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Ab initio calculations of superconducting transition temperatures:
When going beyond RPA is essential
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In ab initio calculations of superconducting properties, the Coulomb repulsion is accounted for at the GW
level and is usually computed in the random phase approximation (RPA), which amounts to neglecting vertex
corrections both at the polarizability level and in the self-energy. Although this approach is unjustified, the brute
force inclusion of higher-order corrections to the self-energy is computationally prohibitive. We propose to use a
generalized GW self-energy, where vertex corrections are incorporated into W by employing the Kukkonen and
Overhauser (KO) ansatz for the effective interaction between two electrons in the electron gas. By computing the
KO interaction in the adiabatic local density approximation for a diverse set of conventional superconductors,
and using it in the Eliashberg equations, we find that vertex corrections lead to a systematic decrease of the
critical temperature (Tc), ranging from a few percent in bulk lead to more than 40% in compressed lithium. We
propose a set of simple rules to identify those systems where large Tc corrections are to be expected and hence
the use of the KO interaction is recommended. Our approach offers a rigorous extension of the RPA and GW
methods for the prediction of superconducting properties at a negligible extra computational cost.

DOI: 10.1103/PhysRevB.108.064511

I. INTRODUCTION

The established approach to calculate the transition tem-
perature (Tc) of conventional superconductors within Eliash-
berg theory [1–3] relies on a GW-like approximation for both
the phonon-mediated and the Coulomb part of the electron
self-energy. For the electron-phonon case the validity of this
approximation is supported by Migdal’s theorem [4], which
states that vertex corrections are negligible if the phonon
energy scale, set by the Debye frequency ωD, is much smaller
than the electronic Fermi energy EF . However, there is no
small parameter that enables a simplified perturbative treat-
ment of the Coulomb interaction between the electrons. In this
latter case, the GW approach [5,6] is an unjustified approxi-
mation, and an accurate description of Coulomb effects in the
superconducting state would require including vertex correc-
tions both at the polarizability level and in the self-energy.

By setting the vertex function equal to 1, the GW
approximation is given by the self-consistent electron Green’s
function times the screened Coulomb potential,

W tt (q, ω) = vq

ε(q, ω)
= vq + v2

qχnn(q, ω), (1)
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where vq = 4πe2/q2 is the bare Coulomb potential, ε(q, ω)
is the dielectric function, and χnn(q, ω) is the density-density
response function. Importantly, Eq. (1) describes the
interaction between two external test charges embedded in the
many-body medium: it includes the bare exchange interaction,
as well as the screening of all the interactions stemming from
the rearrangement of the electronic charge in response to
the addition of a test particle to the system. In practice, W
is commonly evaluated in the random phase approximation
(RPA), which also neglects exchange and correlation (xc)
contributions to the electron polarizability [7,8].

Apparently, any attempt to improve over the standard
GW scheme is hampered by the huge numerical complexity
of computing higher-order corrections to the electron self-
energy. To overcome this problem, in this work we propose
to use a generalized GW self-energy, where vertex corrections
are absorbed into the definition of an effective interaction
W. One such interaction was obtained phenomenologically
by Kukkonen and Overhauser (KO) [9], and later derived
by Vignale and Singwi using diagrammatic techniques [8].
Unlike Eq. (1), the KO interaction is a realistic model for
the interaction between two physical electrons in the homo-
geneous electron gas (HEG). It includes xc effects within the
medium, but also recognizes that the two electrons that are to
be paired for superconductivity are identical to the electrons in
the screening cloud, so that xc effects between the Cooper pair
and the rest of the system are also included. All many-body
effects, or, equivalently, vertex corrections to the polarization
and the self-energy, are conveniently incorporated into the KO
interaction in a local approximation by making use of local
field factors that define the density and spin response functions
of the HEG.
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The purpose of the present paper is to examine the in-
fluence of vertex corrections on the Tc of real materials by
employing the KO ansatz for the effective electron-electron
interaction. For the computation of Tc we resort to a recent
implementation of the Eliashberg equations that allows for a
computationally efficient ab initio treatment of the Coulomb
interactions [10].

II. ELIASHBERG THEORY WITH THE
KUKKONEN-OVERHAUSER INTERACTION

The Eliashberg equation for the pairing function φ(k, iωn)
can be written as

φ(k, iωn) = 1

β

∑
k′,n′

[
λ(k, k′; iωn − iωn′ )

N (0)

− Ĩs(k, k′; iωn, iωn′ )

]
φ(k′, iωn′ )

	(k′, iωn′ )
, (2)

where 	 = (iωnZ )2 − ε2
k − φ2 and Z (k, iωn) is the mass

renormalization function [10]. Here, the first term accounts
for the phonon exchange, where λ(k, k′; iωn − iωn′ ) is the
electron-phonon coupling and N (0) is the electron density
of states at the Fermi level. Ĩs(k, k′; iωn, iωn′ ) is defined
as the irreducible electron-electron interaction for the scat-
tering of a pair in the singlet state with momenta and
Matsubara frequencies (k, iωn; −k,−iωn) to the final state
with (k′, iωn′ ; −k′,−iωn′ ). In order to utilize a proper form
of Ĩs(k, k′; iωn, iωn′ ) that includes xc effects, we resort to
the model proposed by KO for the effective interaction
Wσσ ′ (q, ω), which describes the scattering of two electrons
with spins σ and σ ′ for momentum and energy transfer (q, ω)
in the HEG [9]. In this scheme, W KO(q, ω) is composed of the
bare interaction v(q) and the interactions mediated by charge
and spin density fluctuations:

W KO(q, ω) = vq + {vq[1 − G+(q, ω)]}2χnn(q, ω)

− 3{vqG−(q, ω)}2χSzSz (q, ω). (3)

These latter contributions are constructed from the charge and
spin dynamical local-field factors G±(q, ω), which include
xc effects. Note that the coefficient −3 in front of the spin
fluctuation term comes from the assumption of spin singlet
pairing. χnn(q, ω) and χSzSz (q, ω) are, respectively, the charge
and spin response functions defined by

χnn(q, ω) = χ0(q, ω)

1 − vq[1 − G+(q, ω)]χ0(q, ω)
(4)

χSzSz (q, ω) = χ0(q, ω)

1 + vqG−(q, ω)χ0(q, ω)
, (5)

in terms of the free-electron response function χ0(q, ω) and
the local field factors G±(q, ω). By neglecting in Eq. (3) ex-
change and correlation between the two interacting electrons
and the medium, while keeping them within the medium,
one recovers the test particle–test particle interaction of
Eq. (1), which is spin independent. As already mentioned,
W tt (q, ω) is usually computed in RPA, which amounts to
setting G+(q, ω) = 0 also in χnn(q, ω) [Eq. (4)], entirely dis-
carding xc effects. We anticipate that our numerical analysis
will show that a convenient approximation to the full KO

interaction for the accurate prediction of Tc is given by the
following expression:

W KO+
(q, ω) = vq + v2

q[1 − 2G+(q, ω)]χnn(q, ω), (6)

which has the computational advantage of not depending on
χSzSz , which is usually unavailable in linear response codes.

In this work we do not concern ourselves with anisotropy
effects on Tc, and rely on the Eliashberg equations in the
isotropic limit derived in Refs. [10–12]. Within this approach,
the electron-phonon coupling is described by the Eliashberg
spectral function [2] α2F , and the screened Coulomb inter-
action Wk,k′ is approximated by its average over surfaces of
constant energy (ε) in k space, that is,

W (ε, ε′) = 1

N (ε)N (ε′)

∑
k,k′

Wk,k′δ(εk − ε)δ(εk′ − ε′), (7)

where N (ε) = ∑
k δ(εk − ε) is the density of electronic states.

For later convenience we also introduce the dimension-
less quantity μ = W (0, 0)N (0), which enters the simplified
Morel-Anderson scheme [13] for Coulomb renormalization.
This is given by the product between the average Coulomb
interaction at the Fermi level (ε = 0) and the Fermi density of
states. It should be clear that μ does not enter our simulations,
which employ the full function W (ε, ε′). Nevertheless, it will
serve in the discussion as a rough estimate of the Coulomb
repulsion strength at the Fermi level, where it is physically
more meaningful.

A. Application to the homogeneous electron gas

As a first step, we compare the strength of the Coulomb
interaction in the different approximation schemes for the
HEG at varying density parameter (Wigner-Seitz radius) rs.
By making the system superconducting with the addition
of a coupling to an Einstein phonon mode (with frequency
ω = 60 meV and strength λ = 1), we then compute the corre-
sponding Eliashberg critical temperatures.

In the upper panel of Fig. 1 we plot the ratio of μ as
computed from W tt , W KO, and W KO+

[Eqs. (1), (3), and (6)]
divided by μRPA. For the local-field factors we have taken the
simple quadratic expressions recently proposed by Kukkonen
and Chen [14]:

G+(q) =
(

1 − k0

k

)(
q

qTF

)2

, (8)

G−(q) =
(

1 − χ0

χ

)(
q

qTF

)2

, (9)

where the compressibility and susceptibility ratios are rs-
dependent. These expressions are exact at small q, and
accurately reproduce quantum Monte Carlo data up to q =
2kF within the metallic region rs = 1–5.

We observe that for typical metallic densities (rs = 2–3)
the effective KO repulsion at the Fermi level is stronger than
the RPA by about a factor of 2, whereas the static screening of
the bare interaction is the most effective in the test particle–
test particle approximation.

The corresponding critical temperatures as a function of
the density are reported in the lower panel of Fig. 1. As
expected from the values of W, the RPA overestimates Tc with
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FIG. 1. Static effective Coulomb interactions at the Fermi level
(top) and superconducting critical temperatures (bottom) for the
homogeneous electron gas at varying density parameter rs beyond
the random phase approximation (RPA). tt, KO, and KO+ denote,
respectively, the test particle–test particle interaction of Eq. (1), the
Kukkonen-Overhauser interaction of Eq. (3), and its approximate
form of Eq. (6). The superconducting pairing is provided by an
Einstein phonon mode with coupling strength λ = 1 and frequency
ω1 = 60 meV.

respect to the KO approximation. The calculations for this
model system indicate that the inclusion of vertex corrections
lowers the Tc by about 20% at conventional metallic densities.
A recent paper by one of the authors used the KO interaction
to calculate the superconducting parameters (μ and λ), and
reached the same conclusion that μ is increased compared to
when the RPA is used. Thus the expected Tc, there estimated
using the McMillan formula, was also reduced [15]. However,
as we will see by studying real materials (Sec. III C 2), fine
details of the electronic and vibrational properties, which are
neglected in the present model, can considerably affect the
extent of this reduction.

III. APPLICATION TO REAL MATERIALS

A. The KO interaction for lattice periodic systems

The HEG is the basis of the large majority of approxi-
mations to the xc functionals of density-functional theory
for the ab initio computation of material properties. In time-
dependent density functional theory (TDDFT) calculations, a
common approximation to the unknown xc functional of real
(inhomogeneous) systems involves the adiabatic kernel,

f σσ ′
xc (nGS

α , |r − r′|) = δ2Exc[n↑, n↓]

δnσ (r)δnσ ′ (r′)

∣∣∣∣
nα=nGS

α

, (10)

where Exc[n↑, n↓] is the xc energy of the HEG with
ground-state spin densities nGS

α . In the paramagnetic
state, the spin-symmetric and -antisymmetric xc kernels
f ±
xc (r) are related to the local-field factors G±(q) by the

Fourier transform:

f ±
xc (q) ≡ f ↑↑

xc (q) ± f ↑↓
xc (q)

2
=

∫
dre−iq·r f ±

xc (r)

= −vqG±(q). (11)

Using this relationship, the KO interaction of Eq. (3) can
be easily generalized to lattice periodic systems as

WGG′ (q) = 4πδGG′

|q+G|2 +
∑
G1G2

[
fHxc,GG1 (q) fHxc,G1G2 (q)χnn

G2G′ (q)

−3 f −
xc,GG1

(q) f −
xc,G1G2

(q)χSzSz

G2G′ (q)
]
, (12)

where we have defined the Hartree-xc kernel

fHxc,GG′ (q) = 4πδGG′

|q + G|2 + f +
xc,GG′ (q)

and G are reciprocal lattice vectors. The interacting density-
density and spin-spin response functions in Eq. (12) can be
obtained, in principle exactly, from the Dyson-like equations:

χnn
GG′ (q) = χKS

GG′ (q) +
∑

G1,G2

χKS
GG1

(q)

× fHxc,G1G2 (q)χnn
G2G′ (q), (13)

χ
SzSz

GG′ (q) = χKS
GG′ (q) +

∑
G1,G2

χKS
GG1

(q)

× f −
xc,G1G2

(q)χSzSz

G2G′ (q), (14)

where χKS
GG′ (q) is the Kohn-Sham response function. In

practice, the xc kernels f ±
xc,GG′ are usually computed in

the adiabatic local density approximation (ALDA), which
amounts to replacing the static kernel of the HEG by its
long-wavelength limit. This value is then used at each point
in space according to the local density of the system, i.e.,

f ±,ALDA
xc,GG′ = − lim

q→0

1



∫
cell

dr e−i(G−G′ )·r vqG±(q, rs(r)) .

(15)

We have checked that the (ALDA) xc kernels computed
from the local-field factors of Ref. [14] are almost identical
to those routinely calculated in TDDFT from the second
functional derivative of the HEG xc energy, when adopting the
Perdew and Wang parametrization for the correlation energy.
For computational convenience, we have thus evaluated the
KO interaction in real materials by using in Eqs. (13) and
(14) the ALDA Perdew-Wang xc kernels as calculated with
the Elk code.

Since ab initio superconductivity calculations are carried
out in the basis of the Kohn-Sham orbitals, Eq. (12) has been
implemented in the form

Wk,k′ = 1



∑
GG′

WGG′ (q)ρk
k′ (G)ρk ∗

k′
(
G′), (16)

where ρk
k′ (G) = 〈k′|e−i(q+G)·r|k〉, k stands for the band index

n and momentum k of the Kohn-Sham state, and q ≡ k − k′.
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TABLE I. Effective Coulomb parameters and ab initio Eliashberg critical temperatures for the set of phonon-mediated superconductors in
Sec. III B. The table shows the values computed in the random phase approximation (RPA) and the percent variations with respect to the values
computed in the test particle–test particle (tt), Kukkonen-Overhauser (KO), and simplified Kukkonen-Overhauser (KO+) interaction schemes.
The variation is evaluated as �X = (X − X RPA )/[(X + X RPA )/2]. The integrated electron-phonon coupling constant λ and logarithmic average
phonon frequency ωl have been obtained from the Eliashberg spectral function α2F as reported in the references listed or computed in the
Appendix. The Wigner-Seitz radius rs is defined as that of a homogeneous electron gas with the same Fermi density of states.

�μtt �μKO+
�μKO Tc

RPA �Tc
tt �Tc

KO+
�Tc

KO ωl

μRPA (%) (%) (%) (K) (%) (%) (%) rs α2F λ (meV)

Al 0.206 −20.1 +39.4 +49.5 1.03 +17.0 −32.7 −41.9 2.48 [16] 0.37 24.6
In 0.208 −15.8 +34.0 +41.0 4.27 +3.5 −6.9 −8.3 3.12 [16] 0.84 6.2
C:(5%B) 0.151 −9.2 +13.4 +16.9 3.93 +14.1 −17.0 −20.5 3.83 [17] 0.36 122.6
Li(@22GPa) 0.487 −51.0 +58.7 +83.8 7.82 +28.2 −30.1 −43.0 1.22 [18] 0.77 22.9
Pb 0.239 −15.6 +33.8 +40.6 6.85 +2.1 −4.1 −4.9 2.77 [16] 1.33 5.1
RbSi2 0.268 −31.0 +44.6 +60.2 10.1 +7.1 −8.7 −12.4 3.42 [19] 1.28 8.6
Nb 0.515 −17.9 +34.9 +47.6 12.4 +4.8 −8.1 −11.0 0.50 [16] 1.34 12.0
P(@15GPa) 0.178 −11.4 +23.0 +29.1 13.0 +2.2 −3.5 −4.47 4.24 [20] 1.04 13.4
NbSe2 0.501 −21.8 +31.7 +43.0 11.6 +8.0 −10.5 −14.5 1.04 [21] 1.43 12.0
MgB2 0.265 −17.7 +32.5 +42.7 18.6a +11.1 −19.1 −26.1 2.02 [16] 0.67 61.3
Nb3Sn 0.589 −26.1 +40.4 +58.1 20.7 +7.9 −11.1 −17.2 0.49 Appendix 1.86 14.5
SH3 0.220 −12.0 +27.7 +35.8 211.1 +3.0 −6.8 −9.2 1.34 [22] 1.90 91.6
set average 0.319 −20.8 +34.8 +45.7 26.8 +9.1 −13.2 −17.8 2.21 1.10 32.9

aAccounting for anisotropy Tc would increase to 34 K [10].

B. The material test set

From the complete solution of the isotropic Eliashberg
equations including both effective Coulomb and electron-
phonon interactions, we have calculated the superconducting
transition temperatures of a diverse set of conventional su-
perconductors. The materials in the set have been chosen so
as to cover a wide range of properties and conditions (under
which Coulomb effects are expected to play a significant
role), and hence they also include exotic superconductors.
This implies that a comparison with the experimental re-
sults will not always be straightforward or possible. We have
considered elemental superconductors such as Al, In, Pb,
and Nb. Al is a prototype weak-coupling superconductor
with a very low critical temperature (1.2 K) [18]. Since its
electronic structure is nearly free-electron, it is expected to
behave similarly to the HEG. In passing from Al to In, Pb,
and Nb, the electronic charge becomes gradually more lo-
calized, the electron-phonon coupling increases, and so does
Tc [16,23]. Among the elemental superconductors, we have
also included lithium under pressure [18,24,25]. This system
becomes superconducting owing to a s → p charge trans-
fer; hence its electronic behavior is at the crossing point
between free electrons and more localized charge carriers.
Additionally, we have considered two Nb compounds, Nb3Sn
and NbSe2. Nb3Sn is one of the most relevant supercon-
ductors for high-field generation applications, as it features
high critical fields and a relatively high Tc of 18 K [26].
NbSe2 is a layered superconductor (Tc = 7.2 K) made fa-
mous by the coexistence of superconductivity and charge
density wave [21]. We have added to our set three more
layered superconductors, RbSi2, an (hypothetical) intercalated
silicate with honeycomb structure [19], black phosphorus at
high pressure [20], and magnesium diboride [27–29]. Lay-
ered materials usually display stronger Coulomb repulsion
because of the inherent charge localization, as compared

to three-dimensional systems [10]. Compressed black phos-
phorus [20], furthermore, has the property of being close
to the onset of a semiconductor-metal transition, and hence
is expected to behave like a low-density electron gas. For

FIG. 2. Energy dependence of the isotropic effective Coulomb
interactions for the materials in Sec. III B in the random phase
approximation (RPA), test particle–test particle (tt), Kukkonen-
Overhauser (KO), and simplified Kukkonen-Overhauser (KO+)
interaction schemes. The plots show two cuts of W (ε, ε′) from
Eq. (7): a diagonal cut (ε = ε′) and a Fermi level cut (ε′ = 0).
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this same reason we have also included boron-doped di-
amond [17,30]. Lastly, we have considered high-pressure
sulfur hydride [22,31–33], which is an extreme high-
coupling phononic superconductor with a Tc of about 200 K
at 200 GPa.

The superconducting properties of the large part of these
materials have been already investigated by means of first-
principles methods, where the electron-phonon coupling was
computed from linear response density functional perturba-
tion theory [34,35] and Coulomb interactions were treated in
RPA. In this work we have computed the Coulomb interac-
tions with high numerical accuracy in all the approximation
schemes (see Fig. 2), while we have taken the electron-phonon
coupling values from the literature (references are listed in
Table I). Since we could not find ab initio electron-phonon
coupling data for Nb3Sn, we have carried out a full first-
principles study of its properties (results are collected in the
Appendix for future reference).

Computation of the effective Coulomb interactions

The effective Coulomb interactions have been imple-
mented in isotropic form [Eq. (7)] in the Elk FP-LAPW code
[36], which allows for the calculation of both magnetic and
charge response functions. We have carried out convergence
tests for all the compounds so as to achieve convergence on
μRPA within 10%, which limits the error on Tc to a few percent.
The sensitive parameters for the simulation are the k-point
sampling of the Brillouin zone, the energy integration over
empty states, which determines the accuracy of χ0, and the
size of the χ matrices in G space. The results here reported
have been obtained by using at least 500 k points per unit
volume, an energy integration window up to at least 30 eV
above the Fermi level, and an rMT Gmax between 3 and 5 for
the dimension of the χ matrices in G space. Additionally,
rMT Gmax � 7 has been used for the convergence of the wave
functions in the plane-wave part of the LAPW basis set [37].
The muffin-tin radii have been kept at the default values in
the Elk distribution. Figure 2 shows two different cuts of the
computed W (ε, ε′) functions: a diagonal cut (ε = ε′) and a cut
at the Fermi level W (ε, 0).

C. Results and discussion

Table I presents the results of our calculations for the set
of superconductors in Sec. III B. We have listed the critical
temperatures obtained from Eliashberg theory by treating the
Coulomb interaction at the RPA level, and the deviations
(�Tc) from these values when using the tt, KO+, and full-KO
interactions. For the computation of Tc we have employed
the simplified Eliashberg equations introduced in Ref. [10].
However, calculations based on density functional theory for
superconductors [16] provide consistent predictions. To gain a
qualitative understanding of the trend of Tc across the different
approximation schemes, we have computed the corresponding
values of the effective Coulomb parameter μ. The relative
correction to the RPA values of the quantity X is evaluated as
�X = (X − X RPA)/[(X + X RPA)/2]. For a comparison with
the results obtained in Sec. II A, Table I also includes an
estimate of the Wigner-Seitz radius rs of the materials. This

(a) (b) (c)

FIG. 3. A sketch of physical situations that may influence
exchange-correlation (xc) corrections to the Coulomb interaction:
(a) The electron density is overall homogeneous: xc effects are
comparable to those computed for the electron gas (see Fig. 1).
(b) Electrons are mainly localized in chemical bonds: xc effects
are reduced by the local high-density environment. (c) Most of the
valence density is localized but does not overlap with the orbitals
at the Fermi level: xc effects are enhanced by the local low-density
environment at the Fermi level.

is defined as the rs of a HEG that has the same Fermi density
of states of the material.

1. Coulomb interactions

We observe that the general trends of μ for the materials in
Table I resemble those for the HEG (upper panel of Fig. 1);
i.e., in the tt scheme the Coulomb repulsion is largely reduced
compared to RPA, whereas it is enhanced by assuming the KO
ansatz. However, many-body corrections are in magnitude on
average smaller than those expected from the electron gas for
the same rs, and are not strictly proportional to it. To explain
this evidence, one must consider two aspects. First, in real
materials the charge density is nonuniformly distributed since
electrons are mainly localized within chemical bonds/Bloch
orbitals, so that the effective screening volume may be much
smaller than the cell volume  [see Fig. 3(b)]. This is the
case of strong covalent compounds like black phosphorus and
doped diamond, where the computed (large) value of rs hints
at a low-density behavior, but xc corrections (see the values of
�μKO in Table I) turn out to be as small as at high density. On
the other hand, μ provides a measure of the Coulomb inter-
action between electrons that are close to the Fermi level, and
there may occur situations in which these have a poor spatial
overlap with the bulk of the valence density [see Fig. 3(c)].
The actual value of rs is therefore underestimated; i.e., the
density felt by the electrons at the Fermi level is lower than
the average density, and deviations from μRPA become sizable.
This is the case of both lithium under pressure and Nb3Sn. For
example, in lithium the states at the Fermi level have dominant
p character, whereas most of the valence charge is located in
s-like orbitals.

Within our set, aluminium and SH3 are certainly the two
materials where Coulomb interactions more closely resemble
those in a homogeneous system. This aspect can be easily
seen in Fig. 2, where one observes a monotonic and smooth
decrease of W as a function of ε, which is typical of the
3D electron gas [38]. Consistently with this observation,
we find that xc Coulomb corrections in these materials
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can be accurately estimated from the data of Fig. 1 at the
corresponding rs.

2. Superconducting critical temperatures

Understanding how the improved description of the
Coulomb interaction by the KO ansatz can impact Tc is not
straightforward. In fact the outcome depends on the energy
structure of the Coulomb repulsion W (ε, ε′), as well as on the
reduction of the latter due to retardation effects introduced by
the difference between the characteristic phonon and electron
energy scales [3,13]. According to the McMillan formula [39],
Tc is roughly determined by λ

1+λ
− μ∗, where μ∗ is the re-

duced (Morel-Anderson) pseudopotential that accounts for the
renormalization of the Coulomb interaction due to retardation
effects. We find that for aluminium the Tc computed in the
KO approximation is considerably lower than in RPA. This
is explained by a large increase in the Coulomb repulsion
(�μ) of about 50% that is not mitigated by retardation effects,
which combines with a small electron-phonon coupling λ. A
poor renormalization of the Coulomb repulsion due to the
presence of high-frequency phonon modes is also responsi-
ble for the large Tc correction in doped diamond (120 meV
vibration ascribed to C-C stretching) and MgB2 (60 meV E2g

vibrational boron mode). On the other hand, in SH3, which
also exhibits high-frequency hydrogen vibrations, the large
�μ is compensated by a strong electron-phonon coupling
(λ ∼ 1.9), which yields a modest reduction in Tc of about
10%. A similar result within a completely different scenario
is found for indium, where �μ is flattened by retardation
effects associated with low-frequency phonon modes, thereby
μ∗ � μ, and λ is rather small. Clearly, the interplay between
phonon-mediated and Coulomb interactions in determining
the value of Tc is complex and strongly material dependent,
and the number of possible cases cannot be covered by study-
ing a limited set of materials. Nevertheless, our numerical
analysis reveals a few features that are likely to be of general
validity: The RPA treatment of the Coulomb interaction leads
to a systematic overestimation of Tc with respect to the KO
interaction. The error in Tc is in most cases of the order of
15%, which is comparable with the uncertainty stemming
from electronic structure and lattice dynamics calculations.
The relative success of the RPA is largely due to error cancel-
lation effects. In fact, improving over the dielectric screening
in the tt approximation leads to results that are worse than
those obtained in RPA. The tt approximation, despite being a
formal improvement over RPA, should never be used for the
calculation of superconducting properties. Nonetheless, the
KO interaction (or at least its simplified version KO+) should
be preferred to the RPA in the following cases: (i) To simulate
low-density systems, and especially those where the elec-
tronic states close to the Fermi level are delocalized. This is
the case of, e.g., electron-doped semiconductors. (ii) To simu-
late superconductors with high phonon frequencies, especially
in the weak-coupling regime. In these specific cases the error
associated with the use of the RPA can exceed 40% of Tc.

IV. CONCLUSIONS

State-of-the-art ab initio methods in superconductivity
have been systematically adopting the GW RPA approach to

FIG. 4. Electron and phonon properties of Nb3Sn. Top: Elec-
tronic density of states including projections onto s, p, d orbitals and
Nb, Sn atoms. Center: Phonon density of states with projections onto
Nb and Sn atoms. Bottom: Computed Eliashberg spectral function
α2F (black curve) compared with experiments from Refs. [45–48].

compute the Coulomb contribution to Cooper pairing, in spite
of the fact that this approximation is not justified at metallic
densities. In this work we have improved over the current
approach by using a generalized GW self-energy, where W
is given by the KO formula, which conveniently incorporates
vertex corrections in the form of local field factors.

Since the KO repulsion between two electrons is stronger
than the RPA, it is expected to lower the transition tem-
peratures estimated for conventional superconductors. By
using the KO ansatz with ALDA spin-symmetric and -
antisymmetric xc kernels into the Eliashberg equations, we
have investigated the impact of vertex corrections on the tran-
sition temperatures of twelve different metals and metallic
compounds. We have found that the amount of reduction
ranges from 43% in lithium at 22 GPa pressure to 4.1% in bulk
lead, with an average reduction of 17.8%. While these calcula-
tions employed the full KO interaction, we have introduced a
simplified KO interaction containing only the spin-symmetric
xc kernel f +

xc , which is shown to produce nearly the same re-
sults, and can be easily implemented in existing TDDFT linear
response codes. As a general rule, Tc corrections are expected
to be sizable in the weak-coupling regime, for materials with
high characteristic phonon frequencies and when the Fermi
level charge has a small overlap with the remaining valence
density, effectively leading to a low-density behavior. In these
cases we recommend that the KO approximation (or at least
its simplified form) replace the RPA as the optimal choice for
high-accuracy superconductivity simulations.

APPENDIX: ELECTRON-PHONON COUPLING IN Nb3Sn

To compile the tests in Table I it is required to know
the electron-phonon coupling of the material in the form of
the Eliashberg spectral function (α2F ) [2]. These functions
could be found in recent literature for all materials in the test
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set, apart from Nb3Sn, for which we have proceeded to its
calculation. In this section we report on the simulation of the
α2F function for Nb3Sn.

At room temperature Nb3Sn crystallizes in the A15 crystal
structure (space group Pm3̄m, Wychoff positions 6c and 2a).
Below 45 K it undergoes a cubic to tetragonal phase transition;
the tetragonal distortion is very small (a/c = 1.0062) and we
neglect it using the A15 lattice for our simulations. We have
performed all calculations with Quantum Espresso [40]; the
electronic structure is computed within DFT [41,42] using
the LDA approximation [43] for the exchange correlation
functional. Core states are described in the norm-conserving
pseudopotential approximation and a cutoff of 70 Ry has been
used for plane-wave basis set expansion. The Brillouin zone
integration in the calculation of the dynamical matrices was
set to a 8×8×8 grid and a Methfessel-Paxton [44] smearing
of 0.03 Ry was used. Electron phonon matrix elements are

computed on a 12×12×12 (4×4×4) k (q) grid. These are
Fourier interpolated on a dense grid and then mapped on a
set of 40 000 k points accumulated on the Fermi surface
[21], for an extremely accurate calculation of the electron
phonon coupling [2]. The calculated lattice parameter is a =
5.22 Å. The α2F function, together with the electronic and
phononic density of states, is collected in Fig. 4. The α2F
integrates to an electron-phonon coupling λ = 1.86 and has
a logarithmic averaged phonon frequency ω1 = 14.5 meV.
The shape of the spectral function compares well with most
existing experimental estimations from tunneling inversion
(also reported on the bottom panel of Fig. 4). However the
experimental literature shows significant spread of shapes and
coupling strength. The only experimental measurements in net
disagreement with our simulations are the measurements from
Freericks and coworkers [45] which present extremely soft
modes below 5 meV of frequency.

[1] G. Éliashberg, Interactions between electrons and lattice vibra-
tions in a superconductor, Sov. Phys. JETP 11, 696 (1960).

[2] P. B. Allen and B. Mitrović, Theory of superconducting Tc,
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