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Left ventricular stiffness and contractility, characterized by the end-diastolic
pressure-volume relationship (EDPVR) and the end-systolic pressure-volume
relationship (ESPVR), are two important indicators of the performance of the
human heart. Although much research has been conducted on EDPVR and
ESPVR, no model with physically interpretable parameters combining both
relationships has been presented, thereby impairing the understanding of cardiac
physiology and pathology. Here, we present a model that evaluates both EDPVR
and ESPVRwith physical interpretations of the parameters in a unified framework.
Our physics-based model fits the available experimental data and in silico results
very well and outperforms existing models. With prescribed parameters, the new
model is used to predict the pressure-volume relationships of the left ventricle.
Our model provides a deeper understanding of cardiac mechanics and thus will
have applications in cardiac research and clinical medicine.

KEYWORDS

cardiac mechanics, end-diastolic pressure-volume relationship, end-systolic pressure-
volume relationship, left ventricle, physics-based model

1 Introduction

A well-functioning heart is critical to the quality of human life (Gilbert et al., 2007). The
pump function of the heart can be captured by the pressure-volume (PV) loop, which is a
simple and useful framework for analyzing cardiac mechanics from a physical perspective
(Witzenburg et al., 2017). Deoxygenated blood is pumped from the right ventricle (RV) to
the lungs, and in turn, oxygenated blood is pumped from the left ventricle (LV) to the
rest of the body. Because the LV is physically subjected to more stress and strain than
the RV, left-sided heart failure is more common than right-sided or biventricular heart
failure (MedlinePlus, 2023), wherefore we have focused our analysis on the LV.The concept,
however, can be applied to the RV likewise.

As shown in Figure 1, exemplary for a PV loop, the lower right point (point
1) indicates the end-diastolic (ED) state of the LV. Varying ED filling pressures
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FIGURE 1
Illustration of the PV loop, ESPVR, and EDPVR of the LV. The EDPVR
and ESPVR are highlighted in red and the PV loop is in blue. The
arrows on the PV loop correspond to the direction of the LV beating
cycle. Curve 3-4-1 corresponds to the diastolic phase. At point 1, the
ventricular volume reaches its maximum value as the blood fills into
the LV, which is called the EDV. Similarly, curve 1-2-3 corresponds to
the systolic phase. At point 3, the ventricular volume reaches its
minimum value during LV contraction, which is referred to as ESV. The
difference between EDV and ESV is the SV, indicating the amount of
blood pumped by the LV per cardiac cycle. At different filling pressure
and contractility, points 1 and 3 move on a single curve called the
EDPVR and ESPVR, respectively. (EDPVR, end-diastolic
pressure-volume relationship; ESPVR: end-systolic pressure-volume
relationship; EDV, end-diastolic volume; ESV, end-systolic volume; SV,
stroke volume).

yields a change in ED volume. For a heart, these data points fall
roughly on a single curvewhich is termed the end-diastolic pressure-
volume relationship (EDPVR) (Sunagawa et al., 1983). The EDPVR
is widely used to estimate the mechanical property of myocardium
(Ten Brinke et al., 2010; Krishnamurthy et al., 2013a; Dabiri et al.,
2018; Palit et al., 2018).The upper left point (point 3) on the PV loop
indicates the end-systolic (ES) state of the LV, and the related curve is
the end-systolic pressure-volume relationship (ESPVR).The ESPVR
and its slope are generally used to describe the contractility of the
heart. In this work we present a physics-based model for both the
EDPVR and ESPVR.

The EDPVR comprises a number of important markers used
by both researchers and clinicians in health assessments. Many
studies have shown that the EDPVR has a strong association with
heart diseases. Despite its long history, the EDPVR continues to
gain increased attention. Goto et al. (1985) studied the effects of
right ventricular ischemia on LV EDPVR in canine hearts. A
leftward and upward shift in the LV EDPVR was observed with
no change in LV myocardial performance. Ten Brinke et al. (2010)
predicted the LVEDPVR in patients with end-stage heart failure (LV
ejection fraction <40%) using single-beat estimation and concluded
that such method facilitated less invasive EDPVR estimation.
Schwarzl et al. (2016) showed that, due to LV remodeling, the
EDPVR was shifted rightward and leftward in heart failures with
reduced ejection fraction and heart failure with preserved ejection
fraction, respectively, compared with the reference case. In addition,
the risk of heart failure for non-heart failure individuals was found
to be associated with the changes in LV capacitance and stiffness,

which can be extracted from the EDPVR. Witzenburg and Holmes
(Witzenburg et al., 2017) stated that EDPVR contains information
not only about the mechanical properties of the myocardium but
also about LV geometry. Since cardiac diseases alter the shape or
stiffness of the heart and thus the EDPVR, the EDPVR is important
and helpful to clinicians.

Despite numerous experimental and clinical studies on the
EDPVR, there is relatively little theoretical knowledge, especially on
the formulation of the corresponding curves. One commonly used
method is to fit the EDPVR to an exponential form (Artrip et al.,
2001; Burkhoff et al., 2005; Rodriguez et al., 2015; Shimizu et al.,
2018),

PED = A(e
B(VED−V0) − 1) , (1)

where PED is the end-diastolic pressure (EDP); VED is the end-
diastolic volume (EDV); A and B are fitting parameters; V0 is the
reference volumewhen the ventricular pressure of the LV is zero.The
exponential term in Eq. 1 is to reflect the exponential stress-strain
relationship of the myocardial mechanical property. Its nonlinearity
reflects the fact that diastolic stiffness steadily increases with loading
(Ten Brinke et al., 2010).

Klotz et al. (2007) suggested that the EDPVR can be non-
dimensionalized so that all values for different species, being dog,
rat, or human, fall closely on a single curve, called the Klotz curve,

PED = AnV
Bn
n , with Vn =

V−V0

V30 −V0
, (2)

where An and Bn are fitting parameters; Vn is the normalized
volume;V0 andV30 are the ventricular volumeswhen the ventricular
pressures are 0 mmHg and 30 mmHg, respectively. The Klotz curve
serves as a reference in some cardiovascular studies. In Nordsletten
et al.’s study on human left ventricular diastolic and systolic function
(Nordsletten et al., 2011), the Klotz curve served as a reference to
validate the numerical data. Hadjicharalambous et al. (2015) took
the Klotz curve as a matching target when evaluating the initial
parameter set for 3D tagged MRI. Although widely used, the Klotz
curve is an ad hoc empirical function describing the EDPVR, and
does not have physical justification. Furthermore, it shows poor
agreement with the experimental data and simulation data at small
volumes (Klotz et al., 2007; Dabiri et al., 2018).

Besides the exponential model and the Klotz curve, other forms
of fitting of the EDPVRcanbe found in the literature (Burkhoff et al.,
2005). These fittings of different orders are more mathematical
in nature and do not have sufficient physical implications. Thus,
a deeper understanding of the EDPVR and its interaction with
myocardial properties and cardiac disease warrants a physicalmodel
derived directly from the fundamentals of cardiac mechanics.

Although the EDPVR and ESPVR share common mechanisms,
they have mostly been studied separately. Very idealized the ESPVR
is assumed to be linear and can be fitted with PES = EES(VES −V0)
(Sagawa, 1978; Burkhoff et al., 2005; Rodriguez et al., 2015;
Shimizu et al., 2018). Therein PES and VES are the pressure and
volume at the ES state, respectively; EES is the slope of the curve,
thus the ES elastance. In reality, however, with different contractility,
the ESPVR is nonlinear especially over a large volume range
(Burkhoff et al., 1987; Burkhoff et al., 2005; Moriz et al., 2021).
Some other fitting functions, such as the bilinear form Moriz et al.
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(2021) and parabolic form Burkhoff et al. (1987) can also be found
in the literature. Nakano et al. (1990) investigated the nonlinearity
of the ESPVR and proposed a contractile index independent of
ventricular size. In their work, the LV was mimicked by a thick-
walled ellipsoid and the contractile index was used to calculate the
wall stress based on the concept of mechanical work. PES and VES
can then be connected with the relationship between wall stress
and thickness. Experiments with 25 healthy dogs showed that the
proposed contractile index was independent of ventricular size and
geometry. Sato et al. (1998) measured the ESPVR of rat LV in situ
with a catheter and observed contractility dependent nonlinearity
in the ESPVR. Moriz et al. (2021) focused on the nonlinearity of the
ESPVR and investigated the effect of different loading alterations on
the shape of the ESPVR in pig hearts. The bilinear behavior of the
ESPVR in their experimental data strengthens the argument that
the linear model is only a special case of nonlinear ESPVR, which is
a strong support for the physics-based ESPVR model with similar
nonlinearity that wewill present. A recent review of invasive analysis
for the PV relationships in the LV, including both the EDPVR and
ESPVR, can be found in Bastos et al. (2020).

Here we present a physics-based model that characterises both
the EDPVR and the ESPVR. The model uses parameters derived
from the properties of the heart under consideration. The physical
properties, such as myocardial stiffness, thickness, and contractility,
replace the extensive use of otherwise conjectured fitting parameters
found in previous works, as discussed above. Section 2 presents the
physics-based model. Section 3 offers a discussion of the model,
including its validation and its predictions. Section 4 considers the
implications and limitations of the model. Finally, a conclusion is
given in Section 5.

2 The physics-based model

2.1 Model definition and theory

The schematic of our physics-based model in the reference
state is shown in the left panel of Figure 2. The right panel shows
an example of deformation with end-diastolic ventricular wall
thinning. Conversely, the wall thickens during systolic contraction.
Matching the simplicity of the single curve for either EDPVR or
ESPVR, the cardiac shape is approximated by a thick-walled sphere.
The use of such simplified geometries dates back to the early days
of cardiac modeling and can be found still in modern research
(Anani and Rahimi, 2016; Kalhöfer-Köchling, 2020). The reference
geometry Ω0 of the LV is shown on the left-hand side, whereas the
right-hand side depicts the geometry in a deformed state. The inner
and outer radius of the sphere for the reference geometry are Rendo
and Repi, respectively. The wall thickness is thus Repi −Rendo. While
in the deformed geometry, the inner and outer radius become rendo
and repi, correspondingly.

A spherical coordinate system is adopted so that its origin is
located at the center of the sphere.The three orthogonal basis vectors
of coordinate systems are (er,eθ,eφ). A deformation maps a point X
in the reference geometryΩ0 to point x in the deformed geometryΩ.
For a given point X in the reference geometry, the radial coordinate
is R, while the corresponding radial coordinate of the point x in
the deformed geometry is r. The second and third coordinates of

the point, θ and φ, keep unchanged under deformation due to the
assumption of centrosymmetry, which will be clarified later. The
deformation gradient tensor is defined as

F = ∂x
∂X
. (3)

Under the spherical coordinate system, it is straightforward to get

F = diag(λρ,λθ,λφ) , (4)

where λρ is the radial strain; λθ and λφ are two tangential strains.
We assume that the myocardium is incompressible, resulting in

the volumetric strain J = det(F) = 1, yielding the relation

λρλθλφ = 1. (5)

The sphere only has expansion and contraction deformations, which
means that the points in the domain only have radial displacement.
We have the symmetry constraint

λθ = λφ. (6)

The strain λθ can be calculated by the ratio of the perimeter l of the
cross-section through the spherical center (which is represented by
the red dotted circle in Figure 2) on the deformed geometry and L
on the reference geometry λθ = l/L, yielding

λθ =
r
R
. (7)

Substituting Eqs 6, 7 into Eq. 5, we can get the radial strain

λρ =
R2

r2
. (8)

Numerically, the right Cauchy-Green strain tensor C is a better
choice for solving the balance equation than the deformation
gradient tensorF, since the former is symmetric and positive definite
for all points X ∈Ω0, which reduces computational costs. Said right
Cauchy-Green strain tensor is defined as

C = FTF. (9)

Substituting Eqs 4–6 into Eq. 9, the right Cauchy-Green
deformation tensor reads

C = diag(λ2ρ,
1
λρ
, 1
λρ
). (10)

The first invariant of the right Cauchy-Green deformation tensor I1
can be expressed as

I1 = λ2ρ +
2
λρ
. (11)

Due to the incompressibility of the myocardium, the volume
between the inner surface and the red dotted spherical surface (see
Figure 2 for reference), stays constant. It follows straightforward that

R3 −R3
endo = r

3 − r3endo. (12)

The geometrical parameters are further normalized by the inner
radiusRendo and the ventricular volumeV0 of the reference geometry
as follows

R̂ = R
Rendo
, ̂r = r

Rendo
,δ =

R−Rendo

Rendo
,Δ =

Repi −Rendo

Rendo
, V̂ = V

V0
,

(13)
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FIGURE 2
Schematic diagram of the geometry and its deformation in the physics-based model. A thick-walled sphere is used to mimic the LV, whose cross
section through the sphere center is shown. The reference geometry Ω0 with inner radius Rendo and outer radius Repi is given on the left side. The
deformed geometry Ω in the diastolic state with inner radius rendo and outer radius repi is shown on the right. For any point X in the reference geometry
Ω0, the corresponding position on the deformed geometry Ω is x, with radial coordinate R and r, respectively. Centrosymmetric deformation is
assumed for the model. Endo, endocardium; epi, epicardium.

where Δ is the normalized thickness; V is the ventricular volume at
deformed geometry. With Eqs 12, 13, the normalized radius can be
expressed as

̂r = (R̂3 + V̂− 1)1/3. (14)

The total elastic energy W stored in the myocardium can be
calculated by integrating the energy density function Ψ over the
domain Ω0

W = ∫
Ω0

ΨdΩ. (15)

The sphere experiences an inner pressure P, representing the
blood pressure inside the LV. While the outer pressure is set to
zero, indicating a free boundary condition. Based on classical
mechanics, it is known that any mechanical work W performed
on the sphere due to a given internal pressure P follows the
relation

P = dW
dV
. (16)

Substituting Eqs 9–15 into Eq. 16, we get an important relationship

P = −2∫
Δ

0

λ2ρ
̂r
dΨ
dλρ

dδ. (17)

Therein, the ventricular pressure is expressed as the integral of
the energy density function Ψ over the domain defined by the
normalized thickness. The EDPVR and ESPVR can be further
deducted based on this relationship. Besides such mechanical work
approach, another approach based on stress analysis can also be
found in Kalhöfer-Köchling (2020).

2.2 End-diastolic pressure-volume
relationship

The myocardium is considered to be a homogeneous,
incompressible, anisotropic, and fiber-reinforced soft material
that generates active forces. Inspired by experimental data,
several constitutive laws (energy density function Ψ) for the
myocardium have been developed in the last decades, including the
orthotropic Holzapfel-Ogden model (Holzapfel and Ogden, 2020)
and our recently developed squared generalized structure-tensor
(SGST) models (Kalhöfer-Köchling et al., 2020), in which the fiber
dispersion of the myocardium is taken into account. Considering
the microstructure of the myocardium, these constitutive laws
contain different contributions of isotropic, fibrous, and laminar
structures as well as their coupling, and are used for simulations at
tissue or organ level (Baillargeon et al., 2014; Chabiniok et al., 2016;
Kalhöfer-Köchling, 2020).

As a first approximation, by neglecting the anisotropy of the
cardiac tissue, the isotropic energy function is considered in this
work

Ψ = a
2b
(eb(I1−3) − 1) , (18)

where a and b are mechanical parameters representing the material
property, i.e., the stiffness, which can be obtained from experiments.

Incorporating the constitutive law Eq. 18 into Eq. 17, one gets
the passive contribution of the myocardium on the ventricular
pressure, implying the EDPVR

PED = 2a∫
Δ

0

1− λ3ρ
̂r

eb(I1−3)dδ. (19)

Therein, the input parameters are a, b and Δ, while the output is a
function indicating the relation between the ventricular volume and
the ventricular pressure at the ED state.
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2.3 End-systolic pressure-volume
relationship

There are two contributions to the stresses and strains in cardiac
muscle tissue: the passive and the active components. As for the
passive contribution, the tissue generates resistive stress when it is
deformed.This tension contributes to the ventricular pressure of the
LV. On the other hand, the tissue actively contracts and the active
force generated inside the tissue also contributes to the ventricular
pressure. Active contraction of the cardiac muscle can be modelled
in two different ways: using the additive stress approach or the
multiplicative strain approach, as described in Pezzuto (2013). We
have adopted the former due to its simplicity and intuitive nature.
Thus, we have the total pressure P = Pp + Pa and the energy function
Ψ = Ψp +Ψa. The indices p and a represent the passive and active
parts, respectively.

To model the ESPVR, an active contribution, which indicates
the active force generated by the myocardium during the ES state,
is added onto the passive contribution Eq. 18. Such an active
contribution reads

Ψa = Ta(
λ2

2
− λ0λ), (20)

where Ta is the maximum active stress; λ0 = l0/lr with the
sarcomere smallest length l0 = 1.58 μm and rest length lr = 1.85 μm
(Guccione et al., 2001). The strain of the sarcomere λ is defined as

λ = √C:Ha. (21)

The active force structure tensor Ha is defined such that contractile
forces act in the tangential plane of the myocardium

Ha = I− er ⊗ er, (22)

Substituting Eqs 21, 22 into Eq. 20, the energy function for active
force reads

Ψa = Ta(
1
λρ
− λ0√

2
λρ
). (23)

Incorporating Eq. 23 into Eq. 17, we obtain the active contribution
of pressure

Pa = 2Ta∫
Δ

0

1− λ0√
λρ
2

̂r
dδ. (24)

The pressure at the ES state contains both the passive and active
parts. Adding Eq. 24 onto Eq. 19, we get the ESPVR

PES = 2∫
Δ

0

a(1− λ3ρ)e
b(I1−3) +Ta (1− λ0√λρ/2)

̂r
dδ. (25)

3 Validation and discussion

3.1 Physics-based model: EDPVR

To validate the physics-based EDPVR model, we fit different
models to the dataset from Klotz et al. (2006) and Klotz et al.

(2007) and compare them in Figure 3. The dataset contains ex vivo
EDPVR data for 80 human hearts. The fitting was implemented
by minimizing the mean squared error (MSE) for the models. The
full dataset with pressure up to 30 mmHg, and a subset with a
physiologically reasonable pressure range (up to 20 mmHg), were
considered respectively.

As we can see in Figures 3A, B, the green solid lines representing
the physics-based model show a good fit to the experimental
data. We compared our model with two other widely used
EDPVR models, i.e., the exponential model (Artrip et al., 2001;
Rodriguez et al., 2015; Shimizu et al., 2018) and the Klotz curve
(Klotz et al., 2007). The Klotz curve (Eq. 2) belongs to the family of
polynomial power functions, while the former (Eq. 1) is classified in
the form of exponential functions. Our physics-based model entails
the combination of an exponential energy function (Eq. 18) with a
volume integral, hence resulting in exponential behaviour. It should
be noted that during the curve fitting the original exponential model
was adapted to the same normalized form as the Klotz curve. This
was done by replacing the term V−V0 with Vn, which yields PED =
A(eBVn − 1).

The optimized parameters for the three models are given
in Table 1. Contrary to previous models, the parameters in
our model have a physical meaning. For example, a and b
together reflect the stiffness of the material. The fitted values
of a and b of our model are close to most values from
experiments and simulations in the literature (Baillargeon et al.,
2014; Nikou et al., 2016), although parameter estimates themselves
often vary considerably across different datasets and experimental
protocols. These two parameters are exactly the same as those in
the isotropic constitutive law (Eq. 18). Δ is the normalized thickness
of the LV wall, which is an important measure of the ventricular
geometry.

The resulting curves of the three models in the full dataset
are shown in Figure 3A. The MSEs of the original exponential
model, the Klotz curve, and the physics-based model are 2.82,
3.19, and 3.08, respectively. Since our physics-based model uses
an exponential constitutive law, it is fundamentally similar to
the original exponential model. This is why the curves of the
physics-based model and the original exponential model are almost
identical, and both perform better than the Klotz curve. Figure 3C
presents the residuals of the exponential model and the Klotz
curve, using the physics-based model as a reference. It can be seen
that the exponential model is much closer to the physics-based
model, especially in the region with small volumes. It is also worth
mentioning that the Klotz curve is not consistent with its definition
at the maximum volume or pressure. When the normalized volume
Vn is equal to 1, the resulting pressure in the Klotz curve is the
same as the value of An, which, by design, may be different from
the expected 30 mmHg.

The physics-based model shows its strong utility for small
volumes. The normalized volume Vn of this region ranges from
0 to 0.8, corresponding to the pressure 0–20 mmHg, which
covers the EDP of the human heart. To better evaluate these
three models within this physiologically reasonable range, we
generated a sub-dataset with pressures no more than 20 mmHg.
The results are shown in Figures 3B, D. Here, the physics-based
model shows the best fit with a MSE of 2.46. The MSE for the
exponential model is 2.48. The Klotz curve has the worst fit
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FIGURE 3
Comparison between the exponential model (Eq. 1), the Klotz curve (Eq. 2) and the physics-based model (Eq. 19) for the EDPVR. (A–C) The fitted
curves to the full experimental dataset and the corresponding residuals. MSEs: exponential model, 2.82; Klotz curve, 3.19; physics-based model, 3.08.
(B–D) The fitted curves to the sub-dataset and the corresponding residuals, with pressure no more than 20 mmHg. MSEs: exponential model, 2.48;
Klotz curve, 2.69; physics-based model, 2.46. Model parameters for subfigures (A–C) and (B–D) are listed in Table 1.

TABLE 1 The least-square fits for the three EDPVRmodels with respect to the datasets presented in Figure 3. MSE, Mean Squared Error.

Exponential model, Eq. 1 Klotz curve, Eq. 2 Physics-based model, Eq. 19

A (kPa) B MSE An (kPa) Bn MSE Δ a (kPa) b MSE

Full dataset 0.16 3.18 2.82 3.70 2.76 3.19 0.27 1.15 3.82 3.08

Sub dataset 0.18 3.07 2.48 3.10 2.27 2.69 0.27 2.10 8.71 2.46

with a MSE of 2.69, indicating its weakness at small ventricular
volumes.

The Klotz curve is often used as a reference when estimating
material parameters of myocardium, like stiffness, in numerical
simulations (Krishnamurthy et al., 2013b; Hadjicharalambous et al.,
2017; Sack et al., 2018). These simulations mostly use exponential
constitutive laws to describe the mechanical properties of the
myocardium. Based on the above-mentioned comparison, the new
physics-based model shows the capacity to replace the Klotz curve
in similar simulations in the future.

Because of its bottom-up, physical nature, the model can be
used to predict the EDPVR of a ventricle with given information,
such as mechanical properties and thickness of the myocardium.
In Figure 4A, Dokos et al. (2002) represents the parameters for
pig hearts, Demiray (1972) and Marx et al. (2022) are for the
human hearts. We further performed finite element simulations
using COMSOL Multiphysics (version 6.0.0.405) with the same
parameter sets. The geometry of the finite element model is
the same as that of the physical model, i.e., a thick-walled
sphere. The normalized inner radius and thickness are 1.0 and

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2023.1195502
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhang et al. 10.3389/fphys.2023.1195502

FIGURE 4
The physics-based model predicts the effect of varying mechanical properties on the EDPVR with in silico validation. (A) The EDPVR curves predicted
by the physics-based model with different parameter sets. (B) In silico validation of the physics-based model. Simulation results agree with the
physics-based model very well for each set of parameters. Parameters used in the physics-based model: Klotz 2007: a = 1.15 kPa, b = 3.82; Dokos
2002: a = 2.52 kPa, b = 6.79; Demiray 1972: a = 1.00 kPa, b = 6.5; Marx 2022: a = 1.98 kPa, b = 6.19. For all curves: Δ = 0.27.

0.27, respectively. The inner surface was subjected to a constant
pressure mimicking the ventricular pressure from blood, while the
outer surface was free. Due to rotational symmetry, only 1/8 of
the sphere with 26,392 tetrahedral elements (119,614 degrees of
freedom) was simulated using the symmetry boundary condition.
Equation 18 was used for the passive myocardium. The volumetric
energy function Ψv = κ((J2 − 1)/2− ln J) was applied to ensure tissue
incompressability. The bulk modulus κ was 1 GPa; J = det(F) was
the volumetric strain. Finally, in Figure 4B the normalized volume
V/V0 and pressure obtained from the simulation are compared
with the algebraic solutions of our physics-based EDPVR model.
The perfect match between the finite element simulation and the
theoretical model is not surprising as they are conceptually identical
and only the calculation scheme differs. This is a demonstration of
the relation between constitutive models commonly employed in
cardiac mechanics simulations and our algebraic equation.

By changing the thickness Δ in our model, we studied how
myocardium thickness affects the EDPVR of the LV, as shown in
Figure 5A. An increased myocardium thickness leads to an upward
lift of the EDPVR curve. To keep the same volume, higher pressure
is needed when increasing the thickness of the LV, as shown in
Figure 5B. This reflects the strong utility of a physics-based model
over that of simply fit, i.e., the physics-basedmodel is predictive over
a wide range of parameters while a fit cannot.

3.2 Physics-based model: ESPVR

The ESPVR describes the relationship between ventricular
pressure and volume at the ES state of the LV as loading conditions
change. It is composed of two parts, as shown in Eq. 25. The first
part is identical to the EDPVR and the second part comes from the
active force generated by the myocardium. The two contributions
are shown in Figure 6A. Therein, the solid blue line is the overall

ESPVR, while the dashed green one is from the active contraction.
A large proportion of the pressure in the LV during the contraction
is due to the active force generated by the myocardium.The shape of
the ESPVR, especially when the normalized ESV is less than 1.0, is
mainly determined by the passive resistance due to the deformation
of the myocardium. In addition, the ESPVR with small volume
is roughly linear, while the overall curve is almost bilinear. This
implies that both the linear or bilinear forms of the ESPVR used
in the literature have some validity. Please also notice that for the
passive part of the ESPVR, the pressure is shown as a negative value.
Negative pressure means that the tissue is resisting the deformation
caused by its own active contraction.The greater the deformation at
ES state, the more negative pressure (resistance stress) is generated,
so that the required ventricular pressure is lower. It should be noted
that the resistance stress increases in a nonlinear fashion with the
decrease of the ESV, due to the nonlinear stress/strain behavior of
the tissue. This results in the nonlinear shape of the ESPVR. Our
model also shows that the positive slope of the ESPVR is mainly due
to the decrease of the resistance stress as ESV increases.

To validate the proposed ESPVR model, we performed an
additional finite element simulation, with the same geometry,
mesh, boundary condition and volumetric energy function as
previously considered for Figure 4B. The active force generated by
the myocardium was determined by the energy function Eq. 20. For
the passive response of the myocardium, the energy function was
chosen according to Eq. 18. Parameters used in both the physics-
based ESPVR model and numerical simulation are a = 1.15 kPa,
b = 3.82, and Ta = 76.90 kPa. In Figure 6B, the orange dots present
simulation results while the blue solid line is from the physics-
based ESPVR model. In a large region of the normalized volume,
the ESPVR predicted by the physics-based model agrees with the
simulation results very well.

To further check the validity of our physics-based ESPVRmodel,
we compared it with experimental ESPVR data. The experimental
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FIGURE 5
The physics-based model predicts the effect of varying myocardial thickness on the EDPVR. (A) The EDPVR curve moves upward with the increase of
thickness Δ, while a and b remain constant. (B) Nonlinear relationship between the ventricular pressure and the thickness, with constant normalized
volume V/V0 = 2.0. Parameters used in the physics-based model: a = 1.15 kPa and b = 3.82.

FIGURE 6
The intrinsic structure and in silico validation of the physics-based ESPVR model. (A) The pressure in the ESPVR has two contributions, one from the
active contraction and the other one from the passive resistance of the tissue. The overall level of pressure is mainly determined by the active stress.
The shape, especially at the lower ventricular volume region from 0.5 to 0.7, is mostly influenced by passive resistance. (B) The theoretical ESPVR curve
fits very well with the simulation results. The parameters for both the theoretical and simulation are Δ = 0.27, a = 1.15 kPa, b = 3.82, and Ta= 76.9 kPa.

data for a pig heart was extracted from Moriz et al. (2021), by
changing afterload pressure. The stress-free volume of the LV,
V0, was assumed to be 50 mL based on Figure 3B of Moriz et al.
(2021). Since the mechanical property and contractility of that pig
heart were unknown, a = 2.52 kPa and b = 6.79 (Dokos 2002 in
Figure 4) were adopted from Dokos et al. (2002), which performed
shear test for cardiac tissue of the same specie; Ta = 81.89 kPa was
obtained by fitting our ESPVR model to the experimental points
and this value is physiologically reasonable. Other parameters used
in our physics-based ESPVR model are Δ = 0.27 and λ0 = 0.85 as
usual. As shown in Figure 7, our model shows good agreement

with the experimental data with a maximum relative error of
6.77%.

4 Implications and limitations

Adjusting the parameters of the physics-based model allows the
study of left ventricular diseases, such as left ventricular hypertrophy,
decreased contractility, and diastolic heart failure. For example, for
patients with hypertrophic cardiomyopathy, the heart wall thickens
to maintain pump function. This effect is easily visualized with

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2023.1195502
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhang et al. 10.3389/fphys.2023.1195502

FIGURE 7
Comparison of the physics-based model and experimental data for
the ESPVR. The physics-based ESPVR model is shown in blue. The
experimental data of a pig heart, shown as orange crosses, is from
Moriz et al. (2021). The volume of the original data is normalized,
assuming stress-free volume V0 = 50 mL. Parameters used in the
physics-based model: Δ = 0.27, a = 2.52 kPa, b = 6.79, and
Ta= 81.89 kPa.

our physics-based model (see Figure 5). In addition, the passive
parameters a and b can be manipulated to better understand such
disease.

With the physics-based model, one can generate both the
EDPVR and ESPVR for the same LV in the same plot, as shown
in Figure 8. With given information such as pressure or volume in
the ED and ES states, the PV loop will be determined. Therefore,
indicators of pump function, such as the stroke volume (SV) and
ejection fraction (SV/EDV) can also be calculated. Furthermore,
considering new therapies for heart failure, such as engineered
muscle tissue (Zimmermann et al., 2006; Tiburcy et al., 2017),
Figure 8 also shows that increasing wall thickness by implanting
contractile tissue patch will increase the pump function of the
LV. This is because when the wall thickness is increased, the
EDPVR hardly changes, while the ESPVR is lifted to the upper
left.

Our physics-based model provides even more latitude by
combining pressure, volume, shape, active force, and mechanical
properties of the LV into a unified framework. We notice that
3D printed artificial hearts (Lee et al., 2019; Noor et al., 2019) or
ventricles (Kolawole et al., 2021) are attracting increased attention
recently, bringing new opportunities for the treatment of heart
diseases. The physics-based model proposed in this work can be
used to guide 3D printing. For example, with certain mechanical
properties and the targeted pump function, our model can predict
the required thickness of the heart chamber. For a given ventricular
pressure P for which the artificial heart is designed to experience,
there is a threshold that the active force Ta must exceed, which can
also be obtained from our model.

Furthermore, considering the dynamic cardiac cycle, the ratio
of active force Ta to ventricular pressure P gradually increases from
diastole to systole. When this ratio exceeds a certain threshold, the
LV starts to contract, which means that the volume of the LV is

FIGURE 8
Effect of wall thickness on the EDPVR and ESPVR predicted by the
physics-based model. Δ0 = 0.27 is the LV wall thickness of a healthy
human heart and is therefore considered here as a reference case. The
change in wall thickness has a significant effect on the ESPVR, but a
relatively small effect on the EDPVR. Parameters used in the
physics-based model: a =1.15 kPa, b =3.82, and Ta =76.9 kPa.

smaller than the stress-free volume V0. This stress-free or pressure-
free geometry is widely used in heart simulations. Our model shows
that this threshold is only related to the LV thickness and with
this value one can obtain the stress-free volume and the associated
reference time.

The sensitivity of the predicted result to the input parameters
of the model was also examined. Sensitivity analysis quantifies
the relationship between the uncertainty of the model output and
the uncertainty of the input parameters (Saltelli et al., 2004). A
physiologically reasonable base set of parameters (a = 1.15 kPa,
b = 3.82, Δ = 0.27, Ta = 76.9 kPa, V/V0 = 1.5 for EDPVR and 0.8 for
ESPVR) was considered. The same parameter set was also used in
Figure 8. We first performed the one-at-a-time sensitivity analysis,
i.e., we varied each input parameter (a, b, Δ and Ta) by 1{%}, 5{%},
10{%} and 20{%}while keeping the others unchanged, and examined
the resulting output (P) change. This is assessed quantitatively in
terms of the ratio S between the relative change in the output and
the relative change in an input parameter. According to Eqs 19, 25,
it can be found that P is linearly related to a and Ta, while the
absolute values of S respect to b and Δ are less than 1. The results
indicate that the behaviour of the proposed model is stable around
the base set. We further calculated the Hessian matrix of our model
and found that Δ is weakly coupled with other input parameters.
Therefore, we recommend that onlymechanical properties (a, and b)
and contractility (Ta) be considered when fitting experimental data
using this model.

Last but not least, by reducing b to zero, the model reduces
to a rubber spherical shell of Neo-Hookean’s material. The elastic
instabilities (Anssari-Benam et al., 2022) of spherical inflation can
also be reproduced with our model, revealing possible applications
of our model beyond the heart.

We are aware that our reductionistic approach cannot fully
describe cardiac mechanics. Yet, this simplicity makes it a powerful
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tool to support comprehensive simulations and diagnostics. The
ventricular geometry is not perfectly spherical and, whereas
the myocardium is layered and fiber-reinforced soft matter
with rotated and dispersed fibers (Sommer et al., 2015; Nielles-
Vallespin et al., 2017; Kalhöfer-Köchling et al., 2020; Khalique et al.,
2020; Reichardt et al., 2020). If all these factors are to be considered,
the complexity of the model increases significantly. For such a
complex situation, it is recommended to use numerical simulations
rather than theoretical models. If the overall pump function
and the pressure-volume relationship of the left ventricle are
to be considered only, the current simplifications are believed
sufficient.

An easy-to-use Python code, for both the physics-based EDPVR
and ESPVR, is provided. Please check Data availability statement for
more details.

5 Conclusion

To conclude, we proposed a bottom-up physics-based model
incorporating the EDPVR and ESPVR of the LV. The two
contributions in this model show the sources of pressure in
the end-diastolic and end-systolic states. The model fits existing
experimental data well and shows good agreement with simulation
results. The model has been shown to be suitable for evaluating
LV stiffness and contractility. Conversely, the model can predict
the EDPVR and ESPVR of the LV based on the parametric and
geometric information of the myocardium. It can also be used to
study the relationship between the mechanical properties of the
LV and its pump function. The proposed model might provide
insight into the study of cardiac mechanisms and be used in clinical
medicine.
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