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Orbital eccentricity is a crucial physical effect to unveil the origin of compact-object binaries detected by
ground- and spaced-based gravitational-wave (GW) observatories. Here, we perform for the first time a
Bayesian inference study of inspiral-merger-ringdown eccentric waveforms for binary black holes with
nonprecessing spins using two (instead of one) eccentric parameters: eccentricity and relativistic anomaly.
We employ for our study the multipolar effective-one-body (EOB) waveform model SEOBNRv4EHM, and
use initial conditions such that the eccentric parameters are specified at an orbit-averaged frequency. We
show that this new parametrization of the initial conditions leads to a more efficient sampling of the
parameter space. We also assess the impact of the relativistic-anomaly parameter by performing mock-
signal injections, and we show that neglecting such a parameter can lead to significant biases in several
binary parameters. We validate our model with mock-signal injections based on numerical-relativity
waveforms, and we demonstrate the ability of the model to accurately recover the injected parameters.
Finally, using standard stochastic samplers employed by the LIGO-Virgo-KAGRA Collaboration, we
analyze a set of real GW signals observed by the LIGO-Virgo detectors during the first and third runs.
We do not find clear evidence of eccentricity in the signals analyzed, more specifically we measure
eGW150914
gw; 10 Hz ¼ 0.08þ0.09

−0.06 , e
GW151226
gw; 20 Hz ¼ 0.04þ0.05

−0.04 , and eGW190521
gw;5.5 Hz ¼ 0.15þ0.12

−0.12 .
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I. INTRODUCTION

In the second part of this decade, the LIGO, Virgo and
KAGRA (LVK) ground-based detectors [1–8] will be
reaching design sensitivity, promising several hundreds
of detection per year of coalescing binary black holes. Most
of these binaries are expected to be formed via isolated
binary evolution [9–22,22], and circularize due to GW
emission [23] by the time they enter the detector frequency
band. Nonetheless, a small fraction of these binaries may
have non-negligible orbital eccentricity in the frequency
band of ground-based detectors, if they form through
dynamical captures and interactions in dense stellar envi-
ronments, such as globular clusters [24–44] or galactic
nuclei [45–52]. Hence, measuring orbital eccentricity in
the GW signal from merging binaries provides crucial

information about the origin, evolution and the properties
of the population of such binaries [53–59].
With upgrades of existing ground-based detectors

(e.g., Aþ and Virgoþ [60–62]), and future next-generation
detectors on the earth, such as the Einstein Telescope and
Cosmic Explorer [63–66], and in space, such as LISA and
TianQin [67,68], the fraction of GW events with non-
negligible orbital eccentricity is expected to significantly
increase [69–72]. All these projections have motivated, in
the last years, the development of waveform models that
include the effect of orbital eccentricity. Those waveforms
have been used to analyze GW signals observed by LIGO
and Virgo [73–88]. Some of these studies have found
evidence of eccentricity, for instance, for GW190521,
where Ref. [76] showed evidence for a highly eccentric
precessing-spin binary, Ref. [81] showed evidence for an
eccentric nonprecessing binary, and Ref. [82] found evi-
dence for a nonspinning dynamical capture merger.
However, each of these studies comes with their own
limitations. For example, Ref. [76] used a sparse grid of
numerical relativity (NR) waveforms for inference,
Ref. [81] applied reweighing techniques for inference [73]
combined with an inspiral-merger-ringdown (IMR) model
based on the effective-one-body (EOB) formalism [89–93],
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SEOBNRE [94–96] with only one eccentricity parameter,
although the impact of the latter in the eccentricity posterior
might be limited [97]. While Ref. [82] restricted the study
to nonspinning dynamical captures using the waveform
model TEOBResumS-Dali [98,99].
In this paper, we perform a Bayesian inference study

using the waveform model SEOBNRv4EHM [100,101],
which describes eccentric effects using two eccentric
parameters: the initial eccentricity and the relativistic
anomaly. SEOBNRv4EHM is built upon the quasicircular
SEOBNRv4HM model [102] for binary black holes (BBHs)
with nonprecessing spins and includes eccentric corrections
up to 2PN order [100] in the ðl; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ;
ð3; 3Þ; ð4; 4Þ; ð5; 5Þ multipoles. When restricting to the
ðl; jmjÞ ¼ ð2; 2Þ modes, we refer to the model as
SEOBNRv4E. We modify the initial conditions of the
original version of the SEOBNRv4EHM model, which
was presented in Ref. [101], so that now they are specified
at an orbit-averaged orbital frequency instead of an instan-
taneous orbital frequency. We show that this new para-
metrization simplifies the stochastic sampling across
parameter space. Furthermore, in order to increase the
efficiency in evolving the dynamics, we combine reduced
tolerances of the Runge-Kutta integrator during the inspiral
with the optimized Hamiltonian and integrator from
Refs. [103,104], and assess the impact of these modifica-
tions in the accuracy of the waveform model across
parameter space. We find that for most of the parameter
space the loss of accuracy is < 1% in unfaithfulness,
indicating that the more efficient version of the
SEOBNRv4EHM is still highly accurate for our purposes.
With the more efficient model, we use a highly paral-

lelizable nested sampler PARALLEL BILBY [105] to assess
first the impact of the different initial conditions, which
available in the SEOBNRv4EHM model. We find that the
initial conditions specified at an orbit-averaged frequency
perform as accurately as the ones specified at an instanta-
neous orbital frequency, but with a more efficient sampling
of the parameter space, which translates into shorter wall
clock times for the parameter-estimation runs. Furthermore,
we show, for the first time, the impact of the radial phase
parameter (i.e., the relativistic anomaly), using an inspiral-
merger-ringdown model and a full parameter-estimation
code (see, e.g., Ref. [97] for a study of the argument of
periapsis based on the overlaps).
We also validate the model SEOBNRv4EHM by perform-

ing zero-noise injections of public eccentric NR waveforms
from the Simulating eXtreme Spacetimes (SXS) catalog
[106,107]. In particular we select a set of three equal-mass,
nonspinning eccentric simulations with initial eccentricities
measured from the orbital frequency at first periastron
passage of 0.07, 0.13 and 0.25, respectively. In order to
compare the eccentricity from NR waveforms and the
SEOBNRv4EHM model, we choose a common definition of
eccentricity based on the GW signal, egw, as introduced in

Ref. [108], and measure it from the waveform using
the gw_eccentricity package [109]. We find that
SEOBNRv4EHM is able to accurately recover the injected
parameters of the NR signals for all the eccentricity values
considered.
Finally, we analyze some GW events observed by the

LVK collaboration with SEOBNRv4EHM. In particular,
we analyze GW150914 [110], GW151226 [111] and
GW190521 [112,113]. The choice is based on the fact
that the first GW signal is still one of the loudest GWevents
so far, and has been found as a noneccentric binary by
many studies in the literature [73,85,86,114]. On the other
hand, GW151226 and GW190521 have been found to have
signatures of eccentricity by some studies in the literature
[76,79,81,82,86]. We measure the following values of
eccentricity for these GW events, eGW150914

gw; 10 Hz ¼ 0.08þ0.09
−0.06 ,

eGW151226
gw; 20 Hz ¼ 0.04þ0.05

−0.04 , and eGW190521
gw; 5.5 Hz ¼ 0.15þ0.12

−0.12 , and
therefore, find no clear evidence of eccentricity in these
signals.
This paper is organized as follows. In Sec. I A,

we provide an overview of the eccentric model
SEOBNRv4EHM. In Sec. II B, we introduce new initial
conditions specified at an orbit-averaged orbital fre-
quency, and in Sec. II C, we introduce an optimized
version of the model, SEOBNRv4EHM_opt, and assess
its performance. We present the methodology for param-
eter estimation in Sec. II A. In Sec. II B we demonstrate
the accuracy of SEOBNRv4EHM_opt in the quasicircular
limit, in Sec. II C we show the importance of the radial
phase parameter with mock-signal injections, and in
Sec. III D we asses the accuracy of the model against
eccentric NR waveforms from the SXS catalog using zero
noise. In Sec. III E, we analyze GW events detected by
the LVK Collaboration. In Sec. III, we summarize our
main conclusions and discuss future work. Finally, in the
Appendix we provide details about the derivation of the
expressions used in the initial conditions specified at an
orbit-averaged frequency.

A. Notation

In this paper, we use geometric units, setting G ¼ c ¼ 1
unless otherwise specified.
We consider a binary with masses m1;2, with m1 ≥ m2,

and spins S1;2. We define the following combination of
masses

M ≡m1 þm2; μ≡m1m2

M
; ν≡ μ

M
;

δ≡m1 −m2

M
; q≡m1

m2

: ð1Þ

A relevant combination of masses for GW data analysis is
the chirp mass defined as [115]

M ¼ ν3=5M: ð2Þ
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For nonprecessing configurations the spin components are
aligned/anti-aligned with the orbital angular momentum,
L, with direction L̂. In this case the dimensionless spin
components can be defined as

χi ¼ Si · L̂=m2
i ; ð3Þ

where i ¼ 1, 2. It is convenient to define the effective-spin
parameter χeff [92,116,117],

χeff ¼
1

M
ðm1χ1 þm2χ2Þ; ð4Þ

and the spin combinations,

χS ¼
1

2
ðχ1 þ χ2Þ; χA ¼ 1

2
ðχ1 − χ2Þ: ð5Þ

II. ECCENTRIC EFFECTIVE-ONE-BODY
WAVEFORM MODEL WITH
NONPRECESSING SPINS

In this section we describe the waveform model,
SEOBNRv4EHM, used throughout the paper. We provide
an overview of the model, develop a new procedure to
specify the initial conditions at an orbit-averaged fre-
quency, and introduce modifications to increase the com-
putational efficiency of the model.

A. Overview

The SEOBNRv4EHM model was presented in Ref. [101],
and we refer therein for further details. SEOBNRv4EHM is
constructed within the EOB formalism [89–93], and thus it
is constituted by three main building blocks:

(i) EOB Hamiltonian: The EOB conservative dynamics
is determined by the EOB Hamiltonian constructed
from the effective Hamiltonian, Heff , as described
in Refs. [118,119], augmented with the parameters
ðK; dSO; dSS;Δt22peakÞ calibrated to NR waveforms
from Ref. [120], through the energy map [89]

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
: ð6Þ

For spins antialigned/aligned with the orbital angular
momentum the motion is restricted to a plane. As a
consequence, the dynamical variables in the Hamil-
tonian are the (dimensionless) radial separation
r≡ R=M, the orbital phase ϕ, and their (dimension-
less) conjugate momentapr ≡ Pr=μ andpϕ ≡ Pϕ=μ.

(ii) Radiation-reaction force: The dissipative effects in
the EOB dynamics are described by a radiation-
reaction (RR) force F , which enters the Hamilton
equations of motion, as [121,122]

ṙ¼ ξðrÞ∂ĤEOB

∂pr�
ðr;pr� ;pϕÞ;

ϕ̇¼ ∂ĤEOB

∂pϕ
ðr;pr� ;pϕÞ;

ṗr� ¼−ξðrÞ∂ĤEOB

∂r
ðr;pr� ;pϕÞþ F̂ r; ṗϕ¼ F̂ϕ;

ð7Þ

where the dot represents the time derivative d=dt̂,
with respect to the dimensionless time t̂≡ T=M,
ĤEOB ≡HEOB=μ, and F̂ϕ ≡ Fϕ=M.

The equations are expressed in terms of
pr� ≡ prξðrÞ, which is the conjugate momentum
to the tortoise-coordinate r�, and ξðrÞ≡ dr=dr� can
be expressed in terms of the potentials of the
effective Hamiltonian [121]. The components of
the RR force are computed using the following
relations [90,93]

F̂ϕ ¼ −
ΦE

ω
; F̂ r ¼ F̂ϕ

pr

pϕ
; ð8Þ

where ω ¼ ϕ̇ is the (dimensionless) orbital fre-
quency, and ΦE is the energy flux for quasicircular
orbits written as a sum over waveform modes
using [123,124]

ΦE ¼ ω2

16π

X8
l¼2

Xl

m¼−l
m2

���� dLM hlm

����
2

; ð9Þ

where dL is the luminosity distance between the
binary system and the observer.

(iii) Waveform multipoles: The GW multipoles are com-
posed by two main parts: the inspiral-plunge multi-
poles hinsp-plungelm , and the merger-ringdown hmerger-RD

lm
modes,

hlmðtÞ ¼
(
hinsp−plungelm ðtÞ; t < tlmmatch

hmerger−RD
lm ðtÞ; t > tlmmatch;

ð10Þ

where tlmmatch is defined from the peak of the ampli-
tude of the (2,2)-mode (see Ref. [102] for details).
The merger-ringdown modes of SEOBNRv4EHM
are the same as in the underlying SEOBNRv4HM
model [102,120], and thus we assume that the effects
of eccentricity at merger-ringdown are negligible.
The inspiral-plunge multipoles are constructed upon
the NR-calibrated quasicircular SEOBNRv4HM mul-
tipoles [102] by incorporating the 2PN eccentric
corrections, including spin-orbit and spin-spin
effects, as derived in Ref. [100], and are augmented
by an orbit-averaged procedure to compute the
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nonquasicircular (NQC) terms (see Sec. I A B from
Ref. [101] for details).

B. New eccentric initial conditions

The initial conditions of SEOBNRv4EHM are expressed
in terms of the eccentricity, e, and the relativistic anomaly ζ
defined in the Keplerian parametrization of the orbit [101]

r ¼ 1

upð1þ e cos ζÞ ; ð11Þ

where up is the inverse semilatus rectum. Given the masses,
spins, the initial instantaneous orbital frequency ω0, initial
eccentricity e0 and relativistic anomaly ζ0, the initial
conditions for r0 and pϕ0, in absence of radiation reaction,
can be obtained by solving the equations [101]

�
∂ĤEOB

∂r

�
0

¼ −½ṗrðpϕ; e;ζÞ�0;
�
∂ĤEOB

∂pϕ

�
0

¼ ω0; ð12Þ

with prðpϕ; e; ζÞ and ṗrðpϕ; e; ζÞ given by the 2PN-order
expressions in Eqs. (C3) and (C4) of the Appendix C in
Ref. [101].
The initial condition for pr0 can be computed using the

solution for r0 and pϕ0, and numerically solving

�
∂ĤEOB

∂pr

�
0

¼ ½ṙð0Þ þ ṙð1Þ�0; ð13Þ

where ṙð0Þ is the 2PN-order expression for ṙ at zeroth order
in the RR effects (see Eq. (C5) in Ref. [101]), while ṙð1Þ is
the first-order term in the RR part of ṙ, for which we use the
quasicircular expression derived in Ref. [93]

ṙð1Þ ¼ −
Φqc

E

ω

∂
2ĤEOB=∂r∂pϕ

∂
2ĤEOB=∂r2

; ð14Þ

being Φqc
E the quasicircular energy flux given in Eq. (9).

Finally, the initial value pr0 is converted into the tortoise-
coordinate conjugate momentum pr�0, using the relations
in Sec. II A of Ref. [101], so that together with r0 and pϕ0,
it can be introduced in Eq. (7) to evolve the EOB equations
of motion.
The specification of eccentricity and relativistic anomaly

at an instantaneous orbital frequency, which enters the
right-hand side (RHS) of Eq. (12), implies significant
variations of the length of the EOB dynamics (and thus
of the waveform length), as one of the eccentric parameters
is modified. This effect is displayed in Fig. 1 for the orbital
frequency evolution for a configuration with mass ratio
q ¼ 3, dimensionless spins χ1 ¼ 0.3, χ2 ¼ 0.5, and total
mass 70M⊙ at a starting frequency of 20 Hz. In particular,
we show in the upper panel of Fig. 1, the instantaneous
orbital frequency at a fixed initial eccentricity, e0 ¼ 0.2,

for three values of the initial relativistic anomaly, ζ0 ¼
½0; π=3; π� (dashed lines). Imposing that the initial eccen-
tricity and relativistic anomaly are specified at an instanta-
neous orbital frequency causes necessarily that the length
of the evolution is substantially different when the initial
relativistic anomaly is at periastron (ζ0 ¼ 0) or apastron
(ζ0 ¼ π). In the bottom panel of Fig. 1, we display the
instantaneous orbital frequency for three values of initial
eccentricity, e0 ¼ ½0.01; 0.1; 0.2�, at a fixed value of the
initial relativistic anomaly (ζ0 ¼ π=3). The evolutions
(dashed lines) show that the higher the eccentricity the
longer the evolution due to the larger oscillations in the
instantaneous orbital frequency, and therefore, the chosen
value of ω0 is crossed at earlier times in the inspiral.
We note that specifying the initial eccentricity and

relativistic anomaly at an instantaneous orbital frequency
is a particular parametrization of elliptical orbits. Other

FIG. 1. Top panel: orbital frequency evolution of SEOBNR-
v4EHM for a configuration with mass ratio q ¼ 3, dimensionless
spins χ1 ¼ 0.3, χ2 ¼ 0.5, e0 ¼ 0.2, total mass 70M⊙ at a starting
frequency of 20 Hz, and three different values of initial relativistic
anomaly ζ0 ¼ ½0; π=3; π�. The dashed curves correspond to the
specification of ðe0; ζ0Þ at an instantaneous orbital frequency, ω0,
while the solid lines correspond to the initial conditions specified
at an orbit-averaged orbital frequency ω̄0. Bottom panel: same
configuration as in the upper panel, but fixing ζ0 ¼ π=3,
and using three different values of initial eccentricity, e0 ¼
½0.01; 0.1; 0.2�, for both types of initial conditions. The horizontal
black solid line in both panels indicates a dimensionless
frequency of Mω0 ¼ 0.0216, corresponding to 20 Hz at 70M⊙.
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possible parametrizations exist in the literature. For in-
stance, in post-Newtonian (PN) models based on the quasi-
Keplerian parametrization [125–141], the initial conditions
for the evolution of a binary in elliptical orbits are specified
at an initial orbit-averaged orbital frequency. In these
evolutions the initial parameters are the orbit-averaged
orbital frequency, eccentricity and radial phase (typically
the mean anomaly). One of the consequences of this
parametrization is that at a fixed value of eccentricity,
changes in the radial phase correspond to different posi-
tions in the same orbit. While an increase (decrease) of the
value of eccentricity at fixed value of the radial phase
causes a decrease (increase) of the length of the evolution.
An additional motivation to explore a new parametriza-

tion of the initial conditions for SEOBNRv4EHM is the
application of the model to Bayesian inference studies.
Particularly, when performing parameter estimation with
SEOBNRv4EHM, the usage of the initial conditions based
on the instantaneous orbital frequency produce an increase
in the structure of the log-likelihood surface as can be
observed in Fig. 2. There, we show the log-likelihood
computed for a zero-noise injection of a SEOBNRv4E
waveform with initial eccentricity e0 ¼ 0.1, total mass
65M⊙, and dimensionless spins χ1 ¼ 0.3, χ2 ¼ 0 at a
starting frequency of 20 Hz, and recovering with
SEOBNRv4E with all the parameters fixed to injected
values except for the initial eccentricity and relativistic
anomaly. We consider 5000 random points in the parameter
space ζ0 ∈ ½0; 2π� and e0 ∈ ½0; 0.3�, and use the parameter
estimation code BILBY [142,143] to compute the likelihood.
In the uppermost panel we fix the value of the initial
relativistic anomaly to periastron (ζ0 ¼ 0) and sample only
in eccentricity, while in the midpanel we fix ζ0 ¼ 1 and
sample both in initial eccentricity and relativistic anomaly.
In both panels the specification of the initial conditions at
an instantaneous orbital frequency leads to a complex
structure in the log-likelihood values, which can pose a
challenge for stochastic samplers as shown in Sec. III C.
Therefore, we introduce a new parametrization of the

EOB initial conditions where the initial eccentricity and
relativistic anomaly are specified at an orbit-averaged
orbital frequency, ω̄0. The orbit-averaged orbital frequency
can be defined as

ω̄0 ¼
1

Tr

I
ωðtÞdt; ð15Þ

where Tr is the radial period. The integral in Eq. (15) can be
computed using the 2PN expressions in the Keplerian
parametrization from Ref. [100], and a detailed derivation
can be found in the Appendix.

FIG. 2. Zero-noise injection of a SEOBNRv4E waveform with
initial eccentricity e0 ¼ 0.1, total mass 65M⊙ and spins χ1 ¼ 0.3,
χ2 ¼ 0 at a starting frequency of 20 Hz, and recovering with
SEOBNRv4E with all the parameters fixed to injected values
except for the eccentric ones (e0, ζ0). In all the plots we consider
5000 points randomly distributed in the parameter space
ζ0 ∈ ½0; 2π� and e0 ∈ ½0; 0.3�. In the top panel, the relativistic
anomaly is fixed to ζ0 ¼ 0, and only e0 is sampled. The blue
curve corresponds to using initial conditions based on the
instantaneous orbital frequency, ω0, while the green curve
corresponds to using the orbit-averaged orbital frequency, ω̄0.
The dashed vertical line corresponds to the injected value of
eccentricity. The mid and bottom plots correspond to an injected
value of ζ0 ¼ 1, and the use of ω0 and ω̄0 in the initial conditions,
respectively. In both mid and bottom panels, e0 and ζ0 are
sampled, and each point in parameter space is color-coded by its
log-likelihood value. The orange crosses correspond to the
injected values of eccentricity and relativistic anomaly. In all
the plots the blue and green stars correspond to the maximum
loglikelihood values for the instantaneous and orbit-averaged
initials conditions, respectively.
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The expression for ω̄0 can be inverted so that the instantaneous orbital frequency is expressed in terms of the orbit-
averaged frequency, eccentricity, relativistic anomaly, mass ratio and spins. Therefore, the instantaneous initial orbital
frequency, ω0, entering the RHS of Eq. (12), can be expressed as

ω0 ¼
ω̄0ðe cos ζ þ 1Þ2

ð1 − e2Þ3=2 −
eω̄5=3

0 ð3eþ 2 cos ζÞðe cos ζ þ 1Þ2
ð1 − e2Þ5=2 −

ω̄2
0eðeþ cos ζÞ
ðe2 − 1Þ3 ð1þ e cos ζÞ2½2δχA − ðν − 2ÞχS�

−
ω̄7=3
0 ðe cos ζ þ 1Þ2
12ð1 − e2Þ7=2

n
12e4ðν − 6Þ þ 8eðe2ðν − 15Þ−νþ 6Þ cos ζ − 3e2

h
2
�
6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
þ 7

	
ν

− 30
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
þ 17

i
þ 18

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
− 1

	
ð2ν − 5Þ

o
þ eω̄7=3

0 ðe cos ζ þ 1Þ2
2ð1 − e2Þ7=2

n
2δχAχS½eð2ν − 1Þ cosð2ζÞ

þ 2eðν − 1Þ þ ð8ν − 4Þ cos ζ� þ χ2S

h
−eð2 − 4νþ 4ν2þð1 − 2νÞ2 cosð2ζÞÞ − 4ð1 − 2νÞ2 cos ζ

i

þ ð4ν − 1Þχ2A½eðcosð2ζÞ þ 2Þ þ 4 cos ζ�
o
þOðω̄8=3

0 Þ: ð16Þ

Given masses, spins, initial eccentricity and relativistic
anomaly at a particular orbit-averaged frequency ω̄0, we use
Eq. (16) to compute the corresponding instantaneous
orbital frequency ω0, which enters the right-hand side
(rhs) of Eq. (12). The rest of the procedure to compute
the EOB initial conditions is not modified. The impact of
this new parametrization in the EOB dynamics, can be
observed in Fig. 1, where the solid lines correspond to the
orbital frequency evolution of SEOBNRv4EHM using initial
conditions specified at an orbit-averaged frequency of
20 Hz. The main effect of this new parametrization is
the almost constant merger time when varying the initial
relativistic anomaly at a fixed value of initial eccentricity
(top panel), and the reduction of the length of the evolution
with increasing e0 at a fixed value of ζ0 (bottom panel) due
to the larger emission of radiation at periastron passages.
This behavior resembles the one in PN models based on the
quasi-Keplerian parametrization [132,134,137,140,141],
except for the fact that the EOB initial conditions are
not adiabatic as in PN, and thus causing small variations of
the merger time with different values of ζ0 at a fixed value
of e0 (see top panel of Fig. 1).
Finally, sampling in e0 and ζ0 at ω̄0, produces notably

simpler log-likelihood structures as shown in Fig. 2. In the
top panel, where the sampling is performed only in e0, the
number of oscillations in the log-likelihood curves is reduced
with respect to the initial conditions based on the instanta-
neous orbital frequency. The results of the orbit-average
initial conditions create a pattern with an easy to identify
maximum in log-likelihood (green curve) at the injected
value of e0 ¼ 0.1 (dashed vertical line). Furthermore, we
find that the maximum loglikelihood values of the orbit-
average initial conditions (green star) is closer to the injected
value than the instantaneous initial conditions (blue star) for a
set of 5000 points. While in the bottom panel, where the
sampling in e0 and ζ0 is performed, it emerges a clearly

defined pattern, and the values of e0 and ζ0 at the maximum
log-likelihood point for the orbit-averaged initial conditions
are eorb-avglogLmax

¼ 0.099, ζorb-avglogLmax
¼ 0.77 (green star in the

bottom panel of Fig. 2), while for the instantaneous initial
conditions are eorb-avglogLmax

¼ 0.086, ζorb-avglogLmax
¼ 4.829 (blue star

in the mid panel of Fig. 2) is also closer to the injected values
(orange crosses). An accurate recovery of the injected values
requiresmore than5000points in the2Dparameter, however,
the results already indicate that even with a low number of
points the initial conditions based on the orbit-averaged
orbital frequency are closer to the injected value, and may
need less points than the recovery using the initial conditions
based on the instantaneous orbital frequency. Thus, the initial
conditions at an orbit-averaged frequency may be more
adequate for data analysis applications such as parameter
estimation, and in Sec. III C we further explore the conse-
quences of these different initial conditions with stochastic
sampling techniques.

C. Computational performance

One of the main applications of waveform models is the
inference of the source parameters using Bayesian infer-
ence methods. These methods typically require of the
order of ∼107–108 or more waveform evaluations. The
SEOBNRv4EHM model is built upon the SEOBNRv4HM
model [102], and thus it inherits the low computational
efficiency of the previous generation of SEOBNR models.1

Several techniques exist to increase the computational
efficiency of EOB waveforms, such as reduced-order or
surrogate models [149–157], the post-adiabatic approxi-
mation [158,159], as well as methods targeting specifically

1The computational efficiency of the SEOBNR models has
been recently significantly improved by the new generation of
SEOBNRv5 models [144–148].
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parameter estimation, such as reduced order quadratures
[160–163] or relative binning [164].
Here, we decide to increase the efficiency of

SEOBNRv4EHM by reducing the absolute and relative toler-
ances of the 4th-order Runge-Kutta integrator from 10−10 and
10−9 to 10−8 and 10−8, respectively.2 Furthermore, as in the
SEOBNRv4EHM model the Hamiltonian and the radiation-
reaction force are the same as in the SEOBNRv4HM model,
we also use the optimized Hamiltonian and integrator from
Refs. [103,104]. In order to ease notation we refer to the
model with reduced tolerances and optimizations as
SEOBNRv4EHM_opt, and SEOBNRv4E_opt when refer-
ring to the model containing only the ðl; jmjÞ ¼ ð2; 2Þ
multipoles.
The reduction of the ODE tolerances implies an

increase in the efficiency of the model with waveform
evaluation timescales of the order of Oð100 msÞ,
while decreasing the accuracy of the model. In order to
quantify the latter across parameter space, we compute
the unfaithfulness between the SEOBNRv4EHM and
SEOBNRv4EHM_opt models for 4500 points in the
parameter space q∈ ½1; 50�, χ1;2 ∈ ½−0.9.0.9�, e0 ∈ ½0; 0.5�,
ζ0 ∈ ½0.2π� for a dimensionless starting frequency of
Mω0 ¼ 0.023. We define the inner product between
two waveforms, hA and hB [165,166]

hhA; hBi≡ 4Re
Z

fmax

fin

df
h̃AðfÞh̃�BðfÞ

SnðfÞ
; ð17Þ

where a tilde indicates Fourier transform, a star complex
conjugation and SnðfÞ the power spectral density (PSD)
of the detector noise. In this work, we employ for the
PSD the LIGO’s “ero-detuned high-power” design sensi-
tivity curve [167]. Similarly, as in Ref. [147], we use
fin ¼ 10 Hz and fmax ¼ 2048 Hz.
To assess the agreement between two waveforms—for

instance, the signal, hs, and the template, ht, observed by a
detector, we define the faithfulness function [102,168],

F ðMs; ιs;φ0sÞ ¼ max
tc;φ0t

2
64 hhsjhtiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhsjhsihhtjhti
p

�����
ιs¼ιt

λsðts¼t0s Þ¼λtðtt¼t0t Þ

3
75;

ð18Þ

where λ ¼ fm1;2; χ1;2; e0; ζ0g denotes the set of intrinsic
parameters of the binary. When comparing waveforms,
we choose the same inclination angle for the signal and
template ιs ¼ ιt ¼ π=3, while the coalescence time and
azimuthal angles of the template, ðt0t ;φ0t

Þ, are adjusted
to maximize the faithfulness of the template. The

maximizations over the coalescence time tc and coales-
cence phase φ0t are performed numerically. Similarly as in
Sec. IV of Ref. [147] we set a grid of 8 points in the
coalescence phase of the signal φ0s ∈ ½0; 2π�, and average
over it to compute F . Finally, we introduce the unfaithful-
ness or mismatch as

M̄ ¼ 1 − F̄ : ð19Þ

In Fig. 3 we show the distribution of median unfaithful-
ness over the total mass range ½20 − 300�M⊙ between
the models containing only the ðl; jmjÞ ¼ ð2; 2Þ modes,
SEOBNRv4E and SEOBNRv4E_opt models, as well as
for the models including also the subdominant
harmonics, i.e., ðl; jmjÞ ¼ ð2;2Þ;ð2;1Þ;ð3;3Þ;ð4;4Þ;ð5;5Þ
multipoles. The results demonstrate a remarkable good
agreement between the optimized (SEOBNRv4EHM_opt
and SEOBNRv4E_opt) and the original models
(SEOBNRv4EHM and SEOBNRv4E), with a median of
unfaithfulness of 7.7 × 10−6 for the dominant mode
models, and 2.1 × 10−5 for the models including higher
order modes. As expected the differences between models
with higher order modes are larger than for the dominant-
mode models, due to the fact that small changes in the
termination of the dynamics caused by the modifications
in SEOBNRv4EHM_opt impact more significantly the
higher multipoles. In particular, the reduced tolerances in
the integration can lead to small differences in the non-
quasicircular coefficients computed from the input values
(see Ref. [120] for details), which affect more the higher
modes due to their low power. Furthermore, we also

FIG. 3. Distribution of median unfaithfulness over the total
mass range between ½20 − 300�M⊙ for an inclination ι ¼ π=3,
between the ðl; jmjÞ ¼ ð2; 2Þ-modes models, SEOBNRv4E and
SEOBNRv4E_opt (blue), as well as between the higher-
order mode models, SEOBNRv4EHM and SEOBNRv4EHM_opt
(green) for 4500 configurations in the parameter space q∈ ½1; 50�,
χ1;2 ∈ ½−0.9.0.9�, e0 ∈ ½0; 0.5� and ζ0 ∈ ½0.2π� for a dimensionless
starting frequency of Mω0 ¼ 0.023. The vertical dashed lines
indicate the median values of the distribution.

2The reduction of the tolerances is a similar approach to the
one followed in Ref. [79] to improve the efficiency of the
TEOBResumS-Dali model [99].
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observe a tail of cases with unfaithfulness larger than 1%
between the original and optimized models. These cases
correspond to the more challenging parts of the parameter
space considered with e0 > 0.3 − 0.5 and high spins
(χ1;2 > 0.8 − 0.9), where the models have known limita-
tions, such as the orbit-averaged procedure (see
Appendix B of Ref. [101]), and the use of nonquasicir-
cular corrections calibrated to quasicircular binaries,
which may increase the differences between the models.
Finally, we assess the computational efficiency of the

SEOBNRv4EHM_opt model by timing the waveform gen-
eration and comparing it to the original SEOBNRv4EHM
model, as well as the SEOBNRv4HM model in the quasicir-
cular limit. We consider binary’s configurations with mass
ratioq ¼ 3, dimensionless spins χ1 ¼ −0.5, χ2 ¼ 0.3, initial
relativistic anomaly ζ0 ¼ 1, total mass range M∈ ½20;
200�M⊙, starting frequency fstart ¼ 10 Hz and two different
initial eccentricities e0 ¼ 0, 0.2. The results of the walltimes
to generate the waveforms are shown in Fig. 4, where we are
including all themodes up to l ¼ 4, and a fixed sampling rate
of 8192Hz for all the total masses considered.3 The values of
thewalltimes are computed as an average over 100waveform
evaluations for each value shown in Fig. 4. The outcome
of the benchmark demonstrates the significant increase in
speed of the SEOBNRv4EHM_opt model with respect to
the SEOBNRv4EHM and SEOBNRv4HM models. For the
configurations considered, we observe approximately a
factor 2–5 improvement in speed. In the quasicircular limit
SEOBNRv4EHM is on average, over the total mass consid-
ered, slightly (∼1.5 times) faster than SEOBNRv4HM due
to a more efficient implementation of some operations
involved in the waveform calculation of SEOBNRv4EHM,
while SEOBNRv4EHM_opt is a factor ∼2.7 faster than
SEOBNRv4EHM. Regarding models with only the ðl; jmjÞ ¼
ð2; 2Þ modes, the hierarchy of curves is similar with the
SEOBNRv4E_opt being faster than SEOBNRv4E by a
factor∼3.1. This increase in speed compared to models with
higher-order modes is due to the lack of common operations
performed for models with higher-order modes, which limit
the speed of the latter. When considering an initial eccen-
tricity e0 ¼ 0.2 in the bottom panel of Fig. 4, we find an
average (over total masses) increase of speed of ∼7.7 and
∼3.8 for the SEOBNRv4E_opt and SEOBNRv4EHM_opt
models. The speed increase is more significant at low total
masses as the main cost of waveform generation comes from
the evaluation of the EOB dynamics, which is computed
less frequently in the optimized model due to the reduced
integration tolerances.

In summary, theSEOBNRv4E_opt andSEOBNRv4EHM_
optmodels imply a significant acceleration in waveform
evaluation with respect to their original counterparts
with a minor reduction in accuracy, in the region of
parameter space of interest for our study. Furthermore,
the sampling rate used for the benchmarks here is rather
high4 (8192 Hz), and typical applications for data analysis
may use lower ones, which implies that the walltimes for
waveform evaluation may be further reduced. As a
consequence the optimized models reach speeds competi-
tive for parameter estimation, and we show in Sec. III that

FIG. 4. Walltimes of the SEOBNRv4HM, SEOBNRv4EHM,
SEOBNRv4EHM_opt models (solid lines) for a configuration
with mass ratio q ¼ 3, dimensionless spins χ1 ¼ −0.5, χ2 ¼ 0.3,
initial relativistic anomaly ζ0 ¼ 1, total mass range M∈ ½20;
200�M⊙, starting frequency fstart ¼ 10 Hz and two different
initial eccentricities e0 ¼ 0 (top panel) and e0 ¼ 0.2 (bottom
panel). The dashed lines correspond to the models with only the
ðl; jmjÞ ¼ ð2; 2Þ multipoles (SEOBNRv4, SEOBNRv4E and
SEOBNRv4E_opt). The walltimes are computed averaging over
a hundred waveform evaluations and using a sampling rate of
8192 Hz for all the masses considered.

3The benchmarks of the waveform generation timing were
performed on a computing node (dual-socket, 128-cores per
socket, SMT-enabled AMD EPYC (Milan) 7742 (1.5 GHz), with
4 GB RAM per core) of the Hypatia cluster at the Max Planck
Institute for Gravitational Physics in Potsdam.

4We choose such a sampling rate value in order to resolve all
the modes up to l ¼ 4 for all the total mass range considered,
M∈ ½20; 200�M⊙.
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they can be used to perform parameter-estimation runs in
the order of hours and days.

III. BAYESIAN INFERENCE STUDY

The main application of the SEOBNRv4EHM_opt
waveform model is the Bayesian inference of source
parameters of GWs emitted by BBHs. Thus, we introduce
the methods and parameter-estimation codes used to infer
the binary parameters in Sec. III A, we show the accuracy
of the model in the quasicircular limit in Sec. III B, we
assess in Sec. III C the impact of the different initial
conditions discussed in Sec. II B, as well as the importance
of the relativistic- anomaly parameter. In Sec. III D we
further investigate the accuracy of the model by performing
a series of synthetic NR signal injections into zero detector
noise. Finally, in Sec. III E, we analyze three real GW
events detected by the LVK collaboration (GW150914,
GW151226 and GW190521), and compare with results
from the literature.

A. Methodology for parameter estimation

For the parameter-estimation study we employ
PARALLEL BILBY

5 [105], a highly parallelized version of
the Bayesian inference Python package BILBY [142,143],
incorporating the nested sampler DYNESTY [169]. Based on
previous experience with PARALLEL BILBY [147], we use a
number of autocorrelation times nact ¼ 30, number of live
points nlive ¼ 2048, and the remaining sampling parameters
with their default values, unless otherwise specified.
Furthermore, the runs are performed using distance margin-
alization as implemented in BILBY, and the phase margin-
alization is activated when using the ðl; jmjÞ ¼ ð2; 2Þ-mode
models to further reduce the computational cost.
For the choice of priors, we follow broadly

Refs. [1,147,170]. We choose a prior in inverse mass
ratio, 1=q, and chirp mass, M, such that it is uniform in
component masses. The priors in initial eccentricity, e0, and
relativistic anomaly, ζ0 ∈ ½0; 2π�, are chosen to be uniform.
In order to facilitate the comparison with precessing-spin
results, the priors on the spin-components, χ1;2, are chosen
such that they correspond to the projections of a uniform
and isotropic spin distribution along the ẑ-direction [170].
The luminosity distance prior is chosen to be proportional
to ∝ d2L, unless otherwise specified. The rest of the priors
are set according to Appendix C of Ref. [1]. The specific
values of the prior boundaries for the different parameters
vary depending on the application, and we specify them in
the subsequent sections.

B. Quasicircular limit

Eccentricity is a parameter, which defines the ellipticity
of an orbit between two limits: the parabolic and the
circular case. In this section we consider the latter, and
demonstrate that the SEOBNRv4EHM_opt model is able
to accurately describe GWs from quasicircular BBHs. In
Sec. III of Ref. [101] it is shown that SEOBNRv4EHM has a
comparable accuracy to SEOBNRv4HM by computing the
unfaithfulness against quasicircular NR waveforms.
Here, we assess the accuracy of SEOBNRv4EHM_opt

in the zero-eccentricity limit by computing the unfaithful-
ness, as defined in Sec. II C, against the accurate
quasicircular SEOBNRv4HM model for 4500 random
points distributed in the following parameter space:
q∈ ½1; 50�, χ1;2 ∈ ½−0.9.0.9�, with an inclination angle of
ι ¼ π=3, for a total mass range ½20 − 300�M⊙ and starting
frequency of Mω0 ¼ 0.023 in geometric units. In Fig. 5
we show the distribution of the median unfaithfulness
over the total mass range considered when comparing
the ðl; jmjÞ ¼ ð2; 2Þ-mode models, SEOBNRv4 and
SEOBNRv4E_opt, as well as the corresponding models
including higher multipoles, SEOBNRv4HM and
SEOBNRv4EHM_opt. For SEOBNRv4E_opt the
median value of unfaithfulness is 8.1 × 10−6, while when
including higher order modes it degrades to 3.8 × 10−5. In
both cases there are no configurations with unfaithfulness
larger than 1%. Therefore, both the SEOBNRv4E_opt
and SEOBNRv4EHM_opt models are faithful across
parameter space to the SEOBNRv4 and SEOBNRv4HM
models, respectively, considering that SEOBNRv4 was
calibrated to NR with unfaithfulness below 1%.

FIG. 5. Distribution of median unfaithfulness over the total
mass range between ½20 − 300�M⊙ for an inclination ι ¼ π=3,
between the ðl; jmjÞ ¼ ð2; 2Þ-modes models, SEOBNRv4E_
opt and SEOBNRv4 (blue), as well as between the higher-
order mode models, SEOBNRv4EHM_opt and SEOBNRv4HM
(green) for 4500 configurations in the parameter space
q∈ ½1; 50�, χ1;2 ∈ ½−0.9.0.9� for a dimensionless starting fre-
quency of Mω0 ¼ 0.023. The vertical dashed lines indicate the
median values of the distribution.

5In this paper we employ the PARALLEL BILBY code from the
public repository https://git.ligo.org/lscsoft/parallel_bilby with
the git hash b56d25b87b3b33b33a91a8410ae3a6c2a5
c92a2e, which corresponds to the version 2.0.2.
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We further investigate the implications of these unfaith-
fulness results in parameter estimation by performing a
mock-signal injection into zero-detector noise. With zero
noise, and flat priors, the likelihood will peak at the true
parameters when using the same model for injection and
recovery. This makes it easier to see biases that are arising
from model differences. We use the SEOBNRv4model as a
signal, and recover the injected parameters with the reduced
order model (ROM) SEOBNRv4_ROM [120] and the
SEOBNRv4E_opt model. For the latter we also sample
in initial eccentricity and relativistic anomaly. We consider
a configuration with mass ratio q ¼ 4, total mass M ¼
90.08M⊙ and BH’s dimensionless spins χ1 ¼ 0.5 and
χ2 ¼ −0.1 defined at 20 Hz.
For this injection we choose the inclination with respect

to the line of sight of the BBH to be ι ¼ 0.1 rad,
coalescence and polarization phases are ϕ ¼ 0.6 rad and
ψ ¼ 0.33 rad, respectively. The luminosity distance to the
source is chosen to be 600 Mpc, which produces a three-
detector (LIGO Hanford, LIGO Livingston and Virgo)
network-SNR of ρNmf ¼ 67.9 when using the LIGO and
Virgo PSD at design sensitivity [167].
We choose a uniform prior in inverse mass ratio and chirp

mass, with ranges 1=q∈ ½0.05; 1� andM∈ ½5; 100�M⊙. The
priors on themagnitudes of the dimensionless z-components
of the spins are ai ∈ ½0; 0.99�. For SEOBNRv4E_opt we
take a uniform prior in the initial eccentricity e0 ∈ ½0; 0.3�,
and uniform in the initial relativistic anomaly ζ0 ∈ ½0; 2π�.
The resulting posteriors for the inverse mass ratio, chirp

mass, effective-spin parameter, luminosity distance, initial
eccentricity and relativistic anomaly are shown in Fig. 6.
We find remarkable agreement between the posteriors of

SEOBNRv4E_opt and SEOBNRv4_ROM for all the
parameters. The injected values and recovered parameters
are displayed in Table I, where additional parameters are
shown. Even for a relatively high SNR injection (ρNmf ∼ 68)
both models are able to accurately recover the injected
parameters for the inverse mass ratio, chirp mass and
effective-spin parameter within the 90% credible intervals,

FIG. 6. Inverse mass ratio, chirp mass, effective spin parameter, luminosity distance, initial eccentricity and relativistic anomaly
posterior distributions for a synthetic quasicircular BBH signal injection using the SEOBNRv4 model, and recovering the parameters
with SEOBNRv4E_opt (blue) and SEOBNRv4_ROM (orange). The dashed vertical lines indicate the 90% credible intervals. The solid
vertical lines correspond to the injected parameters, which are also shown in Table I.

TABLE I. Injected and median values of the posterior distribu-
tions for the synthetic injection with the SEOBNRv4 model,
recovered with SEOBNRv4E_opt and SEOBNRv4_ROM. The
median values also report the 90% credible intervals. The binary
parameters correspond to the total massM, chirp massM, inverse
mass ratio 1=q, effective-spin parameter χeff, initial eccentricity e0,
initial relativistic anomaly ζ0, angle between the total angular
momentum and the line of sight θJN, luminosity distance dL,
coalescence phase ϕref and the network matched-filtered SNR for
LIGO-Hanford/Livingston and Virgo detectors ρNmf .

Parameter Injected value SEOBNRv4E_opt SEOBNRv4_ROM

M=M⊙ 90.08 90.96þ1.44
−1.51 90.95þ1.42

−1.5

M=M⊙ 30.00 29.81þ0.51
−0.51 29.83þ0.52

−0.51

1=q 0.25 0.24þ0.02
−0.02 0.24þ0.02

−0.02

χeff 0.02 0.00þ0.03
−0.03 0.00þ0.03

−0.03

e0 0 0.01þ0.02
−0.01 � � �

ζ0 � � � 3.09þ2.57
−2.48 � � �

θJN 0.1 0.52þ0.29
−0.3 0.51þ0.29

−0.30
dL 600 521.35þ64

−93 523þ63
−94

ϕref 0.1 3.15þ2.53
−2.52 3.16þ2.54

−2.52

ρNmf 67.98 64.34þ0.06
−0.06 64.42þ0.02

−0.03
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while the luminosity distance presents a small bias due to
the limited mode content of both models (only the
ðl; jmjÞ ¼ ð2; 2Þ multipoles), which creates a degeneracy
between the inclination angle and the luminosity dis-
tance and thus, complicates the measurement of both
quantities [102,171–173]. This degeneracy and, thus the
bias, can be removed by including higher multipoles in the
waveform, but we do not use models with higher multi-
poles, as the focus of this injection study is the assessment
of the agreement between the SEOBNRv4E_opt and
SEOBNRv4_ROM models.
Regarding initial eccentricity and relativistic anomaly,

SEOBNRv4E_opt measures an initial eccentricity con-
sistent with zero, e0 ¼ 0.01þ0.02

−0.01 , while the initial relativ-
istic anomaly becomes an uninformative parameter as for
quasicircular orbits the radial phase provides no informa-
tion about the position of the binary components.
In conclusion, the SEOBNRv4EHM_opt model has an

accurate zero eccentricity limit comparable to the underlying
quasicircular SEOBNRv4HM model. This is extremely
important as eccentricity is a gauge dependent parameter
in general relativity between twowell-defined limits (circular
and parabolic), and being able to unambiguously recover one
of them ensures that the values of eccentricity can be quoted
with respect to a uniquely defined physical configuration.6

C. Eccentric case

Two different initial conditions (ICs) for the
SEOBNRv4EHM model were presented in Sec. II B:
(1) one based on the specification of the initial eccentricity
and relativistic anomaly, ðe0; ζ0Þ at an instantaneous orbital
frequency ω0, hereafter referred as instantaneous ICs,
and (2) one based on the specification of ðe0; ζ0Þ at an
orbit-averaged orbital frequency ω̄0, hereafter called orbit-
averaged ICs.
Here, we study the implications of these ICs by perform-

ing two mock-signal injections in zero detector noise using
the SEOBNRv4E_optmodel as a signal with two different
initial eccentricities e0 ¼ ½0.1; 0.2�, and recovering with the
SEOBNRv4E_opt model. We consider a configuration
with mass ratio q ¼ 3, initial relativistic anomaly ζ0 ¼ 1.2,
total mass M ¼ 76.4M⊙ and BH’s dimensionless spins
χ1 ¼ 0.5 and χ2 ¼ −0.1 defined at a starting frequency
of 20 Hz.7

The priors on the sampling parameters are chosen as in
Sec. III B. The injection and recovery of the parameters
are performed using the SEOBNRv4E_opt model with
orbit-averaged and instantaneous ICs. Furthermore, we also

assess the importance of the relativistic anomaly parameter,
ζ0, by recovering the parameters by setting the initial
starting point of the orbit at periastron (ζ0 ¼ 0), which is
different from the injected value ζ0 ¼ 1.2. For complete-
ness we also measure the binary parameters in the quasi-
circular limit (e0 ¼ 0). The resulting posterior distributions
of the different cases are shown in Fig. 7 for the inverse
mass-ratio, initial eccentricity and initial relativistic
anomaly. The injected values, the median values and
90% credible intervals of the posterior distributions of
some parameters are provided in Table II.
The left side of the violin plots in Fig. 7 shows the

comparison of the orbit-averaged and instantaneous ICs as
well as the zero-eccentricity case. We find that both ICs are
able to accurately recover the injected parameters for all the
parameters of the two injected eccentricities, e0 ¼ 0.1 and
e0 ¼ 0.2. In the case of the instantaneous ICs the ζ0
posterior is sharply peaked at the injected value due to
the fact that for these ICs a change in ζ0 at a fixed value of
e0 provides a completely different evolution, while for the
orbit-averaged ICs variations of ζ0 at a fixed value e0
describe different values of the radial phase in the same
orbit as shown in Fig. 1. These different descriptions of
the orbits have also implications in the efficiency of the
sampler and the cost of the parameter estimation runs. For
instance, the e0 ¼ 0.2 injections were performed with the
same sampler settings as described in Sec. III A and using
6 nodes of 32 cores each8 with an averaged wall clock time
of 11.8 and 35.7 hours for the orbit-averaged and instanta-
neous ICs, respectively. This demonstrates that the orbit-
averaged ICs lead to a more computationally efficient
sampling of the parameter space than the instantaneous
ICs without a loss of accuracy.
We focus now on the right side of the violin plots in

Fig. 7, where the results of setting the initial relativistic-
anomaly parameter to a different value (ζ0 ¼ 0) from the
injected one (ζ0 ¼ 1.2) for both the instantaneous and the
orbit-averaged ICs are displayed. For the orbit-averaged
ICs, neglecting the relativistic anomaly parameter can lead
to biases in the quasicircular parameters like the inverse
mass ratio, while the eccentricity parameter is accurately
recovered (see right-side distributions in Fig. 7). This
can be explained by the fact that during the parameter-
estimation run the template waveform compensates the lack
of another eccentric degree of freedom by modifying the
rest of the parameters in order to describe more accurately
the signal. This points out the relevance of taking into
account the radial-phase parameter when using orbit-
averaged ICs, and is in agreement with the findings of
Ref. [176] during the construction of an eccentric6For instance, in the TEOBResumS family of waveform

models [158,174], Ref. [85] found a small bias between the
quasicircular TEOBResumS-GIOTTO [175] and the eccentric
TEOBResumS-Dali [99] models in the quasicircular limit.

7The starting frequency of the injected signal is orbit-average
or instantaneous in order to be consistent with the ICs used for the
recovery of the parameters.

8The parameter estimation runs were performed using com-
puting nodes (dual-socket, 16-cores per socket, SMT-enabled
AMD EPYC (Milan) 7351 (2.4 GHz), with 8 GB RAM per core)
of the Hypatia cluster at the Max Planck Institute for Gravita-
tional Physics in Potsdam.
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FIG. 7. Top row: Violin plots for the posterior distributions of the inverse mass ratio, initial eccentricity and relativistic anomaly for a
synthetic BBH signal injection using the SEOBNRv4E_opt model with e0 ¼ 0.1 and ζ0 ¼ 1.2 at 20 Hz. The posteriors are computed
using the SEOBNRv4E_opt model with orbit-averaged ICs (blue), instantaneous ICs (orange), setting ζ0 ¼ 0 for the orbit-averaged
(brown) and instantaneous (pink) ICs, and for the zero-eccentricity case e0 ¼ 0 (gray). The cases where ζ is fixed during sampling
(ζ0 ¼ 0) have been placed on the right side of the x-axis to ease the visualization of the results. The dashed vertical lines indicate the 90%
credible intervals. The solid vertical lines correspond to the injected parameters, which are also shown in Table I. Bottom row: same as in
the upper row but for an injected signal with initial eccentricity e0 ¼ 0.2 at 20 Hz.

TABLE II. Injected and median values of the posterior distributions for two synthetic injections with the SEOBNRv4E_opt model with
initial eccentricities e0 ¼ ½0.1; 0.2�. The median values also report the 90% credible intervals. The binary parameters correspond to the total
massM, chirpmassM, inversemass ratio1=q, effective spinparameter χeff, initial eccentricitye0, initial relativistic anomalyζ0, angle between
the total angularmomentumand the line of sightθJN, luminosity distancedL, coalescence phaseϕref and thenetworkmatched-filtered SNR for
LIGO-Hanford/Livingston and Virgo detectors ρNmf . For each injection the recovery is done with the SEOBNRv4E_optmodel using orbit-
averaged ICs (ω̄0 ICs), instantaneous ICs (ω0 ICs), and setting ζ0 ¼ 0 for both the orbit-averaged and instantaneous ICs, ω̄0 ICs (ζ0 ¼ 0) and
ω̄0 ICs (ζ0 ¼ 0), respectively. Additionally, the values recovered setting the initial eccentricity to zero, e0 ¼ 0, are also shown.

Parameter M=M⊙ M=M⊙ 1=q χeff e0 ζ0 θJN dL ϕref ρNmf

Injected value 76.45 28.0 0.33 −0.22 0.1 1.2 0.1 800.0 0.1 46.3

ω̄0 ICs 77.93þ1.82
−1.88 28.09þ0.57

−0.59 0.32þ0.03
−0.02 −0.23þ0.05

−0.05 0.1þ0.01
−0.01 1.04þ0.46

−0.44 0.53þ0.32
−0.32 699.63þ96.27

−140.91 3.14þ2.52
−2.52 46.3þ0.04

−0.06

ω0 ICs 77.67þ1.84
−1.91 27.9þ0.64

−0.68 0.31þ0.03
−0.03 −0.24þ0.05

−0.06 0.1þ0.01
−0.01 1.2þ0.07

−0.09 0.53þ0.32
−0.31 691.15þ96.25

−140.43 3.12þ2.51
−2.53 46.24þ0.04

−0.07

ω̄0 ICs (ζ0 ¼ 0) 76.01þ1.69
−1.63 26.84þ0.4

−0.43 0.3þ0.03
−0.02 −0.31þ0.04

−0.05 0.09þ0.01
−0.01 � � � 0.54þ0.32

−0.31 650.18þ89.02
−126.32 3.15þ2.69

−2.51 46.23þ0.04
−0.07

ω0 ICs (ζ0 ¼ 0) 77.86þ1.9
−1.95 27.99þ0.65

−0.67 0.31þ0.03
−0.03 −0.24þ0.05

−0.05 0.1þ0.01
−0.03 � � � 0.53þ0.32

−0.32 697.18þ97.41
−139.64 3.15þ2.48

−2.56 46.08þ0.04
−0.06

e0 ¼ 0 77.01þ2.07
−2.16 28.07þ0.54

−0.55 0.33þ0.03
−0.03 −0.23þ0.05

−0.05 � � � � � � 0.54þ0.32
−0.32 715.39þ99.1

−145.79 3.14þ2.49
−2.52 45.39þ0.03

−0.05

Injected value 76.45 28.0 0.33 −0.22 0.2 1.2 0.1 800.0 0.1 46.75

ω̄0 ICs 78.37þ2.23
−2.18 28.49þ0.51

−0.53 0.33þ0.03
−0.03 −0.21þ0.05

−0.05 0.2þ0.01
−0.01 0.82þ0.48

−0.42 0.53þ0.32
−0.32 716.81þ96.1

−142.65 3.17þ2.51
−2.53 46.65þ0.04

−0.06

ω0 ICs 77.31þ1.81
−1.78 28.0þ0.65

−0.63 0.32þ0.03
−0.02 −0.24þ0.06

−0.06 0.2þ0.01
−0.01 1.21þ0.04

−0.04 0.53þ0.32
−0.31 698.53þ95.21

−141.05 3.16þ2.49
−2.55 47.07þ0.04

−0.07

ω̄0 ICs (ζ0 ¼ 0) 77.08þ2.06
−1.93 27.49þ0.34

−0.35 0.31þ0.02
−0.02 −0.26þ0.04

−0.04 0.2þ0.01
−0.01 � � � 0.54þ0.31

−0.32 676.57þ87.97
−129.13 3.15þ2.87

−2.16 46.61þ0.04
−0.06

ω0 ICs (ζ0 ¼ 0) 79.12þ1.75
−1.73 28.76þ0.59

−0.6 0.33þ0.03
−0.02 −0.19þ0.05

−0.05 0.24þ0.03
−0.02 � � � 0.53þ0.32

−0.32 734.54þ97.61
−147.69 3.2þ2.51

−2.52 46.61þ0.04
−0.06

e0 ¼ 0 82.95þ2.39
−2.54 31.6þ1.09

−0.94 0.39þ0.05
−0.04 −0.17þ0.06

−0.06 � � � � � � 0.53þ0.32
−0.31 874.23þ125.43

−179.57 3.11þ2.55
−2.5 43.38þ0.04

−0.06
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surrogate-waveform model. Regarding the instantaneous
ICs, the quasicircular parameters are recovered with no
biases, but a multimodal posterior in the eccentricity
parameter is found in the middle panels of Fig. 7. These
multimodalities can be explained by a degeneracy in the
waveforms with fixed ζ0 at a relatively high total mass
(M ∼ 76M⊙), and the fact that the model assumes circu-
larization at merger-ringdown. As shown in Sec. III D these
multimodalities can sometimes be an artifact of the specific
parametrization chosen, and be removed by going to a
definition of eccentricity based on the waveform. However,
this is not the case for the injections shown in this section,
and the multimodalities remain even after a redefinition
of the eccentric parameters, indicating that for these
particular injections these are true multimodalities in the
posterior distribution. Therefore, the instantaneous ICs
when neglecting ζ0 can substantially complicate the sam-
pling as well as the measurement of the eccentricity
parameter due to the multimodalities.
Finally, we also show in Fig. 7 and Table II the results of

sampling with the initial eccentricity set to zero. For the
injection with small eccentricity at the injected SNR (∼46)
the quasicircular model is still able to recover the parameters
accurately within the 90% credible intervals. However, for
the high eccentricity injection (e0 ¼ 0.2) this is no longer the
case and the biases in parameters like the chirpmass can be as
large as 8% with respect to the injected value.
In summary, the orbit-averaged ICs provide a more

efficient sampling of the eccentric parameter space than
the instantaneous ones without a loss of accuracy. As a
consequence we adopt the orbit-averaged ICs hereafter
for the analysis using the SEOBNRv4EHM_opt model in
this paper. Furthermore, we have shown that neglecting
the radial-phase parameter, as currently done in the
TEOBResumS-Dali and the SEOBNREHM [96] models
can lead to biases in the recovered parameters for both
instantaneous and orbit-averaged ICs, unless one varies
additional parameters. For instance, in Ref. [85] to
avoid biases in the posteriors with TEOBResumS-
Dali, which only employs the eccentricity parameter
to describe elliptical orbits, the starting frequency of the
waveform is also sampled during the parameter estimation
runs. However, we find more natural to keep the starting
frequency of the waveform fixed as done in the
LVK analysis of the Gravitational Wave Transient
Catalogs [2–4], and thus, use two eccentric parameters,
eccentricity and relativistic anomaly, which can vary
freely during the parameter-estimation run.

D. Numerical-relativity injections

In Ref. [101], the SEOBNRv4EHM model was shown
to be accurate to with an unfaithfulness below 1% for a
dataset of public eccentric NR waveforms from the SXS
catalog [106,177]. In this section we further investigate
the accuracy of the SEOBNRv4EHM model against NR

waveforms by performing zero-noise injections, and recov-
ering the parameters with the SEOBNRv4E_opt model.
We consider a set of 3 public eccentric simulations SXS:

BBH:1355, SXS:BBH:1359 and SXS:BBH:1363,
which correspond to equal-mass, nonspinning configura-
tions with initial eccentricities measured from the orbital
frequency at first periastron passage of 0.07, 0.13 and 0.25,
respectively (see Table I of Ref. [101] for details). For these
injections we choose a total mass M ¼ 70M⊙, inclination
with respect to the line of sight of the BBH ι ¼ 0 rad,
coalescence phase ϕref ¼ 0 rad, and luminosity distance
dL ¼ 2307 Mpc, which produces a three-detector (LIGO
Hanford, LIGO Livingston and Virgo) network-SNR of
ρNmf ¼ 20 when using the LIGO and Virgo PSD at design
sensitivity. The priors are the same as in Sec. III C, with the
only exception that for the run corresponding to the SXS:
BBH:1363 NR waveform we set a larger upper bound for
the eccentricity prior of e0 ∈ ½0; 0.5� in order to avoid railing
of the posterior against the upper bound of the prior.
Before analyzing the results of the injections, we con-

sider the problem of mapping the eccentric parameters,
eccentricity and radial phase, from the NR waveforms to
the SEOBNRv4E_opt model. This problem stems from
the gauge-dependency of the eccentricity parameter in
general relativity, and can be avoided by adopting a
common definition of the parameters defining elliptical
orbits in the NR simulation and the SEOBNR model. In
particular, we adopt a definition of eccentricity, egw,
measured from the frequency of the (2,2)-mode with the
correct Newtonian limit [108]

egw ¼ cosðψ=3Þ −
ffiffiffi
3

p
sinðψ=3Þ; ð20aÞ

with

ψ ¼ arctan

�
1 − e2ω22

2eω22

�
; ð20bÞ

eω22
¼ ω1=2

22;p − ω1=2
22;a

ω1=2
22;p þ ω1=2

22;a

; ð20cÞ

where ω22;a;ω22;p refer to the values of the (2,2)-mode
frequency at apastron and periastron, respectively. As the
radial-phase parameter describing a binary in an elliptic
orbit, we use the mean anomaly, with the following
definition [178]

lgw ¼ 2π
t − tpi

tpiþ1 − tpi
; ð21Þ

where tpi is the time of the ith periastron passage measured
from the (2,2)-mode frequency.
These definitions of eccentricity and mean anomaly can

be applied to the posterior distributions from the parameter-
estimation runs as a post-processing step employing its
highly efficient implementation in the GW_ECCENTRICITY
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Python package9 [109]. The procedure consists in evaluating
the waveform for each sample of the posterior distributions,
and applying the GW_ECCENTRICITY package to measure
the eccentricity and mean anomaly at a desired point in the
evolution. The process can be parallelized to measure the
eccentricity and mean anomaly in a much smaller timescale
than an actual parameter-estimation run.10

In the SEOBNRv4EHM model the eccentricity is speci-
fied at an orbit-averaged orbital frequency, however, the
eccentricity definition introduced in Eq. (20) is based on the
(2,2)-mode frequency. As shown in Ref. [108], for eccen-
tric binaries the instantaneous orbital and (2,2)-mode
frequencies are not related by a simple factor of 2, as in
the quasicircular case, and this can cause that for some
samples in the posterior distribution, the instantaneous
(2,2)-mode frequency does not reach the starting frequency
specified in the initial conditions of the SEOBNRv4EHM
model. In order to avoid that this situation prevents the
eccentricity measurement for some samples we have also
implemented an option to integrate the EOB dynamics
backward in time from a specific starting frequency. For the
rest of the calculations involving GW_ECCENTRICITY in this
paper, we integrate 2000M backward in time.
In Fig. 8, we summarize the parameter-estimation results

of the injections. We report the marginalized 1D and 2D
posteriors for the chirp mass M and the effective-spin
parameter χeff, the initial eccentricity and relativistic

anomaly, and the GW eccentricity and mean anomaly
measured at 20 Hz. In Table III we provide the values
of the injected parameters and the median of the inferred
posterior distribution with the 90% confidence intervals for
both models. The results show that SEOBNRv4E_opt is
able to recover M and χeff , as well as the mass ratio and
total mass for all the NR injections within the 90% con-
fidence intervals. The NR waveforms contain all the
multipoles up to l ≤ 8, while the SEOBNRv4E_opt
contains only the ðl; jmjÞ ¼ ð2; 2Þ modes. This difference
in mode content explains why there are some small biases
in the luminosity distance and θJN parameter.
Regarding the eccentric parameters, the middle panel of

Fig. 8 shows the initial eccentricity and relativistic anomaly
posterior distributions at 20 Hz for the three different
injections. For the highest eccentricity injection (SXS:
BBH:1363), the eccentricity posterior is bimodal with
two modes centered at e0 ∼ 0.25 and e0 ∼ 0.35. However,
when moving to the definition of eccentricity and mean
anomaly based on the (2,2)-mode frequency introduced in
Eq. (20), we find a unimodal posterior in egw and lgw, which
indicates that the bimodality in ðe0; l0Þ is simply a conse-
quence of the parametrization of the EOB initial conditions
used in the SEOBNRv4E_optmodel. Furthermore, the egw
and lgw parameters at 20 Hz are measured from the NR
waveforms, and shown as vertical lines in the right panel
of Fig. 8. The posterior distributions for egw and lgw are
consistent within the 90% credible intervals with the injected
values for the three NR waveforms.
The results of the injections demonstrate that

SEOBNRv4E_opt is able to accurately recover the eccentric
and noneccentric parameters of the injected NR wave-
forms, and they are consistent with the low unfaithfulness

FIG. 8. 2D and 1D posterior distributions for some relevant parameters from the equal mass nonspinning synthetic BBH signals with
total mass 70M⊙. The signal waveforms correspond to the NR waveforms from the public SXS catalog SXS:BBH:1355, SXS:
BBH:1359 and SXS:BBH:1363 with GW eccentricities egw ¼ 0.05, 0.1, 0.25 and GW mean anomalies lgw ¼ 1.96, 0.81, 4.27
defined at 20 Hz, respectively. The other parameters are specified in Table III. In the 2D posteriors the solid contours represent the 90%
credible intervals and black dots show the values of the parameters of the injected signal. In the 1D posteriors they are represented by
dashed and solid vertical lines, respectively. The parameter estimation is performed with the SEOBNRv4E_optmodel. Left: chirp mass
and effective-spin parameter. Middle: initial eccentricity and relativistic anomaly at 20 Hz. Right: GW eccentricity and GW mean
anomaly at 20 Hz.

9We have used version v1.0.2 from the public git repository
git@github.com:vijayvarma392/gw_eccentricity
.git.

10For the parameter-estimation runs in this section, and when
running on 4 nodes of 32 cores (their description can be found in
Sec. III C) the post-processing step takes less than 30 minutes.
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values of SEOBNRv4E against NR waveforms reported in
Ref. [101]. Further studies of the accuracy of the model
will require larger datasets of eccentric NR waveforms
including spins and higher eccentricities, and we leave for
future work investigating the waveform systematics of the
SEOBNRv4EHM_opt model and its biases against NR
waveforms.

E. Analysis of GW events

In this section, we analyze 3 GW events recorded by the
LIGO and Virgo detectors [1,3,4] during the first and third
observing runs: GW150914, GW151226 and GW190521.
We employ strain data from the Gravitational Wave Open
Source Catalog (GWOSC) [179], and the released PSD and
calibration envelopes included in the Gravitational Wave
Transient Catalogs GWTC-2.1 [3], and their respective
parameter-estimation samples releases.11

We analyze GW150914, GW151226 and GW190521
using SEOBNRv4EHM_opt and SEOBNRv4E_opt with

PARALLEL BILBY and the settings described in Sec. III A.
For SEOBNRv4EHM_opt, we restrict to a mode content
l ≤ 4 in order to avoid the increase of computational cost
due to the high sampling rates necessary to resolve the
(5,5)-mode, as at the current SNRs the impact of this mode
on accuracy is limited.

1. GW150914

The first observation of GWs from a BBH coalescence,
GW150914, had one of the highest SNRs (∼23.7) of the
GW events observed during the first three observing runs
[3,110] of the LVK. The binary parameters are consistent
with a nonspinning binary with comparable masses [114].
We choose priors in inverse mass ratio, 1=q∈ ½0.05; 1�,

and chirp mass, M∈ ½20; 50�M⊙, such that the induced
priors in component masses are uniform. Uniform priors
were also used for initial eccentricity, e0 ∈ ½0; 0.3�, and the
initial relativistic anomaly, ζ0 ∈ ½0:; 2π�. The other priors are
chosen as in Sec. III D. For the analysis we use a starting
frequency of 10 Hz at which the waveform is generated and,
thus at which the initial eccentricity and relativistic anomaly
are defined. This choice of starting frequency ensures that the
higher order modes in SEOBNRv4EHM_opt are in band at
the minimum frequency of 20 Hz at which the likelihood
calculation starts. We also remark the importance that both
SEOBNRv4EHM_opt and SEOBNRv4E_opt are gener-
ated at the same starting frequency, so that both have the same
priors in initial eccentricity.
The posterior distributions of chirp mass, effective-spin

parameter, GW eccentricity and GW mean anomaly are
displayed in the top row of Fig. 9. In Table IV we also report
the median values and the 90% credible intervals of the
posterior distributions for other binary parameters. For
comparisons we include in our analysis the samples of
SEOBNRv4PHM [168] from the GWTC-2.1 catalog [3].
We find that binary parameters like chirp mass, effective-
spin parameter and mass ratio measured by SEOBNRv4E_
opt and SEOBNRv4EHM_opt are consistent with the
ones measured with SEOBNRv4PHM. This is expected as
GW150914 is consistent with a nonspinning binary, and
thus the effects of spin-precession which are accurately
described by SEOBNRv4PHM are negligible. Regarding
the eccentric parameters, although both SEOBNRv4E_
opt and SEOBNRv4EHM_opt have median values of
eccentricity distinct from zero, e10 Hz

gw ¼ 0.08þ0.1
−0.07 and

e10 Hz
gw ¼ 0.08þ0.09

−0.06 , respectively, the posterior distributions
have a strong support in the zero eccentricity region, which is
in agreement with other analyses of GW150914 with
eccentric waveforms [73,85,86,114].12 We also observe a

TABLE III. Injected and median values of the posterior distri-
butions for three syntheticNR injectionswith the samequasicircular
parameters and different initial eccentricities, and recovered with
SEOBNRv4E_opt. The median values also report the 90%
credible intervals. The binary parameters correspond to the total
mass M, chirp mass M, inverse mass ratio 1=q, effective-spin
parameter χeff, initial eccentricity e0, initial relativistic anomaly ζ0,
angle between the total angularmomentumand the line of sight θJN,
luminosity distance dL, coalescence phase ϕref and the network
matched-filtered SNR for LIGO-Hanford/Livingston and Virgo
detectors ρNmf. At the bottom of the table the injected and measured
GWeccentricity,egw, andGWmean anomaly, lgw, are also reported.

Parameter Injected value SXS:1355 SXS:1359 SXS:1363

M=M⊙ 70.0 70.87þ2.47
−2.27 70.41þ2.45

−2.45 69.81þ2.32
−2.72

M=M⊙ 30.47 30.41þ0.98
−0.95 30.26þ1.04

−1.14 30.06þ0.98
−1.21

1=q 1.0 0.79þ0.17
−0.19 0.8þ0.16

−0.19 0.81þ0.15
−0.17

χeff 0.0 0.02þ0.08
−0.08 0.01þ0.09

−0.1 −0.0þ0.08
−0.1

e0 � � � 0.06þ0.05
−0.05 0.14þ0.03

−0.04 0.29þ0.09
−0.05

ζ0 � � � 2.23þ1.37
−1.16 1.01þ4.67

−0.75 3.28þ1.6
−0.45

θJN 0.0 0.62þ0.48
−0.38 0.61þ0.48

−0.37 0.61þ0.47
−0.37

dL 2307 1831þ373
−560 1818þ374

−556 1859þ378
−571

ϕref 0.0 3.15þ2.5
−2.52 3.14þ2.51

−2.5 3.16þ2.52
−2.52

ρNmf 20.0 19.07þ0.09
−0.14 19.05þ0.09

−0.15 19.02þ0.17
−0.15

egw Injected 0.07 0.13 0.25
Measured 0.06þ0.05

−0.05 0.14þ0.04
−0.04 0.26þ0.02

−0.03
lgw Injected 1.96 0.81 4.27

Measured 2.25þ1.19
−1.11 1.33þ1.7

−0.93 4.32þ0.63
−0.54

11For GW190521 we employ the samples of the
SEOBNRv4PHM model from Refs. [112,113], which were pro-
duced using PARALLEL BILBY.

12Note that small differences in the eccentricity posteriors are
expected due to the use of differentwaveformmodelswith different
definitions of eccentricity, however, we overall find consistent
agreementwith the eccentricity values reported inRefs. [73,85,86],
asGW150914 is found in all of themconsistentwith a noneccentric
binary.

BAYESIAN INFERENCE OF BINARY BLACK HOLES WITH … PHYS. REV. D 108, 124063 (2023)

124063-15



small structure in the GWmean anomaly posterior, which is
however not present in the relativistic anomaly posterior.13 In
order to better understand better this structure, we have

measured the eccentricity at different frequencies (12 and
13 Hz) and found that the small peak in the posteriors of GW
mean anomaly is not present, while the posteriors in GW
eccentricity remain qualitatively the same, except for the
expected shift toward lower values due to the increase in
frequency. This indicates that the minor structure in the GW

FIG. 9. Effective-spin parameter, chirp mass, GW eccentricity and GW mean anomaly parameters inferred for the real GW events
analyzed with SEOBNRv4E_opt and SEOBNRv4EHM_opt. Comparisons are presented with the SEOBNRv4PHM (when available)
and the IMRPhenomXPHM models from the GWTC-2.1 catalog [3], except for GW190521 where samples are from Refs. [112,113].
The waveform starting frequency for GW150914 is fstart ¼ 10 Hz, for the low total mass event GW151226 is fstart ¼ 20 Hz, in order to
reduce the computational cost, while for GW190521 fstart ¼ 5.5 Hz in order to have the mode content in band at the likelihood
minimum frequency (fmin ¼ 11 Hz).

13For this event both the relativistic anomaly posteriors is
uniform between ½0; 2π�.
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mean anomaly posterior at 10 Hz is an artifact of the
GW_ECCENTRICITY post-processing. We decide to keep the
values at 10 Hz as this minor structure in GWmean anomaly
does not change the overall conclusions, and with such
reference frequency the eccentricity is measured at the same
frequency as the rest of the binary parameters.
Additionally, we have produced a runwithSEOBNRv4E_

opt setting e0 ¼ 0, and obtained a signal-to-noise natural
log Bayes factor of 284.6þ0.1

−0.1 which is slightly larger than
283.9þ0.1

−0.1 obtained forSEOBNRv4E_optwhen sampling in
ðe0; ζ0Þ (see Table IV). Unfortunately, this information is not
available for the SEOBNRv4PHM model in the public
GWOSC results, but GWTC2-1 does include a log Bayes
factor for the similar IMRPhenomXPHM model, of
logBF ¼ 303.45þ0.14

−0.14 . These results indicate that the non-
precessing eccentric hypothesis is disfavored against the
precessing-spin quasicircular one, and that GW150914 is
more consistent with a quasicircular BBH merger.

2. GW151226

GW151226 is one of the GW events with lowest
total mass observed in the first observing run, and it was
identified in the GWTC-1 catalog [1] to exclude support
for χeff ¼ 0 at >90% probability. Furthermore, Ref. [79]
analyzed this event with the TEOBResumS-Dali
model [175] and PARALLEL BILBY, with a uniform prior
in eccentricity, and constrained the initial eccentricity to
be e0 < 0.15 at 90% at a starting frequency of 10 Hz.
Moreover, Ref. [73] using the SEOBNRE model [95] and
the reweighing technique with a log-uniform prior in
eccentricity found a much tighter constraint e0 < 0.04
at 10 Hz.
For our analysis we use a uniform prior in initial

eccentricity e0 ∈ ½0; 0.3� and relativistic anomaly ζ0 ∈ ½0;
2π�, and priors in inverse mass ratio, 1=q∈ ½0.125; 1�, and
chirp mass,M∈ ½5; 100�M⊙, such that they are uniform in
component masses. The rest of the priors are chosen as in
the analysis of GW150914. We use a starting frequency of
20 Hz at which the waveform is generated and, at which e0
and ζ0 are defined. Due to the low total mass of the event,
we restrict to a higher starting frequency than in the case
of GW150914, and we only use the SEOBNRv4E_opt
model in order to reduce the computational cost.
The results are shown in the middle row of Fig. 9, while

in Table IV the median values and the 90% credible
intervals of the posterior distributions are reported. For
comparisons we include in our analysis the samples of
IMRPhenomXPHM [180] from the GWTC-2.1 catalog [3].
The quasicircular binary parameters like chirp mass,
effective-spin parameter and mass ratio measured by
SEOBNRv4E_opt show differences with respect to the
ones measured by IMRPhenomXPHM. This can be
explained because of the different physical content of each
model, as IMRPhenomXPHM includes higher-order modes
and describes precessing-spin quasicircular binaries, whileTA
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SEOBNRv4E_opt includes only the ðl; jmjÞ ¼ ð2; 2Þ
modes and describes nonprecessing eccentric binaries.
This translates into a preference of IMRPhenomXPHM
for unequal masses and larger effective spin values
than SEOBNRv4E_opt. Apart from these differences,
the posterior distributions of SEOBNRv4E_opt and
IMRPhenomXPHM have large overlapping regions as
can be observed in the left plot in the middle row of Fig. 9.
The value of eccentricitymeasured bySEOBNRv4E_opt

is e20 Hz
gw ¼ 0.04þ0.05

−0.04 , and the posterior distribution of GW
eccentricity (middle and right plots in Fig. 9) have strong
support at zero eccentricity. This combined with an unin-
formative posterior distribution for the GW mean anomaly
indicate that GW151226 is more consistent with a quasicir-
cular binary than a nonprecessing eccentric binary with
e0 ≤ 0.3. The comparison between the value of eccentricity
in Table IV with the ones in Refs. [73,79] is challenging due
to the following issues: the value of eccentricity that we
report is computed at a different starting frequency (20 Hz),
than the one (10 Hz) used in Refs. [73,79], and the definition
of eccentricity that we are using is based on the waveforms
generated from the samples, while Refs. [73,79] report the
initial eccentricities considered in the definitions of the initial
conditions in the TEOBResumS-Dali and SEOBNRE
models. In order to estimate the eccentricity value at some
other frequency we can apply the Newtonian relation
between the eccentricity and frequency [23] e ¼
erefðf=frefÞ−19=18 to our eccentricity measurement to obtain
e10 Hz
gw ∼ 0.1, which is closer to thevalue reported inRef. [79].
This fact can be explained probably due to the fact
that Ref. [73] uses a log-uniform prior in eccentricity which
puts more weight on the low eccentricity region than a
uniform prior.
Finally, we have also produced a run with SEOBNRv4E_

opt setting e0 ¼ 0, and obtained a signal-to-noise natural
log Bayes factor of 39.8þ0.1

−0.1 which is slightly smaller than
40.4þ0.1

−0.1 obtained for SEOBNRv4E_opt when sampling in
ðe0; ζ0Þ (see Table IV). The difference in log Bayes factors is
∼0.6 which indicates a minor preference for the eccentric
hypothesis.When comparing to the quasicircular precessing-
spin results of IMRPhenomXPHM from the GWTC-2.1
catalog we find logBF ¼ 47.59þ0.14

−0.14 , which indicates that
the eccentric nonprecessing spin hypothesis is less preferred
than the precessing-spin quasicircular one with a log Bayes
factors of ∼7.2 in favor of the latter.

3. GW190521

GW190521 is particularly intriguing, with only 4 cycles
in the band of the detectors, thus being consistent with a
merger-ringdown dominated signal. It has been attributed
to a variety of physical systems including a head-on
collision of exotic compact objects [181], a nonspinning
hyperbolic capture [82] and an eccentric binary [75,76],
although some other recent studies do not find clear
evidence for eccentricity [86].

We analyze GW190521 using the SEOBNRv4EHM_opt
and SEOBNRv4E_opt models with a prior uniform in
initial eccentricity, e0 ∈ ½0; 0.3�, and relativistic anomaly,
ζ0 ∈ ½0; 2π�. We employ priors in inverse mass ratio
1=q∈ ½0.05; 1�, and chirp massM∈ ½60; 200�M⊙ such that
the induced priors are uniform in component masses. The
rest of the priors are as in the analysis of GW150914,
except for the luminosity distance prior which is chosen to
be uniform in comoving volume instead of∝ d2L, in order to
match the settings of Ref. [147]. The starting frequency
of waveform generation is 5.5 Hz such that the higher-
order modes are in band at the minimum frequency of the
likelihood evaluation (11 Hz). As discussed in Ref. [182],
the analysis of GW190521 using different sampling meth-
ods can lead to systematics in recovering some modes in the
posterior distribution. In order to avoid that, we use a higher
number of live points of 8192 for the PARALLEL BILBY

runs of this event for SEOBNRv4E_opt, while for
SEOBNRv4EHM_opt we use a lower number of live
points 2048 to reduce the computational cost.14

The results of our analysis are shown in the bottom row of
Fig. 9, while in Table IV the median values and the 90%
credible intervals of the posterior distributions are reported.
For comparisons we include in our analysis the samples of
SEOBNRv4PHM from Refs. [112,113]. The quasicircular
parameters like chirp mass or total mass show the largest
differences with respect to the SEOBNRv4PHM, while other
parameters like the effective-spin parameter and the mass
ratio are quite consistent in the median. However, as in the
case of nonprecessing quasicircular models (see Ref. [182]),
the SEOBNRv4EHM_opt and SEOBNRv4E_opt models
are not able to reproduce the secondary mode in the
inverse mass ratio posterior. These differences between
SEOBNRv4PHM and SEOBNRv4EHM_opt are expected
due to the GW190521 signal being merger-ringdown
dominated, and these waveform models include distinct
physical effects.
Focusing on the eccentric parameters, we find median

values of the GW eccentricity of e5.5 Hz
gw ¼ 0.15þ0.12

−0.12 for
both SEOBNRv4EHM_opt and SEOBNRv4E_opt. We
observe a minor structure in the GW mean anomaly
posterior, which can be explained by the same reasons
as the ones discussed in the case of GW150914. The large
median values of eccentricity contrast with the uniformative
posterior distribution of eccentricity and the large uncer-
tainty in the 90% credible intervals, which combined with
an uninformative posterior distribution of the GW mean
anomaly (see bottom panels of Fig. 9), indicates that the
eccentricity parameter is poorly constrained in GW190521.

14We have also produced results for SEOBNRv4E_opt with a
number of live points of 2048 and 4096, and observed only
minimal differences in the posteriors with respect to the case with
nlive ¼ 8192. Therefore, for SEOBNRv4EHM_opt, we re-
stricted to nlive ¼ 2048 in order to reduce the computational
cost of the run.
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This situation can be explained by the fact that the signal is
extremely short, and thus merger-ringdown dominated.
However, in SEOBNRv4EHM_opt the eccentricity effects
are included only through the inspiral-merger EOB modes,
while at merger-ringdown the binary is assumed to have
circularized, and the merger input values and the ringdown
model are the same as in SEOBNRv4HM (see Sec. II for
details). For moderate eccentricities, as the ones considered
here, and nonprecessing spins it has been shown in
Refs. [183–185] that the effects of eccentricity in the final
mass and spin of NR waveforms are subdominant.
However, nonprecessing large eccentricity, as well as
precessing-spin eccentric cases are fairly unexplored.
Therefore, in order to clearly measure eccentricity in
high-mass systems, the binary should have large enough
eccentricity at merger.
Apart from this limitation of the SEOBNRv4EHM_opt

model,15 we have also attempted to estimate the validity
of the nonprecessing eccentric hypothesis versus the non-
precessing quasicircular one by producing a run with
SEOBNRv4E_opt setting e0 ¼ 0, and comparing the
signal-to-noise Bayes factors. For the zero-eccentricity
run with SEOBNRv4E_opt we find logBF ¼ 77.7þ0.1

−0.1 ,
which is consistent within the error bars with the values
obtained for the eccentric run with SEOBNRv4E_opt,
logBF ¼ 77.8þ0.1

−0.1 . This points out that the nonprecessing
eccentric hypothesis is equally favored as the nonprecess-
ing quasicircular one. However, when comparing to the
quasicircular precessing-spin results from the discovery
paper of GW19052116 [112] we observe that for the
NRSur7dq4 model [186] the log Bayes factor is
logBF ¼ 84.49. This produces a log Bayes factor between
the quasicircular precessing-spin and nonprecessing eccen-
tric hypothesis of ∼6.7, indicating that the quasicircular

precessing-spin hypothesis is preferred over the nonpre-
cessing eccentric one with a prior in e0 ∈ ½0; 0.3�.
The comparison of Bayes factors from different wave-

form models can be complicated as the result may be
affected not only by the different physical effects included
in the models, but also by the waveform systematics
between the different waveform approximants. Different
waveform models including the same physical effects can
lead to different log Bayes factors (see for instance Table II
of Ref. [182]). As a consequence, we consider the com-
parison of the eccentric nonprecessing against quasicircular
precessing-spin hypothesis using log Bayes factors from
other waveform families as an approximate estimate, and
leave for future work a more detailed study [187].
Besides calibration to eccentric NR waveforms one

of the main limitations in the analysis of GW190521
with SEOBNRv4EHM_opt is the lack of inclusion of
spin-precession effects, which impact significantly the
morphology of the templates at merger-ringdown, and
may substantially modify the measured parameters. This
points out the necessity to produce waveform models,
which include both eccentricity and spin-precession effects,
and there is ongoing work [188] to include both effects
in the new generation of SEOBNR models [146,147] built
within the new pySEOBNR python infrastructure [189].
Finally, the SEOBNRv4EHM_opt results have been

obtained on the order of a few days or a week using
PARALLELBILBY (seeTableV).ThismakesSEOBNRv4EHM_
opt a standard tool that can be used with a highly paral-
lelizable nested sampler like PARALLEL BILBY, and we plan to
extend the Bayesian inference study presented here, using the
machine-learning code DINGO [190–192], to all the GW
events observed during the third-observing run [187].

IV. CONCLUSIONS

In this paper we have improved and validated the
multipolar nonprecessing eccentric SEOBNRv4EHM model
presented in Ref. [101], and shown its applicability to
Bayesian inference studies.

TABLE V. Settings and evaluation time for the different parameter estimation runs on real GWevents. The mode content indicates the
use of SEOBNRv4E_opt [ð2; j2jÞ] or SEOBNRv4EHM_opt (HMs≡ higher modes) to perform the run. Sampling rate (srate) and data
segment duration (seglen) are specified in the data settings, while the number of autocorrelaction times (nact) and number of live points
(nlive) are specified in the sampler settings. The time reported is walltime, while the total computational cost in CPU hours can be
obtained multiplying this time by the reported number of CPU cores employed.

Data settings Sampler settings Computing resources

GW event Modes srate (Hz) seglen (s) nact nlive cores × nodes Runtime

GW150914 (fstart ¼ 10 Hz) ð2; j2jÞ 4096 8 30 2048 32 × 10 6.7h
HMs 4096 8 30 2048 32 × 10 3d 5h

GW151226 (fstart ¼ 20 Hz) ð2; j2jÞ 4096 8 30 2048 32 × 16 1d 20h
GW190521 (fstart ¼ 5.5 Hz) ð2; j2jÞ 4096 8 30 8192 32 × 10 1d 6h

HMs 4096 8 30 2048 32 × 16 1d 5h

15This is also the case of theother state-of-the-art inspiral-merger-
ringdown eccentric waveform models, like TEOBResumS-
Dali and SEOBNRE, used in other parameter estimation studies.

16We do not compare to the SEOBNRv4PHM results from
GWTC-2.1, as the log Bayes factor is not provided with the
public data.
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The SEOBNRv4EHM model is built upon the quasicir-
cular accurate NR-calibrated multipolar, nonprecessing
SEOBNRv4HM model [102]. The eccentricity effects are
included in the GW multipoles up to 2PN order including
spin-orbit and spin-spin effects [100]. The multipolar
SEOBNRv4EHM model includes the (2,2), (2,1), (3,3),
(4,4), (5,5) modes, and it is shown in Ref. [101] to have
an unfaithfulness against public eccentric NR waveforms
below 1%.
Within the SEOBNRv4EHM model, elliptical orbits are

described by two parameters, initial eccentricity, e0, and
initial relativistic anomaly, ζ0, specified at an instantaneous
orbital frequency ω0. Here, we present a new parametriza-
tion of the initial conditions, where e0 and ζ0 are specified
at an orbit-averaged orbital frequency ω̄0. This new orbit-
averaged initial conditions lead to smoother variations of e0
and ζ0 across parameter space, and as a consequence more
efficient sampling of the parameter space.
The improvement in sampling efficiency due to the new

initial conditions has also being accompanied with the
development of SEOBNRv4EHM_opt, a faster version of
the SEOBNRv4EHM model. The SEOBNRv4EHM_opt
model combines a reduction of the absolute and relative
tolerances of the Runge Kutta integrator from 10−10 and
10−9, to 10−8 and 10−8, with the use of the optimized
Hamiltonian and integrator from Refs. [103,104]. These
modifications lead to a factor of ∼3–7 speed-up depending
on the binary parameters. The reduction of the tolerances
implies a reduction in accuracy of the SEOBNRv4EHM_opt
model in the corners of parameter space (i.e., high
eccentricities and high spins), where the model usage is
limited, because it is very sensitive to the attachment point
of the inspiral and merger-ringdown EOB modes. The
trade-off between accuracy and efficiency of the new
SEOBNRv4EHM_optmodel, with a waveform evaluation
time ofOð100Þ ms, makes it a competitive model for use in
parameter-estimation studies.
Given the accuracy and computational efficiency of

SEOBNRv4EHM_opt, we have performed a Bayesian
inference study on mock signals and real GW events
detected by the LVK collaboration. We have first inves-
tigated the quasicircular limit of the SEOBNRv4EHM_opt
model by computing the unfaithfulness against the quasi-
circular SEOBNRv4HM model [102] for 4500 random
configurations in the parameter space q∈ ½1; 50�, spins
χ1;2 ∈ ½−0.9; 0.9� and total masses M∈ ½20; 300�M⊙,
at a dimensionless starting frequency of Mω ¼ 0.023. The
results show that SEOBNRv4EHM_opt has a median un-
faithfulness of 3.8 × 10−5 and no cases with unfaithfulness
> 1%, indicating that the quasicircular limit is accurately
recovered. Furthermore, we have performed a mock-signal
injection into zero noise using SEOBNRv4 [120] as a signal,
and SEOBNRv4E_opt and SEOBNRv4_ROM [120] as
templates. We have considered a configuration with
mass ratio q ¼ 4, total mass M ¼ 90.08M⊙ and BH’s

dimensionless spins χ1 ¼ 0.5 and χ2 ¼ −0.1 defined at
20 Hz. The recovery of quasicircular parameters, like
mass ratio, chirp mass or the effective-spin parameter by
SEOBNRv4E_opt agrees remarkably well with the ones
from SEOBNRv4_ROM. While the initial eccentricity and
relativistic anomaly measured by SEOBNRv4E_opt are
e0 ¼ 0.01þ0.02

−0.01 and ζ0 ¼ 3.09þ2.57
−2.48 , which indicate that the

signal is compatible with zero eccentricity. Therefore,
SEOBNRv4EHM_opt is able to correctly reproduce the
zero-eccentricity limit, with an accuracy comparable to the
underlying quasicircular model SEOBNRv4HM.
Moving to the eccentric sector, we have studied with

zero-noise injections, using the SEOBNRv4E_opt as a
signal and template, the impact of the initial conditions
based on ðe0; ζ0Þ specified at ω0, and the new prescription,
where ðe0; ζ0Þ are specified at ω̄0. For this study we have
chosen a configuration with two different initial eccen-
tricities e0 ¼ ½0.1; 0.2�, mass ratio q ¼ 3, initial relativistic
anomaly ζ0 ¼ 1.2, total mass M ¼ 76.4M⊙ and BH’s
dimensionless spins χ1 ¼ 0.5 and χ2 ¼ −0.1 defined at
20 Hz. The results show that both the orbit-averaged and
the instantaneous initial conditions are able to accurately
recover the corresponding injected signal, however, the
averaged wall clock-time of the runs using the instanta-
neous initial conditions is a factor 3 slower than the
orbit-averaged initial conditions, due to the complicated
structure of the likelihood across the ðe0; ζ0Þ parameter
space in the case of the instantaneous initial conditions
(see Fig. 2). As a consequence we adopt the orbit-
averaged initial conditions as the default ones in the
SEOBNRv4EHM and SEOBNRv4EHM_opt models.
Moreover, we have investigated the impact of neglecting

the radial-phase parameter, relativistic anomaly, in the
previous model injections by starting the orbits of the
templates at periastron (i.e., ζ0 ¼ 0). The posterior distri-
butions of the orbit-averaged ICs show larger biases than
the instantaneous ICs in the recovery of the quasicircular
parameters, for instance, 8% bias in the case of the chirp
mass, while in terms of the eccentricity parameter the
instantaneous ICs may develop multimodalities in the
posteriors, as is the case of the injections considered here,
indicating that the parametrization cannot adequately
reproduce the injected signal. For the orbit-averaged ICs
the eccentricity parameter is compatible with the injected
value within the 90% credible intervals. This indicates that
neglecting the radial-phase parameter when performing
parameter estimation of eccentric signals can induce biases
not only in the measurement of the eccentricity, but also in
the estimation of other quasicircular parameters like mass
ratio or the spins due to the strong correlation of eccen-
tricity with these parameters.
The accuracy of the SEOBNRv4EHM model in the

eccentric case was investigated in Ref. [101] by computing
the unfaithfulness of the model against a set of public
eccentric NR waveforms from the SXS catalog [106,177].
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Here we have also validated the accuracy of the
SEOBNRv4EHM_opt model by performing a set of
injections of synthetic NR signals into a network of
LIGO-Virgo detectors at design sensitivity. We have
injected into zero-detector noise three eccentric NR wave-
forms, SXS:BBH:1355, SXS:BBH:1359 and SXS:
BBH:1363, corresponding to equal-mass, nonspinning
configurations with initial eccentricities measured from
the orbital frequency at first periastron passage of 0.07,
0.13, and 0.25, respectively. For these injections we choose
a total mass M ¼ 70M⊙, inclination ι ¼ 0 and SNR ¼ 20.
The results are summarized in Fig. 8 and Table III. In order
to compare the eccentricity from the NR waveforms and the
SEOBNRv4EHM_opt model, we have adopted a common
definition of eccentricity and radial phase, based on the
frequency of the (2,2)-mode [108], and used its efficient
implementation in the open-source GW_ECCENTRICITY

Python package [109] to postprocess the parameter esti-
mation runs. We have found that the recovery of the
parameters with SEOBNRv4E_opt does not produce
significant biases, and that the measurement of the GW
eccentricity, egw, and GW mean anomaly, lgw, is consistent
with the injected values for the three injections considered.
A more comprehensive Bayesian inference study will be
required to assess the modeling inaccuracies and how they
translate into biases in both eccentric and quasicircular
parameters. Here, new methods of inference such as
machine learning techniques, like DINGO [190–192],
may offer an alternative method to efficiently perform
large-scale injections campaigns with moderate computa-
tional cost [187].
Besides injection studies, we have demonstrated that

SEOBNRv4EHM_opt can be used as a standard tool in
Bayesian inference studies of real GW events. We have
analyzed three GW events (GW150914, GW151226
and GW190521) detected by the LVK Collaboration in
the first and third observing runs. The eccentricity
measured for the three events is eGW150914

gw; 10 Hz ¼ 0.08þ0.09
−0.06 ,

eGW151226
gw; 20 Hz ¼ 0.04þ0.05

−0.04 , and eGW190521
gw; 5.5 Hz ¼ 0.15þ0.12

−0.12 . As a
consequence, we do not find clear evidence of orbital
eccentricity in any of the GW events considered, when
using a nonprecessing eccentric model with initial eccen-
tricities e0 ∈ ½0; 0.3�. For the GW150914 and GW151226
we have compared with the quasicircular results from the
GWTC-2.1 catalog [3], while for GW190521 with the
results from Refs. [112,113] (the precessing-spin
SEOBNRv4PHM [168] and IMRPhenomXPHM [180]
models). For GW150914 we find good agreement with
SEOBNRv4PHM due to the fact that the event is consistent
with a nonspinning binary, while for GW151226 and
GW190521, we find some discrepancies, which are likely
due to the inclusion of spin-precession effects in the
quasicircular models, which are not included in the
SEOBNRv4EHM_opt model. This is a clear limitation
of the SEOBNRv4EHM_opt model as well as all the

current existing inspiral-merger-ringdown eccentric
waveform models. There is ongoing work [188] to include
such effects in the new generation of SEOBNR models
[146,147] developed within the new pySEOBNR infra-
structure [189].
Regarding the analysis of real GWevents, we plan in the

future to extend the Bayesian inference study presented
here, using the machine-learning code DINGO, to all the GW
events detected during the third-observing run [187] in
order to set constraints on the eccentricity of the observed
population of BBHs.
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APPENDIX: DERIVATION OF THE
ORBIT-AVERAGED ORBITAL FREQUENCY

The initial conditions for eccentric orbits were derived in
Sec. II C of Ref. [101], given an initial (instantaneous)
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orbital frequencyω, eccentricity e, and relativistic anomaly ζ.
In order to perform orbital evolutions starting from different
points on (roughly) the same eccentric orbit, we derive an
expression for the instantaneous frequency in terms of the
orbit-averaged frequency.
We use the Keplerian parametrization

r ¼ 1

upð1þ e cos ζÞ ; ðA1Þ

and perform the following steps, in a PN expansion up to
2PN order:

(1) Calculate the orbit-averaged azimuthal frequency

ω̄≡ 1

Tr

I
ϕ̇dt ¼ 1

Tr

I
∂H
∂pϕ

�
∂H
∂pr

�
−1
dr

¼ 2

Tr

Z
π

0

∂H
∂pϕ

�
∂H
∂pr

�
−1 dr

dζ
dζ; ðA2Þ

where Tr is the radial period, and is given by

Tr ≡
I

dt ¼ 2

Z
π

0

�
∂H
∂pr

�
−1 dr

dζ
dζ; ðA3Þ

yielding

ω̄ ¼ ðup − e2upÞ3=2


1þ up

2c2
½ν − e2ðν − 6Þ� þ u3=2p

2c3
ð3e2 þ 1Þ½ðν − 2ÞχS − 2δχA�

þ 3u2p
8c4

h
e4ðν2 − 5νþ 24Þ − 2e2

�
4ν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
−10

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
þ ν2 þ νþ 3

	

þ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ν − 20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
þ ν2 − 13νþ 20

i
−
3u2p
2c4

½2δχAχS½e2ðν − 1Þ − ν�

þ e2ð4ν − 1Þχ2A þ ½2ðν − 1Þν − e2ð2ν2 − 2νþ 1Þ�χ2S�
�
þOð1=c5Þ; ðA4Þ

where the powers of 1=c indicate the PN order of the different terms.
(2) Invert ω̄ðup; eÞ to obtain upðω̄; eÞ, i.e. the inverse semilatus rectum as a function of the averaged frequency, which at

leading order is given by

upðω̄; eÞ ¼
ω̄2=3

1 − e2
þ ω̄4=3ðe2ðν − 6Þ − νÞ

3c2ðe2 − 1Þ2 þ ð3e2 þ 1Þω̄5=3ð2δχA − ðν − 2ÞχSÞ
3c3ð1 − e2Þ5=2

þ ω̄2

4c4ðe2 − 1Þ3
n
−2e2

h
ν
�
4δχAχS þ 8χ2A þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
þ 4χ2S þ 7

	
− 4δχAχS

− 2χ2A − 10
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
− 4ν2χ2S − 2χ2S þ 3

i
þ ν

�
8δχAχS þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
þ 8χ2S − 13

	

þ e4ð7ν − 12Þ − 20
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p

− 1
	
− 8ν2χ2S

o
þOð1=c5Þ: ðA5Þ

(3) Calculate the instantaneous orbital frequency (in Keplerian parametrization)

ωðup; e; ζÞ ¼
∂H
∂pϕ

¼ u3=2p ðe cos ζ þ 1Þ2 − u5=2p

2c2
ðe cos ζ þ 1Þ2½ðe2 − 1Þνþ 4e cos ζ�

−
u3p
2c3

ðe2 − 2e cos ζ þ 1Þðe cos ζ þ 1Þ2ð2δχA − ðν − 2ÞχSÞ

þ u7=2p

8c4
ðe cos ζ þ 1Þ2f−16e2νχ2A þ 8e cos ζ½νð8δχAχS þ 8χ2A þ e2 þ 8χ2S − 1Þ

− 2ð2δχAχS þ χ2A þ χ2S þ 2Þ − 8ν2χ2S� þ 4e2 cos 2ζ½ð4ν − 1Þχ2A þ 2δð2ν − 1ÞχAχS − ð1 − 2νÞ2χ2S�
− 8δe2νχAχS þ 8δe2χAχS þ 4e2χ2A þ 24δνχAχS þ 3e4ν2 − 3e4ν − 6e2ν2 þ 2e2νþ 8e2ν2χ2S − 8e2νχ2S

þ 4e2χ2S þ 16e2 þ 3ν2 − 15ν − 24ν2χ2S þ 24νχ2Sg þOð1=c5Þ: ðA6Þ
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(4) Plug upðω̄; eÞ in ωðup; e; ζÞ to obtain ωðω̄; e; ζÞ, which reads

ω¼ ω̄ðecosζþ1Þ2
ð1−e2Þ3=2 −

eω̄5=3ð3eþ2cosζÞðecosζþ1Þ2
c2ð1−e2Þ5=2 −

eω̄2ðeþ cosζÞ
c3ðe2−1Þ3 ð1þecosζÞ2½2δχA− ðν−2ÞχS�

−
ω̄7=3ðecosζþ1Þ2
12c4ð1−e2Þ7=2

n
12e4ðν−6Þþ8eðe2ðν−15Þ−νþ6Þcosζ−3e2

h
2
�
6

ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
þ7

	
ν−30

ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
þ17

i

þ18
� ffiffiffiffiffiffiffiffiffiffiffiffi

1−e2
p

−1
	
ð2ν−5Þ

o
þeω̄7=3ðecosζþ1Þ2

2c4ð1−e2Þ7=2 f2δχAχS½eð2ν−1Þcosð2ζÞþ2eðν−1Þþð8ν−4Þcosζ�

þχ2S½−eð4ν2þð1−2νÞ2 cosð2ζÞ−4νþ2Þ−4ð1−2νÞ2 cosζ�þð4ν−1Þχ2A½eðcosð2ζÞþ2Þþ4cosζ�gþOð1=c5Þ:
ðA7Þ

Thus, we start with a given initial orbit-averaged frequency ω̄, eccentricity e, and relativistic anomaly ζ. Then, use
Eq. (A7) to compute the instantaneous frequency ωðω̄; e; ζÞ, and follow the same procedure as in Ref. [101] to obtain the
initial conditions for the dynamical variables.
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[120] Alejandro Bohé et al., Improved effective-one-body model
of spinning, nonprecessing binary black holes for the era of
gravitational-wave astrophysics with advanced detectors,
Phys. Rev. D 95, 044028 (2017).

[121] Yi Pan, Alessandra Buonanno, Michael Boyle, Luisa T.
Buchman, Lawrence E. Kidder, Harald P. Pfeiffer, andMark
A. Scheel, Inspiral-merger-ringdown multipolar waveforms
of nonspinning black-hole binaries using the effective-one-
body formalism, Phys. Rev. D 84, 124052 (2011).

[122] Yi Pan, Alessandra Buonanno, Andrea Taracchini,
Lawrence E. Kidder, Abdul H. Mroué, Harald P.
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