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Minimum entropy production by
microswimmers with internal dissipation

Abdallah Daddi-Moussa-Ider 1, Ramin Golestanian 1,2 & Andrej Vilfan 1,3

The energy dissipation and entropy production by self-propelled micro-
swimmers differ profoundly from passive particles pulled by external forces.
The difference extends both to the shape of the flow around the swimmer, as
well as to the internal dissipation of the propulsionmechanism.Herewederive
a general theorem that provides an exact lower bound on the total, external
and internal, dissipation by amicroswimmer. The problems that can be solved
include an active surface-propelled droplet, swimmers with an extended
propulsive layer and swimmers with an effective internal dissipation.We apply
the theorem to determine the swimmer shapes that minimize the total dis-
sipationwhile keeping the volume constant. Our results show that the entropy
production by activemicroswimmers is subject to different fundamental limits
than the entropy production by externally driven particles.

Microswimmers are microscale objects that move in a self-propelled
way through a fluid medium at low Reynolds numbers where viscous
forces dominate over inertia1–3. They comprise living swimmers suchas
microorganisms and sperm cells, which have been a subject of keen
interest by pioneers of twentieth-century fluid physicists such as
Ludwig Prandtl4 and G.I. Taylor5, as well as artificially manufactured
colloidal microswimmers6–9. A central question in the field of micro-
swimmers is the energetic cost of their propulsion. The energetic
efficiency of a microswimmer is typically characterized by Lighthill’s
efficiency10, defined as the equivalent power needed to pull the
swimmer through the fluid with an external force, divided by the
actually dissipated power of the active swimmermovingwith the same
velocity. In biological swimmers, the question is whether and how the
swimmers have evolved to achieve a high propulsion efficiency and
how close they can come to the theoretical limits set by the laws of
hydrodynamics. Although Purcell11 concluded that the energetic
expenditure for swimming represents a very small fraction of the total
consumption of bacteria, it is now known that larger microorganisms,
like Paramecium can use about half of their total power for
propulsion12. The efficiency of artificial swimmers is still lagging far
behind their natural counterparts and its improvement is one of the
key challenges on the way towards future technological or biomedical
applications. Finally, the entropy production in suspensions of
microswimmers is a fundamental question in stochastic thermo-
dynamics and statistical physics13–15. A common assumption in these

works is to estimate the “housekeeping”work needed to propel active
Brownian particles by representing autonomous propulsion as exter-
nal forces acting on the particles16–18, which can be coupled to a che-
mical reaction19. An outstanding question is whether there are other
fundamental limits on the entropy production by active particles—
both because of their propulsion mechanism and because the laws of
self-propelled swimming differ from the externally driven particles. At
the core of all these diverse research topics, there is a common fun-
damental question: what is the minimum amount of dissipation nee-
ded by a self-propelled microswimmer, how can it be achieved and
how does it compare to the dissipation by a passive object that is
pulled through the fluid by an external force.

Many biological microswimmers achieve self-propulsion by per-
forming nonreciprocal deformation cycles via periodic beating of cilia
or flagella, slender appendages anchored to their cell body. The
waveform assumed by beating flagella or cilia follows an asymmetric
pattern in an irreversible fashion to generate propulsion. While bac-
teria and flagellates usually swim with a small number of long flagella,
numerous other biological swimmers such as Paramecium or Volvox
swim bymeans of thousands of cilia packed on their surfaces. Because
the cilia are usually an order of magnitude shorter than the size of the
body, they can be described as surface-driven and the action of cilia
consists in generating an effective slip velocity along the surface10,20–24.

For surface-drivenmicroswimmers, the power beingdissipatedby
viscosity can broadly be split, from a hydrodynamic perspective, into
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two distinct parts: internal and external. The internal dissipation
accounts for the local losses occurring at the propulsive layer. For
example, this could be the dissipation within the ciliary layer or within
the boundary layer of phoretic swimmers, or the dissipation inside the
droplet in the case of self-propelled droplets. The inner dissipation
plays the dominant role in most microswimmers, notably in ciliated
microorganisms25–27 and also in phoretic swimmers28,29. The external
dissipation results from the interaction of the swimmer with the sur-
rounding fluid environment. External dissipation is inevitable as the
swimmer displaces the fluid it moves through and is independent of
the specifics of the propulsion mechanism. The minimum amount of
external dissipation neededby a swimmer of a given shapewith a given
swimming velocity therefore represents a fundamental problem of
low-Reynolds-number hydrodynamics that has been solved analyti-
cally for spherical30–33 and spheroidal swimmers25,34,35, as well as
numerically for arbitrary axisymmetric shapes36,37. The propulsive
motion caneither be stationary25,34,36 or periodic in time, representing a
squirming motion or the motion of the ciliary envelope30,33,37. More
lately, the swimming efficiency in non-Newtonian fluids has also been
investigated32,35.

We recently derived a general solution to determine the lower
bound on external dissipation by an active microswimmer, which we
could express with the passive hydrodynamic drag coefficients of
two bodies of the same shape: one with the no-slip and one with the
perfect-slip boundary condition38. The solution also shows that the
flow profile of the optimal swimmer is a linear superposition of the
flow fields induced by these two passive bodies. The optimal velocity
profile, which in principle poses a complex quadratic optimization
problem, is then reduced to the solution of two passive flows. By
means of this theorem, we determined the flow field of an optimal
swimmer of nearly spherical shape using a perturbative analytical
approach39.

In this paper, we show that the approach can be generalized to
derive fundamental limits on the total dissipation by a swimmer,

comprising both external and internal contributions. We derive novel
minimum dissipation theorems for different classes of swimmers, i.e.,
surface-driven droplets, swimmers with a finite propulsive layer, as
well as swimmers with an effective surface dissipation. The formula-
tions of the active problems we study here are illustrated in Fig. 1 and
the corresponding theorems are summarized in Table 1. We thus
demonstrate that the analytical approach can generically be applied to
a broad class of minimum dissipation problems in microswimmers
with realistically modeled propulsion mechanisms.

Results
Minimum dissipation theorems with internal dissipation
We consider a microswimmer that self-propels through an incom-
pressible viscous fluid. The fluid velocity v(x) satisfies the Stokes
equation = � σ=0 together with the continuity equation = � v=0
where σ = −pI + 2μE is the stress tensor, p the pressure, μ the shear
viscosity, and E= 1

2 =v+=v>
� �

the rate-of-strain tensor. The swimmer
moves with a translational velocity VA and angular velocity ΩA, which
can be treated together as a rigid body velocity described by the
6-component vector VA = ½VA,ΩA�. Likewise the total force FA and
torque MA exerted by the fluid on the swimmer can be merged to a
generalized force FA = ½FA,MA�. In the absence of external (other than
hydrodynamic) forces, the swimmer is force- and torque-free, FA = 0.
The swimmer self-propels by imposing a fluid velocity ~v on its surface.
Here, all velocities in the co-moving frame are denoted as ~v and those
in the laboratory frame as v. Alternatively, depending on the for-
mulation, the swimmer can also impose an active contribution to the
force (traction) density on its surface fA. As the swimmer moves
through thefluid, it dissipates the power PA. Thedissipation consists of
an external contribution in the fluid outside the swimmer and an
internal contributioneither influids inside the swimmeror internally in
the flow-generating mechanism.

In the following, we summarize the minimum dissipation theo-
rems that will be derived in the subsequent sections. All theorems take

b c d
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Fig. 1 | Five scenarios of internal dissipation in an active swimmer. a An active
droplet with a fluid-fluid interface, driven by tangential forces at the interface. b A
swimmer driven by tangential forces at an outer surface (dotted line). c A swimmer
driven by normal forces at an outer surface. d A swimmer driven by unconstrained

forces, allowing both tangential and normal components, at an outer surface. e A
surface-driven swimmer with internal dissipation in the surface layer (green). The
magenta arrows denote the active tractions, defined as the forces exerted by the
fluid on the swimmer.

Table 1 | Minimum dissipation theorems

Dissipation function Motivation Theorem V-problem F-problem

External dissipation38 Ideal swimmer
PA � VA � R�1

PS � R�1
NS

� ��1
� VA

Perfect slip No-slip

Surface-driven droplet (Fig. 1a) Active droplets (Marangoni)
PA � VA � R�1

Droplet � R�1
NS

� ��1
� VA

Droplet No-slip

External tangential forces (Fig. 1b) Model of cilia
PA � VA � R�1

NSi � R�1
CP

� ��1
� VA

No-slip core No-slip core, no tangential slip shell

External normal forces (Fig. 1c) Phoretic swimmers
PA � VA � R�1

NSi � R�1
DC

� ��1
� VA

No-slip core No-slip core, zero normal velocity shell

External unconstrained forces (Fig. 1d) Idealized external propulsion
PA � VA � R�1

NSi � R�1
NS

� ��1
� VA

No-slip core No-slip (outer shell)

Surface dissipation (Fig. 1e) Coarse-grained (cilia, phoretic)
PA � VA � R�1

Navier � R�1
NS

� ��1
� VA

Navier slip No-slip
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a generic shape

PA ≥VA � R�1
V � R�1

F

� ��1
�VA: ð1Þ

The theorem expresses the minimum bound on the dissipation of the
active swimmer PA with two passive hydrodynamic drag coefficients,
represented by 6 × 6 matrices. RV is the drag coefficient of a passive
body with minimum dissipation while fulfilling the boundary condi-
tions required by the active problem. RF is the drag coefficient of
another passive body that appears in the superposition and has a
velocity distribution orthogonal to the active driving forces. The
equality in the theorem (1) is satisfied exactly when the active flow
represents a linear superposition of the two passive problems. We
denote them as the V-problem and the F-problem because the velocity
distribution of the optimal active swimmer is determined by the
solution of theV-problemand the active forces by the solution of the F-
problem. Besides giving the lower limit on dissipation, the theorem
also solves the optimization problem by providing the distribution of
velocities and active forces that allow the swimmer to achieve a given
velocity with minimum dissipation.

We now provide a proof of the theorems stated above. The deri-
vation of the minimum dissipation theorems is based on two crucial
steps: first, we find the solution for the minimum dissipation for the
motion of a body of a given shape, driven by an external force. In our
previous work, which considered external dissipation only38, this was

the perfect-slip body, with properties similar to those of an idealized
air bubble in the fluid, as depicted in Fig. 2a. The second step that
makes the problem solvable consists of finding another passive pro-
blem and form a linear superposition of its flow and that of the active
body. Importantly, the dissipation in the superposition flow needs to
be the sum of the dissipations of the two problems each on its own.
Because dissipation is a quadratic function, the latter condition is not
trivial and requires the application of the Lorentz reciprocal
theorem40. We therefore first generalize the Helmholtz minimum dis-
sipation theorem for passive bodies and prove that Stokes flows
including fluid–fluid interfaces and surfaces with the Navier slip
boundary condition take the form with minimum dissipation. We
subsequently apply the principle of superposition between an active
swimmer and a passive body to derive the theorems for all types of
swimmers listed in Table 1.

Generalization of passive minimum dissipation theorems
We first show that flows around passive bodies with several different
boundary conditions (listed in Table 2) satisfy a minimum dissipation
theorem, i.e., that any other flow satisfying less stringent boundary
conditions has a higher dissipation rate. These are generalizations of
theHelmholtzminimumdissipation theorem,which states that among
all flows that satisfy the prescribed velocity boundary conditions and
incompressibility, but not necessarily the Stokes equation, the actual
Stokes flow has the smallest dissipation41. In the derivation of the
theorem for external dissipation38, we used the statement that among

Fig. 2 | Superposition principle used to derive different variants of the mini-
mumdissipation theorem.Thepassive body (V-problem, left) can be represented
as a superposition of the optimal active swimmer (center) and another passive
body (F-problem, right). The blue arrows indicate the velocity V (in the laboratory
frame) of each body and the red arrows the drag force F on passive bodies, all
drawn to scale. The cyan arrows indicate the velocity ~v and its gradient in the co-
moving frame (not to scale). a A perfect-slip body as a superposition between an
optimal swimmer (external dissipation only) and a no-slip body, as shown in ref. 38.

b A droplet as a superposition between the optimal active droplet and a no-slip
body. c A no-slip body as a superposition between a swimmer driven by tangential
forces at the outer layer and a composite passive body. d A no-slip body as a
superpositionbetween a swimmer drivenby normal forces and a dropletwith a no-
slip core. e A no-slip body as a superposition between a swimmer driven by
unconstrained forces and a no-slip bodyat theouter surface. fANavier-slipbody as
a superposition between a surface-driven swimmer with internal dissipation and a
no-slip body.
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all bodies of a given shape that move with a given speed V and have
zero normal velocity on their surface (i.e., the fluid can not cross the
body’s surface), the perfect-slip body has the lowest dissipation. Here,
we extend the theorem to two further types of boundary conditions.

First, we generalize the theorem to shape-preserving fluid–fluid
interfaces. If the body has a fixed shape, but its interior contains
another fluid such that the boundary condition in the co-moving frame
reads ~v? = ~v?i = 0 and ~vk = ~vki , then the minimum dissipation is reached
when the tangential stress on the surface vanishes, ðI� nnÞ � ðσ� σiÞ �
n=0. The quantities labeled with the index i refer to the internal fluid
domain and those without to the external. n denotes the outward
pointing surface normal. The perpendicular and parallel components
of the velocity are defined as ~v? =n � ~v and ~vk = ðI� nnÞ � ~v, respec-
tively. The theorem states that the dissipation of any flow around an
interface with velocity continuity, itself moving with velocity V, satis-
fies the inequality

P ≥V � RDroplet � V: ð2Þ

Here, RDroplet denotes the generalized drag coefficient of the body
described by the fluid-fluid interface, e.g., an oil droplet in water. A
proof of the statement is given in Supplementary Note 1. A related
version of the theorem has been derived in Ref. 42 for droplet
suspensions. An immediate implication of Eq. (2) is that the dissipation
of the flow around a droplet is always smaller than around a no-slip
body of the same shape and the same velocity. Therefore, the matrix
RNS � RDroplet is always positive definite, which naturally also holds for
the matrices RNS and RDroplet. The expression ðR�1

Droplet � R�1
NSÞ

�1
can be

rewritten as RDroplet � ðRNS � RDropletÞ�1 � RDroplet +RDroplet and is there-
fore positive-definite as well. We have thus proven that the lower
bound given by Eq. (1) is always positive.

In the second generalization, we introduce an energetic cost to
the slip velocity on the surface, such that the total dissipation is given
by (note the distinction between the velocity in the laboratory frame v
and in the co-moving frame ~v)

P =
Z
S
dS �f � v+ μ

λ
~v2

� �
, ð3Þ

with the traction f =σ ⋅n defined as the force density exerted by the
fluid on the body. Here the first term represents the power transferred
from the swimmer to the fluid, which is identical to the total dissipation
in the fluid (Supplementary Note 2). We therefore refer to it as external
dissipation. The second term represents the internal dissipation, which
is the cost of maintaining the velocity on the surface. We wrote the
dissipation density, which can be arbitrary, as μ/λ in anticipation of the
result that follows. The total dissipation as defined in Eq. (3) is minimal
when the flow satisfies the Navier slip condition on the surface

~v=
λ
μ
f k: ð4Þ

Here λ, which we initially introduced as a free parameter, takes the role
of the slip length and μdenotes the viscosity.We note that λ =0 for the

no-slip condition and λ =∞ for the perfect slip. The total dissipation in
any flow around that body moving with velocity V satisfies the
inequality

P ≥V � RNavier � V ð5Þ

whereRNavier denotes the generalizeddrag coefficient of the rigid body
with shape S and slip length λ. The statement is proven in Supple-
mentaryNote 1. By inserting the no-slip flow into the inequality, we see
that RNS � RNavier is positive definite and the lower bound in Eq. (1) is
positive.

Derivation of active minimum dissipation theorems
In the second step, we will derive active minimum dissipation theo-
rems for 5 swimmer types that include internal dissipation, as listed in
Table 1. For that purpose, we will apply the derived inequalities to the
superposition of an active swimmer and a passive body of the same
shape. The crucial step is always to find two passive problems that
satisfy the boundary conditions of the active problemwhereby the first
problem possesses minimum dissipation and the second problem has
a velocity distribution orthogonal to the forces in the active problem.

Active surface-driven droplet. We start by deriving the theorem for
the active droplet, which is propelled by an active tangential force on
the surface (Fig. 1a). The latter determines the stress discontinuity,
ðI� nnÞ � ðσ � σ iÞ � n= fkA. Such active stress can result from the Mar-
angoni effect, where it is caused by a gradient in the surface tension
and is widely used to propel active droplets43. The active power exer-
ted by this force is

PA = �
Z
S
dS fA � vA: ð6Þ

To derive the minimum dissipation theorem for the active dro-
plet, we need one passive body that minimizes the dissipation while
fulfilling the boundary condition on the surface and another passive
body with a velocity distribution that is orthogonal to the active forces
(see below) while also satisfying the boundary condition. The former is
represented by a droplet and the latter by a no-slip body. We first
calculate the dissipation in aflow that is a linear superposition between
the active swimmer, moving with velocity VA, and a passive hollow no-
slip body, moving with velocity VNS, as illustrated in Fig. 2b. The dis-
sipated power in the superposition flow can be expressed as

PA+NS = �
Z
S
dS ðfA + fNSÞ � ðvA +vNSÞ: ð7Þ

We now apply the Lorentz reciprocal theorem (see Methods) by inte-
grating over the whole space, without surface contributions. However,
because the traction is concentrated on the surface S, we write its
contribution in the form of a surface integral. From Eq. (45) it follows
that the two mixed terms are identical

R
SdS fNS � vA =

R
SdS fA � vNS. By

expressing the velocities in the co-moving systemas in Eq. (46), we also
know that

R
SdS fA � vNS =

R
SdS fA � ~vNS +FA � VNS =0. The latter follows

from ~vNS =0 and FA =0. Therefore, the mixed terms vanish and Eq. (7)
reduces to

PA+NS =PA � FNS � VNS ð8Þ

i.e., the sum of the dissipation contributions by the active swimmer
and the no-slip body, each on its own. We have thus a posteriori
justified the choice of the problem used in the superposition. This
decomposition is a crucial step that is decisive for the feasibility of the
solution.

Finally, we know that like any flow satisfying the boundary con-
ditions of continuous tangential and zero normal velocity on the

Table 2 | List of boundary conditions

Type Velocity Stress

No slip v =0 –

Perfect slip v⊥ = 0 f∥ =0

Navier slip v⊥ = 0 fk = μ
λ v

Fluid–fluid interface v? = v?i =0, v
k =vk

i
fk � fki =0

No tangential slip shell v = vi, v
∥ =0 f? � f?i =0

f =σ ⋅n, fi =σi ⋅n.
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surface, the dissipation of the superposition flow satisfies the
inequality (2), which states that PA+NS ≥ ðVA +VNSÞ � RDroplet � ðVA +VNSÞ.
The equality is fulfilled exactly when the superposition corresponds to
the flow around a droplet. This implies VA +VNS =VDroplet and
FNS =FDroplet, along with FDroplet =RDroplet � VDroplet and FNS =RNS � VNS.
These equations are solved to yield

VDroplet = I� R�1
NS � RDroplet

� ��1
� VA, ð9Þ

VNS = R�1
Droplet � RNS � I

� ��1
� VA: ð10Þ

With these velocities, we finally obtain the minimum dissipation the-
orem

PA ≥VA � R�1
Droplet � R�1

NS

� ��1
� VA: ð11Þ

Because the equality in the theorem is fulfilled exactly if the super-
position gives the flow around a droplet, we also know the distribution
of velocities and active forces that minimize the dissipation while
maintaining the swimming speed VA. The optimal slip velocity is given
by the flow around the droplet ~vA = ~vDroplet and the tangential traction
is opposite-equal to that of a no-slip body f kA = � fkNS .

As a simple example, we apply the theorem to a spherical viscous
droplet with external viscosity μ, internal viscosity μi and radius a.
According to theHadamard–Rybczynski equation, the drag coefficient
of the droplet is41

RDroplet = 6πμa � μi +
2
3μ

μi +μ
ð12Þ

and we obtain

PA ≥6πð2μ+3μiÞaV2
A: ð13Þ

For equal viscosities, μi = μ, the ratio of internal vs. external dissipation
is 3: 2. The minimum dissipation then becomes 30πμaV 2

A. The simple
additivity of external and internal dissipation only holds for a sphere.
In general, the presence of internal dissipation will influence the
optimal external velocity profile and vice versa.

Swimmer with an extended propulsive layer and tangential forces.
The second problem we solve involves a swimmer with a no-slip sur-
face Si that is propelled by tangential forces on a closed outer surface
S (Fig. 1b), also called control surface25. Such a model has been pro-
posed to describe the ciliary layer, for example in Volvox44. We now
apply the inequality for a no-slip body with the shape of the inner
surface (Si). The superposition is formed with a composite passive
body that has a no-slip boundary ~vCP =0 at Si (Fig. 2c). At the outer
surface (S), the boundary condition is zero tangential velocity ðI�
nnÞ � ~vCP =0 and continuity of normal stress n⋅σ⋅n, i.e., zero normal
traction n⋅fCP = 0. The definition of the composite body ensures the
orthogonality between active forces and the passive flow, which is
required in the derivation below. At the same time, the choice of
tangential-only forces at the outer surface ensures that it is always
possible to find an active swimmer that exactly satisfies the super-
position condition.

We can express the dissipation in the superposition flow as

PA+CP = �
Z

S +Si

dS ðfA + fCPÞ � ðvA +vCPÞ: ð14Þ

We now employ the Lorentz reciprocal theorem on the fluid domain
outside Si with an additional surface integral of the traction on S. By
combining the forms (45) and (46) we obtainR
S +Si

dS fCP � vA =
R
S +Si

dS fA � vCP =
R
S +Si

dS fA � ~vCP +FA � VCP =0. On
the outer surface, the traction fA is by definition tangential and ~vCP

normal to the surface, therefore their product is zero. This also holds
for the inner surface where ~vCP =0. Together with FA =0, all terms are
identically zero. Therefore, the mixed terms in Eq. (14) integrate to
zero and we have proven the additivity of the dissipated power

PA+CP = PA � FCP � VCP: ð15Þ

From here, the new version of the minimum dissipation theorem fol-
lows in complete analogy to the derivation of Eq. (11):

PA ≥VA � R�1
NSi � R�1

CP

� ��1
� VA ð16Þ

where RNSi is the drag coefficient of a no-slip body described by the
inner surface Si, andRCP is the drag coefficient of a composite passive
body imposing a no-slip boundary condition at Si, with zero tangential
velocity and zeronormal traction atS. At the surfaceS wehave fNSi and
~vk
CP =0. The optimal swimmer therefore has a propulsive force

fA = −fCP and velocity ~vkA = ~vk
NSi at the outer surface.

For a spherical body, thedrag coefficient of the composite passive
body with the outer radius a and the inner radius b is (Supplementary
Note 3)

RCP = 8πμ � 20a
5 + 11a4b+ 11a3b2 +a2b3 +ab4 +b5

28a4 + 13a3b+ 13a2b2 + 3ab3 + 3b4 : ð17Þ

Together with the drag coefficient of the no-slip body RNS = 6πμb, we
obtain the limit on dissipation

PA ≥ 24πμbV
2
A � 20a

5 + 11a4b+ 11a3b2 +a2b3 +ab4 +b5

5ða� bÞ 4a2 +ab+b2
� �2 : ð18Þ

The dissipation as a function of the ratio of the inner to outer radius
b/a is shown in Fig. 3. If the propulsive layer is thick compared to the
particle size, a≫ b, the dissipation bound is 6πμbV 2

A, which is the
dissipation by an externally driven sphere. This is also the lowest
possible dissipation in a flow around a no-slip sphere. In the limit b→ a,

Fig. 3 | Dissipation by spherical swimmers with an extended propulsive layer.
Lower bound on dissipation by a spherical swimmer (radius b) with an extended
propulsive layer, such that the active forces act on a concentric sphere with radius
a. The red solid lines show the case of tangential propulsive forces (18), the blue
solid lines the case of normal forces (22) and the green dashed lines the case of
unconstrained forces (26).
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if the propulsive layer becomes thin, the lowest dissipation
is 6πμV2

Ab=ða� bÞ.

Swimmer propelled by normal forces. An additional problem that
can be solved is the dissipation by a swimmer that is also propelled by
forces acting at the outer surface (S), but this time the active forces
have a direction normal to the surface, i.e., fA ∥n (Fig. 1c). The moti-
vation originates from phoretic swimmers, where the fluid is set in
motion by a potential (normal force) gradient in the boundary layer.
Other boundary conditions are ~vA =0 at the inner surface Si and the
continuity of velocity at the outer surface.

As in the previous case, we apply the inequality to a body with a
no-slip boundary and the shape of the inner surface Si. We form the
superposition between the active swimmer and a passive body con-
sisting of a no-slip core at Si and a fluid–fluid interface at S (Fig. 2d).
Again, we verify the additivity of dissipation for this superposition,
which can be expressed as

PA+DC = �
Z
S +Si

dS ðfA + fDCÞ � ðvA + vDCÞ: ð19Þ

Again we apply the Lorentz reciprocal theorem (Eqs. (45) and (46)) on
the fluid domain outside Si with additional tractions on S to showR
S +Si

dS fDC � vA =
R
S +Si

dS fA � vDC =
R
S +Si

dS fA � ~vDC +FA � VDC =0.
Again, we have fA � ~vDC =0 at both integration surfaces. At the outer
surfaceS this is because the traction fA is normal to the surface and the
velocity ~vDC is tangential. At the inner surface Si their product also
vanishes because ~vDC =0. Therefore, the integrals of the mixed terms
in Eq. (19) vanish, proving the additivity PA+DC =PA � FDC � VDC.
The corresponding minimum dissipation theorem reads

PA ≥VA � R�1
NSi � R�1

DC

� ��1
� VA: ð20Þ

The superposition also states that the optimal swimmer has the active
forces fA = −fDC and normal velocity ~v?A = ~v?NSi at the outer surface.

As an example, we calculate the dissipation by a spherical swim-
mer with inner radius b and radius of the propulsive layer a. The drag
coefficient of the droplet with a no-slip core is (Supplementary Note 3)

RDC =8πμb
5a3 + 6a2b+3ab2 +b3

8a2b+9ab2 + 3b3
ð21Þ

Together with the RNS = 6πμb, we obtain

PA ≥6πμbV
2
A � 4ð5a

3 + 6a2b +3ab2 +b3Þ
5ð2a+bÞ2ða� bÞ

: ð22Þ

The above dependence is shown by the blue line in Fig. 3. In the limit
b→0, the lower bound is 6πμbV 2

A, which corresponds to a sphere
pulled by an external force. For b→ a, the result is 8πμb2/(a−b). While
the expression is similar as for tangential propulsion, the dissipation is
higher by a factor of 4/3.

Swimmer propelled by unconstrained forces. We now relax the
constraint from the last two cases where we required the forces to be
tangential or normal and allow any distribution of forces acting at the
outer surface (S) (Fig. 1d). As illustrated in Fig. 2e, we use a super-
position between the active swimmer and a no-slip body described by
the outer surface and apply the inequality to the inner shape.

The dissipation of the superposition now reads

PA+NS = �
Z

S +Si

dS ðfA + fNSÞ � ðvA + vNSÞ: ð23Þ

We apply the Lorentz reciprocal theorem (Eqs. (45) and (46)) on the
volumeoutside the surfaceSi with additional traction atS. Because the
velocity field is also needed in the space between the to surfaces, we
treat the no-slip body as a hollow fluid-filled shell such that ~vNS =0
inside S. We again see that the mixed terms disappear because ~vNS =0
and show the additivity

PA+NS = PA � FNS � VNS: ð24Þ

Now the inequality reads PA+NS ≥ ðVA +VNSÞ � RNSi � ðVA +VNSÞ. Com-
bined, these two equations give the minimum dissipation theorem

PA ≥VA � R�1
NSi � R�1

NS

� ��1
� VA ð25Þ

where RNS and RNSi are the drag coefficients of no-slip bodies with
shapes S and Si, respectively. The active traction on the outer surface
of the optimal swimmer is fA = −fNS and the velocity ~vA = ~vNSi.

In the case of a spherical swimmer with RNS = 6πμa and
RNSi = 6πμb, the minimum dissipation is

PA ≥6πμbV
2
A � a

a� b
ð26Þ

which is naturally always lower than the dissipation in the more
restrictive cases of tangential or normal forces (Fig. 3). The advantage
over tangential propulsion is small, however, and never exceeds≲ 1%
for spherical swimmers.

Swimmerwith surfacedissipation. The last problem forwhichwe can
calculate the efficiency limit is a surface-driven swimmer for which the
maintenance of the slip velocity comes with an energetic cost, namely
with the power density ζ s~v

2, where ζs is a constant that characterizes
the efficiency of the propulsion mechanism (Fig. 1e). The total dis-
sipated power is defined as

PA =
Z
S
dS �fA � vA + ζ s~v

2
A

� �
: ð27Þ

In this case, we form the superposition with a no-slip body of the same
shape andderive an expression for the dissipationof the superposition
flow, including internal dissipation (Fig. 2f),

PA+NS =
Z
S
dS �ðfA + fNSÞ � ðvA +vNSÞ+ ζ s~v2A

� �
: ð28Þ

In the second term, we took into account that ~vNS =0 and therefore
only ~vA contributes to the internal dissipation. From the reciprocal
theorem (Eqs. (45) and (46)) it follows that

R
SdS fNS � vA =R

SdS fA � vNS =
R
SdS fA � ~vNS +FA � VNS =0, proving the additivity

PA+NS = PA � FNS � VNS: ð29Þ

The choice of the V-problem here differs from the previous cases
where it only needed to fulfill the boundary condition, i.e., zero normal
velocity on the surface. Here, we need a problem that minimizes the
dissipation including the internal contribution. This is the case for a
body with the Navier slip condition on the surface. Therefore, the
superposition flow satisfies the inequality (5)

PA+NS ≥ ðVA +VNSÞ � RNavier � ðVA +VNSÞ : ð30Þ
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In analogy with the previous cases, we derive theminimumdissipation
theorem which reads

PA ≥VA � R�1
Navier � R�1

NS

� ��1
� VA, ð31Þ

where RNavier is the drag coefficient of a body with the Navier-slip
boundary with slip length λ = μ/ζs. In the limit ζs→0, we obtain the
perfect slip body, as in the original theorem for external-only
dissipation38.

As in theother cases, the superposition states that the slip velocity
of the optimal swimmer is ~vA = ~vNavier. However, the internal dissipa-
tion model differs and presents an exception with regard to the opti-
mal active forces. Among the cases discussed here, it is the only one
where both passive problems that form the superposition have non-
zero tractions. Therefore, the optimal swimmer has the trac-
tion f kA = f

k
Navier � f kNS .

In the simplest case of a spherical swimmer, thedrag coefficient of
the sphere with Navier slip boundary is45

RNavier = 6πμa � 1 + 2λ=a
1 + 3λ=a

: ð32Þ

The resulting active dissipation is

PA ≥6πμaV
2
A 2 +

a
λ

� �
=6πaV2

A 2μ+aζ s
� �

: ð33Þ

Again, the additive nature of the external and internal contributions is
limited to spherical geometry.

In the limit λ≪ a, the leading term in the dissipation agrees with
that with external propulsion if we use a for the inner radius and a + λ
for the outer.

Swimmers with optimal shapes
Theminimumdissipation theoremprovides uswith the lowest valueof
dissipation rate by a swimmer of a given shape, moving with a given
velocity. We can now go one step further and ask the question about
the lowest possible dissipation by a swimmer of a given volume,
regardless of its shape. In the following, we apply the newly derived
theorems to determine the optimal shapes of microswimmers with
combined internal and external dissipation. The optimization problem
consists of minimizing the dissipation while keeping the volume and
the swimming speed constant. It is well known that the optimal shape
with external dissipation only is not well defined because the dissipa-
tion vanishes in the limit of an infinitely elongated needle34. In the
opposite limit, when the internal dissipation, modeled with the term
ζ s~v

2, dominates, the optimal swimmer shape consists of a body with
two thin elongated protrusions along the symmetry axis24. Also,
those shapes could only be determined by additionally restricting the
allowed curvature of the surfacewith a dimensionlessminimum radius
r̂min, normalized such that r̂min = 1 restricts the shape to a
spherical body.

Optimal shape of the active droplet. In the following, we numerically
determine the optimal shape of a fluid-filled surface-driven swimmer of
the type of a self-propelled droplet. For each axisymmetric shape, we
numerically determine the drag coefficients of the passive droplet and
the no-slip body using a custom-written boundary element method
(based on Green’s functions from BEMLIB46) and use the theorem to
calculate the minimum dissipation by the active droplet. We para-
meterize the shape as a chain of segments of equal length, linearly
rescale it to impose a fixed volume, and then use a numerical optimi-
zationprocedure todetermine the shapewith theminimumdissipation.

The resulting shapes obtained for different ratios of the internal to
external viscosity (μi/μ) are shown in Fig. 4a. Figure 4b shows the
obtainedminimum dissipation, relative to that of a spherical shape (13),
alongwith a selection of optimal shapes. As anticipated,with a vanishing
internal viscosity, μi = 0, only external dissipation remains relevant and
theoptimal shapebecomes that of an infinitely thinneedle. In the caseof
equal viscosities, μi =μ, the optimal shape is close to a prolate spheroid
with an aspect ratio of 1.16. The dissipated power is 0.991 that of a
spherical droplet, indicating that the advantage over a spherical shape is
tiny. On the other hand, if the internal viscosity dominates, the optimal
shapes first become oblate and eventually transition to a toroid. The
discontinuous topological transition takes place at a viscosity ratio μi/
μ≈4. The propulsion by a toroid rotating inside-out has been studied in
the literature for a long time11,47,48, but only recently a flagellate with a
swimming mode using the same principle has been reported49.

Optimal shape of the swimmerwith surface dissipation. The second
class of swimmers for which we determine the optimal shapes are the
swimmers with internal surface dissipation. Here we face the pro-
blem that the mathematically optimal shapes contain infinitely long
axial protrusions. In order to perform the optimization among rea-
listic shapes, we need to additionally restrict the radius of curvature.
For any point on the surface, we demand that both principal curva-
tures κ1,2 ≤ 1=rmin, where the minimum radius is determined by its
dimensionless value as rmin = r̂mina, where a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V=4π3

p
is the radius of

the sphere with the equivalent volume. Again, we use a custom-
written axisymmetric boundary element solver to determine thedrag
coefficients for a given shape (first rescaled to unit volume) and run

Fig. 4 | Optimal shapesof active surface-drivendroplets. aThe optimal shapes of
active droplets with three different ratios of the internal to external viscosity μi/μ
and their flow fields. b The dissipation P̂A =PA=ð6πð2μ + 3μiÞaV

2
AÞ of the optimal

active surface-driven droplet, relative to the equivalent droplet of a spherical shape
(13), as a function of the viscosity ratio. The red dot indicates a topological bifur-
cation above which a toroidal shape (solid line) has a dissipation lower than the
optimal swimmer with spherical topology (dashed line). The insets show the opti-
mal shapes at viscosity ratios marked with squares.
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the shape parametrization through a constrained minimization
routine.

Examples of optimal shapes for different internal dissipation
densities ζs and curvature radii r̂min are shown in Fig. 5a, with some of
the flows shown in Fig. 5b. The minimum dissipated power PA, scaled
by the minimum dissipation of a spherical swimmer (33), as a function
of both parameters is shown in Fig. 5c. We have previously shown that
in the case of dominant internal dissipation24, the advantage over a
spherical swimmer is≲20% over a wide range of realistic shapes. Here,
we show that the optimal shape has a much larger influence on dis-
sipation when the combination of internal and external dissipation is
taken into account.

Swimmer under external force
In addition to active propulsion, the swimmer can be subject to an
external force, for example when moving in the presence of gravity.
Here, wewill determine howvelocity and dissipationwill be affected in
the presence of an external force Fext. The assumption wemake is that
the active driving force density fA remains constant, whereas the
velocity and the dissipated power are affected by the external force.
For example, in the case of the active droplet, we assume that the
tangential driving force on the surface remains constant, but the sur-
face velocity ~vA is reduced when the swimmer is pulling (or pushing)
against a resistive load. The assumption of a fixed driving force is less
straightforward in the case of internal dissipation, where we assume
that the additional load affects the slip velocity in the same way as it
would on a boundary with the Navier slip and see that the expression
derived above remains valid.

Because the solution with an external, but without active forces,
represents exactly the V-problem, the swimmer under load can be
represented as a superposition of the unloaded active swimmer and
the body from the V-problem (e.g., passive droplet or no-slip core).
The velocity response to the applied force is therefore determined as

VA =V
0
A +R

�1
V � Fext: ð34Þ

Here, V0
A is the unperturbed swimming velocity and RV is the drag

coefficient of the V-problem. Thus, the mobility of the passive body
from the V-problem (R�1

V ) acts as the velocity response function of the
active swimmer.

Under the same assumption, the dissipated power by the active
swimmer, which consists of the power produced by the swimmer and

the power contributed by the external force, is (see Supplementary
Note 4 for a derivation)

PAðFextÞ= P0
A +Fext � V0

A +VA

� �
ð35Þ

with P0
A =PAðFext = 0Þ denoting the dissipated power in the absence of

external force (Fig. 6). Interestingly, the optimal force distribution does
not change with the applied load: the force distribution that minimizes
dissipation whenmoving freely with a given velocity will still be optimal
under load and always follows the force distribution from the F-pro-
blem. By expressing Fext with VA (34), the dissipation obtains the form

PAðVAÞ=P0
A � V0

A � RV � V0
A +VA � RV � VA =PAðVA =0Þ+VA � RV � VA:

ð36Þ

The second term is the dissipation that is expected for anobject driven
by an external force (Fig. 6). The first term represents the dissipation
rate of a swimmer that is brought to a stall by an external force. Its
lower bound is

PAðVA =0Þ≥V0
A � R�1

V � R�1
F

� ��1
� RV

� �
� V0

A: ð37Þ

In other words, the dissipation can be decomposed into one compo-
nent that is required to run the force-generationmechanism PA(VA = 0)
and another one that is identical to the dissipation by a passive body
from the V-problem (i.e., a perfect-slip body or a passive bubble).

Rate of entropy production
By taking into account the thermal noise acting on the swimmer aswell
as an additional force F, the equations of motion are

_X = V0
A +R

�1
V � F + ξ

h i
½1,2,3�

ð38Þ

_nα = V0
A +R

�1
V � F+ ξ

h i
½4,5,6�

×nα ð39Þ

whereX is the spatial coordinate of the particle andnα one of the three
vectors describing the orientation of the swimmer. The product in the
expression for rotational motion is carried out using the Stratonovich
interpretation. The Brownian noise is characterized by its

Fig. 5 | Optimal shapes of swimmers with surface dissipation. a Numerically
obtained optimal shape thatminimizes the dissipation as a function of the internal
dissipation density ζs while keeping the total volume of the swimmer fixed
(V = 4πa3/3). The shapes are restricted by the minimum curvature radius
rmin = r̂mina. b Streamlines in the co-moving frame and propulsion velocity ~v (color

coded) for three optimal shapes, obtained with aζs/μ = 4. c The dissipation by
optimal swimmers as a function of the prescribed minimum curvature radius for a
set of internal dissipation densities aζs/μ. The dissipation is normalized by that of a
spherical swimmer, P̂A =PA=ð6πaV2

Að2μ+aζ sÞÞ.
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autocorrelation function

hξ ðtÞξ ðt + τÞi= 2DδðτÞ ð40Þ

where the diffusion tensor follows from the Stokes–Einstein rela-
tionship as D= kBT R�1

V . Here we disregard any additional active
sources of noise resulting from the stochasticity of the propulsion
mechanism.

The entropy production of the above particle in a steady state is
commonly referred to as “housekeeping” entropy50. In the classical
picture that replaces the self-propulsion velocityV0

A with themotiondue
to an active force, R�1

V � F0
A, the mean entropy production can be

expressed from the statistical definition as in refs. 16–18. For transla-
tional motion, it can be written as T _Shk =

	
_X � ðF+RV � V0

AÞ


where _X is

the stochastic velocity (38) and RV � VA =F+RV � V0
A the deterministic

total force, consisting of the external and the active contribution. The
brackets indicate averaging over noise realizations, as well as over par-
ticle positions and orientations. By carrying out the noise average while
keeping the position and orientation constant, h _XiX,n =R�1

V � F+V0
A, the

translational contribution toT _Shk becomes 〈VA ·RV ·VA〉. A similar result
can be obtained for rotational motion, as shown in ref. 18 for a single
degree of freedom. Taken together, the total “housekeeping” entropy
production in our six-component notation reads

T _Shk = VA � RV � VA

	 
 ð41Þ

with the brackets indicating averaging over particle positions and
orientations.

At this point, we apply the finding (36) that the minimum dissipa-
tion rateby the active swimmer canbewritten as a sumof aconstant and
a term proportional to the square of the actual velocity (swimming
velocity plus drift caused by external forces). The second term is iden-
tical to the expression in Eq. (41). By adding the zero-velocity dissipation
(37), the total “housekeeping” entropy production increases to

T _S
tot
hk ≥V0

A � R�1
V � R�1

F

� ��1
� RV

� �
� V0

A + VA � RV � VA

	 
 ð42Þ

The expression holds for any combination of translational and rota-
tional motion. For free-swimming particles, the housekeeping entropy
production can be expressed by means of the microswimmer
efficiency, as defined in ref. 38

ηm =
V0
A � RV � V0

A

V0
A � R�1

V � R�1
F

� ��1
� V0

A

: ð43Þ

Its lower bound is then given by

T _S
tot
hk ≥

1
ηm

V0
A � RV � V0

A: ð44Þ

Our expression points to a fundamental limit on dissipation by active
particles that is stricter than obtained by treating them as if they were
passive particles with an external driving force RV � VA and a drag
coefficient RV, because the housekeeping dissipation needs to be
offset by the contribution of Eq. (37).

Discussion
In this study, we derived fundamental limits on dissipation by several
classes of microswimmers with internal dissipation. The scenarios we
discussed describe the major propulsion mechanisms by different
microswimmers: active droplets driven by the Marangoni effect43,
ciliated microswimmers that can be approximated with an extended
force-generating layer44, phoretic swimmers with a position-
dependent zeta potential, and finally a coarse-grained model with an
arbitrary local dissipation density.

Determining a lower boundon the dissipation requires finding the
distribution of forces that minimize dissipation while maintaining a
given swimming speed for a given type and shape of swimmer. In
principle, this presents a complex PDE-constrained optimization
problem36. However, it can be solved by generalizing a very powerful
approach previously derived for swimmers with external dissipation
alone, i.e., swimmers with an idealized, lossless, propulsion
mechanism38. The originalminimumdissipation theoremallowedus to
express the minimum external dissipation by a microswimmer with
two passive drag coefficients—one of a no-slip and one with a perfect-
slip body of the same shape. The derivation of the theorem was based
on two properties of the Stokes flow: the Helmholtz minimum dis-
sipation theorem51 and the Lorentz reciprocal theorem40. Here, we
show that under certain conditions analogous theorems can be
derived for other swimmer models that do take into account internal
dissipation. Specifically, one needs to find two passive problems that
satisfy the velocity boundary conditions of the original problem. One
of them needs to represent the flow with minimum dissipation under
these boundary conditions and the other one is a passive problemwith
velocities orthogonal to the active forces. The lower bound on dis-
sipation can then be expressed with the reciprocal difference between
the two drag coefficients. Althoughwe restricted our discussion to five
scenarios, we expect that other minimum dissipation problems can be
solved with the same method. A straightforward example is a micro-
swimmer with a propulsive layer covering only a part of its surface. We
also expect that the theorem can be generalized to other propulsion
mechanisms, for example, surface tension around a swimmer
embedded in a liquid-air interface ("Marangoni surfer”52,53). Note that
besides determining the bound on dissipation, the theorem, bymeans
of linear superposition, also provides a distribution of forces that
exactly achieves this bound, thus fully solving the optimization
problem.

We subsequently expanded the optimality to a class of swimmers
with a fixed volume, but different shapes. The optimal shape of a
surface-driven droplet depends on the ratio between the
internal–external viscosity. When the internal viscosity is small, the
optimal shape unsurprisingly becomes prolate and eventually needle-
like, in order tominimize the external dissipation. On the other hand, if
the internal viscosity is large, the optimal shape undergoes a topolo-
gical bifurcation and takes the shape of a toroid rotating inside-out,
resembling some swimmer models studied by Taylor47 and Purcell11.
Swimmers with effective surface dissipation always become elongated
and, like in the case of surface dissipation alone, take the shape of a
body with two protrusions along the symmetry axis if sufficient

Fig. 6 | Force-dependent dissipation. Dissipation by an active microswimmer
subject to an external force Fext. The dissipated power (PA, blue) can be split into
the power output of the swimmer (PA � Fext � VA, green) and the rate ofworkby the
external force (brown). The dissipated power differs from the expression VA � RV �
VA (gray) by a constant offset (red arrow). The diagram is calculated with a
microswimmer efficiency of ηm=0.4.
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curvature is permitted. These shapes bear a remarkable resemblance
with many ciliates found in nature24.

When the swimmer ismoving in the presence of an external force,
the total dissipation can be decomposed into a constant term and a
term that corresponds to the drag of a passive body moved with the
same velocity. The dissipation therefore reaches its minimum when
the swimmer is stalled. The drag coefficient that appears in the
expression for dissipation is the same drag coefficient that describes
the velocity response to an external force and also determines the
noise amplitude through the fluctuation-response theorem. In con-
trast with the commonly used picture in which the propulsion of a
microswimmer is replaced by an external “active force”14,16,17, we find
that the dissipation and entropy production need to be corrected for a
contribution describing the energetic cost of force generation. The
same holds for studies that determine the entropy production from
the statistical definition18,54,55. Our work therefore complements the
previous studies on fundamental limits on entropy production in
active microswimmer suspensions by adding an unavoidable con-
tribution from internal dissipation and also from the fact that swim-
ming usually generates more dissipation than pulling by a force. It
needs to be stressed that these results hold under the assumption that
the presence of an external load does not affect the active driving
forces on the swimmer. In principle, other types of response are also
conceivable. For example, the opposite limit would be a mechanism
maintaining a prescribed slip velocity regardless of the stress on the
surface. In such cases, the velocity-dependent entropy production rate
canhave a different form. Furthermore, the entropy production can be
influenced by interactions between swimmers, in particular when they
are non-conservative56.

Finally, while our study can provide a complete hydrodynamic
picture of the problem, it does not take into account the dissipation by
the mechanism of force production, for example, a chemical reaction
in a phoretic swimmer. The energetics of the latter were addressed in
several studies19,29, but a complete solution providing a dissipation
limit for the combined chemical and hydrodynamic problem still
presents an open challenge. Likewise, a major open question is whe-
ther our approach can be used to provide dissipation limits for
swimmers that move by periodically changing their shape, which was
thus far possible only under limited constraints (e.g., the three-sphere
swimmer57).

Methods
Lorentz reciprocal theorem
In the following, we recapitulate the Lorentz reciprocal theorem40,58,
which provides us a relationship between two different flow problems
sharing the same geometry and fluidmedium.Themainproblem (here
denoted as A) and the auxiliary problem (B) are then connected
through the following integral relationship:

Z
S
dS fA � vB +

Z
V
dV fA � vB =

Z
S
dS fB � vA +

Z
V
dV fB � vA: ð45Þ

Here f denotes the traction on the integration surface and f any addi-
tional body force in the integration volume.

If problem A consists of a body moving with the rigid body velo-
city VA and problem B of a body with the same shape moving with VB,
the reciprocal theorem can also be expressed with co-moving velo-
cities

Z
S
dS fA � ~vB +

Z
V
dV fA � ~vB +FA � VB =

Z
S
dS fB � ~vA +

Z
V
dV fB � ~vA +FB � VA:

ð46Þ

Aclassical application is to apply the reciprocal theorem in this form to
an active force-free swimmer (FA =0) and a no-slip body (B ≡NS) of the

same shape, which satisfies ~vB = ~vNS =0. Then the left-hand side of Eq.
(46) is zero and the right-hand side yields FNS � VA = �R SdS fNS � ~vA,
which is an elegant and frequently used way of determining the
velocity of the active swimmer VA if one knows its surface velocity
~vA

30,40,59.

Data availability
All data required to generate our results are available from the corre-
sponding author upon request.

Code availability
The code used to obtain the optimal shapes of active droplets and
swimmers with surface dissipation (Figs. 4 and 5) is available from the
corresponding author upon request.
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