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Abstract
Wetting of solid surfaces by liquid deposition, contact
dispensing, drop transfer, collision of wet particles, or during
coating processes is often accompanied by the formation of
liquid bridges between two or more solid substrates. They
appear in many applications, like material science, micro-
fluidics, biomedical, chemical, or aerospace engineering, and
different fields of physics. In this study, the flows accompanying
lifting of a Hele-Shaw cell, stretching or shearing of a liquid
bridge, as well as liquid bridge flows observed during printing
processes and other important applications, are briefly
reviewed. Such flows are governed by surface tension, inertia,
stresses associated with the liquid rheology, and forces caused
by the substrate’s wettability. Instabilities of liquid bridges lead
to the formation of finger-like structures on the substrate or the
appearance of cavities at the wetted region of the wall. The
time required for jet pinch-off also determines the residual
liquid volume on both solid bodies.
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1 As an experiment, this list of current applications of liquid bridges has been
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Introduction
A liquid bridge is a small volume of liquid that connects
two solid surfaces or objects. It forms due to the surface
tension of the liquid, which causes it to adopt a curved
shape between the two surfaces [1,2]. The stability of

the liquid bridge depends on the size of the liquid
volume, the surface properties of the objects, and the
surrounding environment.

In many cases, liquid bridges are formed by stretching a
liquid volume that initially wets a finite area between
two bodies. Stretchable liquid bridges have numerous
applications in different fields. The list of these appli-
cations1 includes:

� Material Science: The behavior of liquid bridges

under stretching can be studied to understand the
properties of materials such as adhesion, surface
tension, and rheology [3]. This knowledge can be
used to develop new materials with improved
properties.

� Microfluidics: Stretching liquid bridges are used in
microfluidic devices to manipulate small volumes of
fluids [4e6]. This is particularly useful in biological
applications such as cell culture and drug delivery.

� Biomedical Engineering: Stretching liquid bridges are
used in tissue engineering to mimic the mechanical

forces experienced by living tissues [7,8]. This can
help in the development of better artificial tissues and
organs.

� Chemical Engineering: The behavior of liquid bridges
can be used to optimize industrial processes such as
coating, painting, and printing. This can lead to
improved product quality and reduced manufacturing
costs.

� Physics: Stretching liquid bridges are used as model
systems to study fundamental physics concepts such
as fluid mechanics, interfacial phenomena, and non-

linear dynamics [9,10]. Among the phenomena that
are studied using liquid bridges are Marangoni or
buoyancy convection, flows accompanied by melting,
initially prepared with the help of artificial intelligence (AI) chatbot chatGPT, which

provided a surprisingly useful text. The text created by an AI algorithm has been

accepted and further edited by the human authors.
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boiling, solidification, or crystallization, and many
others.

� Aerospace Engineering: Liquid bridges are used in the
design and testing of microgravity propulsion systems
[11e14]. In these systems, liquid bridges can be used
to control the flow of propellant in a microgravity
environment where traditional pumps and valves do
not work. Another application of liquid bridges in
aerospace engineering is in the development of cool-
ing systems for spacecraft. Liquid bridges can be used
to transport heat away from sensitive electronic

components in a microgravity environment [15],
where traditional cooling systems are not effective.
Typical forced flow configurations in liquid bridges
include stretching, shear deformations, flows in open
channels, or flows in themeniscus in the contact region of

two rolling cylinders, as schematically shown in Figure 1.
The latest achievements in the study of the dynamics and
instabilities of liquid bridges in these four main configu-
rations will be briefly reviewed in this article.
Dynamics and instability of stretching liquid
bridges
Many physical processes are significantly influenced by
the dynamics of stretching liquid bridges, shown sche-
matically in Figure 1a, or can be associated with such
flows. One example is the interaction of an impacting
particle with a wet substrate or the collision of wet solid
particles. In Ref. [16] the restitution coefficient of an
impacted particle has been measured and modeled for
different volumes of the liquid bridge. Oblique and
normal impacts of a solid particle onto a wet substrate

have been studied in Refs. [17,18] and modeled,
considering the effect of stretching of the liquid bridge
Figure 1

Selected examples of forced flows in liquid bridges are: (a) liquid bridge stret
motion of cylinders.
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formed between the substrate and the particle during
rebound. A theoretical model of the collision of several
wet particles [19], which accounts for inertial, viscous,
and capillary effects in a stretching liquid bridge, is able
to predict the outcome of the collision: rebound,
agglomeration, or even a Newton’s cradle, which can
happen for three particles. Such studies are very
important for better understanding and reliable

modeling of particle agglomeration, wet particle fluid-
ization [20], ice crystal ice accretion [21], or the mate-
rial properties of wet granular media [22].

Dynamics of stretching of Newtonian bridges
The simplest case of the stretching of a liquid Newto-
nian bridge between two plates, one of which moves, is
illustrated in Figure 2. The phenomena include the flow
in a thin gap between two separating plates (lifted Hele-
Shaw cell), the formation of a stretching ligament be-
tween two menisci, and its breakup.

Viscous flow in a thin gap (lifted Hele-Shaw cell)
The process of liquid bridge stretching starts with the
flow in a thin gap between the plates, as shown in
Figure 2a. If the radius R(t) of the liquid spot is much

larger than the gap height H(t) and if the inertial effects
in the flow are negligibly small in comparison to the
viscous stresses, the axisymmetric flow in the gap far
from the meniscus is described by a solution [23] of
Landau and Lifshitz (1959)

vr ¼ 3 _H
rzðz�HÞ

H3
; vz ¼ _H

�
3z2

H2
� 2z3

H3

�
; (1)

where vr and vz are the radial and axial components of the

velocity relative to the fixed plate, z-axis is directed in the

direction of the moving plate. The expression for the
ching; (b) shear deformation; and (c) the flow associated with the rolling
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Figure 2

Fast stretching of a Newtonian liquid bridge between two parallel plates. The lower plate moves with a constant acceleration of a = 150 ms−2. The initial
droplet volume is 5 ml with an initial plate separation of H = 1.03 mm. The length of the scale bar is 10 mm. The Liquid is a mixture of 26.46 wt% water,
32.30 wt% glycerin, and 41.24 wt% ammonium thiocyanate with a dynamic viscosity of mRIM = 4.99 cPa. The main stages include: (a) flow in a thin gap
between plates; (b) formation of a jet, connecting two menisci; (c) jet stretching; and (d) pinch-off.
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pressure in the gap, accounting for the pressure jump at the

moving meniscus, is

pz
3m _H

H3

�
r2 � R2

�� s

�
2

H
þ 1

R

�
; (2)

where m and s are the liquid viscosity and surface tension.

Finally, the mass balance of an axisymmetric incom-
pressible flow in the gap yields.

_RðtÞ ¼ R _H

2H
: (3)

This simple, basic solution is not valid for all the pa-
rameters. The mass balance is not precise since, at high
rates of stretching, the plates are wetted by a thin re-
sidual liquid layer [24], although the observations show
that the meniscus apparently recedes.

The evolution of the radius of the liquid bridge (3) is
valid only for cases where the cross-section is circular
and uniform. This is not always the case since if the
initial gap between the plates is small enough, the flow

becomes unstable. Various types of outcomes of liquid
bridge stretching are shown in Figure 3. They include
www.sciencedirect.com
fingering instability, cavitation phenomena leading to
the nucleation and expansion of lacunas in the liquid at
the substrate interface, and the emergence of dendrite-
like or tree-like structures.

The formation of these fingers at the liquid interface is
often related to the SaffmaneTaylor instability, which
corresponds to the liquid flowing in a porous medium. In

fact, the dynamics leading to the fingering instability in
the stretching layer in a thin gap are much more similar to
the RayleigheTaylor instability, which is caused by a
positive pressure gradient at the interface. It can be shown
that the typical distance lfingers between fingers is scaled
well as

lfingersw
ffiffiffiffiffiffi
s

p;n

r
; (4)

where the pressure gradient in the axisymmetric case is

p,n = vp/vr. For the RayleigheTaylor instability caused by

gravity, the value of the pressure gradient is rg, and for the

interface acceleration, it is ra.

The main dimensionless numbers governing the
fingering instability of Newtonian liquid bridges include
the geometrical parameter l and the capillary number
Ca, defined as
Current Opinion in Colloid & Interface Science 2023, 67:101738
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Figure 3

Various outcomes of a liquid bridge stretching in a thin gap between parallel plates. Lifted Hele-Shaw cell with a constant acceleration a = 5 m/s2. Liquids
used in a–c) are a mixture of 26.46 wt% water, 32.30 wt% glycerin, and 41.24 wt% ammonium thiocyanate with a dynamic viscosity of mRIM = 4.99 cPa,
while in d) it is a diluted ink dye. The length of the scale bar is 5 mm. a) Fingering, pure liquid, H0 = 46 mm, R0 = 6.10 mm; b) fingering and cavitation, pure
liquid, H0 = 38 mm, R0 = 5.91 mm; c) fingering in a suspension, 30 mm particles, H0 = 57 mm, R0 = 7.32 mm; d) fingering and cavitation in a diluted ink dye
of shear thinning rheology, H0 = 40 mm, R0 = 5.78 mm.
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l ¼ H0

2R0
; Ca ¼ a1=2R0mffiffiffiffiffiffiffiffiffi

2H0

p
s
; (5)

However, also the Reynolds number Re ¼ ra1=2H
3=2
0 =m

can influence the outcome if its value is significant.

The fingering instability is analyzed in an experimental
and theoretical study [25] for a liquid bridge stretched
with constant acceleration. The model is able to predict
the maximum number of fingers and the threshold
conditions for the appearance of fingers.

In the experimental study [26], various mesh-like
structured liquid films have been obtained in a lifted
Hele-Shaw cell, while one of the plates is porous. The
effect of a bubble on fingering instability is investigated
in a purely theoretical study [27]. Here, the results of
the linear stability analysis are compared with the full-
scale computational fluid dynamics
(CFD) computations.

In [28], the case of a liquid drop squeezing and
stretching between two plates under the action of a

constant force is studied. They have shown that the
evolution of the bridge radius follows the R w t1/8

relation, which can be demonstrated using force balance
and the known expression (2) for the pressure in the
axisymmetric case. However, in this study, the analysis is
focused on complex non-axisymmetric cases, which
include non-symmetric fingering instability, expansion
and merging of several bridges, and the effect of
bubble expansion.
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Stretching of a liquid jet and breakup
As soon as the distance between the separating plates

becomes much longer than the wetting diameter of the
bridge, a stretching liquid jet is formed between the two
menisci. Themass and axial momentumbalance in a long,
nearly circular jet is usually expressed in the form [29].

vf

vt
þ vuf

vz
¼ 0;

vuf

vt
þ vu2f

vz
¼ 1

r

vF

vz
; (6)

where u is the axial velocity of the liquid in the jet, z is the
axial coordinate, f(z, t) h pR2 is the area of the jet cross-

section, and F is the total stretching force applied to the

jet cross-section, which accounts for the capillary pressure

in the jet, surface tension, and the internal

stresses associated with the jet rheology. For Newtonian

liquids, the expression for the force yields:

F ¼ 3mf
vu

vz
þ psR

"
K þ K3R

v2R

vz2

#
;

K ¼
"�

vR

vz

�2

þ 1

#�1=2

:

(7)

Such a quasi one-dimensional model has been applied
[30] for the description of the jet drawn out of a bath of a
viscous Newtonian liquid, accounting also for gravity
effects. The evolution of the ligament shape and the
breakup height are predicted by the model. In Ref. [31]
the breakup of an electrically induced liquid bridge of
nearly conical shape has been studied. Two main
breakup mechanisms are identified and modeled;
spontaneous and stretching breakups.
www.sciencedirect.com
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Liquid bridge breakup at fast bridge stretching between
two plates, one of which moves with a constant accel-
eration, has been studied in Ref. [32]. At high plate
acceleration, its velocity at some instant exceeds the
typical capillary velocity along the bridge, Vw

ffiffiffiffiffiffiffiffiffiffiffi
s=rR

p
.

The outcome of the bridge stretching at such acceler-
ations does not depend on the plate’s acceleration.

The flow regime in the liquid bridge at long times is
determined by the Reynolds number andWeber number

Re ¼ ra1=2R0H
1=2
0

m
; We ¼ raR0H0

s
; (8)

respectively. The Reynolds number determines the

threshold distance between plates at which the viscous and

inertial stresses are comparable. The Weber number de-

termines the distance at which the jet starts to stretch

freely due to inertia.

Two main time scales are introduced, the characteristic
capillary time ts and the viscous time scale tm, defined as

ts ¼
ffiffiffiffiffiffiffiffi
rR3

0

s

s
; tm ¼

�
m2rR5

0

s3

�1=4
: (9)

The viscous time is associated with the instant when the
viscous part of the force applied to the ligament cross-
section is equal to the capillary force. It is shown that
the pinch-off time of the stretching bridge scales well
with ts in low-viscosity liquids, for which the Reynolds

number is much higher than unity. For low Reynolds
numbers, the breakup time is well scaled by the viscous
time tm.

Rheologically complex, non-Newtonian liquid bridges
Complex fluids are heterogeneous mixtures that exhibit
non-Newtonian behavior due to the coexistence of two
or more phases, such as solid-liquid suspensions, gran-
ular solids, foams, and emulsions. The mechanical
properties of complex fluids are governed by the inter-
play of various physical forces and length scales,
including intermolecular interactions, particle-particle
interactions, and phase separation [33]. Consequently,
these fluids display a rich variety of mechanical re-

sponses, including solid-like elasticity, fluid-like flow,
and viscoelastic behavior. Therefore, most industrial
liquids are complex liquids, and their extensional
rheology is relevant to various industrial applications. In
polymer processing, the stretching and elongation of
polymer melts during manufacturing can lead to defects
that affect the mechanical and physical properties of the
final product, rendering understanding the uniaxial and
biaxial stretching of polymer melts critical for producing
high-quality polymer products [34]. In the food
www.sciencedirect.com
industry, extensional rheology is crucial for under-
standing the sensory properties of complex fluids like
mayonnaise, yogurt, and other similar products [35].
The extensional behavior of these fluids affects their
texture and mouthfeel, which are important factors in
determining consumer acceptance. Additionally, exten-
sional rheology has applications in other fields, such as
biotechnology, where it can be used to study the

behavior of complex biological fluids under stress, such
as blood clots [36]. Other applications worth
mentioning, including but not limited to, are fiber
spinning, film blowing, blow molding, thermoforming,
wire coating, and foaming [3].

For Newtonian liquids, the extensional viscosity is 3
times their shear viscosity, as can be found in the
expression (7), while for complex liquids this ratio
varies. The ratio between extensional viscosity and dy-
namic viscosity is known as the Trouton Ratio

(Tr = he/hs).

Furthermore, the behavior of a fluid under fast extension
depends on the relationship between the strain rate and
the fluid’s relaxation time. This correlation is referred to
as the Deborah number (De) ðDe ¼ _ε0lÞ, which is the
ratio of the characteristic response time of the fluid to
the characteristic flow time. Viscoelastic fluids have a
De between 0.5 and 10, while a De ≪ 1 means that the
fluid will be predominantly viscous, and a De [ 10
indicates an elastic fluid with behavior similar to a

Hookian spring. The Weissenberg number (Wi), on the
other hand, compares elastic forces to viscous forces
regardless of the time frame considered.

Near the moment of pinch-off, the nonlinear dynamics
undergo a significant transformation owing to the pro-
nounced effects of additional elastic stresses and non-
Newtonian shear and extensional viscosities [37]. The
necking of a viscous liquid has been described in a well-
known theoretical study [38]. The typical shapes of the
jets before pinch-off; however, are significantly influ-
enced by the liquid rheology. A detailed overview of

such shapes for different models of non-Newtonian
liquids can be found in Ref. [39].

Flows of suspensions
It is well known that the effective viscosity of a sus-
pension increases with increasing local particle volume
fractions. Shear-induced or inertial particle migration in
the flow of a suspension can result in the local accu-
mulation of particles and hence local variations in the
effective viscosity. While particle migration might occur
even at low volume fractions, at higher particle volume
fractions, shear thinning [40], shear thickening [41,42]
and jamming can lead to dramatic changes in the

effective viscosity [43e45]. Jamming of particles means
that a collection of particles becomes “stuck” in a
Current Opinion in Colloid & Interface Science 2023, 67:101738
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particular configuration, forming a rigid structure
[44,46e48]. Given that, it can easily be expected that
the bridge stretching behavior gets more complex
depending on the dynamics of the process and the
amount and type of particles involved.

The behavior of liquid bridges can be significantly
affected by the presence of suspended particles in the

liquid. Even at low solid volume fractions of about
1e3%, where the volume fraction does not affect the
viscosity, particles can induce disturbances that lead to
an accelerated thinning and breakup of the bridge [49].

In general, when a liquid bridge containing particles is
stretched, particles can form local agglomerations of
particles, which lead to the formation of sharp local
contractions, and voids of particles, which rapidly break
down and lead to an accelerated breakup compared to a
pure liquid [43,50,51], as schematically shown in

Figure 4a and b.

Thereby, in the course of the process, the effect of
particles on the dynamics varies. In the beginning, the
dynamics can be described by the effective viscosity of
the suspension [52,57]. This regime is followed by a
second regime, determined by the properties of the
interstitial fluid, corresponding to a fluid without par-
ticles [54,57]. In this regime, which occurs when the
neck diameter reaches the particle length scale, the
presence of the grains in the neck prevents the forma-

tion of a long, stable filament, leading to very localized
thinning, resulting in an accelerated breakup compared
to the pure liquid [54], as shown schematically in
Figure 4. Larger Particles were found to result in an
earlier breakup than smaller particles [57]. The
Figure 4

Sketch of the necking phenomenon in stretched suspensions, inspired by
the observations [52–56]. a) Necking in a dense suspension in liquid
bridge stretching; b) formation of particle clusters during necking.

Current Opinion in Colloid & Interface Science 2023, 67:101738
crossover between the regimes was described as a
function of grain size and initial volume fraction [54].

At high shear rates and high volume fractions, jamming
might occur in the liquid bridge, leading to its abrupt
breakup [43]. Thereby, the strain rate required for
jamming-induced breakup varies by orders of magnitude
if F is varied between 0.58 and 0.62 [43].

The presence of solid particles can enhance interfacial
instabilities [58e61]. In the case of a suspension in a
lifted Hele-Shaw cell, the instabilities can lead to the
emergence of fingers and dendrite-like structures, as
shown in examples in Figure 3c. The mechanism
responsible for particle-induced fingering is attributed
to the accumulation of particles at the fluid-fluid
interface (meniscus), resulting in a gradient of effec-
tive viscosity that induces miscible fingering [58,59].

Recently, polydisperse suspensions and suspensions with
non-Newtonian fluids have become the subject of
research [62e64]. In a viscoelastic suspension, the initial
neck formation and blistering instability are affected by
the presence of particles [62]. A recent study shows that
the difference in pinch-off time compared to a pure
liquid decreases linearly with increasing amounts of
small particles in bidisperse suspensions [63].
Friction forces on shear driven bridges
A better understanding of shearing flows in liquid
bridges is necessary for the modeling of wet granular
media [65,66] or for the characterization of the wetting
properties of solid substrates. These flows are deter-
mined by the capillary forces in the liquid bridge and by

the forces associated with the substrate’s wettability
and morphology [67].

Classically, the wetting properties of surfaces are char-
acterized by contact angle measurements, namely the
determination of the advancing contact angle qa and the
retracting contact angle qr. However, the forces associ-
ated with the wetting or dewetting of surfaces also
depend on the microscopic disturbances of the contact
line caused by local contamination or local abrasion of
the surface. Therefore, it is particularly important to

understand what additional forces are caused by local
variations in wetting properties.

The lateral force Flateral applied to a liquid bridge or to a
liquid drop sliding on a flat substrate is [68].

Flateral ¼ kswðcosqr � cosqaÞ (10)

where w is the width of the wet spot, s is the surface

tension of the liquid, and k z 1 is a dimensionless factor

determined by the shape of the contact line [69]. This

expression is valid only in cases where the capillary number,
www.sciencedirect.com

www.sciencedirect.com/science/journal/13590294


Forced flows in liquid bridges Roisman et al. 7
based on the propagation velocity, is much smaller

than unity and the variation of the contact angle with the

propagation velocity can be neglected. On a perfectly

smooth and uniform substrate, the value of the k number is

equal to unity. The measured value of k on real surfaces can

thus be used as an additional characteristic value associated

with the density of local surface disturbances.

A device [71] for direct measurement of the force Flateral,
a drop friction force instrument (DoFFI), is based on the
method presented initially by Hitoshi and Suda in 2003
[72]. This method has been used by various research
groups for the characterization of surfaces [73e75].

In DoFFI, a droplet sticks to a force sensor by capillary

action. A stable liquid bridge forms between the end of
the force sensor and the surface (Figure 5a). A ring
holder is used to better control the near-spherical shape
of the bridge. When the sample moves laterally, the
force sensor deflects, and the droplet deforms until qa
and qr are reached. Then the droplet starts sliding over
the surface. Typically, drop volumes of microliters, i.e.,
drop diameters of millimeters, exhibit friction forces in
the micro-Newton regime, depending on the nature of
the liquid and the surface.

The ring-holder influences the geometry of a liquid
bridge (Figure 5b e inset) and thus the value of the
measured force Flateral, as shown in Figure 5b, while the
values of qa and qr remain constant [70].

Moreover, a sessile drop requires a higher force to

initiate movement (depinning force) than to maintain
movement [76]. The magnitude of this depinning force
is proportional to the size of the surface defects [77].
This result agrees well with the theoretical predictions
by Joanny and de Gennes published in the 1980s [78].
Figure 5

Liquid drop sliding between a moving plate and a solid drop holder, connected
bending of the glass micropipette is read-out with a CCD video camera; b) d
surface; c) wetting map of a structured substrate obtained using a sDoFFI dev
“M”) and low contact angle hysteresis (inside the “M”). Adopted from Ref. [70

www.sciencedirect.com
Moreover, a sessile drop requires a higher force to
initiate movement than to maintain movement on any
solid surface with contact angle hysteresis [76]. The
magnitude of this depinning force is proportional to the
size of the surface defects [77]. This result agrees well
with the theoretical predictions by Joanny and de
Gennes published in the 1980s [78] and droplet evap-
oration studies [79].

Recently, the DoFFI device has been extended into a
2D characterization tool named scanning DoFFI [70].
This tool allows one to determine wetting maps of
surface samples having sizes of several square centime-
ters and to resolve wetting features from centimeter to
submillimeter sizes (Figure 5c).

Another surface force apparatus has been developed in
Ref. [80] and used for measurements of the lateral and
normal forces applied to a liquid bridge between two

parallel plates. They have developed a simplified model
that allows them to predict these forces. A more so-
phisticated theoretical model for the shear force, which
accounts for the complex geometry of liquid bridges on
rough substrates, can be found in Ref. [81]. Earlier [82],
we presented a force apparatus that allows decoupling
normal and lateral adhesion forces acting on the drop by
adding a tilted stage to a rotary stage.
Liquid bridge dynamics during printing
processes and other applications
A comprehensive review on of dynamics of liquid
bridges in cases relevant to printing can be found in
Ref. [83]. Liquid bridges appear in various types of
printing presses at the instant of ink splitting. Several
examples are shown in Figure 6. In rotary printing
techniques such as gravure, flexography, or offset
to a force sensor. a) Schematic view of the ring-shaped drop holder. The
ependence of the friction force on the distance of the ring relative to the
ice. The surface consists of an M-shaped structure with high (outside the
].

Current Opinion in Colloid & Interface Science 2023, 67:101738
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Figure 6

Schematic overview of liquid bridges in printing technologies: a) flexographic and gravure printing; b) pad printing; and c) screen printing.
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lithography, shown schematically in Figure 6a; see
Ref. [83], the printed image is represented by a raster or
pattern of small sessile ink drops of a few tens of mi-
crometers in size, which are transferred from the
printing cylinder to the substrate in a rolling motion.
The velocity vp of printing may range over three orders
of magnitude, from a few cm/s in, e.g., pad printing, to
15 m/s in the fastest rotogravure and flexographic web-
fed presses. At the moment when the surfaces of the
printing cylinder are lifted from the substrate, the foot

points of the ink drops are mutually retracted with an
acceleration of a ¼ v2p=R, where R is the radius of the
cylinder, creating liquid filaments and sheets that last
for a few milliseconds.

In pad printing (see Figure 6b), ink is transferred by a
stamping motion from a flat gravure plate with tiny
cells filled with ink to the substrate by use of a soft,
hyperelastic silicone pad [84]. Liquid bridges form on
two subsequent occasions: when the pad is lifted from
the plate and when it is lifted from the substrate after it

has deposited the ink there. In screen printing, the ink
is pressed through the tiny pores, i.e., typically
10e100 mm in size, in an elastic printing mesh kept
under tension. Ink squeeze is accomplished by means of
an elastic blade or squeegee pressed on the rear side of
the mesh. The mesh comes into contact with the sub-
strate under the tip of the blade. When the blade is then
pulled across the mesh, as in Figure 6c, ink passes
through the pores [85]. Ink splitting takes place at each
point of the substrate when the blade tip has passed and
the mesh is released from the surface.

In advance of splitting, rotary printing presses force the
ink through a microscopically small gap between the
cylinder and substrate. One may therefore distinguish
an early and a late regime [86] of ink splitting in the nip.
The early phase is characterized by a shear flow of the
ink, creating a negative pressure that destabilizes the
Current Opinion in Colloid & Interface Science 2023, 67:101738
ink meniscus on the diverging side of the nip [87]. Shear
rates of the order of 106 s�1 and velocities vp of several
m/s are typical. The numbers Ca = hvp/s are of order of
10�3e10 only, and the Laplace and Reynolds numbers
are small because of the very narrow gap width of
0.1e1 mm. Contrastingly, the late phase of ink splitting
is essentially of the elongation type, with progressive
thinning and breakdown of the liquid bridges in the nip
[88]. Laplace numbers are of the order of 100, which is
accompanied by vigorous drop formation, or fogging. One

finds linear filaments as well as liquid sheets, and
actually, high-speed video records show the expected
capillary waves [86].

The question of the mechanism thatdetermines the
volume of these bridges arises. Commonly, one assigns
liquid bridge size to the SaffmaneTaylor instability
[89]. However, recent high-speed video visualizations
[90] show that liquid bridge formation in the gravure
printing nip has a much more complex phenomenology.
The wedge between the cylinder and the substrate

develops to a steady state in which an excess volume of
ink is constantly conducted in the nip in addition to the
ink in the gravure cells. This excess volume depends on
both vp and cell volume, a phenomenon that has no
counterpart in the Hele-Shaw cell. The excess volume
creates a closed ink meniscus in the wedge between the
cylinder and substrate, which is the origin of the viscous
fingering pattern. Liquid bridges seeded from here have
a typical length scale of 150e300 mm.

Scaling laws of finger size with capillary number may

therefore differ from the Ca�1/2-behavior observed in
the Hele-Shaw cell [91]. Scaling exponents are shifted
when elastic surfaces [92] or shear-thinning inks are
used [93,94], or when the cell filling process by the
doctor blade is dependent on vp by itself [87]. A key
study on these effects of finger size selection is Carvalho
& Scriven [95]. Interestingly, the scaling exponent they
www.sciencedirect.com
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obtained is close to �0.9. This is not only far from the
SaffmaneTaylor result but also from most printing ex-
periments. Values between �0.3 and �0.5 are common
here. We believe that this discrepancy results is another
effect of the varying excess volume in the nip and that
the instability is actually a higher-order one, as in the
Hele-Shaw cell.
Unresolved problems and critical issues
Major challenges in the future research of liquid bridges
are associated with:

� Rheologically complex or multiphase liquids, liquids

with surfactants, especially accounting for the
complexity of modeling their wetting properties.

� Rough, morphologically, or chemically structured
substrates.

� Flows with phase change, like freezing or boiling.
� Unstable, relatively fast realistic flows
accompany modern technological processes like
printing or coating.
Let us revisit the topic of fingering during gravure
printing discussed in x4. With onset of the finger for-
mation, ink may float forth and back through the nip and
couple the meniscus to the delicate equilibrium of
viscous shear forces in the nip. To the knowledge of the
authors, this is unique within the family of hydrody-
namic instabilities, and the linear stability analysis in
Ref. [95] is incomplete. One of the perspectives here

could be the data-driven recognition of the principal
degrees of freedom and the governing equations of
pattern formation [96e98]. This is a challenging task
because of the huge quantities of experimental data
needed, but could be accomplished with the aid of
machine-learning-assisted pattern recognition, applied
to, e.g., video records of liquid bridge dynamics in the
gravure nip [90] or viscous fingering scans from mass
production on industrial-scale printing presses [91,99].
Adequate software tools have proven their versatility
[100]. It is crucial to realize that viscous fingering in the

nip cannot be assigned to only one specific type of hy-
drodynamic instability but comprises transitions be-
tween different non-linear, stochastic systems [87], an
insight that is not new in relation to liquid bridges [101].
This can give rise to beautiful, highly symmetric orna-
ment patterns [91] as well as those resembling
more irregular vascular networks [102].
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