
Probing the horizon of black holes with
gravitational waves

Elisa Maggio

Abstract Gravitational waves open the possibility to investigate the nature of com-
pact objects and probe the horizons of black holes. Some models of modified gravity
predict the presence of horizonless and singularity-free compact objects. Such dark
compact objects would emit a gravitational-wave signal which differs from the stan-
dard black hole scenario. In this chapter, we overview the phenomenology of dark
compact objects by analysing their characteristic frequencies in the ringdown and
the emission of gravitational-wave echoes in the postmerger signal. We show that
future gravitational-wave detectors will allow us to perform model-independent tests
of the black hole paradigm.

1 Tests of the black hole paradigm

Black holes (BHs) are the end result of the gravitational collapse and the most
compact objects in the Universe. According to the no-hair theorems of general
relativity (GR), any compact object heavier than a few solar masses is well described
by the Kerr geometry [1, 2]. Kerr BHs are determined uniquely by two parameters,
i.e., their mass 𝑀 and angular momentum 𝐽 defined through the dimensionless spin
parameter 𝜒 ≡ 𝐽/𝑀2 [3]. Therefore, any observation of deviation from the properties
of Kerr BHs would be an indication of departure from GR.

Gravitational waves (GWs) provide a unique channel for probing the nature of
astrophysical sources. The GW signal emitted by the coalescence of compact binaries
is characterized by three main stages: the inspiral, when the two bodies spiral in
towards each other as they loose energy into gravitational radiation; the merger,
when the two bodies coalesce; and the ringdown, when the final remnant relaxes to
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an equilibrium solution. In particular, the analysis of the ringdown would allow us
to infer the properties of the compact remnants.

The ringdown is dominated by the complex characteristic frequencies of the
remnant, the so-called quasi-normal modes (QNMs), which describe the response
of the compact object to a perturbation [4], i.e.

𝜔ℓ𝑚𝑛 = 𝜔𝑅,ℓ𝑚𝑛 + 𝑖𝜔𝐼,ℓ𝑚𝑛 , (1)

where 𝜔𝑅/𝐼,ℓ𝑚𝜔 ∈ ℜ. Each mode is described by three integers, namely the angular
number of the perturbation ℓ (where ℓ ≥ 0), the azimuthal number of the perturbation
𝑚 (such that |𝑚 | ≤ ℓ), and the overtone number 𝑛 (where 𝑛 ≥ 0). The fundamental
mode with 𝑛 = 0 corresponds to the mode with the smallest imaginary part. The
ringdown is modeled as a sum of exponentially damped sinusoids whose frequencies
𝑓ℓ𝑚𝑛 (damping times 𝜏ℓ𝑚𝑛) are related to the real (imaginary) part of the QNMs of
the remnant via

𝑓ℓ𝑚𝑛 = 𝜔𝑅,ℓ𝑚𝑛/(2𝜋) , (2)
𝜏ℓ𝑚𝑛 = −1/𝜔𝐼,ℓ𝑚𝑛 . (3)

Therefore, from the detection of the ringdown signal it is possible to infer the QNMs
of the remnant and understand the nature of the latter.

The fundamental QNM has been observed in the ringdown of several GW
events [5]. The ringdown detections are compatible with Kerr BH remnants, however
the characterization of the remnant requires further analyses. Indeed, the measure-
ment of one complex QNM allows us only to estimate the mass and the spin of the
remnant. A test of the BH paradigm would require the identification of at least two
QNMs in the ringdown. Next generation detectors, e.g. the space-based interferom-
eter LISA, will allow for tests of the BH paradigm with unprecedented precision [6].

2 Horizonless compact objects

On the theoretical side, the presence of horizons in Kerr BHs poses some issues. In
particular, the horizon hides a curvature singularity with infinite tidal forces where
the Einstein equations break down. Moreover, the spacetime within the horizon can
contain closed time-like hypersurfaces that violate causality.

Several attempts to regularize the BH solution predict the existence of horizonless
and singularity-free compact objects [7]. Some models are solutions to quantum-
gravity extensions of GR, e.g. the fuzzball in string theory as an ensemble of a large
number of regular and horizonless microstate geometries with the same asymptotic
charges of a BH [8]. Other models of horizonless compact objects are solutions to
GR in the presence of dark matter or exotic fields, e.g. boson stars as self-gravitating
solutions formed by massive bosonic fields which are coupled minimally to GR [9].
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Horizonless compact objects can mimic BHs in terms of electromagnetic obser-
vations since they can be as compact as BHs [10]. For example, the observation of the
supermassive object at the center of the galaxy M87 by the Event Horizon Telescope
constrained weakly some models of horizonless compact objects [11]. Moreover,
horizonless compact objects can be used to study GW events in the mass gap be-
tween neutron stars and BHs and due to pair-instability supernova processes [12, 13].

In this context, horizonless compact objects allow us to quantify the existence
of horizons in astrophysical sources. We analyse a generic model of dark compact
object which deviate from a BH for two parameters [14]:

• the compactness, which is defined as the inverse of the effective radius of the
object in units of mass, i.e. 𝐶 = 𝑀/𝑟0, where

𝑟0 = 𝑟+ (1 + 𝜖) (4)

is the location of the effective radius of the object and 𝑟+ = 𝑀

(
1 +

√︁
1 − 𝜒2

)
is the

horizon of a Kerr BH. Depending on their compactness, two categories of hori-
zonless compact objects can be distinguished: compact objects whose effective
radius is comparable with the light ring of BHs, i.e. 𝜖 ≈ 0.1, 1; and ultracompact
objects with Planckian corrections at the horizon scale due to quantum fluctua-
tions, i.e. 𝜖 ≈ 10−40. The two categories of horizonless compact objects give rise
to different fingerprints in the GW signal. In particular, a merger remnant with
𝜖 ≈ 0.1, 1 would emit a ringdown signal which differs from the BH ringdown at
early stages, whereas an ultracompact horizonless object would emit a modulated
train of GW echoes at late times, as discussed in Sec. 3.2;

• the “darkness”, which is related to the reflectivity of the compact object R(𝜔) at
its effective radius. The BH is a totally absorbing object with R = 0 at the horizon,
whereas a horizonless compact object can have 0 ≤ |R(𝜔) |2 ≤ 1 depending on
its interior structure. The |R(𝜔) |2 = 1 case describes a perfectly reflecting object
of perturbations moving towards the object. This is the case, for example, of
neutron stars where the absorption of radiation through viscosity is negligible.
Intermediate values of R(𝜔) describe partially absorbing compact objects due to
dissipation, viscosity, fluid mode excitations, nonlinear effects, etc.

3 Phenomenology

Let us derive the GW signatures of horizonless compact objects in the postmerger
phase of compact binary coalescences. In this section, we overview the quasi-normal
mode spectrum and the GW signal in the time domain at variance with the BH case.
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Fig. 1 Effective potential as a function of the tortoise coordinate of a Schwarzschild BH (top panel)
and a static horizonless compact object with radius 𝑟0 = 2𝑀 (1 + 𝜖 ) (bottom panel), for axial
(continuous line) and polar (dashed line) ℓ = 2 gravitational perturbations. The effective potential
has a peak approximately at the light ring, 𝑟 ≈ 3𝑀. In the case of a horizonless compact object,
the effective potential features a cavity between the radius of the object and the light ring. Adapted
from [17, 7, 14].

3.1 Quasi-normal mode spectrum

For simplicity, let us analyse a static and spherically symmetric horizonless compact
object. Let us assume that GR is a reliable approximation outside the radius of the
object and some modifications appear at the horizon scale. Owing to the Birkhoff
theorem, the exterior spacetime is described by the Schwarzschild metric

𝑑𝑠2 = − 𝑓 (𝑟)𝑑𝑡2 + 1
𝑓 (𝑟) 𝑑𝑟

2 + 𝑟2
(
𝑑𝜃2 + sin2 𝜃𝑑𝜙2

)
, (5)

where (𝑡, 𝑟, 𝜃, 𝜙) are the Boyer-Lindquist coordinates and 𝑓 (𝑟) = 1 − 2𝑀/𝑟. The
radius of the compact object is located as in Eq. (4), where 𝑟+ = 2𝑀 is the horizon of a
Schwarzschild BH. In order to derive the QNM spectrum of the horizonless compact
object, let us perturb the background geometry with a gravitational perturbation.
The radial component of the gravitational perturbation is governed by a second-
order differential equation [15, 16]

𝑑2𝜓(𝑟)
𝑑𝑟2

∗
+
[
𝜔2 −𝑉 (𝑟)

]
𝜓(𝑟) = 0 , (6)

where 𝑟∗ is the tortoise coordinate defined such that 𝑑𝑟∗/𝑑𝑟 = 1/ 𝑓 (𝑟), 𝑓 (𝑟) is the
Schwarzschild function 𝑓 (𝑟) = 1 − 2𝑀/𝑟 , and the effective potential reads
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𝑉axial (𝑟) = 𝑓 (𝑟)
[
ℓ(ℓ + 1)
𝑟2 − 6𝑀

𝑟3

]
, (7)

𝑉polar (𝑟) = 2 𝑓 (𝑟)
[
𝑞2 (𝑞 + 1)𝑟3 + 3𝑞2𝑀𝑟2 + 9𝑀2 (𝑞𝑟 + 𝑀)

𝑟3 (𝑞𝑟 + 3𝑀)2

]
, (8)

for axial and polar perturbations, respectively, with parity (−1)ℓ+1 and (−1)ℓ , where
𝑞 = (ℓ − 1) (ℓ + 2)/2. Fig. 1 shows the effective potential as a function of the tortoise
coordinate for a BH (top panel) and a horizonless compact object (bottom panel).
The effective potentials display a peak approximately at the light ring, 𝑟 ≈ 3𝑀 ,
which is the unstable circular orbit of photons around the compact object. In the BH
case, the perturbation is purely ingoing towards the horizon; whereas in the case of
a horizonless compact object, the absence of the horizon implies the existence of a
cavity between the radius of the object and the light ring. The cavity can support
trapped modes that are responsible for a completely different QNM spectrum with
respect to the BH case.

By adding two boundary conditions to Eq. (6), the system defines an eigenvalue
problem whose complex eigenvalues are the QNMs of the object. At infinity, we
impose that the perturbation is a purely outgoing wave, i.e.

𝜓(𝑟) ∼ 𝑒𝑖𝜔𝑟∗ , as 𝑟∗ → +∞ . (9)

In the case of a horizonless ultracompact object (𝜖 ≪ 1), the perturbation can be
decomposed a superposition of ingoing and outgoing waves at the radius of the
object, i.e.

𝜓(𝑟) ∼ 𝐶in (𝜔)𝑒−𝑖𝜔𝑟∗ + 𝐶out (𝜔)𝑒𝑖𝜔𝑟∗ , as 𝑟∗ → 𝑟0
∗ , (10)

where the reflectivity of the compact object is defined as [18]

R(𝜔) = 𝐶out (𝜔)
𝐶in (𝜔)

𝑒2𝑖𝜔𝑟0
∗ . (11)

Let us derive the fundamental (𝑛 = 0) ℓ = 2 QNM which is the mode with
the longest damping time (in the static and spherically symmetric case, the QNMs
do not depend on the azimuthal number 𝑚). Fig. 2 shows the QNM spectrum of a
horizonless ultracompact object with a perfectly reflecting surface

(
|R(𝜔) |2 = 1

)
and

𝜖 ∈
(
10−10, 10−2) from the left to the right of the plot compared to the fundamental

ℓ = 2 QNM of a Schwarzschild BH, i.e.

𝑀𝜔BH = 0.3737 − 𝑖0.08896 . (12)

A first important signature of horizonless compact object is the breaking of
isospectrality between axial and polar modes differently from BHs in GR. Indeed,
Schwarzschild BHs have a unique QNM spectrum [4] despite the effective potentials
for axial and polar perturbations differ from each other (see Eqs. (7), (8)). Conversely,
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Fig. 2 QNM spectrum of a perfectly reflecting horizonless compact object with radius 𝑟0 =

2𝑀 (1 + 𝜖 ) and 𝜖 ∈ (10−10, 10−2 ) compared to the fundamental ℓ = 2 QNM of a Schwarzschild
BH. Axial and polar modes are not isospectral as in the BH case. As 𝜖 → 0, the QNM spectrum
is low-frequencies and long-lived. Adapted from [17, 14].

the radius of horizonless compact objects is responsible for the appearance of a mode
doublet for axial and polar QNMs.

Exercise

The isospectrality of axial and polar modes in BHs can be demonstrated from the
Darboux transformation between the Regge-Wheeler and Zerilli wave functions
governing axial and polar modes, respectively, both satisfying Eq. (6), i.e.

𝜓RW = 𝐴
𝑑𝜓Z
𝑑𝑟∗

+ 𝐵(𝑟)𝜓Z , (13)

where

𝐴 = −𝑀
[
𝑖𝜔𝑀 + 1

3
𝑞(𝑞 + 1)

]−1
, (14)

𝐵(𝑟) = 𝑞(𝑞 + 1) (𝑞𝑟 + 3𝑀)𝑟2 + 9𝑀2 (𝑟 − 2𝑀)
𝑟2 (𝑞𝑟 + 3𝑀) [𝑞(𝑞 + 1) + 3𝑖𝜔𝑀]

. (15)

Demonstrate that the BH boundary condition 𝜓 = 𝐶in(𝜔)𝑒
−𝑖𝜔𝑟∗ as 𝑟 → 2𝑀 for

both Regge-Wheeler and Zerilli wave functions satisfies the Darboux transformation
in Eq. (13). Conversely, demonstrate that the boundary condition of a horizonless
ultracompact object in Eq. (10) does not satisfy the Darboux transformation in
Eq. (13).
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Furthermore, a relevant feature of horizonless compact objects is that the QNM
spectrum is low-frequency and long-lived in the limit 𝜖 → 0. For example, the
fundamental ℓ = 2 QNMs of a perfectly reflecting compact object with 𝜖 = 10−10

are:

𝑀𝜔axial = 0.07470 − 𝑖2.299 × 10−9 , (16)
𝑀𝜔polar = 0.03791 − 𝑖2.739 × 10−11 . (17)

This finding might seem surprising since, in the limit of a compactness close to the
BH case, the QNM spectrum of a horizonless compact object deviates significantly
from the BH QNM spectrum. A key role is played by the boundary condition
in Eq. (10), particularly by the fact that the reflective properties of a horizonless
compact object differ generically from the totally absorbing BH case.

Low-frequency QNMs can be understood in terms of the trapped modes between
the radius of the compact object and the light ring, as shown in Fig. 1. The real part
of the QNMs depends on the width of the cavity in the effective potential, whereas
the imaginary part of the QNMs depends on the amplification factor of the modes
in the cavity and the reflectivity at the radius of the compact object. For 𝜖 ≪ 1, the
QNMs can be derived analytically in the low-frequency regime as [19, 7, 20, 21]

𝜔𝑅 ∼ − 𝜋

2|𝑟0
∗ |

(𝑝 + 1) , (18)

𝜔𝐼 ∼ − 𝛽2ℓ

|𝑟0
∗ |

(2𝑀𝜔𝑅)2ℓ+2 , (19)

where
√
𝛽2ℓ =

(ℓ−2)!(ℓ+2)!
(2ℓ )!(2ℓ+1)!! and 𝑝 is a positive odd (even) integer for polar (axial)

modes. The real part of the QNMs scales with the compactness of the object as𝜔𝑅 ∼
| log 𝜖 |−1, whereas the imaginary part of the QNMs scales as 𝜔𝐼 ∼ −| log 𝜖 |−(2ℓ+3) .

Let us notice that the boundary condition in Eq. (10) can be imposed at the
radius of the compact object when 𝜖 ≪ 1 and the effective potential is vanishing.
To derive the QNMs of horizonless compact objects with any compactness, we can
make use of the membrane paradigm. The original BHs membrane paradigm states
that a static observer outside the BH horizon can replace the interior of the perturbed
BH by a fictitious membrane located at the horizon [22, 23]. The generalisation of
the membrane paradigm to horizonless compact objects allows us to describe any
compact object with a Schwarzschild exterior where no specific model is assumed
for the object’s interior. The compactness of the horizonless object is generic and
the reflectivity of the object is mapped in terms of the properties of the fictitious
membrane.

The Israel-Darmois junction conditions fix the properties of the fictious membrane
relating the exterior and the interior spacetime to the radius of the compact object,
i.e. [24, 25]

[[𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏]] = −8𝜋𝑇𝑎𝑏 , [[ℎ𝑎𝑏]] = 0 , (20)

where ℎ𝑎𝑏 is the induced metric on the membrane, 𝐾𝑎𝑏 is the extrinsic curvature,
𝐾 = 𝐾𝑎𝑏ℎ

𝑎𝑏, 𝑇𝑎𝑏 is the membrane stress-energy tensor, and [[...]] is the jump of
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a quantity across the membrane (detailed definitions of the above quantities are in
Ref. [26]). For the membrane paradigm, the fictitious membrane is such that the
extrinsic curvature of the interior spacetime vanishes. As a consequence, Eqs. (20)
impose that the fictitious membrane is a viscous fluid with stress-energy tensor

𝑇𝑎𝑏 = 𝜌𝑢𝑎𝑢𝑏 + (𝑝 − 𝜁Θ)𝛾𝑎𝑏 − 2𝜂𝜎𝑎𝑏 , (21)

where 𝜂 and 𝜁 are the shear and bulk viscosities of the fluid, 𝜌, 𝑝 and 𝑢𝑎 are the
density, pressure and 3-velocity of the fluid,Θ = 𝑢𝑎;𝑎 is the expansion,𝜎𝑎𝑏 is the shear
tensor, and the semicolon is the covariant derivative compatible with the induced
metric. BHs are described by the following values of the shear and bulk viscosities
of the membrane:

𝜂BH =
1

16𝜋
, 𝜁BH = − 1

16𝜋
; (22)

whereas horizonless compact objects have values of the shear and bulk viscosities
which are generically complex and frequency dependent. For a specific model for
the interior of the compact object, the shear and the bulk viscosities are uniquely
determined. The junction conditions in Eq. (20) with the stress-energy tensor in
Eq. (21) allow us to derive the boundary conditions at the radius of the horizonless
compact object, i.e. [26]

𝑑𝜓(𝑟0)/𝑑𝑟∗
𝜓(𝑟0)

= − 𝑖𝜔

16𝜋𝜂
−
𝑟2

0𝑉axial (𝑟0)
2(𝑟0 − 3𝑀) , axial , (23)

𝑑𝜓(𝑟0)/𝑑𝑟∗
𝜓(𝑟0)

= −16𝜋𝑖𝜂𝜔 + 𝐺 (𝑟0, 𝜔, 𝜂, 𝜁) , polar , (24)

where 𝐺 (𝑟0, 𝜔, 𝜂, 𝜁) is a cumbersome function given in Ref. [26]. The boundary
conditions in Eqs. (23), (24) describe a horizonless object with any compactness
whose reflective properties are mapped in terms of the shear and bulk viscosities of
the fictitious membrane.

Exercise

1. Demonstrate that, in the limit (𝑟0 → 2𝑀), the axial boundary condition in Eq. (23)
reduces to a purely ingoing wave when the condition in Eq. (22) is satisfied.

2. For 𝜖 ≪ 1, the axial boundary condition in Eq. (23) reduces to the boundary
condition in Eq. (10) for horizonless ultracompact objects. Derive that the relation
between the reflectivity of the compact object and the shear viscosity of the
membrane is in the large-frequency limit:

|R |2 =

(
1 − 𝜂/𝜂BH
1 + 𝜂/𝜂BH

)2
. (25)
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Fig. 3 Real (left panel) and imaginary (right panel) part of the QNMs of a horizonless compact
object described by a fictitious fluid with shear viscosity 𝜂 = 𝜂BH and bulk viscosity 𝜁 = 𝜁BH
compared to the fundamental ℓ = 2 QNM of a Schwarzschild BH, as a function of 𝜖 where the radius
of the object is located at 𝑟0 = 2𝑀 (1 + 𝜖 ). The highlighted region is the maximum deviation (with
90% credibility) for the least-damped QNM in the event GW150914 [27]. Horizonless compact
objects with 𝜖 ≲ 0.1 are compatible with current measurement accuracies. Adapted from [26, 14].

This shows that a compact object is a perfect absorber of high-frequency waves
(|R |2 = 0) if 𝜂 = 𝜂BH, whereas it is a perfect reflector of high-frequency waves
(|R |2 = 1) when either 𝜂 = 0 or 𝜂 → ∞.

Fig. 3 shows the ratio of the real (left panel) and imaginary (right panel) part
of the QNMs of a horizonless compact object to the fundamental ℓ = 2 QNM of a
Schwarzschild BH as a function of the compactness. Let us notice that as 𝜖 → 0, the
QNM spectrum of the horizonless compact object coincides with the BH spectrum.
This is because a horizonless compact object with the shear and bulk viscosities as
in Eq. (22) has the same reflective properties of a BH. For relatively large values
of 𝜖 , the compactness of the object decreases and the QNMs deviate from the
BH QNM. The highlighted regions are the maximum allowed deviation (with 90%
credibility) for the least-damped QNM in the event GW150914, and correspond to
∼ 16% and ∼ 33% for the real and imaginary part of the QNM, respectively [27].
Fig. 3 shows that horizonless compact objects with 𝜖 ≲ 0.1 are compatible with
current measurement accuracies. Next-generation detectors would allow us to set
more stringent constraints on the radius of compact objects.

3.2 Gravitational-waves echoes

In this section, we shall analyse the modifications that would appear in the postmerger
GW signal if the remnant of a compact binary coalescence is a horizonless compact
object. The phenomenology depends strongly on the compactness of the object. In
particular, if the remnant is a horizonless ultracompact object (𝜖 ≪ 1) the prompt
ringdown would be nearly indistinguishable from the BH ringdown since it is due
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to the excitation of the light ring that occurs approximately at the same location as
shown in Fig. 1. Afterwards, some trapped modes travel within the cavity of the
effective potential and are reflected back at the radius of the compact object. After
the interaction with the light ring, an additional GW signal is emitted at infinity in
the form a GW echo. Multiple reflections of the trapped modes in the cavity can give
rise to a train of GW echoes.

The left panel of Fig. 4 shows the GW signal that would be emitted in the case
of a horizonless compact object compared to the BH case. The delay time between
subsequent GW echoes is fixed and depends on the width of the cavity, i.e. the
compactness of the object. The delay time is computed as the round-trip time of the
radiation to travel in the cavity between the light ring and the radius of the compact
object. In the static and spherically symmetric case [17],

𝜏echo = 2
∫ 3𝑀

𝑟0

𝑑𝑟

𝑓 (𝑟) ∼ 2𝑀 [1 − 2𝜖 − 2 log(2𝜖)] . (26)

The logarithmic dependence in Eq. (26) allows us to detect even Planckian correc-
tions at the horizon scale (𝜖 ∼ 𝑙Planck/𝑀) few ms after the merger with a remnant of
𝑀 ∼ 10𝑀⊙ . The amplitude of the GW echoes depends on the reflective properties
of the compact object, as shown in the left panel of Fig. 4 for several values of
the shear viscosity of the fictitious membrane. Furthermore, the light ring acts as
a frequency-dependent high-pass filter, i.e. each GW echo has a lower frequency
content than the previous one. At late times, the GW signal is dominated by the
low-frequency QNMs of the horizonless compact object shown in Fig. 2.

If the remnant of a binary coalescence is a horizonless compact object with small
compactness (𝜖 ≳ 0.01), the GW phenomenology in the postmerger signal would
be different. In particular, the delay time of the first GW echo in Eq. (26) would be
comparable with the decay time of the prompt ringdown, i.e. 𝜏ringdown = −1/𝜔𝐼,BH ≈
10𝑀 . Therefore, the first GW echo would interfere with the prompt ringdown as
shown in the right panel of Fig. 4. Finally, subsequent GW echoes are suppressed
because the cavity between the light ring and the radius of the compact object is so
small that does not trap the modes efficiently.

4 Detectability

Several searches for GW echoes have been performed based on matched-filter tech-
niques and unmodeled searches. In the time domain, some phenomenological tem-
plates are based on inspiral-merger-ringdown templates in GR with additional pa-
rameters related to the morphology of GW echoes [29] and the superposition of
sine-Gaussians with free parameters [30]. In the frequency domain, some wave-
form templates depend explicitly on the physical parameters of the horizonless
compact object, i.e., its compactness and reflectivity [31, 32, 33]. Moreover, some
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Fig. 4 Left panel: GW echoes emitted in the postmerger signal by an ultracompact horizonless
object (𝜖 ≪ 1) with different reflective properties parametrised by the shear viscosity 𝜂 of the
membrane. Right panel: Ringdown of an horizonless compact object with small compactness
(𝜖 ≳ 0.01) and the same reflective properties of a BH (𝜂 = 𝜂BH). The ringdown signal is modified
due to the interference of the first GW echo with the prompt ringdown. Adapted from [26].

unmodeled searches have been performed based on the superposition of generalized
wavelets [34] and with Fourier windows [35].

Tentative evidence for GW echoes has been reported in the events of the first
and second observing runs of LIGO and Virgo [29, 35], followed by independent
searches arguing that the statistical significance of GW echoes is consistent with
noise [36, 37, 38, 39]. Furthermore, no evidene for GW echoes has been reported in
the third observing run of the LIGO, Virgo, KAGRA collaboration [5].

The next generation detectors have promising prospects of testing the BH
paradigm. The ground-based observatories Einstein Telescope [40] and Cosmic
Explorer [41] will observe GWs with an overall improvement of the signal-to-noise
ratio by an order of magnitude than current detectors. Moreover, the future space-
based interferometer LISA [42] will detect GWs in the 10−4 − 1 Hz frequency band
from a variety of astrophysical sources. The sensitivity of the detectors will allow us
to resolve the QNMs at percent level and perform multiple tests of the BH paradigm
with the detection of higher modes.

Fig. 5 shows the relative percentage difference between the fundamental ℓ = 2
QNM of a Schwarzschild BH and the fundamental ℓ = 2 QNMs of a horizonless
compact object with radius 𝑟0 = 2𝑀 (1 + 𝜖) and reflectivity defined by the shear vis-
cosity of the fictitious membrane. The QNM spectrum is a function of the parameter
𝜖 (x-axis) and the shear viscosity of the fictitious membrane 0 ≤ 𝜂 ≤ 𝜂BH (y-axis)
where 𝜂 = 0 describes a perfectly reflecting compact object and 𝜂 = 𝜂BH describes a
totally absorbing compact object. The left (right) panels show the relative percentage
difference of the real (imaginary) part of the QNMs for axial and polar perturbations
in the top and bottom panels, respectively. The dashed areas are the regions of the
(𝜖, 𝜂) parameter space that would be excluded by individual measurements of the real
and imaginary part of the fundamental QNM with next-generation detectors whose
accuracy is assumed to be an order of magnitude better than current detectors [27].
Fig. 5 shows that almost the whole region of the (𝜖, 𝜂) parameter space would be
constrained. Therefore, next-generation detectors will allow us to set very stringent
constraints on the radius and the reflective properties of compact objects.
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Fig. 5 Relative percentage difference of the real (left panels) and imaginary (right panels) part of
the QNMs of a horizonless compact object to the fundamental QNM of a Schwarzschild BH for
axial (top panels) and polar (bottom panels) perturbations. The dashed areas are the regions that
would be excluded by individual measurements of the real and imaginary part of the QNMs by
next-generation detectors. The plot shows that next-generation detectors will allow us to constraint
the whole region of the (𝜖 , 𝜂) parameter space shown in the diagram. Adapted from [26].
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