

1	Seeing the Wood for the Trees: Active human-
2	environmental interactions in arid northwest China
3	Hui Shen ^{1,2} , Robert N. Spengler ^{3,4} , Xinying Zhou ^{1,2} , Alison Betts ⁵ , Peter Weiming
4	Jia ⁵ , Keliang Zhao ^{1,2} , Xiaoqiang Li ^{1,2}
5	¹ Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and
6	Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
7	² University of Chinese Academy of Sciences, Beijing, 100049, China
8	³ Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of
9	Geoanthropology, Jena, 07745, Germany
10	⁴ Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, 07745, Germany
11	⁵ Department of Archaeology, University of Sydney, Sydney, NSW 2006, Australia
12	
13	Corresponding author: Xiaoqiang Li
14	email: <u>lixiaoqiang@ivpp.ac.cn</u>
15	
16	
17	
18	
19	

20	Abstract: Due largely to demographic growth, agricultural populations during the
21	Holocene became increasingly more impactful ecosystem engineers. Multidisciplinary
22	research has revealed a deep history of human-environmental dynamics; however,
23	these pre-modern anthropogenic ecosystem transformations and cultural adaptions are
24	still poorly understood. Here, we synthesis anthracological data to explore the
25	complex array of human-environmental interactions in the regions of the prehistoric
26	Silk Road. Our results suggest that these ancient humans were not passively impacted
27	by environmental change, but rather they culturally adapted to, and in turn altered,
28	arid ecosystems. Underpinned by the establishment of complex agricultural systems
29	on the western Loess Plateau, people may have started to manage chestnut trees,
30	likely through conservation of economically significant species, as early as 4600 BP.
31	Since ca. 3500 BP, with the appearance of high-yielding wheat/barley farming in
32	Xinjiang and the Hexi Corridor, people appear to have been cultivating Prunus and
33	Morus trees. We also argue that people were transporting the preferred coniferous
34	woods over long distance to meet the need for fuel and timber. After 2500 BP, people
35	in our study area were making conscious selections between wood types for craft
36	production, and were also clearly cultivating a wide range of long-generation
37	perennials, showing a remarkable traditional knowledge tied into the arid
38	environment. At the same time, the data suggest that there was significant
39	deforestation throughout the chronology of occupation, including a rapid decline of
40	slow-growing spruce forests and riparian woodlands across the northwest China. The
41	wood charcoal dataset is publicly available at https://doi.org/10.5281/zenodo.8158277
42	(Shen et al., 2023).

Keywords: Human-environmental interaction, human adaption, fruit management, 43

deforestation, northwest China 44

45 **1 Introduction**

46	The extent of prehistoric anthropogenic environmental change, especially relating to
47	the ways early agricultural practices reshaped terrestrial ecosystems, has been the
48	subject of ongoing debate (Ruddiman, 2003, 2008; Zong et al., 2007; Asouti and
49	Kabukcu, 2014; Asouti et al., 2015; Dong et al., 2020a, 2022a). Over the past decade,
50	scholars have adopted big data approaches to understanding long-term anthropogenic
51	changes to the Earth's surface (Zalasiewicz et al., 2017; ArchaeoGLOBE Project,
52	2019; Renn, 2020; Cowie et al., 2022). While humans have undoubtedly been
53	reshaping environments since before the Holocene, the magnitude of these impacts
54	following the adoption of agricultural economies increased immensely. During this
55	process, people shifted their subsistence system from hunting-gathering to cereal
56	cultivation and animal husbandry, and increasingly gained the ability to alter and
57	adapt their ecological surroundings (Bellwood, 2005; Zeder, 2008; Zohary et al.,
58	2012). During the fifth millennium BP, agricultural populations across Europe and
59	Asia first came into contact via diffusion of crops, contributing to food globalization
60	in prehistory (Sherratt, 2006; Jones et al., 2011; Dong et al., 2017, 2022b; Boivin et
61	al., 2016; Liu et al., 2019; Zhou et al., 2020). The intermingling of millets, adapted for
62	arid and short-season grasslands in northern China, with cereals, adapted for rainy
63	season growth in arid southwest Asia, eventually facilitated a greater intensification of
64	farming systems (Spengler 2019; Miller et al. 2016).
65	Mounting evidence shows that the development of farming systems was
66	accompanied by a series of ecological and social changes, including deforestation,
67	wild species loss, and demographic expansion (Bellwood, 2005; Weisdorf, 2005;
68	Atahan et al., 2008; Kaplan et al., 2009; Bocquet-Appel, 2011; Fuller et al., 2011a;

69	Asouti et al., 2015; Ruddiman, 2013). For instance, the dispersal and expansion of
70	agriculture largely altered the natural geographic distributions of anthropophilic plants
71	(crops and weeds) and directly influenced vegetation communities worldwide (Vigne
72	et al., 2012; Fuller et al., 2011b; Crowther et al., 2016; Boivin et al., 2017; Spengler et
73	al., 2021). Forest clearing, either to increase the surface area of arable land or to
74	acquire wood for construction or fuel, has caused large-scale deforestation and created
75	a more open landscape (Zong et al., 2007; Atahan et al., 2008; Kaplan et al., 2009;
76	Innes et al., 2013; Zheng et al., 2021). Meanwhile, human-mediated management of
77	local woodlands encouraged the growth of fruit- and nut-bearing trees, shifting land-
78	use strategies from an emphasis on short-term returns of annual cereals to long-term
79	investment with delayed return crops (Fall et al., 2002; Janick, 2005; Miller and
80	Gross, 2011; Miller, 2013; Asouti and Kabukcu, 2014; Asouti et al., 2015). Today,
81	essentially all ecosystems on the planet are anthropogenic constructs, recognized
82	through the increasingly prominent use of the term Anthropocene (Crutzen, 2002;
83	Ruddiman, 2003, 2013; Monastersky, 2015).

Northwest China, the focus region of this paper, is of particular interest, because 84 it is located at the core of the ancient trade routes that are colloquially referred to as 85 86 the Silk Road and farmers in the region were the first to experiment with agricultural crops from both West and East Asia (Wang et al., 2017; Dong et al., 2017, 2018, 87 88 2022b; Zhou et al., 2020; Li, 2021). Archaeobotanical data have pinpointed the broad 89 region and time period when humans first started to cultivated millets in East Asia. Specifically, evidence from the Dadiwan site has revealed that broomcorn millet 90 91 cultivation began as early as the eighth millennium BP (Liu et al., 2004; Li, 2018), 92 and the gradual diffusion of broomcorn millet reached famers in the mountains of 93 Central Asia by 4500 BP (Spengler et al. 2014; Yatoo et al. 2020). The remains of

94	barley and wheat found at the Tongtian Cave site, have been dated to around 5200
95	BP, representing the earliest known southwest Asian cereals found in East Asia (Zhou
96	et al., 2020). In addition to long-distance exchange of cereals, this area also fostered
97	the trans-continental dispersals of sheep, goat, bronze-smelting technology, mudbrick-
98	manufacturing techniques, and a variety of other cultural attributes (Mei and Shell,
99	1991; Dodson et al., 2009; Li et al., 2011; Yang et al., 2017; Dong et al., 2017; Chen
100	et al., 2018; Ren et al., 2022). Additionally, most of this region is characterized by a
101	hyper-arid desert and fragile oasis ecosystem, which are especially vulnerable to
102	human activity, making it a prime zone for studying the interaction between early
103	agricultural societies and the environment.
104	Archaeologists and geologists working in this region have mainly focused their
105	attention on the relationship between climate change and Neolithic cultural
106	development, as well as anthropogenic impacts on regional ecosystems. These
107	scholars have argued that enhanced precipitation during the Late Yangshao (5500-
108	5000 BP), Majiayao type (5300-4800 BP), and Qijia (4200-3800 BP) periods played
109	an important role in the expansion of these early farmers (An et al., 2004; 2005, 2006;
110	Hou et al. 2009; Liu et al., 2010; Dong et al., 2012, 2013, 2016, 2020a). A reduction
111	in the number of archaeological sites during the gap between early and middle
112	Majiayao (4800-4400 BP), and the decline of the Qijia culture are thought to be a
113	response to increasingly aridity (Dong et al., 2012, 2013). Concurrent with these
114	changes, people were actively engaged in reshaping the landscape. For instance, a
115	wood charcoal study from the Hexi Corridor has suggested that prehistoric wood
116	collection led to a rapid reduction in local woodlands and a decline in woody plant
117	diversity (Shen et al., 2018). In a different study, an increase in large-scale fire
118	frequency was proposed based on micro carbon records from Tian'e Lake, which was

119	further correlated with high Cu content, suggesting the consequence of large-scale
120	bronze smelting activities (Dong et al., 2020b). However, relatively less attention has
121	been paid to how agriculture influenced the cultural responses and adaption strategies
122	employed in these arid environments. Meanwhile, scientific records are
123	geographically uneven, with regions, such as the Hexi Corridor, attracting
124	considerable attention, while few studies have targeted the vast area of Xinjiang,
125	leading to an incomplete picture of prehistoric human-environmental interactions
126	along the ancient Silk Road.
127	In this study, we present a comprehensive synthesis of wood charcoal records
128	from northwest China. As the result of incomplete burning, wood charcoal fragments
129	from archaeological sites shed light on the practices of local woody plant use (Asouti
130	and Austin, 2005; Marguerie and Hunot, 2007; Théry-Parisot et al., 2010). Since the
131	first charcoal analyse, beginning in the 1940s (Salysbury and Jane, 1940), the
132	application of reflected light microscopy has allowed the rapid identification of
133	charcoal, making it widely used in: 1) the reconstruction of firewood collection
134	strategies (Li et al., 2016; Shen et al., 2018; Kabukcu, 2017; Mas et al., 2021); 2)
135	elucidating the impacts that wood cutting had on local forests (Li et al., 2011; Asouti
136	et al., 2015; Knapp et al., 2015; Shen et al., 2018); 3) identifying compositions of
137	woody communities (Wang et al., 2014; Asouti et al., 2015; Allué and Zaidner, 2022;
138	Mas et al., 2022); and 4) determining fruit and/or nut tree management (Miller, 2013;
139	Asouti and Kabukcu, 2014; Shen and Li, 2021). Here, we seek to identify patterns in
140	wood charcoal recovered from seven archaeological sites in Xinjiang, which we
141	contrast with more than 30 other published regional records. We aim to explore
142	multiple perspectives on the complexities of human-environmental interactions within
143	the agricultural background, including the influence of farming and wood cutting on

- 144 woody vegetation change, as well as the strategies applied in response to climatic
- 145 aridification.
- 146 2 Study area

147 2.1 Regional setting

- 148 Our study focuses on the provinces of Xinjiang and Gansu, because of the important
- 149 roles people in this region played in exchange along the ancient Silk Road. This

150 region is characterized by montane ecoclines, including those of the Tianshan, Altai,

151 Altun, and Qilian mountains (Figure 1). Due to glacial snowmelt, alluvial plains are

- 152 widely distributed across the low-land basins, and fine-grained nutrients and water
- 153 brought by the runoff nourish a network of oases, especially within the Hexi Corridor
- and Tarim Basin (Zheng et al., 2015). Climatically, mean annual precipitation (MAP)

155 is geographically uneven, due to difference in prevailing air masses. For the West

- 156 Loess Plateau, which is under the control of the Asian monsoons, MAP usually
- 157 exceeds 400 mm (https://data.cma.cn/). Water vapour carried by the westerlies mainly
- 158 concentrates in the Ili or Irtysh valleys and Junggar Basin, and the MAP sometimes
- 159 can reach more than 500 mm (Xiao et al., 2006; Zheng et al., 2015). In the Tarim
- 160 Basin and the Hexi Corridor, the MAP is usually less than 200 mm
- 161 (https://data.cma.cn/). Temperatures are also spatially and seasonally unevenly
- 162 distributed; likewise, the mean annual temperature in the Kunlun, Tianshan, and Altai
- 163 mountains is below zero, while that of the Turpan Basin is around 14°C (Chen, 2010).

164

	₩ + 5 5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
	45°				
	(N) and (N) an				
	5 17 14 10 10 10 10 10 10 10 10 10 10				
	Pamit 2 Tarim Basin 0/1/2/19 24 25/30				
	Plateau 1 9 Alton March 220 West				
	Loess Plateau 38				
	Oinghai, Tibet Plateau 31 35196 99 137 35 34 33 35 35°				
166	75° 80° 85° 90° 95° 100° 105° 110° Longitude (E)				
167	Figure 1. The location of archaeological sites mentioned in this study. 1 Xintala; 2 Wupaer; 3				
168	Xiakalangguer; 4 Shirenzigou; 5 Sidaogou; 6 Xicaozi; 7 Qiongkeke; 8 Tongtian Cave; 9				
169	Ji'rzankal; 10 Yanghai; 11 Jiayi; 12 Shengjindian; 13 Yuergou; 14 Xiaohe; 15 Gumugou; 16 South				
170	Aisikexiaer Cemetery; 17 Wupu; 18 Xihetan; 19 Zhaojiashuimo; 20 Huoshaogou 21				
171	Huoshiliang; 22 Ganggangwa 23 Lifuzhai; 24 Xichengyi; 25 Sanjiao; 26 Mozuizi; 27				
172	Donghuishan; 28 Jingbaoer; 29 Yingwoshu; 30 Sanjiaocheng; 31 Majiayao; 32 Xishanping; 33				
173	Dadiwan; 34 Shannashuzha; 35 Daping; 36 Gaozhuang; 37 Jiangjiazui; 38 Laohuzui; 39 Qiaocun,				
174	the base map was obtained at https://www.ncei.noaa.gov/maps/grid-extract/.				
175	Due to the arid climate, vegetation types here are characterized by expansive				
176	deserts (Xinjiang Integrated Expedition Team and Institute of Botany, 1978). Along				
177	the rivers in the low-land basins, riparian woodlands are mainly composed of				
178	Populus, Elaeagnus, Ulmus, and Salix (Chen, 2010). Within the montane belt,				
179	vegetation usually changes from grassland (dominated by Stipa), coniferous forest				
180	(mainly Picea and Larix), subalpine steppe (mainly Stipa), alpine meadows (including				
181	Stipa, Carex, and Artemisia), and alpine cushion vegetation (represented by				
182	Androsace, Stellaria media, and Geranium wilfordii), in banded ecoclines from				
183	lowest to highest elevation (Chen, 2010; Zheng et al., 2015; Xinjiang Integrated				
184	Expedition Team and Institute of Botany, 1978). Wild fruit and nut woodlands are				
185	distributed throughout the Tianshan Mountains, especially in the Ili valley, and the $^{\mbox{8}}$				

- 186 main wild fruit trees include *Malus* sp., *Juglans regia*, and *Prunus* spp. (Chen, 2009;
- 187 Abudureheman et al., 2016).

188 2.2 Prehistoric cultures and agriculture

189 As an important cultural bridge connecting East and West Asia, northwest China has fostered a variety of cultural communities. The early Neolithic cultures included the 190 191 Dadiwan and Yangshao, mainly distributed in southern Gansu (Institute of Cultural 192 Relics and Archaeology of Gansu, 2006). Later, people with material culture ascribed 193 to the Majiayao expanded quickly into the Hexi Corridor around 4800 BP (Xie, 2002; 194 Dong et al., 2020b). From 4000-3000 BP, the main archaeological cultures in Gansu consisted of the Xichengyi, Qijia, Siba, and Dongjiatai (Li et al., 2010), and the 195 196 Shanma and Shajing cultures gradually developed after 3000 BP (Li, 2009; Gansu Provincial Institute of Cultural Relics and Archaeology et al., 2015). In Xinjiang, the 197 198 prehistoric peoples before 4000 BP were represented by material culture categorized as the Afanasievo and Chemurchek (Shao, 2018). From 4000-3500 BP, the 199 200 Andronovo Culture expanded into western Xinjiang, and the Tianshanbeilu and 201 Xiaohe cultures occupied the eastern Tianshan and Tarim Basin, respectively (Mei 202 and Shell, 1999; Ruan, 2014; Jia et al., 2017; Shao and Zhang, 2019; Xinjiang Institute of Cultural Relics and Archaeology, 2004, 2014). Since 3500 BP, cultural 203 communities have continually diversified, with more localized groups forming, like 204 205 Subeixi Culture in the Turpan Basin (Chen, 2002). 206 Archaeobotanical evidence shows that millet cultivation was already practiced 207 by ca. 7800-7350 BP (Liu et al., 2004; Li, 2018). By at least 5500 years ago, people were engaging in an intensive intermixed crop-livestock system by integrating pig 208

209 maintenance and millet cultivation (Yang et al., 2022). From 5000-4000 BP, both East

210	Asia millets diffused into the Hexi Corridor, while agricultural practices in Xinjiang
211	were restricted to limited microenvironmental pockets (Zhou et al., 2016; Dong et al.,
212	2017, 2018, 2020b; Li, 2021). Since 4000 BP, mixed agricultural systems composed
213	of both East and southwest Asian crops became more prominent; although, barley and
214	wheat had reached northwest China about a millennium prior (Flad et al., 2010; Zhao
215	et al., 2013; Yang et al., 2014; Zhang et al., 2017; Zhou et al., 2016, 2020; Jiang et al.,
216	2017a, 2017b; Tian et al., 2021). Stable carbon isotope data also suggest that the
217	consumption of both C_3 and C_4 plants was widely practiced after 4000 BP (Liu et al.,
218	2014; Zhang et al., 2015; An et al., 2017; Wang et al., 2016, 2017; Ma et al., 2016;
219	Qu et al., 2018). Around 3700-3300 BP, wheat and barley gradually replaced the
220	millets, becoming the dominant crops within the Hexi Corridor (Zhou et al., 2016).
221	From 3300-2200 BP, agriculture in Xinjiang gradually developed into something
222	more complex and spread to larger areas and more diverse ecozones, as evidenced by
223	the diversification of crops, and the appearance of irrigation technology and various
224	types of farming tools (Li, 2021). Meanwhile, secondary crops, such as Vitis vinifera
225	and Ziziphus jujuba, appeared more widely after ca. 2500 BP, indicating a strong
226	concept of land tenure associated with the development of agriculture (Jiang et al.,
227	2009, 2013; Li, 2021)

3 Archaeobotanical Data and Chronology 228

3.1 Chronology of the archaeological sites 229

230 In this study, we present data from seven archaeological sites and have developed a

- chronology based on AMS ¹⁴C dating through the Beta Analytic Testing Laboratory 231
- and Australian Nuclear Science and Technology Organisation. For dating, we focused 232

- 233 on wheat seeds and wood charcoal, and the calibrated ages were generated using
- 234 Oxcal 4.4 with IntCal20 (Table 1 and Figure 2) (Reimer et al., 2020). The dating
- results show that the seven archaeological sites cover a time span between 3900 and
- 236 2000 BP, and the oldest dates come from Xintala, at ca. 3900-3500 BP. The
- 237 Xiakalangguer, Sidagou, Xicaozi, and Qiongkeke sites fall in to the period of 3500-
- 238 3000 BP. The chronology for Shirenzigou covers roughly 2700-2000 BP. At Wupaer,
- 239 we collected wood charcoal samples from two sections, S1 and S3, and the date of the
- 240 S3 section is about 2900-2800 BP. The S1 section shows two different timespans,
- 241 specifically ca. 3400-3300 BP and 2500-2300 BP.

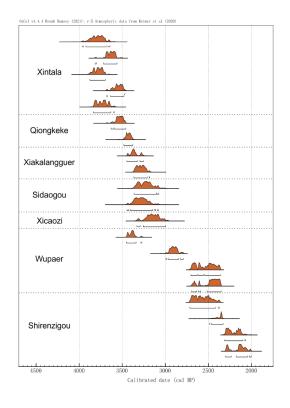

242

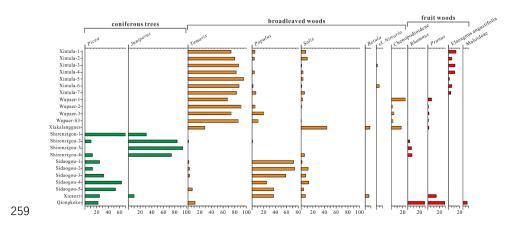
Table 1. Dates for the seven archaeological sites in this study.

Site	Latitude	Longitude	Culture	Lab no.	Material	Date (BP)	Calibrated date (28, BP)	References
				OZM448	charcoal	3395±30	3815-3561	
				OZM449	charcoal	3515±30	3877-3696	
Xintala	42.22	86.39	Xintala type	OZM450	charcoal	3335±30	3680-3469	Zhao et al., 2013
				OZM451	wheat	3460±35	3835-3593	
				OZL437	wheat	3515±50	3960-3642	
0' 1 1	12.02	00.75		Beta-642945	charcoal	3220±30	3482-3375	
Qiongkeke	43.83	82.75	Andronovo	Beta-642946	charcoal	3320±30	3591-3458	this study
V:-11	16.74	82.02	A J	Beta-642943	charcoal	3140±30	3447-3327	uns study
Xiakalangguer	46.74	83.03	Andronovo	Beta-642944	charcoal	3070±30	3365-3209	
Sidaagay	43.79	90.19	Nanwan type	OZK664	wheat	3030±50	3362-3075	Dodson et al.,
Sidaogou	45.79	90.19	Nanwan type	OZK665	wheat	3080±60	3445-3080	2013
Xicaozi	44.00	89.68	Unknown	OZM674	wheat	2975±45	3331-2997	2013
				Beta-642939	charcoal	3160±30	3451-3339	
W /	39.28	75.52	XX /	Beta-642940	charcoal	2450±30	2544-2361	
Wupaer	39.28	15.52	Wupaer	Beta-642941	charcoal	2420±30	2515-2351	
				Beta-642942	charcoal	2800±30	2967-2844	this study.
	42.56	94.09	Shirenzigou type	Beta-642947	charcoal	2350±30	2466-2329	 this study
C1.:				Beta-642948	charcoal	2180±30	2313-2099	
Shirenzigou				Beta-642949	charcoal	2150±30	2178-2041	
				Beta-642950	charcoal	2470±30	2715-2414	

243

244

Figure 2. The chronology of seven archaeologic sites in this study.


245 3.2 Wood charcoal assemblages

246 The identification of wood charcoal was accomplished via scanning electron 247 microscope, with 2,960 fragments of charcoal analysed and reported here (Appendix 248 A). Three of the sites are located in oases and wood charcoal assemblages show clear 249 similarities, with a dominance of Tamarix wood (Figure 3). In sediment from Xintala, we identified 878 wood charcoal fragments, with Tamarix accounting for 74-95%. 250 Elaeagnus angustifolia increased across the chronology and reached its highest level 251 252 (13%) in the latest layer. There were limited occurrences of Populus, Salix and cf. 253 Nitraria. Wood charcoal from Wupaer also shows an abundance of Tamarix (ca. 80%), followed by fragments of Populus, Salix, and Chenopodioideae. Fruit tree 254

- 255 remains include *Prunus*, usually less than 3% in abundance. At the Xiakalangguer
- site, Salix and Tamarix account for 44 and 28% of the assemblage respectively,
- 257 followed by Chenopodioideae (17%). A small number of fragments of Betula and
- 258 Prunus were also identified.

260 Figure 3. Wood charcoal assemblages from seven archaeological sites in northwest China.

In the eastern Tianshan, wood charcoal from three sites revealed an abundance of 261 262 coniferous wood fragments. At Shirenzigou, wood charcoal fragments from cultural 263 strata included Picea, Juniperus, Tamarix, Populus, Salix, and Rhamnus, with 264 conifers accounting for over 90% of the fragments. However, 14 wood samples taken from coffins suggest that they are all made from coniferous woods, including Picea 265 266 (11) and Juniperus (3). At Sidaogou, wood charcoal from five samples was dominated 267 by Picea and Populus, followed by Salix and Tamarix. Progressively over time, Picea fragments decreased from 52% to less than 20%, while Populus increased quickly 268 269 from 37% to over 70%. Similarly, Picea and Populus also constituted a dominant 270 percentage of the Xicaozi assemblage and the other taxa only cover a small 271 percentage, represented by Prunus, Juniperus, Salix, and Betula. The Qiongkeke site 272 is located in the Ili Valley, with five taxa identified among 229 wood charcoal

296

- 273 fragments. *Prunus* and *Rhamnus* account for 30% each. The proportion of *Picea* is
- around 20%, followed by *Tamarix* and Maloideae.
- 275 In addition, we compiled wood charcoal data from published studies. In the Altai Mountains, wood charcoal from Tongtian Cave indicates that people widely collected 276 277 Larix, Picea, Betula, Populus, Salix, Maloideae, and Prunus (Zhou et al., 2020). On 278 the Pamir Plateau, the data we have assembled from the Ji'rzankal Cemetery show 279 that Populus was used for making fire tools, Betula for wooden plates, Salix for 280 wooden sticks, Juniperus for fire altars, and Lonicera for arrow shafts (Shen et al., 2015). Similarly, in the Turpan Basin, Populus was also selected for making fire tools 281 at the Yanghai Cemetery, and there was selective use of a variety of other woods, 282 including Picea, Spiraea, Tamarix, Betula, Morus, Salix, Clematis, and Vitis vinifera 283 284 (Jiang, 2022). Lonicera was also used for arrow shafts and composite bows at the Jiayi and Shengjindian cemeteries (Nong et al., 2023). Picea was widely used at 285 286 Yuergou for coffin manufacture and firewood (Jiang et al., 2013). While in the Tarim 287 and Hami basins, Populus and Tamarix were largely used for coffins and wooden utensils, as revealed by studies at the Xiaohe, Gumugou, South Aisikexiaer, and 288 289 Wupu cemeteries (Institute of Cultural Relics and Archaeology of Xinjiang, 2007, Zhang et al., 2017, 2019; Wang et al., 2021). 290 291 In the Hexi Corridor, Picea and/or Juniperus constituted the dominant portion of wood charcoal fragments in sites located near the Qilian Mountains, such as Xihetan 292 293 and Zhaojiashuimo (Shen et al., 2018). While wood charcoal from oasis sites, like Huoshaogou, Huoshiliang, and Ganggangwa, also record the abundance of *Tamarix*, 294 and woody Polygonaceae and Salix disappear from later phases of Huoshiliang, 295

presumably due to over harvesting for fuel (Shen et al., 2018, Li et al., 2011). The

297	other sites in this area are characterized by abundant broadleaved taxa, with a small
298	percentage of coniferous wood fragments, such as at the Lifuzhai, Xichengyi, and
299	Sanjiao sites (Wang et al., 2014; Shen et al., 2018; Liu et al., 2019). Meanwhile, wood
300	charcoal assemblages from the Mozuizi and Donghuishan sites suggest a rapid decline
301	of local wood sources, including those of Picea, Maloideae, and Betula (Shen et al.,
302	2018). Additionally, an abundance of Prunus wood fragments was found in these two
303	sites, and people might have transported Picea wood over long distances to burn at
304	Donghuishan (Shen et al., 2018). The long-distance transport of Picea and Pinus was
305	also recognized in the assemblage from the Jingbaoer jade mine (Liu et al., 2021). At
306	the Yingwoshu and Sanjiaocheng sites, abundant Morus wood fragments were
307	identified, possibly indicating the early cultivation of mulberry (Shen et al., 2018).
200	As with the Hexi Corridor, wood taxa recovered from the western Loess Plateau
308	As with the Hexi Conndor, wood taxa recovered from the western Loess Plateau
309	also suggest a quick decline in the abundance of Picea, notably from 37% to less than
310	4% at Majiayao (Shen et al., 2021). In the assemblage from Xishanping, Picea,
311	Betula, Acer, and Quercus decreased markedly after 4600 BP, and Picea declined
312	from a peak value of 28% to less than 5%, while Bambusoideae increased sharply (Li
313	et al., 2012). The sudden spike on abundance of bamboo is thought to be due to rapid
314	successional colonization after significant deforestation or clearing of woody
315	competitive species. Meanwhile, fruit trees, including Castanea, Prunus (what the
316	wood specialists in this study called Cerasus and Padus), and Diospyros expressed a
317	considerable increase in abundance (Li et al., 2012). The use of fruit tree wood was
318	also recognized in the Dadiwan, Shannashuzha, Daping, and Gaozhuang sites, with
319	the abundance of Prunus (these researchers subdivided this group into Prunus and
320	Padus, which we have clumped together in this study for consistency), Maloideae,
321	and Ziziphus (Sun et al., 2013; An et al., 2014; Li et al., 2017).

322 4 Discussions and Conclusion

323 4.1 Wood collection strategies and the transport of conifers

324 As the result of wood burning, wood charcoal provides insights into the decision-

325 making process regarding the collection of fuel. In this study, we found that wood

326 charcoal assemblages from all oasis sites were dominated by *Tamarix*. Most species

327 from the *Tamarix* genus are deciduous shrubs, generally 2-5 meters high, with slender

and soft branches (Yang and Gaskin, 2012). The twigs are often browsed by sheep,

329 camel, and donkey, and the branches can serve as a rapidly-regenerating fuel

330 (Editorial Board of Flora of China, CAS, 1990). Therefore, this widely-distributed,

arid-tolerant, and rapid-growing shrubby *Tamarix*, might constitute the best fuel for

ancient oases groups. For the archaeological sites located in mountainous areas, wood

333 fragments from coniferous trees are more prevalent. For example, abundant *Picea* and

334 Juniperus wood fragments were found at Shirenzigou in the eastern Tianshan.

335 Similarly, *Picea/Juniperus* constitutes the dominant portion of the fragments from

336 sites near the Qilian Mountains (Shen et al., 2018). All of the assemblages show that

337 people were largely opportunistic in their choices and the availability of wood sources

338 played a key role in the wood collection strategies.

Additionally, as wood resources in arid northwest China are relatively limited, coping with localized wood shortages would have been an issue that people inevitably dealt with. Among these wood charcoal assemblages, we found that there are some fragments of coniferous woods that likely represent people traveling over long distances on collection trips. The earliest known evidence might come from Donghuishan (3700-3400 BP), in which *Picea* charcoal experienced a sharp decrease

345	and then suddenly increased to its highest level (Shen et al., 2018). Given that spruce
346	forests are very slow to regenerate, the sudden increase of spruce fragments was likely
347	the result of long-distance collection from the Qilian Mountains (Shen et al., 2018).
348	Generally, spruce wood has preferential properties, as its timber is straight and tall,
349	and easily worked, presumably contributing to the selection and transportation of this
350	specific species. Since 2500 BP, the long-distance collection of coniferous woods
351	seems to have been a more regular activity, as evidenced at the Jingbaoer jade mine,
352	where Picea and Pinus wood fragments are recovered well outside their natural
353	ecological distribution (Liu et al., 2021). In the Turpan Basin, Picea wood fragments
354	were found in sediments from a series of Subeixi sites, which may have been
355	collected from the Tianshan Mountains (Jiang et al., 2013; Jiang, 2022).
356	In addition to noting the likely long-distance collection of coniferous woods, the
357	abundance of conifers in most of our study sites hints to the likelihood that people
358	
000	might also have a preference for this specific wood type. At Sidaogou, spruce wood
359	fragments comprise more than 60% of the total fragment assemblage. Similarly,
359	fragments comprise more than 60% of the total fragment assemblage. Similarly,
359 360	fragments comprise more than 60% of the total fragment assemblage. Similarly, charcoal from Majiayao recorded spruce fragments as the most used taxon right from
359 360 361	fragments comprise more than 60% of the total fragment assemblage. Similarly, charcoal from Majiayao recorded spruce fragments as the most used taxon right from the onset of when people settled down at the location (Shen et al., 2021). Meanwhile,
359 360 361 362	fragments comprise more than 60% of the total fragment assemblage. Similarly, charcoal from Majiayao recorded spruce fragments as the most used taxon right from the onset of when people settled down at the location (Shen et al., 2021). Meanwhile, the exclusive use of coniferous wood for coffin construction is also recognizable in
359 360 361 362 363	fragments comprise more than 60% of the total fragment assemblage. Similarly, charcoal from Majiayao recorded spruce fragments as the most used taxon right from the onset of when people settled down at the location (Shen et al., 2021). Meanwhile, the exclusive use of coniferous wood for coffin construction is also recognizable in this study. At Shirenzigou, the analysis of 14 wooden coffins show that they were all
359 360 361 362 363 364	fragments comprise more than 60% of the total fragment assemblage. Similarly, charcoal from Majiayao recorded spruce fragments as the most used taxon right from the onset of when people settled down at the location (Shen et al., 2021). Meanwhile, the exclusive use of coniferous wood for coffin construction is also recognizable in this study. At Shirenzigou, the analysis of 14 wooden coffins show that they were all made of coniferous woods. However, in sediments from the site, we found a variety
359 360 361 362 363 364 365	fragments comprise more than 60% of the total fragment assemblage. Similarly, charcoal from Majiayao recorded spruce fragments as the most used taxon right from the onset of when people settled down at the location (Shen et al., 2021). Meanwhile, the exclusive use of coniferous wood for coffin construction is also recognizable in this study. At Shirenzigou, the analysis of 14 wooden coffins show that they were all made of coniferous woods. However, in sediments from the site, we found a variety of carbonized wood types, including <i>Tamarix, Populus, Rhamnus, Salix</i> , etc.
359 360 361 362 363 364 365 366	fragments comprise more than 60% of the total fragment assemblage. Similarly, charcoal from Majiayao recorded spruce fragments as the most used taxon right from the onset of when people settled down at the location (Shen et al., 2021). Meanwhile, the exclusive use of coniferous wood for coffin construction is also recognizable in this study. At Shirenzigou, the analysis of 14 wooden coffins show that they were all made of coniferous woods. However, in sediments from the site, we found a variety of carbonized wood types, including <i>Tamarix</i> , <i>Populus</i> , <i>Rhamnus</i> , <i>Salix</i> , etc. Historically, a preference towards coniferous woods is widely noted in ancient China

- 370 the wooden coffins at Shirenzigou are all constructed from conifers, suggests that the
- 371 ritual significance of the resinous trees may stretch much further back in time.
- 372 Ultimately, we conclude that an awareness of the properties and special meaning of
- 373 these woods probably plays a key role in their wide use.

374 4.2 Collection and cultivation of fruit trees

375 In addition to the prehistoric expansion of agricultural systems, the significant

amounts of fruit wood fragments in our study may imply that the anthropogenic

377 processes were increasing the density of fruit trees near human settlements. Presently,

378 scholars continue to grapple with the question of what evidence is necessary to

379 differentiate between wild foraging, conservation of economically significant trees

and low-investment cultivation of wild populations (Dal Martello et al., 2023). In our

study, fruit wood fragments before 4600 BP were usually found in low percentages,

indicating limited collection of seasonally available wild fruits (Sun et al., 2013; Li et

al., 2017; Shen et al., 2021). Roughly between 4600-4300 BP, Castanea, Prunus, and

384 Diospyros charcoal shows a rapid increase in abundance at Xishanping on the western

385 Loess Plateau (Li et al., 2012). Pollen data at this time also demonstrates that

386 *Castanea* became the dominant broadleaved taxon, which is quite different from the

387 reconstructed natural vegetation, likely indicating the management of wild chestnut

- 388 forests or at least that humans were choosing not to cut these trees down, increasing
- their populations (Li et al., 2007). Also, archaeobotanical records at this site illustrate
- 390 that a complex agricultural system based on a variety of crops, including millets, rice,
- 391 oats, soybean, and buckwheat, appeared synchronously with the management of

392 chestnut. This cooccurrence probably suggests that the exploitation of secondary

393 crops was closely related to and underpinned by the well-organized agricultural

394	system.

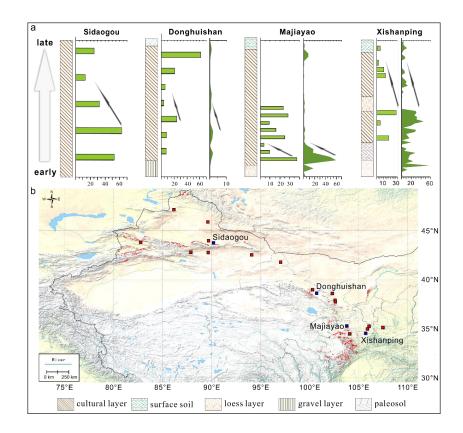
395	During the period from 4300 to 3500 years ago, there is an increase in the
396	abundance of fruit wood remains in Xinjiang and the Hexi Corridor. For example,
397	Elaeagnus angustifolia charcoal was found throughout the whole section and shows a
398	gradually increasing trend at Xintala. In the Hexi Corridor, Prunus wood fragments
399	were found in great abundance at Mozuizi and Donghuishan, far higher than its
400	percentage is believed to have been in the natural vegetation, possibly showing an
401	intensive collection of <i>Prunus</i> (Shen et al., 2019). However, there is no clear sign of
402	fruit management during this period, given that a wide range of wild fruit types, such
403	as Nitraria and Cotoneaster were also widely exploited (Zhou et al., 2016; Shen et al.,
404	2019). Meanwhile, previous studies show that, although a mixed agricultural system
405	consisting of both millets, wheat, and barley existed in Xinjiang and the Hexi
406	Corridor after 4000 BP, people still relied heavily on animal herding and/or feeding
407	(Dong et al., 2020b; Li, 2021).
407 408	(Dong et al., 2020b; Li, 2021). From 3500-2500 BP, the cultivation or maintenance of <i>Prunus</i> and <i>Morus</i> trees
408	From 3500-2500 BP, the cultivation or maintenance of <i>Prunus</i> and <i>Morus</i> trees
408 409	From 3500-2500 BP, the cultivation or maintenance of <i>Prunus</i> and <i>Morus</i> trees was probably adopted into the agricultural system. As in Wupaer, located in the
408 409 410	From 3500-2500 BP, the cultivation or maintenance of <i>Prunus</i> and <i>Morus</i> trees was probably adopted into the agricultural system. As in Wupaer, located in the Kashgar oasis, the presence of <i>Prunus</i> charcoal remains is beyond its natural
408 409 410 411	From 3500-2500 BP, the cultivation or maintenance of <i>Prunus</i> and <i>Morus</i> trees was probably adopted into the agricultural system. As in Wupaer, located in the Kashgar oasis, the presence of <i>Prunus</i> charcoal remains is beyond its natural distribution and the climatic conditions around the site are not suitable for the growth
408 409 410 411 412	From 3500-2500 BP, the cultivation or maintenance of <i>Prunus</i> and <i>Morus</i> trees was probably adopted into the agricultural system. As in Wupaer, located in the Kashgar oasis, the presence of <i>Prunus</i> charcoal remains is beyond its natural distribution and the climatic conditions around the site are not suitable for the growth of <i>Prunus</i> , likely resulted from anthropogenic planting. On the other hand,
408 409 410 411 412 413	From 3500-2500 BP, the cultivation or maintenance of <i>Prunus</i> and <i>Morus</i> trees was probably adopted into the agricultural system. As in Wupaer, located in the Kashgar oasis, the presence of <i>Prunus</i> charcoal remains is beyond its natural distribution and the climatic conditions around the site are not suitable for the growth of <i>Prunus</i> , likely resulted from anthropogenic planting. On the other hand, considering that the distribution of wild <i>Prunus</i> trees had largely shrunk or even
408 409 410 411 412 413 414	From 3500-2500 BP, the cultivation or maintenance of <i>Prunus</i> and <i>Morus</i> trees was probably adopted into the agricultural system. As in Wupaer, located in the Kashgar oasis, the presence of <i>Prunus</i> charcoal remains is beyond its natural distribution and the climatic conditions around the site are not suitable for the growth of <i>Prunus</i> , likely resulted from anthropogenic planting. On the other hand, considering that the distribution of wild <i>Prunus</i> trees had largely shrunk or even disappeared presumably due to long-term human activity, we should still be cautious

- 418 farming system was developed in the Hexi Corridor (Zhou et al., 2012), and a more
- 419 intensified agricultural system developed in Xinjiang (Li, 2021), likely providing a
- 420 fundamental basis for the exploration of delayed-return perennial crops.
- 421 After 2500 BP, the cultivation of fruit trees was probably a widely practice in
- 422 northwest China. For instance, evidence from the Turpan Basin shows the presence of
- 423 Morus woods and Vitis vinifera stems at the Yanghai cemetery (Jiang, 2022; Jiang et
- 424 al., 2009), Vitis vinifera seeds in the Shengjindian cemetery (Jiang et al., 2015), and
- 425 Ziziphus jujuba stones in the Yuergou site (Jiang et al., 2013). At the Sampula
- 426 cemetery, fruit, nut and seed types were more abundant, including *P. persica*, *P.*
- 427 armeniaca, Juglans regia, Coix lacryma-jobi, etc. (Jiang et al., 2008). The appearance
- 428 of such a rich and diverse array of fruit crops indicates that people in northwest China
- 429 had developed a complex indigenous knowledge to survive in this hyper arid
- environment and conducted more and more frequent exchange across the Eurasiancontinent.

432 **4.3 Indigenous knowledge of plant resources**

- 433 Due to the extreme arid climate, wooden objects found in our study area are usually
- 434 well-preserved and the data suggest that people might have also captured the
- 435 knowledge of deliberately selecting certain types of woods when making various
- 436 utensils. For example, within the Subeixi groups in the Turpan Basin, Lonicera was
- 437 harvested from wild stands for making arrow shafts at Jiayi and Shengjingdian (Nong
- 438 et al., 2023). At the Yanghai cemetery, Betula was selected for making dippers or
- 439 ladles, for its rigidity; flammable *Populus* and *Picea* were used for fire tool
- 440 manufacture (Jiang et al., 2018, 2021). People at this time also used *Lithospermum*
- 441 officinale seeds for decoration (Jiang et al., 2007a), Nitraria tangutorum for making

- 442 necklace (Jiang, 2022), and *Cannabis* for ritualized consumption and/or medical
- 443 purposes, as revealed in both the Turpan Basin (Jiang et al., 2006, 2007b, 2016) and
- the Pamir Plateau (Ren et al., 2019).
- Similarly, on the Pamir Plateau, Betula, which has high rigidity and density, and 445 homogeneous texture, was selected for making wooden plates (Shen et al., 2015). 446 447 Additionally, it appears that people specifically chose flammable Populus wood to 448 make fire tools; Salix, with long and straight branches, was used for fashioning 449 wooden sticks; sweet-scented Juniperus was the preferred choice for making fire altars, and Lonicera was selected for arrow shaft manufacture. Such conscious 450 utilization of different wood properties illustrates the ingenuity of these ancient 451 people. Although the current archaeobotanical research related to wooden utensils is 452 453 still limited, studies from the Turpan Basin and the Pamir Plateau clearly suggest that the conscious selection of wood types for specific properties was a particularly 454 455 pronounced practice after 2500 BP, especially among cultural contexts of a wellestablished agriculture base with millets, wheat, and barley. Meanwhile, the 456 appearance of horticulture based on a variety of secondary crops at the time indicated 457 458 a more settled lifestyle, which might provide opportunities for prehistoric people to fully explore and make the best use of the indigenous plant resources. 459


460 4.4 Anthropogenic deforestation

- 461 Presumably via slash and burn agriculture, people have largely altered terrestrial
- 462 ecosystems across the globe (Zong et al., 2007; Schlütz et al., 2009; Li et al., 2009;
- 463 Neumann et al., 2012; Innes et al., 2013; Ma et al., 2020; Zheng et al., 2021). For
- 464 northwest China, wood charcoal data in this study show that, apart from diversified
- 465 cultural adaption, human-induced landscape alteration also occurred widely, not only

- 466 throughout the whole history of agricultural activity, but also across different
- 467 vegetation contexts. For example, wood charcoal data from Sidaogou in the eastern
- 468 Tianshan recorded a significant decrease in abundance of spruce wood fragments
- 469 (Figure 4). Meanwhile, *Tamarix* and *Salix* nearly disappeared in the later stage,
- 470 showing that wood cutting caused a sharp attenuation of spruce forests and
- 471 broadleaved woodland. Similarly, *Tamarix* charcoal from the Xintala section in the
- 472 Yanqi Oasis firstly increased and then decreased to its lowest level in the upper layer,
- 473 suggesting that continuous wood cutting resulted in the decline of *Tamarix* shrubs. At
- 474 the same time, *Populus* and *Salix* charcoal disappeared in the middle layer, implying
- 475 that local riparian woodlands were largely deforested.

477 Figure 4. The wood charcoal and pollen records show synchronous deforestation of spruce

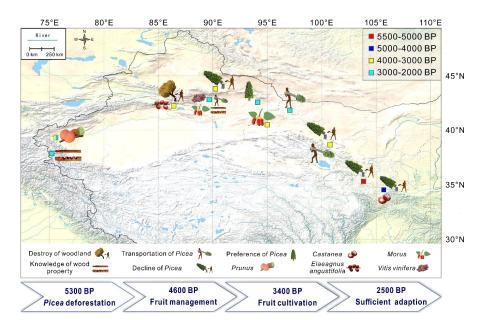
478	forests across all of northwest China. (a) the change of <i>Picea</i> wood charcoal (bar) and pollen
479	(curve) from Sidaogou, Donghuishan (Zhou et al., 2012; Shen et al., 2018), Majiayao (Zhou,
480	2009; Shen et al., 2021), and Xishanping (Li et al., 2007, 2012). (b) the comparison of spruce
481	forests between prehistoric times and now, the squares represent archaeological sites with
482	Picea charcoal remains and the red areas show the current distribution of spruce forests in
483	northwest China (after Hou, 2019).

The Neolithic deforestation and reduction in range of spruce forests have also 484 been widely recognized across the western Loess Plateau and the Hexi Corridor. At 485 486 the Majiayao site, wood charcoal recorded the rapid decline of *Picea* during the early stages of the site's occupation (Figure 4) (Shen et al., 2021). Not far from Majiayao, 487 488 wood charcoal from the Xishanping section revealed a similar pattern, with Picea, 489 Betula, Acer, Ulmus, and Quercus, illustrating a marked decrease after 4600 BP, while Bambusoideae quickly colonized after the clearing of the original forest (Li et 490 al., 2012). In the Hexi Corridor, wood charcoal assemblages from the Mozuizi and 491 492 Donghuishan sites show a quick decline in plant diversity concurrent with human 493 settlement, and the percentage of Picea from Donghuishan recorded a sharp decrease (Figure 4) (Shen et al, 2018). Similarly, wood charcoal fragments from Huoshiliang 494 495 show that Salix and Polygonaceae almost disappear, likely due to the large demand 496 for fuel used in bronze smelting activities (Li et al., 2011). Collectively, we interpret 497 the broader trend throughout all of these wood charcoal assemblages as revealing a 498 rather rapid process of deforestation across northwest China, especially shown in the large-scale reduction in spruce forests. Our results are also supported by evidence 499 500 from pollen records, especially Picea pollen from Majiayao (Zhou, 2009), Xishanping (Li et al., 2007), Donghuishan (Zhou et al., 2012), and other sections from the Loess 501 502 Plateau (Zhou and Li, 2011). All of these records document considerable reduction in

- 503 spruce forests (Figure 4). Today, the distribution of spruce forests has shrunk down to
- a few constrained small forest patches (Figure 4).

505 **5 Data availability**

- 506 The datasets of archaeobotanical wood charcoal records in northwest China including
- 507 taxa types, absolute counts of wood charcoal fragments, and the locations and AMS
- ¹⁴C dates of each archaeological site are available at the open-access repository
- 509 Zenodo (Shen et al., 2023; <u>https://doi.org/10.5281/zenodo.8158277</u>).
- 510


511 6 Summary

The synthesis of wood charcoal data from nearly 40 archaeological sites shows that 512 513 prehistoric human-environmental interactions in northwest China were closely related to the development of agriculture and considerably more complicated than previously 514 515 thought (Figure 5). Although anthropogenic deforestation occurred throughout the whole period, most evidently relating to the decline of spruce forests, people also 516 actively applied a range of adaptive strategies to survive in this harsh environment. As 517 518 early as 4600 BP, people on the western Loess Plateau might have started managing 519 or at least conserving chestnut trees, likely underpinned by the development of a 520 complex agricultural system. Since ca. 3500 BP, with the appearance of high-yielding 521 agriculture based on wheat and barley in Xinjiang and the Hexi Corridor, people 522 appear to have been planting perennial tree crops, such as Prunus and Morus. 523 Additionally, they likely engaged in long-distance transportation of preferred woods, 524 specifically coniferous trees. After 2500 BP, people successfully mastered a wide range of adaption strategies along the ancient Silk Road, as they began manufacturing 525 526 wooden utensils with conscious selection of wood properties. Moreover, the

- 527 consumption of a further diversity of fruit types, including grapes, signalled more
- 528 intensive horticultural practices and complex social structure.

530 Figure 5. A summary of prehistory human-environmental interactions in northwest China.

543

- 542 **Appendix A**. The selected scanning electron microscopic images of wood charcoal in

Xinjiang. (a-c) Picea. (d-f) Prunus. (g-I) Populus. (j-l) Tamarix.

- 544 545
- Author contributions. HS and XL designed the archaeobotanical dataset; HS was
 responsible for construction of the database; HS performed numerical analyses and
 organized the manuscript, and XZ, RS, PJ and AB revised the draft of the paper. All
- 549 authors discussed the results and contributed to the final paper.
- 550
- 551 **Competing interests.** The contact author has declared that none of the authors has
- any competing interests.
- 26

- 553 Acknowledgements. We sincerely thank Ming Ji and Hongbin Zhang for their help in
- the wood charcoal sample collection, and Nan Sun for her assistance with data
- 555 collection.
- 556
- 557 Financial support. This research has been supported by the National Natural Science
- 558 Foundation of China (grant no. 42002202), the Youth Innovation Promotion
- 559 Association of Chinese Academy of Sciences (grant no. 2022071), and the National
- 560 Key Research and Development Program of China (grant no. 2022YFF0801502).
- 561

562 **References**

563	Abudureheman, B., Liu, H-L., Liu, N., Zhang, D-Y., and Guan, K.: Spermatophyte	
564	floras in the wild fruit forest in Tianshan Mountains, Arid Land Geogr., 39(4),	
565	828–834, 2016 (in Chinese with English abstract).	
566	Allué, E. and Zaidner, Y.: The charcoal assemblage from Nesher Ramla, Israel: A	
567	contribution to the paleo-environmental dataset from Marine Isotope Stage	
568	(MIS) 5 in the Levant, Quat. Int., 624, 117-127,	
569	https://doi.org/10.1016/j.quaint.2021.04.025, 2022. Mas, B., Oms, F. X., and	
570	Allué, E.: Anthropogenic impacts on vegetation landscapes and environmental	
571	implications during the Middle-Late Holocene in the Iberian Central Pre-	
572	Pyrenees: An anthracological approach, Rev. Palaeobot. Palynol., 300, 104624,	
573	https://doi.org/10.1016/j.revpalbo.2022.104624, 2022.	
574 575 576	An, C., Feng, Z., and Tang, L.: Environment change and cultural response between 8000 and 4000 cal. yr BP in the western Loess Plateau, NW China, J. Quat. Sci., 19, 529-535, https://doi.org/10.1002/jqs.849, 2004.	
577 578 579	An, C., Tang, L., Barton, L., and Chen, F.: Climatic Change and Cultural Response around 4,000 cal. yr B.P. in the western part of the Chinese Loess Plateau, Quat. Res., 63(3), 347-352, https://doi.org/10.1016/j.yqres.2005.02.004, 2005.	
580 581 582	An, C., Wang, L., Ji, D., Chen, F., and Wang, P.: The temporal and spatial changes of Neolithic cultures in Gansu-Qinghai region and possible environmental forcing, Quat. Sci. 26(6), 923-927, 2006 (in Chinese with English abstract).	
583 584	An, C., Wang, W., Duan, F., Huang, W., and Chen, F.: Environmental changes and cultural exchange between East and West along the Silk Road in arid Central	

585 586	Asia, Acta Geogr. Sin., 72(5), 875–891, http://doi.org/ 10.11821/dlxb201705009, 2017 (in Chinese with English abstract).
587	An, C-B., Li, H., Dong, W., Chen, Y., Zhao, Y. and Shi, C.: How prehistoric humans
588	use plant resources to adapt to environmental change: A case study in the
589	western Chinese Loess Plateau during Qijia Period, Holocene, 24(4), 512–517,
590	https://doi.org/10.1177/0959683613520259, 2014.
591 592 593	ArchaeoGLOBE Project: Archaeological assessment reveals Earth's early transformation through land use, Science, 365, 897–902, https://doi.org/10.1126/science.aax1192, 2019.
594 595 596 597	Asouti, E. and Austin, P.: Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains, Environ. Archaeol., 10(1), 1–18, https://doi.org/10.1179/env.2005.10.1.1, 2005.
598	Asouti, E. and Kabukcu, C.: Holocene semi-arid oak woodlands in the Irano-
599	Anatolian region of Southwest Asia: natural or anthropogenic? Quat. Sci. Rev.,
600	90, 158–182, https://doi.org/10.1016/j.quascirev.2014.03.001, 2014.
601	Asouti, E., Kabukcu, C., White, C. E., Kuijt, I., Finlayson, B., and Makarewicz, C.:
602	Early Holocene woodland vegetation and human impacts in the arid zone of the
603	southern Levant, Holocene, 25(10): 1565–1580,
604	https://doi.org/10.1177/0959683615580199, 2015.
605	Atahan, P., Itzstein-Davey, F., Taylor, D., Dodson, J., Qin, J., Zheng, H., and Brooks,
606	A.: Holocene-aged sedimentary records of environmental changes and early
607	agriculture in the lower Yangtze, China, Quat. Sci. Rev., 27(5), 556–570,
608	https://doi.org/10.1016/j.quascirev.2007.11.003, 2008.
609 610	Bellwood, P. (Eds.): The first farmers: the origins of agricultural societies, Blackwell Pub, London, ISBN 0-631-20565-9, 2005.
611 612 613	Bocquet-Appel, J. P.: When the world's population took off: The springboard of the Neolithic Demographic Transition, Science, 333(6042), 560–561, 10.1126/science.1208880, 2011.
614	Boivin, N. L., Zeder, M. A., Fuller, D. Q., Crowther, A., Larson, G., Erlandson, J. M.,
615	Denham, T., and Petraglia, M. D.: Ecological consequences of human niche
616	construction: Examining long-term anthropogenic shaping of global species
617	distributions, Proc. Natl. Acad. Sci. USA, 113(23), 6388–6396,
618	https://doi.org/10.1073/pnas.1525200113, 2016.
619	Boivin, N., Crassard, R., and Petraglia, M. (Eds.): Human Dispersal and Species
620	Movement: From Prehistory to the Present, Cambridge University Press,
621	Cambridge, ISBN 9781316686942, 2017.

622 623	Chen, G.: The origin of Subeixi Culture and its relationship with other cultures, West Reg. Studies, 2, 11–18, 2002 (in Chinese).
624 625 626	Chen, K., Mei, J., and Qian, W.: The Silk Road and the exchange of early bronze and iron technology, West. Reg. Studies, 2, 127-150, 2018 (in Chinese with English abstract).
627 628	Chen, X. (Eds.): Physical geography of arid regions of China, Science Press, Beijing, ISBN 9787030275837, 2010.
629 630	Chen, X.: Construction of Xinjiang wild fruit resources database system, Master thesis, Xinjiang Agricultural University, Xinjiang, 2009.
631 632 633	Cowie, R. H., Bouchet, P., and Fontaine, B.: The sixth mass extinction: fact, fiction or speculation? Biol. Rev., 97(2), 640–663, https://doi.org/10.1111/brv.12816, 2022.
634 635 636 637 638	Crowther, A., Lucas, L., Helm, R, Horton, M., Shipton, C., Wright, H. T., Walshaw, S., Pawlowicz, M., Radimilahy, C., Douka, K., Picornell-Gelabertm, L., Fuller, D. Q., and Boivin, N. L.: Ancient crops provide first archaeological signature of the westward Austronesian expansion, Proc. Natl. Acad. Sci. USA, 113(24), 6635–6640, https://doi.org/10.1073/pnas.1522714113, 2016.
639 640	Crutzen, P.: Geology of mankind, Nature, 415, 23, https://doi.org/10.1038/415023a, 2002.
641 642 643 644 645 646	Dal Martello, R., von Baeyer, M., Hudson, M., Bjorn, R. G., Leipe, C., Zach, B., Mir-Makhamad, B., Billings, T. N., Muñoz Fernández, I. M., Huber, B., Boxleitner, K., Lu, J-C., Chi, K-A., Liu, H. L., Kistler, L., and Spengler, R.N.: The Domestication and Dispersal of Large-Fruiting Prunus spp.: A Metadata Analysis of Archaeobotanical Material, Agronomy, 13, 1027, https://doi.org/10.3390/agronomy13041027, 2023.
647 648 649	Ding, J.: On the custom about planting pines and cypresses in cemeteries in ancient China and its cultural connotation of funeral, J. Beijing Forestry University (Soc Sci.), 21(2), 39–46, http://doi.org/10.13931/j.cnki.bjfuss.2021066, 2022.
650 651 652	Dodson, J. R., Li, X., Zhou, X., Zhao, K., Sun, N., and Atahan, P.: Origin and spread of wheat in China, Quat. Sci. Rev., 72(2): 108-111, https://doi.org/10.1016/j.quascirev.2013.04.021, 2013.
653 654 655	Dodson, J., Li, X., Ji, M., Zhao, K., Zhou, X., and Levchenko, V.: Early bronze in two Holocene archaeological sites in Gansu, NW China, Quat. Res., 72(3), 309–314, https://doi.org/10.1016/j.yqres.2009.07.004, 2009.
656 657	Dong, G. H., Zhang, S. J., Yang, Y. S., Chen, J. H., and Chen, F.H.: Agricultural intensification and its impact on environment during Neolithic Age in northern

658 659	China, Chin. Sci. Bull., 61, 2913–2925, https://doi.org/10.1360/N972016-00547, 2016 (in Chinese with English abstract).
660	Dong, G., Du, L., Yang, L., Lu, M., Qiu, M., Li, H., Ma, M., and Chen, F.: Dispersal
661	of crop-livestock and geographical-temporal variation of subsistence along the
662	Steppe and Silk Roads across Eurasia in prehistory, Sci. China Earth Sci., 65(7),
663	1187–1210, https://doi.org/10.1007/s11430-021-9929-x, 2022b.
664	Dong, G., Li, R., Lu, M., Zhang, D., and James, N.: Evolution of human-
665	environmental interactions in China from the Late Paleolithic to the Bronze Age,
666	Prog. Phys. Geogr.: Earth Environ., 44(2), 233–250,
667	https://doi.org/10.1177/0309133319876802, 2020a.
668	Dong, G., Lu, Y., Zhang, S., Huang, X., and Ma, M.: Spatiotemporal variation in
669	human settlements and their interaction with living environments in Neolithic
670	and Bronze Age China, Prog. Phys. Geogr.: Earth Environ., 46(6), 949–967,
671	https://doi.org/10.1177/03091333221087992, 2022a.
672	Dong, G., Xin, J., An, C., Chen, F., Zhao, Y., Tao, S., and Ma, M.: Mid-Holocene
673	climate change and its effect on prehistoric cultural evolution in eastern Qinghai
674	Province, China, Quat. Res., 77(1), 23-30,
675	https://doi.org/10.1016/j.yqres.2011.10.004, 2012.
676 677 678 679	Dong, G., Yang, Y., Han, J., Wang, H., and Chen, F.: Exploring the history of cultural exchange in prehistoric Eurasia from the perspectives of Crop diffusion and consumption, Sci. China Earth Sci., 47, 530–543, https://doi.org/10.1007/s11430-016-9037-x, 2017.
680	Dong, G., Yang, Y., Liu, X., Li, H., Cui, Y., Wang, H., Chen, G., Dodson, J., and
681	Chen, F.: Prehistoric trans-continental cultural exchange in the Hexi Corridor,
682	northwest China, Holocene, 28, 621–628,
683	https://doi.org/10.1177/0959683617735585, 2018.
684	Dong, G., Yang, Y., Ren, L., and Ma, M. (Eds.): Subsistence economy and human-
685	environment interaction in prehistoric Hexi Corridor, Science Press, Beijing,
686	ISBN 978-7-03-048932-6, 2020b.
687 688 689	Dong, G.: Neolithic cultural evolution and its environmental driving force in the Gansu-Qinghai region: problems and perspectives, Mar. Geol. Quat. Geol., 33(4), 67-75, 2013 (in Chinese with English abstract).
690	Editorial Board of Flora of China, Chinese Academy of Sciences.: Flora of China,
691	Volume 13, Science Press, Beijing & St. Louis, 146–165, 1990.
692	Fall, P. L., Falconer, S. E., and Lines, L.: Agricultural intensification and the
693	secondary products revolution along the Jordan Rift, Hum. Ecol., 30(4), 445–
694	482, https://doi.org/10.1023/A:1021193922860, 2002.

695 696 697	Flad, R., Li, S., Wu, X., and Zhao, Z.: Early wheat in China: results from new studies at Donghuishan in the Hexi Corridor. Holocene, 20(6), 955-965, https://doi.org/10.1177/0959683609358914, 2010.
698	Fuller, D. Q., van Etten, J., Manning, K., Castillo, C., Kingwell-Banham, E.,
699	Weisskopf, A., Qin, L., Sato, Y-I., and Hijmans, R. J.: The contribution of rice
700	agriculture and livestock pastoralism to prehistoric methane levels: An
701	archaeological assessment, Holocene, 21(5), 743–759,
702	https://doi.org/10.1177/0959683611398052, 2011a.
703	Fuller, D., Boivin, N., Hoogervorst, T., and Allaby, R.: Across the Indian Ocean: The
704	prehistoric movement of plants and animals, Antiquity, 85(328), 544-558.
705	https://doi.org/10.1017/S0003598X00067934, 2011b.
706	Gansu Provincial Institute of Cultural Relics and Archaeology, Institute of Historical
707	Metallurgy and Materials, USTB, Institute of Archaeology, CASS, and
708	Northwest University: The Xichengyi site in Zhangye city, Gansu, Archaeology,
709	15, 14–25, 2015.
710	Hou, G., Liu, F., Liu, C., and Fang, X.: Prehistorical Cultural Transition Forced by
711	Environmental Change in Mid-Holocene in Gansu-Qinghai Region. Acta Geogr.
712	Sin., 64(1), 53-58, 2009 (in Chinese with English abstract).
713	Hou, X.: 1:1 million vegetation map of China. National Tibetan Plateau/Third Pole
714	Environment Data Center, Beijing, 2019.
715	Innes, J. B., Blackford, J. J., and Rowley-Conwy, P. A.: Late Mesolithic and early
716	Neolithic forest disturbance: A high resolution palaeoecological test of human
717	impact hypotheses, Quat. Sci. Rev., 77, 80–100,
718	https://doi.org/10.1016/j.quascirev.2013.07.012, 2013.
719	Institute of Cultural Relics and Archaeology of Gansu. (Eds.): The excavation report
720	of Dadiwan site, Qin'an, Cultural Relics Publishing House, Beijing, ISBN
721	9787501018024, 2006.
722	Institute of Cultural Relics and Archaeology of Xinjiang.: A brief excavation report
723	on Xiaohe grave yard in Luobupo, Xinjiang Autonomous Region, Cult. Relics,
724	10, 4–42, 2007.
725 726	Janick, J.: The origins of fruit, fruit growing, and fruit breeding, Plant Breed Rev., 25, 255–320, https://doi.org/10.1002/9780470650301.ch8, 2005.
727	Jia, P., Betts, A., Cong, D., Jia, X., and Dupuy, P.: Adunqiaolu: New evidence for the
728	Andronovo in Xinjiang, China, Antiquity, 91(357), 621–639,
729	https://doi.org/10.15184/aqy.2017.67, 2017.
730	Jiang, H. E. (Eds.): Agricultural activities and plant utilization of the ancient Yanghai

731 732	people, Turpan of Xinjiang, China. Science Press, Beijing, ISBN 9787030720054, 2022.	
733 734	Jiang, H. E., Li, X., Ferguson, D. K., Wang Y-F., Liu, C-J., and Li, C-S.: The discovery of Capparis spinosa L. (Capparidaceae) in the Yanghai Tombs (2800	
	years B.P.), NW China, and its medicinal implications, J. Ethnopharmacol., 113,	
735	409–420, https://doi.org/10.1016/j.jep.2007.06.020, 2007b.	
736	409–420, https://doi.org/10.1016/J.jep.2007.06.020, 20076.	
737	Jiang, H., Feng, G., Liu, X., Cao, H., Wang, S., Ma, L., and Ferguson, D. K.: Drilling	
738	wood for fire: discoveries and studies of the fire-making tools in the Yanghai	
739	cemetery of ancient Turpan, China, Veget. Hist. Archaeobot., 27, 197–206,	
740	https://doi.org/10.1007/s00334-017-0611-5, 2018.	
741	Jiang, H., Li, C-S., Cao, H., Shading, P., and Cheng, Y-M.: Wood utilization during	
742	the Late Bronze to Early Iron Age in the Turpan Basin of Xinjiang, China, with	
743	special emphasis on Betula (Betulaceae), SAGE Open, 11(3),	
744	https://doi.org/10.1177/21582440211046950, 2021.	
745	Jiang, H., Wang, L., Merlin, M. D., Clarke, R.C., Pan, Y., Zhang, Y., Xiao, G., and	
746	Ding, X.: Ancient Cannabis burial shroud in a Central Eurasian Cemetery, Econ.	
747	Bot., 70(3), 213–221, https://doi.org/10.1007/s12231-016-9351-1, 2016.	
748	Jiang, H., Wu, Y., Wang, H., Ferguson, D. K., and Li, C-S.: Ancient plant use at the	
749	site of Yuergou, Xinjiang, China: implications from desiccated and charred plant	
750	remains, Veg. Hist. Archaeobot., 22, 129–140, https://doi.org/10.1007/s00334-	
751	012-0365-z, 2013.	
752	Jiang, H., Zhang, Y., Lü, E., and Wang, C.: Archaeobotanical evidence of plant	
753	utilization in the ancient Turpan of Xinjiang, China: a case study at the	
754	Shengjindian cemetery, Veget. Hist. Archaeobot., 24, 165–177,	
755	https://doi.org/10.1007/s00334-014-0495-6, 2015.	
756	Jiang, H-E., Li X., Liu, C-J., Wang, Y-F., and Li, C-S.: Fruits of Lithospermum	
757	officinaleL. (Boraginaceae) used as an early plant decoration (2500 years BP) in	
758	Xinjiang, China, J. Archaeol. Sci., 34, 167–170,	
759	https://doi.org/10.1016/j.jas.2006.04.003, 2007a.	
760	Jiang, H-E., Li, X., Zhao, Y-X., Ferguson, D. K., Hueber, F., Bera, S., Wang, Y-F.,	
761	Zhao, L-C., Liu, C-J., and Li, C-S.: A new insight into Cannabis sativa	
762	(Cannabaceae) utilization from 2500-year-old Yanghai Tombs, Xinjiang, China,	
763	J. Ethnopharmacol, 108, 414–422, https://doi.org/10.1016/j.jep.2006.05.034,	
764	2006.	
765	Jiang, H-E., Wang, B., Li, X., Lü, E-G., and Li, C-S.: A consideration of the involucre	
766	remains of Coix lacryma-jobi L. (Poaceae) in the Sampula Cemetery (2000 years	
767	BP), Xinjiang, China, J. Archaeol. Sci., 35, 1311–1316,	
768	https://doi.org/10.1016/j.jas.2007.09.006, 2008.	

769	Jiang, H-E., Zhang, Y-B., Li, X., Yao, Y-F., Ferguson, D. K., Lü, E-G., and Li, C-S.:
770	Evidence for early viticulture in China: proof of a grapevine (Vitis vinifera, L.
771	Vitaceae) in the Yanghai Tombs, Xinjiang, J. Archaeol. Sci., 36(7), 1458–1465,
772	https://doi.org/10.1016/j.jas.2009.02.010, 2009.
773	Jiang, Y. C., Chen, G. K., and Li, S. C.: Analysis of flotation results of the Xichengyi
774	site in the Zhangye city, Gansu, Huaxia Archaeol., 1, 62–68, 2017a (in Chinese
775	with English abstract).
776	Jiang, Y. C., Wang, H. and Li, S. C.: Flotation result of the Donghuishan site in the
777	Minle city, Gansu. Archaeol. Cult. Relics, 1, 62–68, 2017b (in Chinese with
778	English abstract).
779	Jones, M. K., Hunt, H., Lightfoot, E., Lister, D., Liu, X. Y., and Matuzeviciute, G.
780	M.: Food globalization in prehistory, World Archaeol., 43, 665–675,
781	https://doi.org/10.1080/00438243.2011.624764, 2011.
782 783 784 785	Kabukcu, C.: Identification of woodland management practices and tree growth conditions in archaeological fuel waste remains: A case study from the site of Çatalhöyük in central Anatolia, Turkey, Quat. Int., 486, 282-297, https://doi.org/10.1016/j.quaint.2017.03.017, 2017.
786	Kaplan, J. O., Krumhardt, K. M., and Zimmermann, N.: The prehistoric and
787	preindustrial deforestation of Europe, Quat. Sci. Rev., 28(27), 3016–3034,
788	https://doi.org/10.1016/j.quascirev.2009.09.028, 2009.
789	Knapp, H., Nelle, O., and Kirleis, W.: Charcoal usage in medieval and modern times
790	in the Harz Mountains Area, Central Germany: Wood selection and fast
791	overexploitation of the woodlands, Quat. Int. 366(1), 51-69,
792	https://doi.org/10.1016/j.quaint.2015.01.053, 2015.
793 794 795	Li, H. M.: Study on the utilization strategies of major crops from Neolithic to historical periods in the western Loess Plateau, Ph.D. thesis, Lanzhou University, Lanzhou, 2018.
796	Li, H., An, C. B., Dong, W., Wang, W., Hu, Z., Wang S., Zhao, X., and Yang, Y.:
797	Woodland vegetation composition and prehistoric human fuel collection strategy
798	at the Shannashuzha site, Gansu Province, northwest China, during the middle
799	Holocene, Veg. Hist. Archaeobot., 26(1-2), 1-9, https://doi.org/10.1007/s00334-
800	016-0585-8, 2016.
801	Li, H., An, C-B., Dong, W., Wang, W., Hu, Z., Wang, S., Zhao, X., and Yang, Y.:
802	Woodland vegetation composition and prehistoric human fuel collection strategy
803	at the Shannashuzha site, Gansu Province, northwest China, during the middle
804	Holocene, Veget. Hist. Archaeobot., 26, 213–221,
805	https://doi.org/10.1007/s00334-016-0585-8, 2017.

806	Li, S. C. (Eds.): Prehistoric culture evolution in Northwest China. Cultural Relics
807	Press, Beijing, ISBN 7-5010-2655-5, 2009.
808 809 810	Li, S. C., Shui, T., and Wang, H.: Report on prehistoric archaeological survey in Hexi Corridor, Acta Archaeol. Sin., 2, 229–274, 2010 (in Chinese with English abstract).
811	Li, X., Shang, X., Dodson, J., and Zhou, X.: Holocene agriculture in the Guanzhong
812	Basin in NW China indicated by pollen and charcoal evidence, Holocene, 19(8),
813	1213–1220, https://doi.org/10.1177/0959683609345083, 2009.
814 815 816 817	Li, X., Sun, N., Dodson, J., and Zhou, X.: Human activity and its impact on the landscape at the Xishanping site in the western Loess Plateau during 4800–4300 cal yr BP based on the fossil charcoal record, J. Archaeol. Sci., 39(10), 3141–3147, https://doi.org/10.1016/j.jas.2012.04.052, 2012.
818 819 820 821 822	Li, X., Sun, N., Dodson, J., Ji, M., Zhao, K., and Zhou, X.: The impact of early smelting on the environment of Huoshiliang in Hexi Corridor, NW China, as recorded by fossil charcoal and chemical elements, Paleogeogr. Paleoclimatol. Paleoecol., 305(1–4), 329–336, https://doi.org/10.1016/j.palaeo.2011.03.015, 2011.
823	Li, Y.: Agriculture and palaeoeconomy in prehistoric Xinjiang, China (3000–200
824	BC), Veg. Hist. Archaeobot., 30, 287–303, https://doi.org/10.1007/s00334-020-
825	00774-2, 2021.
826	Liu, C. J., Kong, Z. C., and Lang, S. D.: Plant remains found in the Dadiwan site and
827	its implication on past environment, Cult. Relics Cent. China, 4, 26–30, 2004 (in
828	Chinese with English abstract).
829	Liu, F., Li, H., Cui, Y., Yang, Y., Lee, H. F., Ding, D., Hou, Y., and Dong, G.:
830	Chronology and Plant Utilization from the Earliest Walled Settlement in the
831	Hexi Corridor, Northwestern China, Radiocarbon, 61(4), 971–989,
832	https://doi.org/10.1017/RDC.2019.57, 2019.
833	Liu, F., Yang, Y., Chen, G., Zhang, S., and Zhang, H.: Changes in Wood Utilization
834	Due to Iron Age Jade Mining in the Western Hexi Corridor: Wood Charcoal
835	Investigations, Front Earth Sci., 9, 636534,
836	https://doi.org/10.3389/feart.2021.636534, 2021.
837 838 839 840	Liu, F., Zhang, Y., Feng, Z., Hou, G., Zhou, Q., and Zhang, H.: The impacts of climate change on the Neolithic cultures of Gansu-Qinghai region during the late Holocene Megathermal, J. Geogr. Sci., 20, 417–430, https://doi.org/10.1007/s11442-010-0417-1, 2010.
841	Liu, X., Jones, P. J., Matuzeviciute, G. M., Hunt, H. V., Lister, D. L., An, T.,

842 Przelomska, N., Kneale, C. J., Zhao, Z., and Jones, M. K.: From ecological

843 844	opportunism to multi-cropping: Mapping food globalisation in prehistory, Quat. Sci. Rev., 206, 21–28, https://doi.org/10.1016/j.quascirev.2018.12.017, 2019.
845	Liu, X., Lightfoot, E., O'Connell, T. C., Wang, H., Li, S., Zhou, L., and Hu, Y.,
846	Motuzaite-Matuzeviciute, G., Jones, M.K.: From necessity to choice: Dietary
847 848	revolutions in west China in the second millennium BC, World Archaeol., 46, 661–680, https://doi.org/10.1080/00438243.2014.953706, 2014.
849 850 851	Ma, M., Dong, G., Jia, X., Wang, H., Cui, Y., and Chen, F.: Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: evidence from stable isotopes, Quat. Sci. Rev., 145, 57–70, https://doi.org/10.1016/j.jmpppi.2016.05.041.2016
852	https://doi.org/10.1016/j.quascirev.2016.05.041, 2016.
853	Ma, T., Rolett, B. V., Zheng, Z., and Zong, Y.: Holocene coastal evolution preceded
854	the expansion of paddy field rice farming, Proc. Natl. Acad. Sci. USA, 117,
855	24138–24143, https://doi.org/10.1073/pnas.1919217117, 2020.
856 857 858	Marguerie, D. and Hunot, J.Y.: Charcoal analysis and dendrology: data from archaeological sites in north-western France, J. Archaeol. Sci., 34(9), 1417–1433, https://doi.org/10.1016/j.jas.2006.10.032, 2007.
859	Mas, B., Allué, E., Alonso, E. S., and Vaquero, M.: From forest to settlement:
860	Magdalenian hunter-gatherer interactions with the wood vegetation environment
861	based on anthracology and intra-site spatial distribution, Archaeol. Anthropol.
862	Sci., 13, 12, https://doi.org/10.1007/s12520-020-01264-2, 2021.
863	Mei, J. and Shell, C.: The existence of Andronovo cultural influence in Xinjiang
864	during the second millennium BC, Antiquity, 73, 570–78,
865	https://doi.org/10.1017/S0003598X00065121, 1999.
866	Miller, A. and Gross, B.L.: From forest to field: perennial fruit crop domestication.
867	Am. J. Bot. 98, 1389–1414, https://doi.org/10.3732/ajb.1000522, 2011.
868	Miller, N. F., Spengler, R. N., and Frachetti, M. D.: Millet cultivation across Eurasia:
869	Origins, spread, and the influence of seasonal climate, Holocene, 26(10), 1566–
870	1575, https://doi.org/10.1177/0959683616641742, 2016.
871	Miller, N. F.: Agropastoralism and archaeobiology: Connecting plants, animals and
872	people in West and Central Asia, Environ. Archaeol. 18(3), 247–256,
873	https://doi.org/10.1179/1749631413Y.0000000003, 2013.
874 875	Monastersky, R.: Anthropocene: The human age, Nature, 519, 144–147, https://doi.org/10.1038/519144a, 2015.
876	Neumann, K., Bostoen, K., Höhn, A., Kahlheber, S., Ngomanda, A., and Tchiengué,
877	B.: First farmers in the Central African rainforest: A view from southern
878	Cameroon, Quat. Int., 249, 53–62, https://doi.org/10.1016/j.quaint.2011.03.024,

879	2012.

880	Nong, K., Zhang, G., Wang, L., Cheng, Y., and Jiang H.: Prehistoric wooden bows
881	and arrows in the Turpan Basin, Northwest China: Wood selection and
882	utilization in a mosaic landscape. Archaeometry, 65(4), 881–896,
883	https://doi.org/10.1111/arcm.12846, 2023.
884	Qu, Y., Hu, Y., Rao, H., Abuduresule, I., Li, W., Hu, X., Jiang, H., Wang, C., and
885	Yang, Y.: Diverse lifestyles and populations in the Xiaohe culture of the Lop
886	Nur region, Xinjiang, China, Archaeol. Anthropol. Sci., 10, 2005–2014,
887	https://doi.org/10.1007/s12520-017-0520-7, 2018.
888 890 891 892 893 894 895 896 897	 Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. G., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62(4), 725-757, https://doi.org/10.1017/RDC.2020.41, 2020.
898	Ren, L., Yang, Y., Qiu, M., Brunson, K., Chen, G., and Dong, G.: Direct dating of the
899	earliest domesticated cattle and caprines in northwestern China reveals the
900	history of pastoralism in the Gansu-Qinghai region, J. Archaeol. Sci., 144,
901	105627, https://doi.org/10.1016/j.jas.2022.105627, 2022.
902	Ren, M., Tang, Z., Wu, X., Spengler, R., Jiang, H., Yang, Y., and Boivin, N.: The
903	origins of cannabis smoking: Chemical residue evidence from the first
904	millennium BCE in the Pamirs, Sci. Adv., 5(6), eaaw1391,
905	https://doi.org/10.1126/sciadv.aaw1391, 2019.
906	Renn, J. (Eds.): The Evolution of Knowledge: Rethinking Science for the
907	Anthropocene, Princeton University Press, Princeton, ISBN 9780691171982,
908	2020.
909 910	Ruan, Q. R.: Research on the Andronovo remains discovered in Xinjiang, Xibu Kaogu, 125–154, 2014 (in Chinese with English abstract).
911 912	Ruddiman, W. F. (Eds.): Earth's climate: past and future, second edition, WH Freeman & Co Ltd, New York, ISBN 10978-0-7167-8490-6, 2008.
913	Ruddiman, W. F.: The Anthropocene, Annu. Rev. Earth Planet Sci., 4, 45–68,
914	https://doi.org/10.1146/annurev-earth-050212-123944, 2013.
915	Ruddiman, W. F.: The anthropogenic greenhouse era began thousands of years ago,

916	Clim. Change, 61(3), 261–293,
917	https://doi.org/10.1023/B:CLIM.0000004577.17928.fa, 2018.
918	Salysbury, K. J. and Jane, F. W.: Charcoal from maiden Castle and their significance
919	in relation to the vegetation and climatic conditions in Prehistoric times, J.
920	Ecology, 28, 310–325, 1940.
921	Schlütz, F. and Lehmkuhl, F.: Holocene climatic change and the nomadic
922	Anthropocene in eastern Tibet: Palynological and geomorphological results from
923	the Nianbaoyeze Mountains, Quat. Sci. Rev., 28(15), 1449–1471,
924	https://doi.org/10.1016/j.quascirev.2009.01.009, 2009.
925	Shao, H. Q. (Eds.): The evolution of prehistorical cultural patterns in Xinjiang and the
926	relationship with the its neighbours, Science Press, Beijing, ISBN 978-7-03-
927	058710-7, 2018.
928 929	Shao, H. Q. and Zhang, W. S.: A review of Andronovo culture in Xinjiang, West Reg. Studies, 2, 113–121, 2019 (in Chinese).
930	Shen, H. and Li, X.: From extensive collection to intensive cultivation, the role of
931	fruits and nuts in subsistence economy on Chinese Loess Plateau, Archaeol.
932	Anthropol. Sci., https://doi.org/10.1007/s12520-020-01255-3, 2021.
933	Shen, H., Li, X., Spengler, R., Zhou, X., and Zhao, K.: Forest cover and composition
934	on the Loess Plateau during the Middle to Late-Holocene: Integrating wood
935	charcoal analyses, Holocene, 31(1), 38–49,
936	https://doi.org/10.1177/0959683620961486, 2021.
937	Shen, H., Wu, X., Tang, Z., Zhou, X., Sun, N., and Li, X.: Wood usage and fire
938	veneration in the Pamir, Xinjiang, 2500 yr BP, Plos One, 10(8), e0134847,
939	https://doi.org/10.1371/journal.pone.0134847, 2015.
940	Shen, H., Zhou, X., Betts, A., Jia, P, W., Zhao, K., and Li, X.: Fruit collection and
941	early evidence for horticulture in the Hexi Corridor, NW China, based on
942	charcoal evidence, Veget. Hist. Archaeobot., 28, 187–197,
943	https://doi.org/10.1007/s00334-018-0691-x, 2019.
944 945 946 947	Shen, H., Zhou, X., Zhao, K., Betts, A., Jia, P.W., and Li, X.: Wood types and human impact between 4300 and 2400 yr BP in the Hexi Corridor, NW China, inferred from charcoal records, Holocene, 28(4), 629–639, https://doi.org/10.1177/0959683617735586, 2018.
948	Sherratt, A.: The Trans-Eurasian exchange: the prehistory of Chinese relations with
949	the West, in: Contact and Exchange in the Ancient World, edited by: Mair, V.,
950	Hawaii University Press, Honolulu, 32–53,
951	https://doi.org/10.1515/9780824841676-005, 2006.

952 953	Spengler, R. N. (Eds.): Fruit from the Sands: The Silk Road Origins of the Food We Eat, University of California Press, Oakland, ISBN 9780520972780, 2019.
954 955 956 957	Spengler, R. N. and Wilcox, G.: Archaeobotanical results from Sarazm, Tajikistan, an early Bronze Age village on the edge: agriculture and exchange, J. Environ. Archaeol., 18(3), 211–221, https://doi.org/10.1179/1749631413Y.0000000008, 2013.
958	Spengler, R. N., Frachetti, M. D., Doumani, P. N., Rouse, L. M., Cerasetti, B.,
959	Bullion, E., and Mar'yashev, A.N.: Early agriculture and crop transmission
960	among Bronze Age mobile pastoralists of Central Eurasia, Proc. R Soc. B, 281,
961	20133382, http://dx.doi.org/10.1098/rspb.2013.3382, 2014.
962	Spengler, R. N., Stark, S., Zhou, X., Fuks, D., Tang, L., Mir-Makhamad, B., Bjørn,
963	R., Jiang, H., Olivieri, L.M., Begmatov, A., and Boivin, N.: A journey to the
964	west: the ancient dispersal of rice out of East Asia, Rice, 14, 83,
965	https://doi.org/10.1186/s12284-021-00518-4, 2021.
966	Sun, N., Li, X., Dodson, J., Zhou, X., Zhao, K., and Yang, Q.: Plant diversity of the
967	Tianshui Basin in the western Loess Plateau during the mid-Holocene – Charcoal
968	records from archaeological sites, Quat. Int., 308-309, 27–35,
969	https://doi.org/10.1016/j.quaint.2013.05.014, 2013.
970 971 972 973 974	 Théry-Parisot, I., Chabal, L., and Chrzavzez, J.: Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts, Palaeogeogr. Palaeoclimatol. Palaeoecol., 291(1), 142–153, https://doi.org/10.1016/j.palaeo.2009.09.016, 2010.
975	Tian, D., Festa, M., Cong, D., Zhao, Z., Jia, P. W., and Betts, A.: New evidence for
976	supplementary crop production, foddering and fuel use by Bronze Age
977	transhumant pastoralists in the Tianshan Mountains, Sci. Rep., 11, 13718,
978	https://doi.org/10.1038/s41598-021-93090-2, 2021.
979	Vigne, J. D., Briois, F., Zazzo, A., Willcox, G., Cucchi, T., Thiébault, S., Carrère, I.,
980	Franel, Y., Touquet, R., Martin, C., Moreau, C., Comby, C., and Guilaine, J.:
981	First wave of cultivators spread to Cyprus at least 10,600 y ago, Proc. Natl.
982	Acad. Sci. USA, 109(22), 8445–8449, https://doi.org/10.1073/pnas.1201693109,
983	2012.
984	Wang, L., Wang, Y., Li, W., Spate, M., Reheman, K., Sun, Q., Wang, B., Xu, H.,
985	Zhang, Z., Zhang, G., and Jiang, H.: Inner Asian agro-pastoralism as optimal
986	adaptation strategy of Wupu inhabitants (3000–2400 cal BP) in Xinjiang, China,
987	Holocene, 31(2), 203–216, https://doi.org/10.1177/0959683620941139, 2021.
988 989	Wang, S., Li, H., Zhang, L., Chen, G., Wang, P., and Zhao, Z.: Tree exploration and palaeo-environment at Heishuiguo Xichengyi site, Zhangye city, Gansu

990 991 992	province—revealed with excavated charcoal analysis, Quat. Sci., 34(1), 43–50, https://doi.org/10.3969/j.issn.1001-7410.2014.06 shu, 2014 (in Chinses with English abstract).
993	Wang, T. T., Fuller, B. T., Wei, D., Chang, X. E., and Hu, Y. W.: Investigating
994	dietary patterns with stable isotope ratios of collagen and starch grain analysis of
995	dental calculus at the Iron Age cemetery site of Heigouliang, Xinjiang, China,
996	Int. J. Osteoarchaeol., 26, 693–704, https://doi.org/10.1002/oa.2467, 2016.
997	Wang, T., Wei, D., Chang, X., Yu, Z., Zhang, X., Wang, C., Hu, Y., and Fuller, B. T.:
998	Tianshanbeilu and the Isotopic Millet Road: reviewing the late Neolithic/Bronze
999	Age radiation of human millet consumption from north China to Europe, Nat.
1000	Sci. Rev., 6(5), 1024–1039, https://doi.org/10.1093/nsr/nwx015, 2017.
1001 1002 1003	Weisdorf, J. L.: From foraging to farming: explaining the Neolithic Revolution, J. Econ. Surv., 19(4), 561–586, https://doi.org/10.1111/j.0950-0804.2005.00259.x, 2005.
1004	 Xiao, D-S., Zhao, Y-F., and An, Z-Q.: Analysis on the characteristics and change
1005	trend of precipitation in Ili region, J. Arid Land Resour. Environ., 20(4), 47–50,
1006	2006 (in Chinese with English abstract).
1007	Xie, D. J. (Eds.): Prehistoric archaeology of Gansu-Qinghai region. Cultural Relics
1008	Publishing House, Beijing, ISBN 9787501014170, 2002.
1009 1010 1011	Xinjiang Institute of Cultural Relics and Archaeology: 2013 excavation report of Sayituer cemetery in Hami, J. Nat. Mus. China, 9, 24–38, 2014 (in Chinese with English abstract).
1012 1013 1014	Xinjiang Institute of Cultural Relics and Archaeology: The excavation report of Xiaohe cemetery, Res. China's Front. Archaeol., 3, 338–398, 2004 (in Chinese with English abstract).
1015	Xinjiang integrated Expedition Team and Institute of Botany, CAS. (Eds.):
1016	Vegetation and its utilization in Xinjiang, Science Press, Beijing, ISBN
1017	13031836, 1978.
1018	Yang, J., Zhang, D., Yang, X., Wang, W., Perry, L., Fuller, D. Q., Li, H., Wang, J.,
1019	Ren, L., Xia, H., Shen, X., Wang, H., Yang, Y., Yao, J., Gao, Y., and Chen, F.:
1020	Sustainable intensification of millet-pig agriculture in Neolithic North China,
1021	Nat. Sustain., 5, 780–786, https://doi.org/10.1038/s41893-022-00905-9, 2022.
1022	Yang, Q. and Gaskin, J.: Flora of China, Volume 13, Science Press & Missouri
1023	Botanical Garden Press, Beijing & St. Louis, 59–65, 2007.
1024	Yang, R., Yang, Y., Li, W., Abuduresule, Y., Hu, X., Wang, C., and Jiang, H.:
1025	Investigation of cereal remains at the Xiaohe Cemetery in Xinjiang, China, J.

1026	Archaeol. Sci., 49, 42-47, https://doi.org/10.1016/j.jas.2014.04.020, 2014.
1027	Yang, Y., Dong, G., Zhang, S., Cui, Y., Li, H., Chen, G., Dodson, J., and Chen, F.:
1028	Copper content in anthropogenic sediments as a tracer for detecting smelting
1029	activities and its impact on environment during prehistoric period in Hexi
1030	Corridor, Northwest China, Holocene, 27(2), 282–291,
1031	https://doi.org/10.1177/0959683616658531, 2017.
1032	Yatoo, M. A., Spate, M., Betts, A., Pokharia, A. K., and Shah, M. A.: New evidence
1033	from the Kashmir Valley indicates the adoption of East and West Asian crops in
1034	the western Himalayas by 4400 years ago, Quat. Sci. Adv., 2, 100011,
1035	https://doi.org/10.1016/j.qsa.2020.100011, 2020.
1036	Zalasiewicz, J., Waters, C., and Head, M.: Anthropocene: its stratigraphic basis,
1037	Nature, 541, 289, https://doi.org/10.1038/541289b, 2017.
1038	Zeder, M. A.: Domestication and early agriculture in the Mediterranean Basin:
1039	Origins, diffusion, and impact, Proc. Natl. Acad. Sci. USA, 105, 11597–11604,
1040	https://doi.org/10.1073/pnas.0801317105, 2008.
1041	Zhang, G., Wang, S., Ferguson, D. K., Yang, Y., Liu, X., and Jiang, H.: Ancient plant
1042	use and palaeoenvironmental analysis at the Gumugou Cemetery, Xinjiang,
1043	China: Implication from desiccated plant remains, Archaeol. Anthropol. Sci., 9,
1044	145–152, https://doi.org/10.1007/s12520-015-0246-3, 2017.
1045	Zhang, G., Wang, Y., Spate, M., Wang, S., and Jiang, H.: Investigation of the diverse
1046	plant uses at the South Aisikexiaer cemetery (~ 2700~2400 years BP) in the
1047	Hami basin of Xinjiang, Northwest China, Archaeol. Anthropol. Sci., 11(2),
1048	699–711, https://doi.org/10.1007/s12520-017-0563-9, 2019.
1049	Zhang, X. L., Zhang, J., Li, Z. P., Zhang, L. R., Chen, G. K., Wang, P., and Wang, H.:
1050	Analysis of subsistence economy of Xichengyi people in the Zhangye city,
1051	Gansu, Archaeology, 7, 110–120, 2015.
1052	Zhao, K., Li, X., Zhou, X., Dodson, J., and Ji, M.: Impact of agriculture on an oasis
1053	landscape during the late Holocene: Palynological evidence from the Xintala site
1054	in Xinjiang, NW China, Quat. Int., 311, 81–86,
1055	https://doi.org/10.1016/j.quaint.2013.06.035, 2013.
1056 1057	Zheng, D., Yang, Q. Y., and Wu, S. H. (Eds.): Physical geography of China. Science Press, Beijing, ISBN 978-7-03-045397-6, 2015.
1058	Zheng, Z., Ma, T., Roberts, P., Li, Z., Yue, Y., Peng, H., Huang, K., Han, Z., Wan,
1059	Q., Zhang, Y., Zhang, X., Zheng, Y., and Satio, Y.: Anthropogenic impacts on
1060	Late Holocene land-cover change and floristic biodiversity loss in tropical
1061	southeastern Asia, Proc. Natl. Acad. Sci. USA, 118(40), e2022210118,
1062	https://doi.org/10.1073/pnas.2022210118, 2021.

1063 1064 1065	Zhou, X. and Li, X.: Variation in spruce (Picea sp.) distribution in the Chinese Loess Plateau and surrounding areas during the Holocene, Holocene, 22(6), 687-696, https://doi.org/10.1177/0959683611400195, 2012.
1066	Zhou, X., Li, X., Dodson, J., and Zhao, K.: Rapid agricultural transformation in the
1067	prehistoric Hexi corridor, China, Quat. Int., 426, 33-41,
1068	https://doi.org/10.1016/j.quaint.2016.04.021, 2016.
1069	Zhou, X., Li, X., Dodson, J., Zhao, K., Atahan, P., Sun, N., and Yang, Q.: Land
1070	degradation during the Bronze Age in Hexi Corridor (Gansu, China), Quat. Int.,
1071	254(1), 42-48, https://doi.org/10.1016/j.quaint.2011.06.046, 2012.
1072	Zhou, X., Yu, J., Spengler, R. N., Shen, H., Zhao, K., Ge, J., Bao, Y., Liu, J., Yang,
1073	Q., Chen, G., Jia, P. W., and Li, X.: 5,200-year-old cereal grains from the eastern
1074	Altai Mountains redate the trans-Eurasian crop exchange, Nat. Plants, 6, 78-87,
1075	https://doi.org/10.1038/s41477-019-0581-y, 2020.
1076	Zhou, X.: Mid-Holocene environmental changes, agricultural activity and human
1077	adaption in Gansu-Qinghai region, Ph.D. thesis, Institute of Earth Environment,
1078	Chinese Academy of Sciences, Xi'an, 2009.
1079	Zohary, D., Hopf, M., and Weiss, E. (Eds.): Domestication of plants in the Old
1080	World: The origin and spread of cultivated plants in West Asia, Europe and Nile
1081	Valley, fourth edition, Oxford University Press, Oxford, ISBN 9780191810046,
1082	2012.
1083	Zong, Y., Chen, Z., Innes, J. B., Chen, C., Wang, Z., and Wang, H.: Fire and flood
1084	management of coastal swamp enabled first rice paddy cultivation in east China,
1085	Nature, 449(7161), 459-462, https://doi.org/10.1038/nature06135, 2007.