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ABSTRACT
Deep Learning methods achieve state-of-the-art in many tasks, including vocal pitch 
extraction. However, these methods rely on the availability of pitch track annotations 
without errors, which are scarce and expensive to obtain for Carnatic Music. Here we 
identify the tradition-related challenges and propose tailored solutions to generate a 
novel, large, and open dataset, the Saraga-Carnatic-Melody-Synth (SCMS), comprising 
audio mixtures and time-aligned vocal pitch annotations. Through a cross-cultural 
evaluation leveraging this novel dataset, we show improvements in the performance 
of Deep Learning vocal pitch extraction methods on Indian Art Music recordings. 
Additional experiments show that the trained models outperform the currently used 
heuristic-based pitch extraction solutions for the computational melodic analysis of 
Carnatic Music and that this improvement leads to better results in the musicologically 
relevant task of repeated melodic pattern discovery when evaluated using expert 
annotations. The code and annotations are made available for reproducibility. 
The novel dataset and trained models are also integrated into the Python package 
compIAM1 which allows them to be used out-of-the-box.
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1 INTRODUCTION

Carnatic Music is a prominent art music tradition that 
originated in the royal courts and temples of South 
India and is still performed today in concert halls 
and at temple festivals. Alongside Hindustani Music 
(originating in North India), it constitutes one of the 
two main musical traditions of Indian Art Music (IAM). 
With its fan base encompassing millions of listeners and 
practitioners around the globe (Gulati et al., 2014), the 
interest in developing computational approaches for 
the analysis of Carnatic Music has grown in recent years 
(Tzanetakis, 2014). The most common contemporary 
instrumentation in Carnatic concerts involves a solo 
vocalist accompanied by violin and percussion, therefore, 
the vocal melody is highly musicologically significant in 
this style. In this work we contribute to analytical work 
on this musical repertoire by improving the automatic 
extraction of predominant vocal melody, or pitch, from 
mixed recordings using a Carnatic Music informed 
generation of ground-truth data for this task.

Because isolated vocal audio signals for Carnatic Music 
are scarce, the predominant melody is usually extracted 
from audio mixtures (Rao et al., 2014; Gulati et al., 
2014, 2016; Ganguli et al., 2016; Nuttall et al., 2021). 
However, predominant pitch extraction is a difficult and 
not completely solved problem (Bittner et al., 2017). In 
particular, Carnatic Music constitutes a difficult case for 
vocal pitch extraction. Although performances place 
strong emphasis on a monophonic melodic line from 
the soloist singer, heterophonic melodic elements also 
occur, for example from the accompanying violinist who 
shadows the melody of the soloist often at a lag and 
with variation. Also, there is the tanpura (plucked lute 
that creates an oscillating drone) and pitched percussion 
instruments.

Many well-known predominant pitch extraction 
methods are heuristic-based (Rao and Rao, 2010; Durrieu 
et al., 2010; Salamon and Gomez, 2012). More recently, 
these have been outperformed by Deep Learning (DL) 
approaches (Kum et al., 2016; Kum and Nam, 2019; Yu 
et al., 2021). Data to train these models, however, is 
scarce and limited to Western music styles (LabROSA, 
2005; Bittner et al., 2014). In this work, we hypothesize 
that these models generalize poorly to Carnatic Music 
given the melodic and instrumental uniqueness of this 
tradition, with domain transfer or re-training proving 
difficult due to the lack of Carnatic vocal pitch annotations 
(Benetos et al., 2018).

In order to understand why vocal pitch extraction is 
important for the computational analysis of Carnatic 
music we should first consider the melodic structure of 
the style. Rāgas are the primary melodic frameworks 
in Carnatic Music, best expressed through their 
characteristic sañcāras (melodic patterns, phrases or 
motifs) (Ishwar et al., 2013; Gulati et al., 2014). Although 

rāgas are also conceptualized as having constituent pitch 
positions (svarasthānas) – which might be presented as 
something like a musical scale – in practice, the svaras 
(notes) are performed with gamakas (ornaments) that 
create melodic movement both on and between svaras 
(Krishna and Ishwar, 2012; Pearson, 2016). These can 
be experienced as small melodic atoms (Krishnaswamy, 
2004; Morris, 2011). The gamakas that may be used on 
any given svara are determined in part by the rāga, and 
therefore, also contribute to the identification of the 
raga (Viswanathan, 1977). In fact, two rāgas may have 
the same constituent pitch positions, and in such cases 
it is the particular gamakas and sañcāras employed 
that disambiguate the two ragas (Viswanathan, 1977; 
Kassebaum, 2000). Furthermore, the significance of 
sañcāras can be seen in the format known as rāga 
ālāpana, in which the performer extemporises based on 
stock phrases: characteristic sañcāras that are typical 
of the raga (Viswanathan, 1977; Pearson, 2021). As 
sañcāras and gamakas play an important role in rāga 
identity, ālāpana performance and musical compositions, 
the automated discovery of such melodic patterns has 
formed an important strand in recent computational 
research on the style (Ishwar et al., 2013; Gulati et al., 
2014; Nuttall et al., 2021).

Typically, the task of melodic pattern discovery 
in Carnatic Music has been based on time-series of 
predominant or vocal pitch extracted from audio 
recordings (Rao et al., 2014; Gulati et al., 2016; Nuttall 
et al., 2021). Approaches that depend on symbolic 
notation are another option, but manual transcription is 
extremely time consuming, and automated transcription 
is not a trivial problem in Carnatic music, since svaras 
are performed with gamakas that can radically shift the 
sound of the resulting unit from the theoretical pitch 
position referred to by the svara name. Furthermore, the 
same svara may be performed with different gamakas in 
different musical contexts, e.g. ascending or descending 
phrases (Ramanathan, 2004). Recently, the quantization 
of pitch tracks and identification of stable pitches and 
extremes (peaks and valleys) of the pitch contour has 
been used as an approach for creating a promising 
descriptive symbolic annotation/transcription of audio 
recordings (Ranjani et al., 2017, 2019). However, these 
rely on extracted pitch tracks and hence would benefit 
from any improvements in that process, such as those 
proposed here.

This work contributes to a more reliable and 
informative computational melodic analysis of Carnatic 
Music by improving the state-of-the-art for vocal pitch 
extraction in this tradition. The specific contributions are: 
(1) the Saraga-Carnatic-Melody-Synth dataset: a novel, 
large and open ground-truth vocal pitch dataset for 
Carnatic Music that is generated using a tradition-specific 
method inspired by Salamon et al. (2017), (2) we train 
a state-of-the-art data-driven vocal melody extraction 
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model (Yu et al., 2021) using the proposed dataset, and 
perform evaluation across multiple traditions, showing 
the positive impact of our tradition-specific approach 
for this task in a Carnatic context, and (3) we study 
the impact of the newly extracted pitch tracks on the 
musicologically relevant task of repeated melodic pattern 
discovery in Carnatic Music, evaluating the results using 
expert annotations.

2 LITERATURE REVIEW

2.1 DATASETS
The Dunya Carnatic and Hindustani corpora, built 
within the CompMusic project (Serra, 2014), provide 
many relevant datasets. Saraga (Srinivasamurthy et al., 
2020) includes audio recordings of live performances 
containing, in many cases, close-microphone2 recordings 
of violin, mridangam, ghatam and vocals. Although 
automatically-extracted pitch tracks are included in 
Saraga, these are not suitable for training data-driven 
models given the numerous errors that can result 
from automatic extraction using a heuristic algorithm 
(Salamon and Gomez, 2012), which may propagate to 
the trained models or prevent the training algorithm from 
reaching a decent minimum. To our best knowledge, no 
open ground-truth vocal melody dataset for Carnatic 
Music currently exists.

In general, pitch tracks are difficult and time consuming 
to annotate manually. Salamon et al. (2017) approached 
this issue by artificially creating these annotations in a 
reverse-engineering manner using an Analysis/Synthesis 
framework, first automatically extracting the pitch from 
melodic instruments, and then resynthesizing the audio 
signals over their corresponding extracted pitch tracks, 
forcing the harmonic structure of the regenerated 
signals to be built on top of frequency values at hand. 
Thus, the pitch tracks become ground-truth annotations 
for the resynthesized signals. However, this method is 
implemented for the MedleyDB dataset (Bittner et al., 
2014), assuming isolated and studio-quality recordings 
of particular instrumentation and styles (mainly Pop and 
Rock), making it infeasible to be directly reproduced for 
the case of Carnatic music and its available datasets, 
which do not have the same characteristics.

2.2 METHODS FOR PITCH EXTRACTION
Melodia (Salamon and Gomez, 2012) is a heuristic-based 
algorithm for predominant melody extraction that has 
been broadly used for computational melodic analysis 
of Carnatic Music (Koduri et al., 2014; Gulati et al., 2014; 
Ganguli et al., 2016; Nuttall et al., 2021). Atlı et al. (2014) 
adapt the heuristic rules in Melodia so that the longest 
detected pitch segments are prioritized, useful for musical 
contexts in which sustained melodic lines are recurrent. 
This approach is named PredominantMelodyMakam 

(PMM). In addition to including 20 parameters that need to 
be manually set, Melodia is not optimized to discriminate 
melodic sources, which represents an important problem 
for Carnatic Music in which all instruments are pitched 
and the violin plays a prominent role.

Recent DL-based models for predominant pitch 
extraction can focus on a specific source (Kum et al., 
2016; Kum and Nam, 2019; Yu et al., 2021). In this work, 
we refer to the Frequency-Time Attention Network (FTA-
Net) (Yu et al., 2021), a deep neural network that achieves 
state-of-the-art performance for vocal pitch extraction. 
FTA-Net is formed by: (1) the Frequency-Time Attention 
branch, which consists of four layers, each formed by a 
Frequency-Temporal Attention (FTA) module connected 
to a Selective Fusion (SF) module. FTA modules mimic 
human hearing behaviour by drawing attention to the 
predominant melody source, while the SF dynamically 
selects and fuses the attention maps created by the 
FTA modules, (2) the Melody Detection branch is formed 
by four fully-stacked convolutional layers to perform 
iterative downsampling of the input data. In an ablation 
study, this branch is shown to improve the voicing 
detection.

FTA-Net is fed with the Combined Frequency and 
Periodicity (CFP) features (Su and Yang, 2015), which 
combine the power spectrum (frequency domain), the 
generalized cepstrum (time domain), and the generalized 
cepstrum of the spectrum (frequency domain), blending 
information of harmonics (frequency domain) and 
sub-harmonics (temporal domain) to emphasize the 
fundamental frequency and facilitate its detection. CFP 
are widely-used for predominant pitch extraction (Hsieh 
et al., 2019; Yu et al., 2021).

2.3 METHODS FOR MELODIC PATTERN 
DISCOVERY
A common pipeline for melodic pattern discovery in 
Carnatic music is to apply predominant pitch extraction to 
audio signals and compute pairwise distance measures 
between subsets of the data (Ishwar et al., 2013; Gulati 
et al., 2014; Rao et al., 2014; Nuttall et al., 2021). However, 
there is a lack of standardized baselines, evaluation 
datasets and metrics. Ishwar et al. (2013) and Gulati 
et al. (2014) involve experts after the results are collected 
to vote on their quality, whereas Rao et al. (2014) use 
expert annotations gathered beforehand. Owing to the 
expensive nature of creating expert annotations, they are 
limited in number. The Saraga dataset includes melodic 
pattern annotations, but for most recordings, only a few 
instances of a very limited number of patterns, normally 
from two to four, are available.

In this work we rely on Nuttall et al. (2021) for the 
melodic pattern finding approach. We refer the reader 
to the original paper and accompanying repository for 
a full explanation of the process, summarising here the 
particular elements relevant to the current paper. The 
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pipeline computes the matrix profile (Yeh et al., 2016), 
M, of the input pitch track, T, for a specified length, m. 
M returns, for each subsequence in T, the distance to its 
most similar subsequence in T. Similarity is computed 
using non-z-normalised Euclidean distance since the 
goal is to match subsequences identical in shape and 
y-location i.e. pitch. Pattern groups are identified by 
locating minima in the matrix profile to identify a parent 
pattern and querying the entirety of T with this parent. 
Groups include every retrieved subsequence with a 
distance to the parent below some threshold, ϕ, the only 
tunable parameter of the process.

In order to return full melodic motifs with plausible 
segmentation points, Nuttall et al. (2021) exclude 
subsequences that either contain long periods of silence 
(0 values in T) or stability (periods of constant pitch in T), 
since these are likely to lie at the borders of musically 
salient patterns (sañcāras) in Carnatic music.3 For that 
reason, here in this work we do not discard all stable 
pitches, as such points of stability are also salient in 
rāga performance (Viraraghavan et al., 2017). Instead, 
we have used long stability periods as cues for plausible 
segmentation, based on perceptual grouping tendencies 
in music perception (Deutsch, 1982; Deliege, 1987).

3 DATASET

3.1 DATA CREATION
Our approach to generate ground-truth vocal pitch 
annotations is inspired by Salamon et al. (2017). 
Our Carnatic-specific methodology intends to (1) 
characterize the main features of Carnatic melodies and 
instrumentation, and (2) adapt to the characteristics 

of currently available Carnatic Music data. Related to 
the latter point, the input dataset for our process is 
the close-microphone Carnatic collection in Saraga 
(Srinivasamurthy et al., 2020). See Figure 1 for a complete 
diagram of the data generation process.

3.1.1 Leakage removal
The close-microphone audio in Saraga is recorded in 
live performances. The instruments are predominant in 
their corresponding tracks, but microphones also capture 
interference from the other instruments. We remove the 
accompaniment leaked in the singing voice using U-Net-
based singing voice separation (Yu et al., 2021), which has 
recently shown promising results in source separation 
when the target source is predominant in the signal 
(Hennequin et al., 2020). We use the same approach 
to remove the voice from the recordings corresponding 
to the violin and mridangam. Finally, we compute the 
window-wise energy of the separated signals and 
remove leaked background noise with an energy below 
a predefined threshold. We do not aim at removing the 
mridangam interference in the violin signal and vice 
versa given that in the remixing step (Section 3.1.5) the 
accompaniment instruments are mixed together and all 
possible interferences between mridangam and violin 
are summed in the resulting accompaniment track.

3.1.2 Preliminary pitch extraction
We automatically extract the pitch curve from the 
cleaned vocal signal to be used as a reference for the 
singing voice resynthesis (Section 3.1.3). To account for 
possible unresolved interferences and source separation 
errors we decide against using a monophonic pitch tracker 
and use PMM (Atlı et al., 2014) instead. In preliminary 

Figure 1 Block diagram of the data generation pipeline for a particular Saraga recording. We also indicate in which sections in this paper 
each building block is presented.
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experiments, PMM showed better performance than the 
original Melodia algorithm in capturing gamakas, since 
the heuristics in PMM contribute to a better detection of 
sustained melodies. For the same reason, sporadic violin 
traces that may be present in the pitch are lessened at 
this point.

Next, the raw pitch track is enhanced through the 
following steps: (1) filling gaps shorter than 250 ms using 
1D interpolation between boundaries (Ganguli et al., 
2016; Nuttall et al., 2021), (2) smoothing the pitch curves 
using the Gaussian filter in Equation 1:
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where σ is the filter width and t the time index of the pitch 
track, and (3) restricting pitch track values to an interval 
of [80, 600] Hz (Venkataraman et al., 2020), annotating 
silent regions with 0 Hz.

Because the pitch extraction is run in an ideal 
scenario in which the singing voice is predominant 
and the leakage has been reduced, we can expect to 
obtain decent quality pitch tracks after post-processing. 
As a matter of fact, several computational studies of 
Carnatic Music build on top of pitch tracks obtained 
using a similar pipeline (excluding the leakage removal 
in Section 3.1.1) (Gulati et al. 2014, 2016; Ganguli et al., 
2016), and the pitch tracks in Saraga are also computed 
as such (Srinivasamurthy et al., 2020). However, given 
the shortage of ground-truth vocal pitch annotations for 
Carnatic Music, we are currently unable to evaluate the 
quality of these objectively. Some available datasets have 
been validated by active listening (Eremenko et al., 2018), 
nonetheless, for the case of pitch track annotations, and 
especially in the melodically complex Carnatic context, 
such strategy may be time-consuming and a confident 
validation difficult to ensure. Another factor to consider 
is that this pipeline includes a combination of data-
driven techniques and several heuristic steps, hence it 
is computationally expensive and its scalability may be 
compromised. Consequently, an improved, scalable, and 
straightforwardly runnable method would be beneficial.

3.1.3 Re-synthesis of the vocal audio signal
We denote the pitch track obtained with the pipeline 
in Sections 3.1.1 and 3.1.2 as reference pitch. Next, we 
reconstruct the spectral harmonic structure of the vocal 
signal on top of the reference pitch, so that it perfectly 
matches the new vocal audio signal and can be used for 
training and evaluating data-driven approaches. Thus, 
we consider the generated data as ground-truth. To 
perform the vocal resynthesis, we rely on the Harmonic 
plus Residual (HpR) model of Serra and Smith (1990).

We first compute the Short-Time Fourier Transform 
(STFT) of the original signal and identify the energy 
peaks in the magnitude spectrum and the corresponding 
values in the phase. The peaks are interpolated to infer 

the frequency, magnitude and phase peak trajectories. 
More intuitively, for a vocal signal, these trajectories are 
the fundamental frequency plus the harmonics above, 
from which we also compute the magnitude and phase 
spectral values at each time-step. Next, we iterate 
through the trajectories while comparing the analyzed 
frequency peaks with perfectly formed harmonic series 
that are precomputed on top of the reference pitch. 
Given that both reference pitch and audio signal are 
sampled at the same rate, we can relate the time indexes 
in both. Let fh be a certain precomputed harmonic over 
the reference pitch value, ˆ

hf  the closest peak to fh in the 
trajectories obtained in the analysis, f0 the reference pitch 
represented in Hz, and δ a harmonic deviation tolerance 
parameter. The lower δ is, the more restrictive we are. If 
the absolute difference between the analyzed frequency 
peak and the theoretical harmonic -ˆ| |h hf f  is smaller than 
a pre-defined acceptance threshold β, we consider the 
analysis successful and accept the peak. As proposed 
in the Python implementation of Serra and Smith’s HpR 
(Serra et al., 2015), a definition of β that is found to be 
effective is:

 b d= +0 ˆ( )*3 h
f

f  (2)

We use β to filter out problematic regions that may lead 
to unnatural synthesis or artifacts. As per the successfully 
analyzed peaks, we substitute the analyzed frequency 
value in the trajectory by the perfect harmonic computed 
on top of the reference pitch track, to ensure the 
correspondence between the output regenerated signal 
and pitch annotation. We repeat the same approach 
for the entire number of harmonics in a window. When 

-ˆ| |h hf f  is greater than β, we consider the synthesis not 
feasible and the peak is removed. If none or less than 
a predefined number of harmonics are accepted for a 
certain window, the window in the signal is completely 
silenced and the reference pitch value is set to 0. This 
prevention strategy averts unnatural synthesis and 
artifacts produced by the use of reference pitch values 
too distant from the actual note. Octave errors, apart 
from being reduced during pitch post-processing, are also 
addressed at this point, by setting to silence the affected 
regions. Reference pitch values with no corresponding 
predominant analyzed peaks are set to 0 Hz.

Next, we run additive synthesis using (1) the newly 
computed frequency peaks, and (2) the magnitude and 
phase trajectories originally analyzed from the input 
signal. The output of this operation is a resynthesized 
vocal signal whose harmonic structure has been 
generated on top of the reference pitch. We propose 
an adaptation of the HpR algorithm so that we are 
able to use the reference pitch at each window instead 
of automatically computing it using the Two-Way 
Mismatch algorithm (Maher and Beauchamp, 1994), as 
proposed by Serra et al. (2015). Moreover, the original 
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HpR performs the resynthesis over the frequency peaks 
that are estimated in the analysis of the input signal, 
while we mathematically compute the fundamental and 
harmonic frequency peaks over the reference pitch to 
ensure the annotation confidence.

Although we may miss the inharmonic content 
in the signal – mainly related to consonants and 
breathing – given that we resynthesize the sound using 
harmonic sinusoids, we focus on better characterizing 
ornamentations which are mainly present in sung 
vowels than consonants. Hence, we are interested in 
resynthesizing correctly the sung vowels while leaving the 
refinement of consonants for future work. As presented 
in Section 1, these ornamentations in Carnatic Music 
play a key role in the melodic framework and therefore 
are prioritized. By selecting a considerable number of 
harmonics we can output an intelligible vocal signal.

3.1.4 Tanpura synthesis
The tanpura instrument is not included in the close-
microphone audio in Saraga but is an essential 
element in a Carnatic music arrangement, therefore 
we synthesize this instrument using a signal processing 
based model (Van Walstijn et al., 2016), which we adapt 
to allow any given tonic in Hertz as input. Since the tonic 
annotations in Saraga are automatically extracted and 
may be inconsistent for certain recordings, we estimate 
the tonic (Salamon et al., 2012) for an entire concert and 
use the most recurrent estimation, since a single tonic is 
expected to be maintained throughout the concert.

3.1.5 Remixing the stems
We generate an artificial mix by combining the 
synthesized vocal with the close-microphone audio 
tracks corresponding to the other instruments (tanpura, 
violin and mridangam). We use the remixing technique 
proposed by Bittner et al. (2014) for the MedleyDB dataset. 
The algorithm aims at estimating the mixing weights of 
the instrument audio signals using the original mix as 
reference by minimizing the following non-negative least 
squares objective constraining the mixing weights ai:

 - > >2|| || , 5 1i iXa Y a  (3)

Here, X is a 3-rank tensor containing the STFT of the 
instruments and therefore shaped as (number of 
instruments, frequency bins, time steps), a is the list 
of mixing weights, and Y is the STFT of the original mix 
used as target, in this case shaped as (1, frequency 
bins, time steps). In contrast to Bittner et al. (2014), we 
include additional constraints to Equation 3 considering 
the characteristics of a Carnatic Music rendition. The 
vocal source is, without an exception, the predominant 
source in the performance and therefore, we restrict the 
vocal weights to be within [4, 5]. The tanpura is never 
predominant but a background generator very rich in 

timbre, therefore we restrict its weights to [1, 3]. The 
final restriction is to avoid the violin to be louder than 
the vocal source, to ensure the predominance of such 
from the lead melodic sources. These rules contribute 
to the generation of a more natural Carnatic recording 
following the traditional mixing configuration for each 
instrument in the arrangement. We relate the remixed 
stems including the resynthesized vocal signal, with the 
corresponding pitch annotation we used as reference for 
the resynthesis.

3.2 DATA GENERATION SETUP
The presented pipeline is applied to the recordings in 
Saraga that have available close-microphone audio, 
168 out of the total 249. There is no convention in the 
literature about the length in seconds of individual 
samples. Given that our dataset is intended to serve as 
training data (rather than to be listened to) and that the 
duration of Carnatic Music performances often last over 
an hour, we split the recordings into chunks of 30 s. The 
pipeline is run at a sampling rate of 44.1 kHz.

(Section 3.1.1) The source separation is performed 
using Spleeter (Hennequin et al., 2020). The threshold in 
the energy filtering for leakage removal is 1.25% of the 
peak energy in the signal.

(Section 3.1.2) PPM is applied using a window of 
2048 samples and hop size of 128. Before running the 
algorithm, we apply an equal loudness filter to the signal 
(Salamon and Gomez, 2012). The pitch curve is Gaussian 
smoothed with a sigma of 1.

(Section 3.1.3) The window and hop sizes are set 
to 2048 and 128 respectively corresponding to the 
pitch extraction parameters. We use 30 harmonics, δ = 
0.001, and set to 5 harmonics the minimum to perform 
resynthesis. The remaining parameters can be found in 
the implementation referenced in Section 7.

(Section 3.1.4) The tanpura synthesis model is used 
out-of-the-box (including our modification presented 
in Section 3.1.4). Since the model is designed to 
synthesize a single pass throughout the instrument 
strings, the generated tone has a duration of ≈3 s. We 
generate multiple instances, concatenating them using 
a triangular window to obtain a 30 s signal.

(Section 3.1.5) We apply a single scalar mixing 
weight per instrument for the entire 30 s chunk. Given 
the extensive duration of Carnatic renditions and the 
sections in a performance, and also the roughly stable 
mix in live concerts, we perceptually observe no notable 
mixing imbalance in the audio chunks.

3.3 DATASET SPECIFICATIONS
The dataset resulting from the presented process is named 
Saraga-Carnatic-Melody-Synth (SCMS), and is made 
publicly available for research purposes (see Section 7). 
The dataset occupies 25GB of space. We split the dataset 
into train (11 artists, 1683 files, ⋍845 minutes) and test 
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(5 artists, 777 files, ⋍390 minutes) sets, ensuring that 
the singer gender and tonic range are equally-distributed 
between both sets, and the recordings of a single artist 
are never in both train and test sets simultaneously. Audio 
chunks containing solely unvoiced melody segments are 
disregarded.

The audio files are in WAVE format, 16 bit depth, and 
sampled at 44.1 kHz. The melodic annotations are in CSV 
format with two columns: timestamp in seconds (hop size 
of 29 ms) and fundamental frequency values, represented 
in Hertz (Hz). Unvoiced timestamps are annotated with 0 
Hz. The dataset includes a folder for the audio recordings, 
and a folder for the annotations. Note that audio and 
annotations for a particular chunk, artist, or even tonic, can 
be retrieved using the included JSON dataset metadata. 
As such, one can easily parse our proposed and curated 
splits to reproduce our results. See Table 1 for a detailed 
comparison of the specifications in terms of style and size 
between SCMS and available pitch extraction datasets.

4 EXPERIMENTS

4.1 VOCAL PITCH EXTRACTION
In order to evaluate the impact of the SCMS on the 
computational melodic analysis of Carnatic Music, we 
perform two vocal pitch extraction experiments using 
the generated data.

Experiment A – Cross-cultural evaluation of FTA-
Net: Empirical comparison between FTA-Net trained 
and evaluated on data collections from both IAM and 
Western music domains. We aim at studying the extent 
of the domain-drift (Quiñonero-Candela et al., 2009) 
between different musical repertoires in a DL-based 
vocal pitch extraction context.

Experiment B – Comparison between FTA-Net and 
Melodia: Empirical comparison between FTA-Net trained 
with the SCMS and baseline Melodia.

4.1.1 Experimental setup
The CFP features to feed FTA-Net are computed at a 
sampling rate of 8 kHz to reduce the computational 
expense. We use a window size of 2048 samples (256 ms 
at 8 kHz) and hop of 80 (10 ms at 8 kHz). We do not use 
the complete SCMS in our experimentation to prevent the 
difference in training data size to be a determining factor 
when comparing the models. Correspondingly, for each 
artist in the training set of the SCMS, we randomly select 
85 samples, in total, from all renditions performed by 
said artist. Therefore, we consider 85*11 = 935 samples, 
from a total of 95 renditions performed by the 11 artists 
in training set. For training we use the ADAM optimizer 
with a learning rate of 0.001, batch-size of 16, and binary 
cross-entropy loss.

We denote the FTA-Net trained on the vocal subset of 
MedleyDB as FTA-W (W stands for Western Music). We 
resynthesize the singing voice in MedleyDB using our 
method in Section 3.1.3 and remix it back with the rest 
of instruments to bypass biases that may arise from the 
synthesis algorithm. We denote by FTA-C (C stands for 
Carnatic Music) the FTA-Net trained on the SCMS. We 
evaluate FTA-W and FTA-C on (1) the test set of SCMS, (2) 
a collection of Hindustani data of the same size, referred 
to as SHMS, and generated using our synthesis method 
applied only on selected mixture recordings where 
the singing voice is clearly dominant, since no close-
microphone data is available in this case, (3) Western 
datasets from the literature – ADC2004, and MIREX05. 
We use the melody metrics of Bittner and Bosch (2019) 
including Voicing Recall (VR), Voicing False Alarm (VFA), 
Raw Pitch Accuracy (RPA), Raw Chroma Accuracy (RCA) 
and Overall Accuracy (OA).

4.2 MELODIC PATTERN DISCOVERY
Ultimately, vocal pitch tracks are used as features for 
further computational musicology research. To assess 
the impact of our extracted pitch tracks, we use them 

DATASET CONSIDERED GENRES LENGTH % VOCAL NO. SAMPLES SAMPLE LENGTH AVAILABLE AUDIO?

MedleyDB V1∧ Rock, pop, jazz, rap ⋍447 min 57% 108 ∼20–600 sec Upon request

MedleyDB V2∧ Rock, pop, jazz, rap ⋍750 min 57% 196 ∼20–600 sec Upon request

MDB-mel-synth⋉ Rock, pop, jazz, rap ⋍190 min 64% 65 ∼20–600 sec Yes

MIR1K† Chinese pop ⋍113 min 100% 1000 ∼4–13 sec Yes

RWC* Japanese & US pop ⋍407 min 100% 100 ∼240 sec No

ADC2004⊚ Rock, pop, opera ⋍10 min 60% 20 ∼30 sec Yes

MIREX05⊚ Rock, pop ⋍6 min 80% 12 ∼30 sec Yes

MIREX09 Chinese pop ⋍167 min 100% 374 ∼20–40 sec No

INDIAN08 Hindustani Music ⋍8 min 100% 8 ∼60 sec No

SCMS Carnatic Music ⋍1235 min 100% 2460 ∼30 sec Yes

Table 1 Specification comparison between our SCMS and different state-of-the-art-melody datasets (Goto et al., 2002)*, (LabROSA, 2005)⊚, 
(Hsu and Jang, 2010)†, (Bittner et al., 2014)∧, (Salamon et al., 2017)⋉. Table inspired by a similar comparison by Bittner et al. (2014).
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for the musicologically relevant task of melodic pattern 
discovery. Nuttall et al. (2021) present a computational 
approach that utilizes the main melodic vocal line, 
extracted using Melodia, to identify and group melodic 
patterns in the sung melody from a performance in 
Saraga Carnatic. With the subsequent availability of expert 
annotations of melodic patterns in this performance 
(Section 4.2.2) we are able to apply this pattern finding 
approach to our newly extracted pitch tracks and the 
current state-of-the-art, Melodia, evaluating the results 
empirically.

Experiment C – Melodic pattern discovery compa-
rison: We assess the suitability of eight pitch track 
candidates for melodic pattern discovery. To this end, 
a match between a detected pattern and our expert-
annotated sañcāra and phrases is evaluated in terms 
precision, recall, and F1-score.

4.2.1 Experimental setup
We extract eight pitch tracks from the audio of a 
performance from an artist not present in the training 
data of the SCMS: the Akkarai Sisters performance of 
a composition titled Koti Janmani,4 by the composer 
Oottukkadu Venkata Kavi, set in the Carnatic rāga 
Rītigauḷa, used also by Nuttall et al. (2021). Each of the 
eight pitch tracks correspond to one of the following 
four methods applied to either the audio of the mixed 
recording or the close-microphone vocal stem in Saraga:

1. Melodia – Current baseline method.
2. Melodia-S – Melodia applied to vocal source 

separated audio (Hennequin et al., 2020).
3. FTA-W – FTA-Net trained on MedleyDB, vocal stem 

passed through our resynthesis algorithm.
4. FTA-C – FTA-Net trained on the SCMS

For each of the eight pitch tracks we apply the melodic 
pattern discovery process of Nuttall et al. (2021). To 
account for the variable length of patterns, the process 
is run for each integer length in the range [2, 7]s. Pattern 
groups are restricted to a maximum of 20 per group, 
with a maximum of 20 groups for each pattern length. 
In practice, no pattern groups reach these limits. ϕ is 
determined individually for each pitch track and chosen 
as the threshold which delivers the maximum F1 score 
when evaluated on our expert annotations (Table 4). We 
optimize for F1 so as to control the quantity and relevance 
of the retrieved patterns.

It is important to consider that (1) there is some 
variation possible in where an annotator might choose 
to segment a longer pattern, and (2) the process only 
accepts fixed values of pattern length m rather than a 
range; consequently, since the annotations themselves 
are of variable length, the process will almost always 
return a pattern whose length does not correspond 
exactly to the annotation. Therefore, we consider a 

returned pattern, R, to be a match with an annotation, 
A, if the intersection between them is more than two-
thirds the length of A and more than two-thirds the 
length of R.

4.2.2 Melodic pattern annotations
As mentioned in Section 2, no open and complete 
annotations to evaluate the task of melodic pattern 
discovery are available. For the evaluation of the melodic 
pattern finding experiment we use expert annotations 
created, as part of this work, by a professional Carnatic 
vocalist. These contain all sañcāras in the audio 
recording, annotated in the software ELAN (Sloetjes 
and Wittenburg, 2008), using sargam syllables (the 
notation traditionally used by Carnatic musicians to 
refer to the underlying svaras). Sañcāras (musically 
meaningful phrases and motifs) are defined according 
to the annotator’s lived experience as a professional 
performer of 21 years standing. It should be noted 
that there exists no definitive list of such sañcāras, and 
although there will be a good degree of agreement 
between professional musicians, there will also be 
subtle points of difference in defining the borders of a 
sañcāra/phrase (the segmentation), as is also the case 
in the annotation of other musical styles (Bruderer, 
2008; Nieto, 2015). Although these annotations are 
subjective to some degree, they have the virtue of 
being informed by expert knowledge of the style rather 
than based on an externally imposed metric, and thus 
should be highly relevant to Carnatic performance 
practice.

As sañcāras in Carnatic compositions are often varied 
on their subsequent repetitions, but are still recognizably 
connected musically, we capture these connections by 
grouping such variations together with an ‘underlying 
sañcāra’ annotation, where the underlying annotation 
is the first occurrence of the sañcāra group (typically 
the simplest version). Furthermore, as Carnatic music 
can be segmented hierarchically, wherein sometimes 
two or more shorter segments will lie within one 
longer segment, we also create longer phrase-level 
annotations which consist of either one long or several 
short sañcāras. This is done to capture the multi-level 
nature of musical structure (McFee et al., 2017; Popescu 
et al., 2021). Finally, the evaluation is made on the 
two levels – ‘underlying sañcāras’ and ‘underlying full 
phrases’.

5 RESULTS AND DISCUSSION

Experiment A. Cross-cultural evaluation of FTA-Net. 
In Table 2 a cross-cultural evaluation of FTA-Net is 
displayed. We observe a notable performance difference 
due to the change of repertoire in the testing data. On 
the test set of SCMS, FTA-W performs worse than FTA-C, 
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≈20% less in terms of overall accuracy, showing that 
training the FTA-Net with data that does not include the 
idiosyncratic melodic features of Carnatic Music produces 
subpar performance on the Carnatic repertoire. We 
observe a similar trend when evaluating on the Western 
music datasets. We study a selection of Carnatic vocal 
pitch tracks extracted using FTA-W to identify specific 
problems in comparison to Western recordings. The most 
common observed problem is the effect of the violin, 
which typically overlaps with the lead singer, playing a 
similar melody line, causing the false alarm detection 
to rise (see VFA column in Table 2). Another observed 
problem is that FTA-W fails to capture the gamakas in 
detail. Such strong and fast vocal ornaments are not 
commonly seen in Pop/Rock.

Note the reduced number of false alarm detections 
of the FTA-C on the SCMS testing set, in addition to the 
improvement on pitch and chroma accuracies. The 
high performance that FTA-C achieves in the Carnatic 
repertoire is probably due to the fact that the SCMS is less 
diverse in terms of instrument arrangement and vocal 
style, representing as such the current performance 
practice in Carnatic music, where concerts with vocalists 
as soloists greatly outnumber those where other 
instruments act as the soloist. In Table 2 we also observe 
that the FTA-C generalizes better to Hindustani than to 
Western music, yet achieving better performance than 
the model trained on modern Western music, FTA-W, 
from which we can infer that the model is not overfitting 
to the SCMS but learning the idiosyncratic features 
of the music repertoire. Despite being two different 
music traditions, Carnatic and Hindustani include many 
common concepts and features.

Experiment B. Comparison between FTA-C and 
Melodia. In Table 3 we observe the comparison between 
FTA-C and Melodia. From this table we can conclude that 
(1) FTA-C is able to outperform Melodia, a broadly used 
pitch extraction algorithm for the computational analysis 
of Carnatic Music and (2) Melodia scores a vocal pitch 
extraction accuracy comparable to the performance 
reported in the original paper for diverse test datasets 
(Salamon and Gomez, 2012), which may suggest that 
the SCMS dataset includes standard quality audio with 
high-accuracy annotations.

Experiment C. Quantitative evaluation of melodic 
pattern discovery. Table 4 presents the recall, precision 
and F1 score of the melodic pattern discovery algorithm 
applied to the eight pitch tracks. The results extracted 
from the FTA-C pitch tracks outperform the others in 
almost all metrics except for precision on the vocal stem, 
in which Melodia-S, which is the second best performing 
pitch track, is leading. However, FTA-C pitch track 
achieves +28.4% recall and +13.8% F1 over Melodia-S 
for the mixed stem, and an improvement of +9.5% recall 
and +1.5% F1 for the vocal stem.

We observe that Melodia and Melodia-S struggle 
to achieve anywhere near competitive results when 
applied to the mixed recording, but do provide 
comparable results for the vocal stems, however 
data of this kind is rarely available in practice. The 
results also suggest that using Spleeter to clean the 
accompaniment is not sufficient to solve the issue, 
showing the relevance of FTA-C. The “coverage” in 
Table 4, refers to the proportion of the returned pitch 
track which corresponds to non-zero values; note that 
this does not reflect the proportion of the pitch track 

MELODY EXTRACTION METRICS

VR VFA RPA RCA OA

↓TEST SET/MODEL → FTA-C FTA-W FTA-C FTA-W FTA-C FTA-W FTA-C FTA-W FTA-C FTA-W

SCMS (test) 96.35 83.26 8.38 31.43 90.17 69.30 90.46 70.62 90.99 67.72

SHMS 91.25 80.18 17.04 17.53 78.96 68.76 81.78 70.20 81.39 73.84

MIREX05 86.74 89.21 21.40 19.23 68.11 73.94 69.68 74.18 72.44 76.66

ADC2004 77.25 87.79 29.17 27.94 64.01 77.98 66.62 79.98 64.46 77.32

Table 2 Performance comparison between FTA-Net trained using the SCMS (FTA-C) and MDB-synth (FTA-W). Results presented as 
percentages (%).

MELODY EXTRACTION METRICS

VR VFA RPA RCA OA

MODEL → 
↓ TEST SET

FTA-C MELODIA FTA-C MELODIA FTA-C MELODIA FTA-C MELODIA FTA-C MELODIA

SCMS (test) 96.35 85.75 8.38 17.17 90.17 77.51 90.46 79.81 90.99 77.07

Table 3 Performance comparison between FTA-Net trained using the SCMS (FTA-C) and Melodia (Salamon and Gomez, 2012). Results 
presented as percentages (%).
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which is annotated correctly. The pitch tracks returned 
from FTA-C have slightly more coverage with a +8.9% 
and +3.3% improvement on Melodia-S for the mix and 
vocal stem respectively. Note also that the pitch tracks 
extracted using FTA-W (trained on Western music) 
perform considerably worse than all others in metrics, 
coverage and number of groups returned.

There are 148 annotated patterns in total; 41 are 
identified by both FTA-C and Melodia-S. FTA-C identifies 
a further 56 that Melodia-S is unable to and Melodia-S 
identifies a further 14 that FTA-C is unable to. In total 
there are 37 patterns that neither manage to identify. 
Figure 2 illustrates four examples of annotations that 
only FTA-C is able to identify. It is obvious from exploring 
these comparative plots that Melodia struggles to 
correctly annotate regions of quite intense oscillations 
from the mixed recording, as seen in the third plot in 
Figure 2 between ∼153.0 s and ∼153.6 s, again between 
∼154.0 s and ∼154.3 s, and further throughout the 
annotation plots that can be found in the accompanying 
GitHub repository.

Figure 3 shows four instances of motif group 39 
starting at different parts of the performance. The 
pitch track in the Figure has been extracted by FTA-C 
on the mixed recording. We can see two forms of the 
same phrase – the first, appearing at 3:01 and 3:19 is 
the simplest version (covering the svara annotation 
“nnsndmgmnns”), while a melodic variation on this 
phrase can be seen at 6:57 and 7:08. In fact, an 
underlying sañcāra included in this phrase occurs eight 
times in this recording, seven of which were found and 
correctly placed into one group of related sañcāras, 
notwithstanding the fact they show considerable 
variation. Such returned groups of motifs could be of 
interest to musicologists who wish to examine variations 
in performance of sañcāras and related phrases across 
audio recordings, for example, for the purposes of 
comparative and/or historical performance analysis, 
as well as the analysis of musical compositions. Any 
such study would ultimately depend on the quality and 
accuracy of their extracted vocal pitch annotations.

The reader is referred to the accompanying repository 
where Experiment C is run for two additional recordings 
including different artists and rāgas.

6 CONCLUSIONS

In this work we present a methodology to automatically 
generate a novel, large, and open collection of vocal 
pitch annotations for Carnatic Music: the SCMS. We 
use the Saraga dataset which serves as input for a 
bespoke Analysis/Synthesis method that accounts for 
the features and challenges of Carnatic Music, as well 
as data availability for this style. To study the impact of 
the SCMS, we then train a state-of-the-art vocal pitch 
extraction model, aiming to equal the performance that 

PITCH TRACK STEM COVERAGE (%) PRECISION RECALL F1 NO. PATTERNS NO. GROUPS Φ

Melodia Mix 69.0 0.323 0.297 0.310 164 21 2.7

Melodia-S Mix 71.4 0.341 0.371 0.356 170 20 2.8

FTA-W Mix 74.8 0.250 0.007 0.113 4 2 2.9

FTA-C Mix 80.3 0.396 0.655 0.494 283 66 2.2

Melodia Vocal 76.0 0.514 0.574 0.542 181 48 1.0

Melodia-S Vocal 75.3 0.523 0.574 0.547 197 50 1.0

FTA-W Vocal 75.3 0.395 0.155 0.223 43 20 2.9

FTA-C Vocal 78.0 0.485 0.669 0.562 227 49 2.4

Table 4 Comparison of different pitch extraction methods for melodic pattern discovery.

Figure 2 Four different example patterns identified by FTA-C but dis-
regarded by Melodia-S (pitch extraction run on the mixture audio).
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this model obtains for currently available datasets, which 
mainly include Pop, Rock, and related music repertoires. 
We run a comprehensive cross-cultural evaluation, 
comparing two models trained on Carnatic and Western 
music respectively, across Carnatic, Hindustani, and 
Western test sets. We show that the model trained on 
the SCMS is able to obtain state-of-the-art vocal pitch 
extraction results for Carnatic Music. We provide proof 
and discussion of the importance of the SCMS dataset 
by running melodic pattern discovery experiments using 
the improved vocal pitch tracks. The results show that 
our newly extracted pitch tracks boost the performance 
on discovering expert annotated melodic patterns, while 
Melodia is a viable approach only if separated vocal 
recordings are available. We also note that FTA-Net 
trained on the available datasets for pitch extraction 
prior to this work performs very badly and reduces the 
discovery of Carnatic melodic patterns. From this, we 
observe there is a need for repertoire-specific data to 
break the glass-ceiling for the task of vocal melody 
extraction and subsequent musicologically-relevant 
computational analysis across a wider range of musical 
styles from different cultural contexts. In future work we 
aim at updating the data generation method with latest 
repertoire-specific technologies, targeting a cleaner 
version of the SCMS. We are also interested in properly 
extending the proposed methodology to the Hindustani 
tradition and if possible, to other repertoires.

7 REPRODUCIBILITY

We publish the SCMS in Zenodo (DOI: 10.5281/zenodo. 
5553925). The implementations for (1) data generation, 
(2) training FTA-Net with the SCMS, in addition to the pre-
trained models for Carnatic Music, are available here: 
https://github.com/MTG/carnatic-pitch-patterns. Also, we 
include code to run the experiments and visualizations 
in the paper. The expert pattern annotations are made 
available in the repository. Both SCMS and FTA-Carnatic 
have been integrated into compIAM to be used out-of-
the-box.

NOTES
1 https://github.com/MTG/compIAM.

2 In this work we use multi-track to refer to completely 
separated instrument recordings, and close-microphone for 
a multi-track scenario with leakage (typically recorded live or 
in the same room).

3 We studied the sañcāra annotations created for this work and 
found that long, stable regions tend to lie either outside or at 
the borders of annotations.

4 https://musicbrainz.org/recording/5fa0bcfd-c71e-4d6f-940e-
0cef6fbc2a32.
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