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Insight into structural and thermodynamic properties of nanoparticles is crucial for designing optimal 
catalysts with enhanced activity and stability. In this work, we present a semi-automated workflow for 
parameterizing the atomic cluster expansion (ACE) from ab initio data. The main steps of the workflow 
are the generation of training data from accurate electronic structure calculations, an efficient fitting 
procedure supported by active learning and uncertainty indication, and a thorough validation. We 
apply the workflow to the simulation of binary Pt–Rh nanoparticles that are important for catalytic 
applications. We demonstrate that the Pt–Rh ACE is able to reproduce accurately a broad range 
of fundamental properties of the elemental metals as well as their compounds while retaining an 
outstanding computational efficiency. This enables a direct comparison of atomistic simulations to high-
resolution experiments.

Introduction
In the field of catalysis, noble metals play a key role. Among 
them, platinum (Pt) and rhodium (Rh) are used extensively as 
heterogeneous catalysts due to their superior activity and stabil-
ity [1]. For example, Pt–Rh-based materials are widely used as 
effective vehicle exhaust catalysts to reduce emissions of harm-
ful pollutants CO and NOx into less harmful CO2 and N 2 [2, 
3]. Furthermore, they have also been employed in fuel cells [4, 
5] to enhance the oxygen reduction and hydrogen oxidation 
reactions.

These catalytic materials are typically applied in the form 
of nanoparticles or nanoclusters to maximize the active surface 
area where the chemical reactions take place [6]. An important 
aspect is also the internal microstructure of the nanoparticles 
that can be tailored to optimize both functional properties and 
the structural stability. In multicomponent systems, the goal 
is often not to achieve a random distribution of chemical ele-
ments as in a solid solution, but to design nanoparticles with 
specific morphologies [7, 8]. For instance, despite the fact that 
Pt and Rh are miscible elements with face-centered cubic (fcc) 
structures, their nanoparticles have usually been prepared in the 
form of concentric composites, typically with a spherical Rh core 

surrounded by a Pt-rich shell layer. Such core–shell morpholo-
gies can be prepared using a wet chemical approach, where the 
core is synthesized first and the surface is coated afterward [7, 
8]. They can exhibit an enhanced catalytic activity and struc-
tural stability compared to traditional alloyed catalysts [7] as a 
result of their non-equilibrium crystal structures [9] or shapes. 
However, the non-equilibrium nanoparticles may not be stable 
under operating conditions and undergo transformations that 
lead to deterioration of the catalytic activity.

In Fig. 1, an example of a Pt–Rh core–shell nanoparticle 
with a distorted octahedral shape is shown [10]. The high-angle 
annular dark-field (HAADF) micrograph and energy-dispersive 
X-ray spectroscopy (EDS) map acquired in a scanning transmis-
sion electron microscope (STEM) reveal a varying Pt shell thick-
ness of 3–5 monolayers. STEM is widely used for characterizing 
catalyst nanoparticles, since it can provide information on the 
atomic arrangement and composition [11]. However, investiga-
tions of dynamic processes at elevated temperatures are required 
to carry out challenging and time consuming in-situ experi-
ments that are often limited by beam-induced artifacts [12]. 
Therefore, it is desirable to complement the experimental 
characterization with atomistic modeling to obtain a deeper 
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understanding of the thermodynamic and kinetic phenomena 
governing the structure of nanoparticles.

Atomistic simulations can provide valuable information 
about energetics of particular structural features, such as for-
mation energies of point defects or various surface facets, but 
also directly follow the dynamical evolution of the entire sys-
tem using molecular dynamics (MD) or explore the thermody-
namic stability using Monte Carlo (MC) methods. Even though 
it is nowadays possible to study systems of millions of atoms, 
approaching realistic dimensions of nanoparticles, the essential 
prerequisite for reliable quantitative predictions is an accurate 
and efficient description of interatomic interactions. However, 
there exist, to our best knowledge, no interatomic potentials for 
the Pt–Rh binary system that could be applied in large-scale 
MD or MC studies of thermodynamic and kinetic phenomena.

In this work, we developed an atomic cluster expansion 
(ACE) parametrization for Pt–Rh using a semi-automatic work-
flow. This workflow consists of a generation of training dataset 
based on accurate density functional theory (DFT) [13, 14] cal-
culations, efficient fitting and validation procedures [15], and 
uncertainty indication and active learning (AL) algorithms [16] 
that can be employed to improve the model if necessary. ACE 
has successfully been applied to model metallic, covalent, and 
ionic materials and was shown to offer superior accuracy and 
computational efficiency [15–17].

The ACE methodology combines the advantages of 
machine-learned (ML) methods and physically based models 
of interatomic interactions. We summarize only the essentials 
of ACE and refer to original publications for more details [15, 
18–22].

One of the key features of ACE is a complete and hierarchi-
cal set of basis functions Biv that span the space of local atomic 
environments. This enables to expand an atomic property ϕ(p)

i  , 
such as the energy of atom i, as

with expansion coefficients c(p)v  , where v is composed of sev-
eral indices. The basis functions fulfill fundamental translation, 
rotation, inversion, and permutation (TRIP) invariances for 
the representation of scalar variables, or equivariances for the 
expansion of vectorial or tensorial quantities.

In the simplest case, the energy is evaluated linearly as

but most ACE parametrizations to date, including the presented 
Pt–Rh model, use two atomic properties with a Finnis–Sinclair 
square-root embedding,

We demonstrate that Pt–Rh ACE provides not only an accurate 
description of fundamental properties for both elemental metals 
as well as their compounds, but that it is well suited for large-
scale atomistic simulations of nanoclusters.

Results and discussion
Training of ACE

The parameterization of ACE models requires a consistent set 
of reference DFT data. For the Pt–Rh system, we generated 
about 30,000 atomic configurations and evaluated their ener-
gies and forces using the Vienna ab initio simulation package 
(VASP)  [23–25] and the PBE functional for approximating 
exchange and correlation [26]. The considered structures span a 
wide portion of the configuration space for both elemental met-
als and their binary compounds. The configurations include per-
fect bulk structures, common defects (e.g., vacancies, surfaces, 

(1)ϕ
(p)
i =

nv
∑

v

c
(p)
v Biv ,

(2)Ei = ϕ
(1)
i ,

(3)Ei = ϕ
(1)
i +

√

ϕ
(2)
i .

Figure 1:   STEM-HAADF micrograph (a) and corresponding EDS composition map (b) of a Rh–Pt core–shell nanoparticle. Pt is in blue and Rh in green. In 
(a) the crystallographic facets are indicated.
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and grain boundaries), and small random clusters. For all these 
configurations, we varied their volumes and randomly displaced 
atoms away from their equilibrium positions to sample vibra-
tional degrees of freedom. A summary of energies per atom for 
all structures as a function of the nearest neighbor distance in 
each structure is shown in Fig. 2. The training data correspond 

to 29,800 structures with 437,157 atoms, spanning nearest 
neighbor distances from 1.8 up to 6.3 Å and sampling the energy 
space from about − 6.3 eV/atom to + 2 eV/atom.

The ACE parameterization was carried out using the pace-
maker package [21]. In the fitting process, a hierarchical basis 
extension scheme with a sequential addition of ACE basis func-
tions was adopted. For the radial basis functions, spherical Bes-
sel functions were used. Structures within an energy window 
of 1 eV/atom above the convex hull were assigned significantly 
larger weights in the loss function optimization, while structures 
with higher energy were given smaller weights.

After initial training, we employed AL to ensure a reliable 
description of Pt–Rh surfaces as these are crucial for simula-
tions of core–shell nanoclusters (see below). This was achieved 
by computing the extrapolation grade γ based on the D-opti-
mality criterion [16] for a number of (100), (110), and (111) fcc 
surface slabs containing up to 56 atoms with two compositions 
(Pt0.3Rh0.7 and Pt0.7Rh0.3 ). The slab configurations were obtained 
using a hybrid MD–MC method in the NVT ensemble at three 
different temperatures (300, 500, and 800 K). Structures with 
large values of the extrapolation grade ( γ > 5 ) were selected 
using the MaxVol algorithm. These structures were then com-
puted with DFT, added to the training set, and the ACE potential 
was retrained. See Sect. “Active learning” for more details.

In Fig. 3, the energies and forces predicted by ACE are com-
pared with the reference DFT data for the training set. The ACE 
model reproduces the DFT energies and forces with good accu-
racy. Root mean square errors (RMSE) for the energy and force 
components are 13 meV/atom and 57 meV/Å for the training 
set and 36 meV/atom and 140 meV/Å for the test set, respec-
tively. The relatively large errors in the energies are due to very 

Figure 2:   Energy per atom as a function of the nearest neighbor distance 
(NNB) for structures in the Pt–Rh training set. The data points are colored 
according to the Rh composition. The histogram panels show that most 
of the training structures have energies within about 2 eV/atom from the 
lowest energy and NNB distances of 2.3 to 3.2 Å.

Figure 3:   Comparison of energies and forces predicted by ACE with respect to the reference training DFT data. The “Low” subset includes data within a 
distance of 1 eV/atom above the convex hull.
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low weights that were assigned to high energy structures with 
atoms at close distances. These structures have no relevance for 
equilibrium structures of nanoparticles but are necessary to 
ensure repulsive behavior of the potential at short interatomic 
distances. For the lower energy structures within the 1 eV win-
dow above the convex hull, which are most significant for the 
present simulations, the RMSE values are only 6 meV/atom and 
30 meV/Å for the training set and 6 meV/atom and 26 meV/Å 
for the test set, respectively.

Validation of the Pt–Rh ACE

For an initial validation of the parameterized potential, various 
fundamental properties of the elemental metals were examined 
and compared to DFT and experimental data in Table 1. For 
both Pt and Rh, the equilibrium lattice parameters predicted by 
ACE are in excellent agreement with DFT, while being slightly 
larger than the experimental values. The elastic constants and 
bulk moduli also agree well with those of DFT, with somewhat 
larger discrepancies observed for C11 and C44 for Pt. The dif-
ferences, however, remain comparable to those between DFT 
and experiment. The larger lattice constants and mostly smaller 
elastic moduli predicted by DFT and ACE in comparison with 
experiment are likely caused by the PBE–GGA exchange–cor-
relation functional that leads to underbinding for non-magnetic 
fcc metals [27].

The formation and migration energies of the mono-vacancy 
are in close agreement with the reference DFT values and com-
parable with the available experimental measurements for Rh. 
For Pt, the large discrepancy between the theoretical and experi-
mental values is due to deficiencies in the description of the 
exchange–correlation contributions at metallic surfaces [28]. 

A better agreement can be obtained after correcting for this 
intrinsic surface error, but the correction term depends on the 
electronic structure of the metal [28] and cannot be employed 
in classical atomistic models.

We also examined energies of surfaces with low-index 
orientations. As illustrated in Table 1, ACE captures correctly 
the ordering of Pt surface energies in comparison to DFT as 
γ(100) > γ(110) > γ(111) . However, DFT strongly underesti-
mates the absolute values of surface energies in comparison 
with experiment. The underlying reason for this discrepancy 
is identical as in the case of vacancies. For Rh, the stability of 
the lowest energy (111) surface is reproduced by ACE, but the 
energies of the (100) and (110) are almost degenerate according 
to DFT, while ACE predicts the latter to have a slightly higher 
energy. Besides these common surface orientations, we also 
evaluated other surface configurations provided in the Crys-
talium database [29–31] and compared them to available DFT 
data in Fig. 4. A close agreement is seen between ACE and DFT 
with a slight overestimation of Rh surface energies by ACE. 
When comparing both metals, it is evident that Pt has smaller 
surface energies than Rh, which is relevant for the structure of 
nanoclusters (see below).

The phase stabilities of various bulk phases over a broad 
range of volumes are examined for both metals in Fig. 5. It can 
be seen that the agreement between ACE and DFT is excellent 
up to the dissociation limit, which is often not the case for ML 
models [16, 17]. Both Pt and Rh are most stable in the fcc phase. 
The closely related hexagonal close-packed (hcp) phases have 
only slightly higher energies ( �Ehcp-fcc = 79 meV/atom for Pt 
and �Ehcp-fcc = 36 meV/atom for Rh). The ACE model cor-
rectly reproduces the energetic ordering of other low-energy 

TABLE 1:   Comparison of various 
properties of elemental Pt and 
Rh obtained from ACE, DFT, and 
experiment.

For the vacancy, Ef  and Em represent the formation and migration energies, respectively. For surface energies, 
the experimental values are for average orientations.

Platinum Rhodium

ACE DFT Exp ACE DFT Exp

Lattice constant

 a0 (Å) 3.97 3.97 3.92 [32] 3.83 3.83 3.80 [33]

Elastic moduli

 C11 (GPa) 267 308 347 [34] 422 409 422 [34]

 C12 (GPa) 227 222 251 [34] 169 182 192 [34]

 C44 (GPa) 50 70 77 [34] 192 186 194 [34]

 B (GPa) 241 251 228−275 [35] 253 258 276 [36]

Vacancy

 Ef  (eV) 0.69 0.68 [28] 1.15−1.60 [37] 1.84 1.82 1.71 [38]

 Em (eV) 1.06 1.24 [39] 1.43 [40] 1.87 1.79 [39] –

Surface energy

 γ(100) (mJ/m2) 1847 1856 [41] 2386 2350 [42]

 γ(110) (mJ/m2) 1685 1681 [41] 2490 [43] 2466 2331 [42] 2659 [43]

 γ(111) (mJ/m2) 1417 1488 [41] 2073 1984 [42]
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phases, namely, Esc > EA15 > Ebcc > Ehcp > Efcc for Pt and 
Esc > Ebcc > EA15 > Ehcp > Efcc for Rh (bcc and sc correspond 
to body-centered cubic and simple cubic phases, respectively). 
ACE also correctly captures subtle energy differences of 18 meV/
atom between the bcc and hcp phases for Pt and 49 meV/atom 
between the bcc and A15 phases for Rh.

Phonon dispersions along high symmetry directions of the 
Brillouin zone and phonon densities of states for the fcc phases 
of Pt and Rh are shown in Fig. 6. ACE exhibits a close agreement 
with DFT for both elemental metals.

Apart from the properties of the elemental metals, we evalu-
ated the equilibrium lattice parameters of random Pt–Rh fcc 
alloys as a function of temperature and compared them with 
available experimental data in Fig. 7(a). The linear decrease of 
the lattice parameter with increasing Rh concentration is well 
reproduced by ACE. As mentioned above, the overestimation of 

Figure 4:   Comparison of various surface energies obtained from 
ACE and DFT. The reference DFT data are taken from the Crystalium 
database[29–31].

(a) Pt (b) Rh

Figure 5:   Energy as a function of the nearest neighbor distance (NNB) for various bulk phases of (a) Pt and (b) Rh. The lines represent ACE predictions 
while the dots correspond to the reference DFT data. The insets depict low-energy regions around the fcc ground state.

(a) Pt (b) Rh

Figure 6:   Phonon dispersion for the ground state fcc structure of (a) Pt and (b) Rh.
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the values of the lattice parameters predicted by theory are due 
to the underbinding of the PBE exchange–correlation functional 
used for the DFT training data.

There exists experimental evidence for ordering tendencies 
in the Pt–Rh system [44] but no unequivocal confirmation of 
the existence of distinct ordered phases. Nevertheless, several 
theoretical studies [45–49] predicted a possible occurrence of 
ordered phases at low temperatures. The D022 phase and the 
so-called “phase 40” (NbP prototype, Pearson symbol tI8, space 
group I41/amd) were identified as the lowest energy phases for 
the PtRh3 and PtRh stoichiometries, respectively. More recently, 
Hart et al. [50] reported the Pd2 Ti prototype (Pearson symbol 
oI6, space group Immm) to be a stable phase on the convex hull 
for the PtRh2 stoichiometry.

We calculated the formation energies of these ordered struc-
tures using ACE and compared them with the reference DFT 
data in Fig. 7(b). In addition, the plot contains formation ener-
gies of fcc random solid solutions. ACE predictions for the three 
ordered phases agree closely with the DFT results, reproducing 
correctly the convex hull. All random solid solutions lie above 
the convex hull, but their formation energies remain negative.

Simulations of Pt–Rh nanoclusters

As the Pt–Rh nanoclusters appear to be terminated predomi-
nantly with (111) and (100) planes (see Fig. 1), we started our 
simulations using truncated octahedrons that contain six (100) 
and eight (111) surface facets. The initial focus of the simula-
tions was to examine the surface segregation that may play a 
role in stabilization of the core–shell geometry. We investigated 
two compositions of Pt30Rh70 and Pt45Rh55 , with a random 
initial distribution of both species in the nanoclusters (see 

Supplementary Fig. S3). The simulations were done at T = 500 K 
using a hybrid MD–MC procedure to reach the thermodynamic 
equilibrium efficiently.

Figure 8 shows the final cluster configurations for both com-
positions. In both cases, we observed a strong tendency of the 
Pt atoms (blue spheres) to segregate to the surface and to form 
a continuous monolayer across the whole cluster surface. Based 
on the results for the Pt-poor composition Pt30Rh70 , we surmise 

Figure 7:   (a) Lattice constants of Pt–Rh alloys as a function of chemical composition at different temperatures. The square symbols represent the 
experimental values at T = 300 K [51]. (b) Formation energies of most stable ordered phases from DFT (blue diamonds) [50] and their ACE predictions 
(red crosses). ACE predictions for fcc random solid solutions are marked by red circles.

(a) Pt30Rh70 (b) Pt45Rh55

Figure 8:   Visualization of the surface segregation in Pt–Rh octahedron 
nanoclusters with (a) Pt30Rh70 and (b) Pt45Rh55 composition. Pt atoms are 
colored in blue and Rh atoms in green. Top figures show the front view 
of truncated octahedron with four (111) and one (100) surface facets. 
Bottom figures show mid cross-sections of the clusters with four (111) 
and two (100) surface planes.
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that the segregation of Pt occurs preferentially on the (111) fac-
ets as the coverage of the (100) facets remains incomplete (see 
the top left configuration in Fig. 8). For the Pt-rich composi-
tion Pt45Rh55 , all surfaces of the cluster are covered completely 
by Pt (see the top right configuration in Fig. 8). Interestingly, 
the excess Pt atoms in this case do not continue to segregate to 
adjacent subsurface layers but remain randomly dispersed in the 
cluster interior. While the formation of a Pt surface layer can be 
related to the low surface energies of Pt (cf. Fig. 4), experimental 
observations of the core–shell particles show a thicker coverage 
of 3–5 layers of Pt at the surface [10]. The thicker Pt coverage is 
not observed in our simulations, where the Rh atoms seem to 
preferentially occupy the second subsurface layer (see the bot-
tom right configuration in Fig. 8).

To analyze this discrepancy in more detail, we performed 
additional DFT calculations of Pt–Rh surface slabs with differ-
ent orientations. All slabs consisted of ten atomic planes with 
two Pt and eight Rh layers. One of the Pt layers was located at 
the surface while the position of the second Pt layer was var-
ied—from being the adjacent subsurface layer, i.e., forming 
two Pt layers on the surface, to the opposite surface of the slab, 
i.e., a Rh slab with both surfaces covered by Pt layers. These 
calculations confirm that the Rh slab terminated by single Pt 
layers on both surfaces corresponds to the energetically most 
favorable configuration, see Supplementary Fig. S4. In contrast, 
the formation of two adjacent Pt surface layers is in most cases 
energetically less favorable than when the Pt layers are farther 
apart. The energetics of these interactions is described well by 
ACE, confirming the reliability of ACE predictions in the large-
scale MD simulations.

A possible explanation of the nanoparticle morphologies 
with thicker Pt shells observed in some STEM experiments 
is that these are non-equilibrium configurations that are only 
kinetically stabilized. This corroborates with the fact that the 
experimental synthesis procedure creates the core first followed 
by the coating of the surface element. However, the ACE predic-
tions may be also affected by the limited accuracy of the DFT 
calculations for Pt surface energies [28]. It is therefore necessary 
to reexamine the defect energetics in Pt using advanced DFT 
functionals in order to resolve this issue.

To obtain a complementary view on the stability of the 
core–shell clusters, we performed additional MD simulations 
at elevated temperatures. In contrast to the hybrid MD–MC 
simulations presented above, we generated the initial clusters as 
spheres with a Rh core and a Pt shell, to mimic real experimental 
geometries. The thickness of the shell was set to approximately 
three Pt layers. The clusters were then annealed at temperatures 
of 1000 and 1500 K.

In Fig. 9, the nanoclusters are visualized after 2 ns of anneal-
ing. At the lower temperature of 1000 K, the cluster undergoes 
small shape changes but its core–shell morphology remains 

intact. When the temperature is increased to 1500 K, we start 
observing diffusion events leading to a gradual intermixing 
of the Rh atoms from the core into the Pt shell. However, the 
duration of the MD simulation is too short to reach thermody-
namic equilibrium. Nevertheless, the intermixing tendency is 
consistent with the results of the hybrid MD–MC simulations 
and shows that, based on the present theoretical predictions, the 
thicker Pt shell is likely metastable.

Conclusion
We presented the development and application of ACE for the 
Pt–Rh binary system. Our approach utilized a semi-automatic 
workflow combining high-throughput DFT calculations, effi-
cient fitting and validation procedures, and active learning using 
uncertainty indication based on the D-optimality criterion. The 
resulting ACE potential accurately describes fundamental prop-
erties of the Pt–Rh system with ab initio accuracy and is suitable 
for large-scale atomistic simulations.

We applied the ACE to investigate structural stability of vari-
ous Pt–Rh nanoclusters using hybrid MC–MD simulations. Our 
results show a strong surface segregation of Pt and a preference 
to form a single monolayer coverage of the whole cluster. This 
is in contrast to experimental observations, where core–shell 
nanoclusters with thicker Pt shells were reported. By carrying 
out MD simulations at elevated temperatures, we showed that 
the core–shell cluster morphologies consisting of a Rh core with 
a thicker Pt shell observed in experiments are not thermody-
namically favorable but rather kinetically stabilized.

The accuracy of ACE cannot exceed the accuracy of the ref-
erence DFT calculations. DFT predicts surface and defect ener-
gies in Pt poorly, which suggests that the simulations for Pt–Rh 
nanoclusters are limited primarily by the DFT reference data. 
This highlights that improved exchange–correlation functionals 
that are suitable for high-throughput database generation are 
urgently required.

(a) T = 1000K,t = 2ns (b) T = 1500K, t = 2ns

Figure 9:   Visualization of core–shell nanocluster after t = 2 ns annealing 
at (a) 1000 K and (b) 1500 K. Rh atoms in green, Pt atoms in transparent 
blue.
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Methods
DFT calculations

All reference DFT calculations were done using the Vienna 
ab initio simulation package (VASP) [23–25] with projector 
augmented waves [52]. For the description of the exchange–cor-
relation functional, we employed the Perdew–Burke–Ernzerhof 
(PBE) functional [26]. For energy and force calculations, param-
eters were chosen with a tight settings to obtain an converged 
accurate results. A plane-wave cutoff energy of Ecut = 500 eV 
and Gaussian smearing of σ = 0.1 eV were used in all calcula-
tions. A dense Ŵ centered k-point mesh with a spacing of 0.125 
Å −1 was used to sample the Brillouin zone.

ACE parametrization

The ACE model was parameterized using the pacemaker 
package [21]. In the first stage, fitting was performed using a 
hierarchical basis extension, resulting in the ACE potential con-
sisting of 8874 basis functions and 20,688 parameters with a 
maximum order ν = 4 , corresponding to five-body interactions. 
Additional details of the model are summarized in Supplemen-
tary Table S1. Relative weights of different structures in the loss 
function were distributed based on their distance to the convex 
hull. This method prioritized structures with lower energies, 
giving them a greater contribution to the loss function [21]. In 
addition, the weights of non-periodic clusters were reduced by 
a factor of ten to provide regularization to the ACE model. The 
initial parametrization was improved using active learning as 
described in Sect. “Active learning.”

MD and MC simulations

The Large-scale Atomic/Molecular Massively Parallel Simulator 
(LAMMPS) package [53] with the ML_PACE [15] and MC [54] 
packages was used for the MD and MC atomistic simulations. 
We adopted an integration time step of �t = 1 fs for the MD 
simulations. All simulations were equilibrated at the target tem-
perature/pressure for teq = 50 ps before production runs. For 
MD simulations of lattice parameters of Pt–Rh alloys, we used 
a simulation cell containing 2048 atoms that corresponds to an 
8× 8× 8 conventional fcc cell. Simulations were conducted 
at two temperatures T = 300 K and T = 800 K in an isother-
mal–isobaric (NPT) ensemble with a pressure of P = 0 bar for 
t = 500 ps. Nosé–Hoover thermostat and barostat were used to 
control temperature and pressure. Damping parameters were 
0.1 ps for temperature and 1 ps for pressure to ensure the tem-
perature and pressure fluctuations are appropriate.

Two nanocluster geometries were created using the Atomis-
tic Simulation Environment (ASE) [55]: a truncated octahedron 
for the surface segregation phenomena and a spherical nano-
cluster for annealing of nanoclusters. The truncated octahedron 

comprises six (100) and eight (111) surfaces and contained 2406 
atoms. Different chemical compositions were initialized by ran-
domly assigning Pt or Rh to the atomic positions. A spherical 
nanocluster was created with 3577 atoms consisting of a Rh 
core (1058 atoms) covered by three layers of Pt (2519 atoms). 
All simulations of nanoparticles were performed in the canoni-
cal (NVT) ensemble using the Nosé–Hoover thermostat with a 
damping parameter of 0.1 ps.

A hybrid MD–MC scheme was used for the simulation of 
surface segregation using the MC [54] package implemented in 
LAMMPS[53] to allow for atomic swapping between different 
types of atoms. The octahedron nanoclusters were equilibrated 
beforehand at T = 500 K for teq = 100 ps, followed by randomly 
selecting Pt and Rh atoms within all regions of nanoclusters 
and swapping their atomic positions. The acceptance of the 
new atomic coordinates is based on the Metropolis [56] algo-
rithm. This means that the new configuration is immediately 
accepted if it has a lower potential energy than the original one, 
otherwise it is accepted with a probability of e−

�U
kBT , where �U 

is the potential energy difference between the new and original 
configurations and kB is the Boltzmann constant. Specifically, 
we utilized the fix atom/swap command to perform the MC 
swapping without altering the total number of each species. In 
this way, the nanocluster composition remains fixed. Surface 
segregation simulations were performed for t = 200 ps. After 
segregation, potential energy convergence was carefully checked 
to ensure that thermodynamic equilibrium has been reached. 
To simulate the annealing process of spherical nanoclusters, we 
performed pure MD simulations at two specific temperatures, 
T = 1000 K and T = 1500 K, for t = 2 ns. The open visualization 
tool OVITO [57] was used for the visualization of nanoclusters.

Active learning

To capture atomic environments relevant for nanoclusters, we 
used small fcc surface structures with different crystallographic 
orientations and sizes, namely, slabs with the (100) surface ori-
entation containing 32 atoms, the (110) surface of 56 atoms, 
and (111) surface orientation containing 36 atoms, respectively. 
To sample different slab configurations, we employed a hybrid 
MD–MC approach in the NVT ensemble, running each simu-
lation for 100 ps at three different temperatures (300, 500, and 
800 K). We calculated on-the-fly the extrapolation grade γ for 
each atom at every 100th simulation step using the D-optimality 
criterion. Structures with γ values greater than 5 were selected 
as extrapolative structures, resulting in a few thousand can-
didate structures. All simulations were performed using the 
LAMMPS version, which calculates the extrapolation grades 
for ACE [16]. To select the most representative atomic environ-
ments, we utilized the MaxVol algorithm to construct a new 
active set from the structures generated in the previous step. We 
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gave priority to structures that had multiple atoms that entered 
the new active set [16] and selected the top hundred candidates 
for data efficiency. These selected structures were computed with 
DFT, added to the original training set, and used to retrain the 
ACE potential. As a result of the above approach, we observed a 
significant decrease in the extrapolation grades for representa-
tive nanocluster (see Supplementary Fig. S3), and a reduction 
in the error metrics for the energy and forces of the selected 
surface structures. The energy root mean square error (RMSE) 
decreased from 31 to 3 meV/atom and the force RMSE from 172 
to 84 meV/Å(see Supplementary Fig. S1).

Rh–Pt nanoparticle synthesis

The Rh–Pt core–shell nanoparticles were synthesized on a car-
bon support (Cabot FCX 400) via a two-step polyol method, a 
commonly used approach for synthesizing core–shell nanopar-
ticles [58, 59].

STEM characterization

A probe-corrected Titan Themis 60-300 operated at 300 kV was 
used for the STEM characterization. For imaging, a HAADF 
detector with a collection angle of 78–200 mrad was used. The 
EDS composition maps were acquired with a Bruker Super X 
detector.
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