) = 1

2π

∫ 2π

0
dφCEPJx(t, φCEP). (23)

By utilizing this average, we effectively eliminate high-
frequency components in the induced current, thereby extract-
ing the dc-like component. For practical analysis, we calculate
the integral of Eq. (23) as the mean of four values of φCEP:
φCEP = 0, π/2, π , 3π/2.

Figure 4 shows the time-evolution of the dc-like compo-
nent of the induced current, Jx,dc(t ), calculated using Eq. (23).
As shown in Fig. 4, there are distinct differences in the behav-
iors of the results obtained by the TDHF, TDH, and TDHF-IP
methods. Both TDHF and TDH methods show a finite current
even after the laser field ends. By contrast, the TDHF-IP
method does not present any residual current. These obser-
vations suggest that mean-field theories, such as TDHF and
TDH, produce qualitatively distinct dc-like second-order non-
linear current when compared with the independent-particle
approximation.

Importantly, the qualitative discrepancy in the optical re-
sponse behavior between the mean-field theories and the
independent-particle approximation is not due to excitonic
contributions, since the TDH method does not incorporate
excitonic effects. This discrepancy emerges solely from the
time-dependence of mean fields.

Based on the classification of nonlinear responses outlined
in Eqs. (19)–(21), a finite dc-like current after laser fields
end implies the presence of the injection-current. However, it
has been extensively discussed that the injection-current orig-
inates from the breaking of time-reversal symmetry [10,38],

such as in the irradiation of circularly polarized light. The
residual current induced by linearly polarized light in Fig. 4
is expected to be an artifact connected to the unphysical di-
vergence of the response function because there is no source
of the breakdown of time-reversal symmetry to realize such
time-reversal symmetry-broken final states.

A few decades ago, there was considerable discussion
regarding the presence of unphysical divergences in second-
order nonlinear optical responses in materials, and it has been
suggested that these divergences are caused by numerical er-
rors and could be removed by employing a sum-rule suitable
for semiconducting systems within the independent-particle
approximation [39]. Another theoretical method involves
the evaluation of second-order nonlinear optical responses
utilizing an explicit susceptibility expression derived from
perturbation theory within the independent-particle approxi-
mation [10]. This perturbative approach successfully avoids
the unphysical divergence as it analytically manages the sus-
ceptibility singularity.

Even though second-order nonlinear optical phenomena
hold considerable importance, studies exploring the divergent
behavior of the response function for many-body systems
beyond the independent-particle approximation have been
limited [40]. In the following section, we examine the effects
of many-body and mean-field effects on the second-order
nonlinear optical phenomena based on the perturbation theory.

IV. PERTURBATION ANALYSIS

In the previous section we demonstrated numerically that
mean-field approximations, including TDHF and TDH meth-
ods, may induce unphysical dc-like current as a result of the
second-order nonlinear optical process with linearly polarized
light. In this section, we investigate the origin of this unphysi-
cal current within perturbation theory. We analyze the current
induced by a laser pulse and evaluate dc-like component of
the induced current after laser irradiation. This perturbation
analysis is performed at the exact many-body Schrödinger
equation, the independent-particle approximation, and the
mean-field approximations.

A. Exact Schrödinger equation

We first consider the light-induced current within the exact
Schrödinger equation for a many-electron system,

ih̄
∂

∂t
|�(t )〉 = Ĥ (t )|�(t )〉, (24)

where Ĥ (t ) denotes the many-electron Hamiltonian

Ĥ (t ) =
∑

i

[
1

2me
[pi + eA(t )]2 + v(ri )

]
+ 1

2

∑
i j

w(ri − r j ),

(25)

with a one-body potential v(r), and an interacting potential
w(r − r′). Here, the time-dependent vector potential A(t ) is
included to describe external electric fields as E(t ) = −Ȧ(t ).
For practical analysis with a finite laser pulse, we impose that
the vector potential vanishes for t > t f : A(t > t f ) = 0.
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The time-dependent Hamiltonian for a many-electron sys-
tem, Ĥ (t ), can be decomposed into the following three
components:

Ĥ (t ) = Ĥ0 + V̂ (1)(t ) + C(t ), (26)

Ĥ0 =
∑

i

[
p2

i

2me
+ v(ri )

]
+ 1

2

∑
i j

w(ri − r j ), (27)

V̂ (t ) =
∑

i

epi · A(t )

me
= e

me
P · A(t ), (28)

C(t ) = e2Ne

2me
|A(t )|2, (29)

where Ne is the number of electrons in the system, and P is
the total momentum of the system given by P = ∑

j p j .
For later convenience, we introduce a wave function

|�̃(t )〉 through a unitary transformation as |�̃(t )〉 =
ei

∫ t dt ′C(t ′ )/h̄|�(t )〉. Utilizing this, the many-electron
Schrödinger equation, Eq. (24), can be rewritten as

ih̄
∂

∂t
|�̃(t )〉 = [Ĥ0 + V̂ (t )]|�̃(t )〉. (30)

To investigate second-order nonlinear responses, we begin
by introducing a perturbative expansion of the wave function
|�̃(t )〉 up to the second order of perturbation [41]:

|�̃(t )〉 = exp

[
− i

h̄
E0t − i

h̄

∫ t

dt ′E (1)(t ′)

− i

h̄

∫ t

dt ′E (2)(t ′)
]

[|�0〉

+ |δ� (1)(t )〉 + |δ� (2)(t )〉], (31)

where |�0〉 refers to the ground-state wave function of the
unperturbed Hamiltonian Ĥ0, and E0 represents its associated
ground-state energy, fulfilling Ĥ0|�0〉 = E0|�0〉. The first-
and second-order wave functions are denoted as |δ� (1)(t )〉
and |δ� (2)(t )〉, respectively. The corresponding first- and
second-order dynamical phase factors are determined by the
first-order energy shift, E (1)(t ), and the second-order energy
shifts, E (2)(t ), respectively.

By substituting Eq. (31) into the modified time-dependent
Schrödinger equation, Eq. (30), we derive the following rela-
tion for each order:

ih̄
∂

∂t
|δ� (1)(t )〉 + E (1)(t )|�0〉

= (Ĥ0 − E0)|δ� (1)(t )〉 + V̂ (t )|�0〉, (32)

ih̄
∂

∂t
|δ� (2)(t )〉 + E (1)(t )|δ� (1)(t )〉 + E (2)(t )|�0〉

= (Ĥ0 − E0)|δ� (2)(t )〉 + V̂ (t )|δ� (1)(t )〉. (33)

To proceed with the analysis, we introduce the eigenstates
of the unperturbed Hamiltonian Ĥ0 as follows:

Ĥ0|�a〉 = Ea|�a〉. (34)

If there is a set of degenerate eigenstates with respect
to Eq. (34), we choose to define the eigenstates such that
at least one of the interested Cartesian components of P is
diagonalized within the subspace spanned by these degenerate
eigenstates.

By utilizing these eigenstates, the perturbative wave func-
tions |δ� (1)(t )〉 and |δ� (2)(t )〉 can be expanded as

|δ� (1)(t )〉 =
∑
a �=0

C(1)
a (t )e−i�at |�a〉, (35)

|δ� (2)(t )〉 =
∑
a �=0

C(2)
a (t )e−i�at |�a〉, (36)

where �a is defined as �a = (Ea − E0)/h̄. Here, C(1)
a (t ) and

C(2)
a (t ) represent the expansion coefficients for the first- and

second-order wave functions, respectively. The expansion
excludes the unperturbed ground state |�0〉, given that the
energy shifts, E (1)(t ) and E (2)(t ), are defined as

E (1)(t ) = 〈�0|V̂ (t )|φ0〉, (37)

E (2)(t ) = 〈�0|V̂ (t )|δ� (1)(t )〉. (38)

We proceed by substituting Eqs. (35) and (36) into
Eqs. (32) and (33), respectively. Consequently, the derived
equations of motion for the expansion coefficients are as fol-
lows:

ih̄
d

dt
C(1)

a (t ) = ei�at 〈�a|V̂ (t )|�0〉, (39)

ih̄
d

dt
C(2)

a (t ) = ei�at 〈�a|(V̂ (t ) − E (1)(t ))|δ� (1)(t )〉. (40)

From these derived expressions, it is evident that the co-
efficients C(1)

a (t ) and C(2)
a (t ) become time-invariant once the

perturbation ends [V̂ (t ) = A(t ) = 0 for t > t f ].
By using the above perturbative expansion, the second-

order nonlinear current can be expressed as

J (2)(t ) = − e

me
〈δ� (1)(t )|P|δ� (1)(t )〉

− e

me
〈�0|P|δ� (2)(t )〉 + c.c.

= − e

me

∑
n,m

C(1),∗
n (t )C(1)

m (t )e− i
h̄ (Em−En )t 〈�n|P|�m〉

− e

me

∑
n

C(2)
n (t )e− i

h̄ Ent 〈�0|P|�n〉 + c.c. (41)

Given that C(1)
a (t ) and C(2)

a (t ) become constant after the
perturbation ends [V̂ (t > t f ) = A(t > t f ) = 0], we can eval-
uate the dc component of the current J (2)(t ) after the fields
end as

J (2)
dc = lim

T →∞
1

T

∫ t f +T

t f

dtJ (2)(t )

= − e

me

∑
a

|C(1)
a (t f )|2〈�a|P|�a〉. (42)
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To analyze the dc component of the second-order current,
we turn our attention to the first-order coefficient, C(1)

a (t ),
at time t = t f . This is calculated by integrating Eq. (39) as
follows:

C(1)
a (t f ) = 1

ih̄

∫ t f

−∞
dt ′ei�at ′ 〈�a|V̂ (t ′)|�0〉

= e

me

1

ih̄

∫ ∞

−∞
dt ′ei�at ′

A(t ′) · 〈�a|P|�0〉

= e

me

1

ih̄
Ã(�a) · 〈�a|P|�0〉, (43)

where Ã(ω) denotes the Fourier transform of A(t ). Here, we
have exploited the property that A(t ) = 0 for t > t f . By em-
ploying this explicit expression of C(1)

a (t f ), the dc component
of the current J (2)

dc in Eq. (42) can be evaluated as

J (2)
dc = − e

me

∑
a

∣∣∣∣ e

me

1

ih̄
Ã(�a) · 〈�a|P|�0〉

∣∣∣∣
2

〈�a|P|�a〉.
(44)

To further analyze the dc component of the second-order
current, we next explore a characteristic of the eigenstates
|�a〉. The real-space representation of a many-body state |�a〉
is defined as �a(r1, . . . , rNe ) = 〈r̄|�a〉. As a result, the static
Schrödinger equation with the unperturbed Hamiltonian can

be reexpressed as follows:⎡
⎣∑

j

{
− h̄2

2me
∇2 + v(r j )

}
+ 1

2

∑
i �= j

w(ri − r j )

⎤
⎦

× �a
(
r1, . . . , rNe

)
= Ea�a

(
r1, . . . , rNe

)
. (45)

It can be readily verified that the complex conjugate of an
eigenstate, �∗

a(r1, . . . , rNe ), satisfies Eq. (45), indicating that
�∗

a(r1, . . . , rNe ) is also an eigenstate of the Hamiltonian. We
introduce a ket vector |�(−)

a 〉 to represent the abstract state
vector associated with �∗

a(r1, . . . , rNe ) = 〈r̄|�(−)
a 〉. It is worth

noting that |�(−)
a 〉 is the time-reversed state of |�a〉, and it

may or may not be identical to the original state, |�a〉.
Reflecting the time-reversal nature, the expectation values

of the total momentum calculated with a time-reversed state
|�(−)

a 〉 and the original state |�a〉 have the opposite signs:

〈�a|P|�a〉 = −〈�(−)
a |P|�(−)

a 〉. (46)

Moreover, by assuming that the ground state has the time-
reversal symmetry as |�(−)

0 〉 = |�0〉, matrix elements of the
total momentum operator hold the following relation:

〈�a|P|�0〉 = −〈�(−)
a |P|�0〉∗. (47)

By employing Eqs. (46) and (47), the dc component of
the second-order nonlinear current in Eq. (44) can be further
evaluated with the time-reversed states as

J (2)
dc = −1

2

e

me

[∑
a

∣∣∣∣ e

me

1

ih̄
Ã(�a) · 〈�a|P|�0〉

∣∣∣∣
2

〈�a|P|�a〉 +
∑

a

∣∣∣∣ e

me

1

ih̄
Ã(�a) · 〈�(−)

a |P|�0〉
∣∣∣∣
2

〈�(−)
a |P|�(−)

a 〉
]

= − e

2me

∑
a

[∣∣∣∣ e

me

1

ih̄
Ã(�a) · 〈�a|P|�0〉

∣∣∣∣
2

〈�a|P|�a〉 +
∣∣∣∣ e

me

1

ih̄
Ã(�a) · 〈�(−)

a |P|�0〉
∣∣∣∣
2

〈�(−)
a |P|�(−)

a 〉
]

= − e3

2m3
e

∑
a

〈�a|P|�a〉
[∣∣∣∣ 1

ih̄
Ã(�a) · 〈�a|P|�0〉

∣∣∣∣
2

−
∣∣∣∣ 1

ih̄
Ã(�a) · 〈�a|P|�0〉∗

∣∣∣∣
2
]

= − e3

2m3
e h̄2

∑
a

〈�a|P|�a〉[|Ã(�a) · 〈�a|P|�0〉|2 − |Ã∗
(�a) · 〈�a|P|�0〉|2]. (48)

The final expression for the dc component of the current, Eq. (48), suggests that residual dc component cannot be induced
solely by linearly polarized light as a second-order nonlinear effect. This can be straightforwardly confirmed by evaluating
Eq. (48) by employing a linearly polarized vector potential in the frequency domain, Ã(ω) = Ã(ω)ep, with a pure-real unit
vector along the polarization direction, resulting in J (2)

dc = 0.
By contrast, if we evaluate Eq. (48) with elliptically polarized light represented as Ã(ω) = exÃx(ω) + eyÃy(ω), the dc

component is given by

J (2)
dc = − e3

m3
e h̄2 Re

[ ∑
a

〈�a|P|�a〉〈�a|Px|�0〉〈�a|Py|�0〉∗{Ãx(�a)Ã∗
y (�a) − Ã∗

x (�a)Ãy(�a)}
]
. (49)

This result indicates that the dc component of the cur-
rent may be induced only if the light field is elliptically
polarized [Ãx(�a)Ã∗

y (�a) − Ã∗
x (�a)Ãy(�a) �= 0], or, namely,

breaking the time-reversal symmetry. This current represents
the injection-current induced by a time-reversal symmetry
broken field in a system lacking inversion symmetry.

Working with the many-body Schrödinger equation, we
have confirmed that the second-order dc current cannot exist
after a laser pulse ends if the laser field is linearly polar-
ized in a time-reversal symmetry system. In other words,
the injection-current cannot be induced by a linearly po-
larized light, but it can be induced only by an elliptically
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polarized light. This conclusion is consistent with previous
works [10,38].

B. Mean-field theory

To extend the perturbation analysis with the exact many-
body Schrödinger equation, here we analyze the dc com-
ponent of the second-order nonlinear current by employing
mean-field theories. As a practical mean-field approxima-
tion to solid-state systems, we assume that a many-electron
system is described by a single Slater determinant, and
each electronic orbital is given by a Bloch state, ψbk(r, t ) =
ei(k+A(t )/h̄)·rubk(r, t ), where ubk(r, t ) = ubk(r + a j, t ) stands
for the periodic part of the Bloch function and a j is any lat-
tice vectors. Furthermore, we impose that electronic orbitals,
ψbk(r, t ), obey the following mean-field equation of motion:

ih̄
∂

∂t
ψbk(r, t ) = ĥ(t )ψbk(r, t )

=
[

{p + eA(t )}2

2m
+ v̂(t )

]
ψbk(r, t ), (50)

where v̂(t ) denotes a mean-field potential operator. We as-
sume that the Hamiltonian ĥ(t ) has spatial periodicity with
the lattice vectors, a j .

Both the TDHF and TDH methods utilized in the numerical
analysis in Sec. III are described by the same form as Eq. (50).
Furthermore, it is worth noting that the time-dependent Kohn–
Sham equation in the time-dependent density functional
theory is also described by the same form.

To proceed with the perturbation analysis, we introduce the
eigenstates of the unperturbed Hamiltonian ĥ0 as follows:

ĥ0φbk(r) = εbkφbk(r), (51)

ĥ0 = p2

2m
+ v̂0, (52)

where ĥ0 is the unperturbed Hamiltonian, φbk(r) represents
the eigenstates of ĥ0, and v̂0 is the nonperturbed potential.
According to the discussion for the perturbation analysis with
the exact many-body Schrödinger equation, if there is a set
of degenerate eigenstates, we choose to define the eigenstates
such that at least one of the Cartesian components of p is
diagonalized within the subspace spanned by these degenerate
eigenstates.

Next, we expand the time-dependent Hamiltonian ĥ(t ) up
to the second order in terms of the external field A(t ) as
follows:

ĥ(t ) = ĥ0 + ĥ(1)(t ) + ĥ(2)(t ), (53)

ĥ(1)(t ) = ep · A(t )

m
+ δv̂(1)(t ), (54)

ĥ(2)(t ) = e2A2(t )

2m
+ δv̂(2)(t ), (55)

where δv̂(1)(t ) and δv̂(2)(t ) represent the first- and second-
order contributions from the mean-field potential v̂(t ), respec-
tively.

Assuming the time-dependent wave functions ψbk(r, t ) to
be initially prepared as the eigenstates of ĥ0 i.e., ψbk(r, t =

−∞) = φbk(r), we can expand ψbk(r, t ) up to the second
order of the external field as follows:

ψbk(r, t ) = exp

[
− i

h̄

∫ t

dt ′εbk + δε
(1)
bk (t ′) + δε

(2)
bk (t ′)

]

× [
φbk(r) + δψ

(1)
bk (r, t ) + δψ

(2)
bk (r, t )

]
. (56)

To ensure the orthogonality relations, 〈φbk|δψ (1)
bk (t )〉 =

〈φbk|δψ (2)
bk (t )〉 = 0, we choose the energy shifts as follows:

δε
(1)
bk (t ) = 〈φbk|ĥ(1)(t )|φbk〉, (57)

δε
(2)
bk (t ) = 〈φbk|ĥ(2)(t )|φbk〉 + 〈φbk|ĥ(1)(t )

∣∣δψ (1)
bk

〉
. (58)

Furthermore, we expand δψ
(1)
bk (r, t ) and δψ

(2)
bk (r, t ) in terms

of the eigenstates φbk(r) as follows:

δψ
(1)
bk (r, t ) =

∑
a �=b

c(1)
a,bk(t )φak(r)e−iωabkt , (59)

δψ
(2)
bk (r, t ) =

∑
a �=b

c(2)
a,bk(t )φak(r)e−iωabkt , (60)

where c(1)
a,bk(t ) and c(2)

a,bk(t ) represent the first- and second-order
expansion coefficients, respectively. The frequency ωabk is
defined as ωabk = (εak − εbk)/h̄.

By substituting Eqs. (56), (59), and (60) into Eq. (50), we
can derive the equations of motion for the coefficients (a �= b)
as follows:

ih̄
d

dt
c(1)

a,bk(t ) = eiωabkt
∫

drφ∗
ak(r)ĥ(1)(t )φbk(r), (61)

ih̄
d

dt
c(2)

a,bk(t ) = eiωabkt
∫

drφ∗
ak(r)ĥ(2)(t )φbk(r)

+ eiωabkt
∫

drφ∗
ak(r)ĥ(1)(t )δψ (1)

bk (r, t )

− δε
(1)
bk (t )c(1)

a,bk(t ). (62)

It is worth noting that the coefficients c(1)
a,bk(t ) and c(2)

a,bk(t )

may change only in the presence of ĥ(1)(t ) or ĥ(2)(t ).

1. Independent-particle approximation

To highlight contributions from the time-dependent
mean-field to the dc component of nonlinear current, we first
revisit the results of the independent-particle approximation,
obtained by setting δv̂(1)(t ) = δv̂(2)(t ) = 0. Under these
constraints, the coefficients c(1)

a,bk(t ) and c(2)
a,bk(t ) remain

time-invariant after the laser irradiation since both ĥ(1)(t ) and
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ĥ(2)(t ) become zero. For practical analysis, we assume A(t ) = 0 for t > t f . Consequently, the first-order coefficient can be
expressed as

c(1)
a,bk(t � t f ) = 1

ih̄

e

m
Ã(ωabk) ·

∫
drφ∗

ak pφbk(r). (63)

Next, we calculate the second-order nonlinear current associated with the orbital ψbk(r, t ) as follows:

J (2)
bk (t ) = − e

m

∫
drδψ (1),∗

bk (r, t )pδψ (1)
bk (r, t ) − e

m

∫
drφ∗

bk pδψ (2)
bk (r, t ) + c.c. (64)

As discussed in Sec. IV A, we can determine the dc component of the second-order nonlinear current after the laser field ends
using the following expression:

J (2)
bk,dc = lim

T →∞
1

T

∫ t f +T

t f

dtJ (2)
bk (t ) = − e

m

∑
a

∣∣c(1)
a,bk(t > t f )

∣∣2
∫

drφ∗
ak pφak(r)

= − e

m

∑
a

∫
drφ∗

ak pφak(r)

∣∣∣∣ 1

ih̄

e

m
Ã(ωabk) ·

∫
drφ∗

ak pφbk(r)

∣∣∣∣
2

. (65)

Assuming that the unperturbed mean-field Hamiltonian ĥ0 has time-reversal symmetry, the Bloch states at k and −k follow
the time-reversal relations φb,−k(r) = φ∗

bk(r) and εb,−k = εbk. By utilizing these relations, the sum of the dc component of the
current at k and −k can be evaluated as

J (2)
bk,dc + J (2)

b,−k,dc = − e

m

∑
a

[∣∣c(1)
a,bk(t > t f )

∣∣2
∫

drφ∗
ak pφak(r) + ∣∣c(1)

a,b,−k(t > t f )
∣∣2

∫
drφ∗

a,−k pφa,−k(r)

]

= − e

m

∑
a

∫
drφ∗

ak pφak(r)
[∣∣c(1)

a,bk(t > t f )
∣∣2 − ∣∣c(1)

a,b,−k(t > t f )
∣∣2]

= − e3

m3h̄2

∑
a

∫
drφ∗

ak pφak(r) ×
[∣∣∣∣Ã(ωabk) ·

∫
drφ∗

ak pφbk(r)

∣∣∣∣
2

−
∣∣∣∣Ã∗

(ωabk) ·
∫

drφ∗
ak pφbk(r)

∣∣∣∣
2
]
. (66)

Finally, the dc component of the total current can be evaluated as

J (2)
dc =

∑
b=occ

1

�BZ

∫
�BZ

dk J (2)
bk,dc = 1

2

∑
b=occ

1

�BZ

∫
�BZ

dk
(
J (2)

bk,dc + J (2)
b,−k,dc

) = − e3

2m3h̄2

∑
b=occ

1

�BZ

∫
�BZ

dk
∑

a

∫
drφ∗

ak pφak

× (r)

[∣∣∣∣Ã(ωabk) ·
∫

drφ∗
ak pφbk(r)

∣∣∣∣
2

−
∣∣∣∣Ã∗

(ωabk) ·
∫

drφ∗
ak pφbk(r)

∣∣∣∣
2
]
, (67)

where the sum of the index b is taken only for the occupied orbitals (occ), and �BZ is the volume of the Brillouin zone.
From the final expression in Eq. (67), it is evident that the dc component of the current J (2)

dc vanishes when linearly polarized
light is considered. For instance, assuming a vector potential of the form Ã(ω) = Ã(ω)ep, J (2)

dc vanishes due to the integrand of
the last line of Eq. (67) becoming zero. Instead, under elliptically polarized light, the dc component of the current may remain
finite. If we consider the vector potential to be of the form Ã(ω) = Ãx(ω)ex + Ãy(ω)ey, the dc component of the current in
Eq. (67) is given by

J (2)
dc = − e3

2m3h̄2

∑
b=occ

1

�BZ

∫
�BZ

dk
∑

a

∫
drφ∗

ak pφak(r)

(∫
drφ∗

ak pxφbk(r)

)(∫
drφ∗

ak pyφbk(r)

)∗

× [Ãx(ωabk)Ã∗
y (ωabk) − Ã∗

x (ωabk)Ãy(ωabk)] + c.c. (68)

In contrast with the current under linearly polarized light, Eq. (68) shows that the dc component of the current may remain
finite under elliptically polarized light, indicating the possibility of inducing an injection-current. Moreover, the dc component
of the current in Eq. (68) arises from the interference between excited states induced by Ãx(ω)ex and Ãy(ω)ey. This is nothing
but the quantum interference among two excitation paths associated with orthogonal components of light fields [10,16].

2. A mean-field approximation with linearly polarized light

Here, we investigate the impact of a mean-field contribution on the dc component of the total induced current. To achieve
this, we incorporate the contributions from v̂(1)(t ) and v̂(2)(t ) into the perturbation analysis, employing the independent-particle
approximation, as discussed in Sec. IV B 1.

To specifically examine the mean-field contribution only during laser irradiation, we neglect the induced mean-field effect
after the laser fields ends. For practical analysis, we impose v̂(1)(t ) = v̂(2)(t ) = 0 as well as A(t ) = 0 for t > t f . Under these
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constraints, we can evaluate the dc component of the current after the laser fields end as follows:

J (2)
dc = lim

T →∞
1

T

∫ t f +T

t f

dt
∑

b=occ

1

�BZ

∫
�BZ

dkJ (2)
bk (t ) = − e

m

∑
a

1

�BZ

∫
�BZ

dk
∫

drφ∗
ak(r)pφak(r)δnak, (69)

where δnak represents the population imbalance between k and −k and is defined as

δnak =
∑

b=occ

[∣∣c(1)
a,bk(t > t f )

∣∣2 − ∣∣c(1)
a,b,−k(t > t f )

∣∣2]
. (70)

By integrating Eq. (61) with the mean-field contribution δv̂(1)(t ), we can evaluate the first-order coefficient as follows:

c(1)
a,bk(t > t f ) = 1

ih̄

e

m
Ã(ωabk) ·

∫
dr φ∗

ak pφbk(r) + 1

ih̄

∫
dr φ∗

ak ṽ(1)(ωabk) φbk(r), (71)

where ṽ(1)(ω) represents the Fourier transform of δv̂(1)(t ).
By substituting Eq. (71) into Eq. (70), the population imbalance can be rewritten using the following decomposition:

δnak =
∑

b=occ

(
δnA

a,bk + δnB
a,bk + δnC

a,bk

)
. (72)

Each decomposed component is given as follows:

δnA
a,bk = e2

m2h̄2

∣∣∣∣Ã
(

εak − εbk

h̄

)
·
∫

drφ∗
ak pφbk(r)

∣∣∣∣
2

− e2

m2h̄2

∣∣∣∣Ã∗
(

εak − εbk

h̄

)
·
∫

drφ∗
ak pφbk(r)

∣∣∣∣
2

, (73)

δnB
a,bk = 2e

mh̄2 Re

[∫
drφ∗

ak pφbk(r) ·
{

Ã(ωabk)

(∫
drφ∗

akṽ
(1)(ωabk)φbk(r)

)∗
+ Ã∗(ωabk)

(∫
drφakṽ

(1)(ωabk)φ∗
bk(r)

)}]
, (74)

δnC
a,bk = 1

h̄2

∣∣∣∣
∫

drφ∗
akṽ

(1)(ωabk)φbk(r)

∣∣∣∣
2

− 1

h̄2

∣∣∣∣
∫

drφakṽ
(1)(ωabk)φ∗

bk(r)

∣∣∣∣
2

. (75)

In the above expressions, δnA
a,bk represents the population

imbalance induced by direct excitation from laser fields A(t ).
The imbalance δnB

a,bk arises from interference between quan-
tum states excited by both the laser fields A(t ) and the induced
mean-field v̂(1)(t ). Finally, δnC

a,bk is the imbalance generated
solely by the mean-field contribution v̂(1)(t ).

Consistently with the exact many-body Schrödinger equa-
tion and the independent-particle approximation, the popula-
tion imbalance δnA

a,bk becomes zero if the external field A(t ) is
linearly polarized light, but it may remain finite only if A(t ) is
elliptically polarized light. Conversely, δnB

a,bk and δnC
a,bk may

remain finite even under the application of linearly polarized
light. The induced mean-field enables additional excitation
pathways, leading to quantum interference, which results in
the population imbalance and subsequent dc current even
after laser irradiation ends. This behavior is consistent with
the results of our numerical simulations with the mean-field
approximations (TDHF and TDH) shown in Fig. 4, which
also demonstrate dc current remains finite even after the laser
fields end. Notably, the independent-particle approximation
does not show any dc current after the laser fields end in
Fig. 4.

We emphasize that the resultant dc current following
the irradiation by linearly polarized light is an artifact of
the mean-field approximation. Such a dc current cannot be
induced if we consider the exact many-body Schrödinger
equation (see discussion in Sec. IV A). This artifact manifests
as an unphysical divergence in the nonlinear susceptibility
in the low-frequency limit. The unphysical divergence may
overcome the intrinsic low-frequency response of the system,

inhibiting a proper investigation of the photovoltaic effect,
such as shift-current, within the scope of mean-field theories
unless the artifact is entirely eliminated.

We note that, in the above consideration, we did not take
into account electron-phonon scattering by freezing the scalar
potential. In real systems, the relaxation effect via electron-
phonon scattering plays an essential role, and the unphysical
dc current would be terminated after relaxation. However,
we emphasize that the relaxation effect does not solve the
problem of this unphysical current because the unphysical cur-
rent may exist before its relaxation, and thus charge transport
would be affected by this artifact. Hence, regardless of the re-
laxation effect, one has to completely remove this mean-field
artifact for a proper analysis of the bulk photovoltaic effect.

The perturbation analysis suggests that the unphysical
dc current originates from excitation paths opened up by
the induced mean-field dynamics. Therefore, the artifact is
a result of self-excitation via the mean-field that are not
present in the fully interacting many-body solution (see
Sec. IV A). One could potentially improve the mean-field
description for the photovoltaic effect by eliminating the
unphysical self-excitation effect. This can be achieved by ap-
propriately designing the Hartree-exchange-correlation kernel
fHxc(r, r′, ω) in the time-dependent density functional theory.

V. FIRST-PRINCIPLES ANALYSIS

Having established the understanding on the limitation of
the mean-field approximation resulting in the unphysical dc
current based on the one-dimensional model simulation, we
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FIG. 5. The dc-like current in BaTiO3 induced by a linearly po-
larized laser pulse. The results are computed by using the TDDFT
with the ALDA (red solid line) and with the independent-particle
approximation (blue dashed line).

then quantify this limitation for more realistic situations by
using the first-principles calculations based on the TDDFT.
As an example of realistic systems, we take BaTiO3. For
the investigation on the nonlinear current, we first compute
the ground state of the tetragonal phase of BaTiO3 with the
structural parameters at 300 K [33] by using the local density
approximation [42]. We note that the polarization direction of
the system is the c-axis.

For the description of electronic systems, we employ the
norm-conserving pseudopotential approximations: For bar-
ium atoms, 5s, 5p, and 6s electrons are treated as valence with
the multireference pseudopotential scheme [43,44]. For tita-
nium, 3s, 3p, 3d , and 4s electrons are treated as valence with
the multireference pseudopotential scheme [43,44]. For oxy-
gen, we employ the Hartwigsen–Goedecker–Hutter (HGH)
pseudopotential [45]. In this work, practical DFT and TDDFT
calculations are performed with the OCTOPUS code [46]. For
numerical simulations, the primitive cell of BaTiO3 is dis-
cretized into 323 grid points. Similarly, the first Brillouin zone
is discretized into 163 k points.

Once the ground state of the tetragonal BaTiO3 is prepared
with the above conditions and parameters, we then compute
the light-induced electron dynamics by solving the time-
dependent Kohn-Sham equation with the adiabatic local den-
sity approximation (ALDA), where the exchange-correlation
potential is evaluated by the local density approximation with
the instantaneous electron density at each time. As an external
field, we employ a vector potential polarized along the c
axis with the form of Eq. (22). For practical calculations of
BaTiO3, we set E0 to 2.75 MV/cm, ω0 to 4 eV/h̄, and Tpulse

to 20 fs. We repeat the TDDFT calculations with the exter-
nal fields by using four different CEPs, φCEP = 0, π/2, π ,
and 3π/2. By averaging the obtained current from these cal-
culations, we extract the dc-like current component of the
light-induced current with Eq. (23).

Figure 5 shows the extracted dc-like current in BaTiO3 as
a function of time. As a reference, the envelope function of
the applied laser field is also shown as the black dash-dot

line. In Fig. 5, the result obtained by using the ALDA is
shown as the red solid line, while that obtained by using
the independent-particle approximation is shown as the blue
dashed line. Consistently with the one-dimensional model
simulations and the perturbation analysis, the finite dc-like
current remains even after the irradiation of linearly polarized
light when the mean-field potential, or the Kohn–Sham po-
tential, has the time dependence with the ALDA. By contrast,
the unphysical constant current after the field irradiation is re-
moved when the time-dependence of the mean-field is ignored
in the independent-particle approximation. We note that the
current oscillation persists after laser irradiation in Fig. 5, even
when the independent-particle approximation is employed.
Based on the above analysis, this oscillatory component of
the current does not contribute to charge transport, as the time
integral of the current is expected to be zero.

As seen from Fig. 5, one can confirm that the unphysi-
cal dc-like due to the mean-field approximation significantly
affects the photovoltaic response even in a realistic mate-
rial, BaTiO3, beyond the one-dimensional model calculations.
Therefore, the investigation on the shift-current and injection-
current with mean-field theories has to be carefully conducted
by properly removing the unphysical dc-current response.

VI. SUMMARY

In this study, we theoretically investigated second-order
nonlinear optical effects in solids, specifically focusing on
the shift and the injection-currents. We utilized numerical
simulations based on mean-field theories, such as TDHF and
TDH methods, to explore real-time electron dynamics under
laser pulse excitation and the resulting nonlinear current in the
time domain. The numerical simulations demonstrated that
the dc component of the second-order nonlinear current re-
mains finite even after irradiation with linearly polarized light,
indicating a possible induction of the injection-current by the
time-dependent mean field. However, simulations based on
the independent-particle approximation did not exhibit such
a residual dc component after linearly polarized light irradia-
tion.

To understand the origin of this residual dc component
observed in the nonlinear current, we performed perturba-
tion analysis using various levels of theories, including the
exact many-body Schrödinger equation, mean-field approx-
imations, and the independent-particle approximation. The
perturbation analysis with the exact many-body Schrödinger
equation revealed that linearly polarized light cannot induce
such residual dc component in the second-order nonlinear
current when the system has time-reversal symmetry before
laser irradiation. Similarly, the perturbation analysis using
the independent-particle approximation arrived at the same
conclusion, indicating that the presence of a residual dc
component in the second-order nonlinear current after laser
irradiation may occur only if the applied field is elliptically
polarized or breaks time-reversal symmetry. Consequently,
the perturbation analysis clarified that the residual dc com-
ponent in the nonlinear current is an artifact of the mean-field
approximations.

Further we performed perturbation analysis within the
mean-field theories, revealing that the unphysical dc
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component in the nonlinear current arises from population
imbalances in the Brillouin zone, specifically at k and −k
points. Additionally, the perturbation analysis showed that
this unphysical population imbalance is caused by quantum
interference between different excitation paths involving self-
excitation paths opened via the time-dependent mean field that
are not present in the full many-body solution. Furthermore,
we performed the first-principles electron dynamics calcu-
lations based on TDDFT using the adiabatic local density
approximation and confirmed that these findings apply also
to realistic materials. The resulting residual current obtained
by using the adiabatic approximation indicates a significance
of a time-nonlocal memory effect in the TDDFT to capture the
proper nonlinear dynamics of interacting many-body systems.

The unphysical dc current, resembling the injection-
current, induced by mean-field approximations may overcome
the intrinsic shift-current contribution due to the higher sus-
ceptibility divergence of injection-current compared with that
of the shift-current.

From a different perspective, the induction of unphysical
current through self-excitation paths via mean fields sug-
gests opportunities for improving density and current-based
many-body theories to describe light-induced nonlinear phe-
nomena more accurately. An accurate theory should prevent

the induction of unphysical dc current by eliminating popula-
tion imbalances arising from self-excitation paths. This could
be achieved by properly designing the Hartree-exchange-
correlation kernel, fHxc(r, r′, ω), in time-dependent density
functional theory. While this study focused on second-order
nonlinear optical responses, it would be crucial to consider
the potential significant impact of self-excitation paths in even
higher-order nonlinear phenomena as well. Therefore, the lim-
itations of local and semilocal adiabatic approximations and
the effects of unphysical self-excitation paths should be care-
fully evaluated for further investigations on highly nonlinear
optical phenomena.
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