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Abstract
This paper presents a property-directed approach to verifying recurrent neural networks (RNNs). To this end, we learn a
deterministic finite automaton as a surrogate model from a given RNN using active automata learning. This model may then
be analyzed using model checking as a verification technique. The term property-directed reflects the idea that our procedure
is guided and controlled by the given property rather than performing the two steps separately. We show that this not only
allows us to discover small counterexamples fast, but also to generalize them by pumping toward faulty flows hinting at the
underlying error in the RNN. We also show that our method can be efficiently used for adversarial robustness certification
of RNNs.
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1 Introduction

Rather than programming manually, it seems charming
to simply provide examples of the intended input–output-
behavior of a given function and derive the implementation
of the function using algorithmic means. That is the promise
of machine learning, in which often some form of classifi-
cation problem is addressed by adjusting the parameters of
some (deep) neural network until it fits the sample set appro-
priately.
While machine learning has shown to provide reason-

able solutions in many cases, it may be expected that this
approach also comes with a lot of deficiencies. Starting with
the question of whether the examples are characteristic, it is
unclear to which extent the learning algorithm considers the
right aspects of the examples, whether the resulting system
really realizes or closely approximates the right function,
and whether it meets privacy standards. As such, sophisti-
cated verification techniques for the learned artifacts seem
extremely important.
In verification, the goal is to show that an implementation

meets its specification. A huge number of verification algo-
rithms have been developed over the past 50 years, mostly for
program verification, as so-called formal methods. However,
it has been noted [31] that formal specifications are often not
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available when machine learning is used. In fact, the given
set of examples, the training set, can be considered as (an
approximation of) the specification. That said, many verifi-
cation procedures can be considered as analysis algorithms
parameterized by a formal specification. For example, while
originally model checking [6] answers the question whether
system S satisfies its specification φ, one can consider the
specifications φ as a query (of some query language) and the
model checking procedure applied on S as a generic analysis
routine.
As such, it seems promising to apply the enormous contri-

butions in program verification also for the analysis of neural
networks. To do so, two general approaches seem possible.
First, one could try to adapt the procedures developed in for-
mal methods to analyze the artifacts encountered in machine
learning. Second, one may translate the artifacts found in
machine learning, e.g., the neural network, into formal mod-
els well studied in program verification. In this paper, which
is an extended version of [28], we are following the lat-
ter approach. More precisely, we consider recurrent neural
networks as the object of study and model checking as veri-
fication technique.
Recurrent neural networks (RNNs) are a state-of-the-art

tool to represent and learn sequence-based models. They
have applications in time-series prediction, sentiment anal-
ysis, and many more. In particular, they are increasingly
used in safety-critical applications and act, for example, as
controllers in cyber-physical systems [3]. Thus, there is a
growing need for formal verification. However, research in
this domain is only at the beginning. While model checking
has been successfully used in practice and reached a certain
level of industrial acceptance [25], a transfer to machine-
learning algorithms has yet to take place. We will apply it on
machine-learning artifacts rather than on the algorithm.
An emerging research stream aims at extracting state-

based surrogate models from RNNs, such as finite automata
[5,34,36,39,40,47], and, in general, we follow this approach
in this paper as well. Finite automata turned out to be useful
for understanding and analyzing all kinds of systems using
testing or model checking. In other words, such models are
also beneficial as an explanation of the underlying RNN.
A popular approach for extracting an automaton model

from a given RNN is using active automata learning, based
on the pioneering work by Angluin’s L* algorithm [4]. The
general idea is to ask so-called membership queries to the
underlying system (here the RNN) and equivalence queries
whether the learned system is the right or a good enough
approximation of the system to learn. Angluin’s L* has been
improved in several ways especially regarding when to ask
queries andhow to process and store the information obtained
by the queries, starting from [42] and [26], and resulting
in [23] in which especially the space consumption is opti-
mized. For further developments in automata learning using

L*, we refer the readers to the work by Vaandrager [45] and
for hints on choosing which learning algorithm for maxi-
mal efficiency, we refer to [1]. While our approach does not
exploit all discussed optimizations to L*, it is rather easy to
incorporate them to improve performance.
The challenging step inL* is the checkwhether the learned

automaton is a good enough approximation of the RNN. A
common technique follows statistical testing techniques and
answers this question by comparing the two artifacts based
on a random set of words. Thework byMayr andYovine [36]
uses probably approximately correct (PAC) learning [46]. In
this paper, we provide an approach based on Hoeffding’s
inequality bound [20] also used in statistical model checking
[30]. For sampling, we use several approaches, one being a
mixture of A* and plain sampling as described in [7].
In the field of formal verification, it has proven to be

beneficial to run the extraction andverification process simul-
taneously. Moreover, the state space of RNNs tends to be
prohibitively large, or even infinite, and so do incremental
abstractions thereof. Motivated by these facts, we propose an
intertwined approach to verifying RNNs, where, in an incre-
mental fashion, grammatical inference and model checking
go hand-in-hand. Our approach is inspired by black-box
checking [41], which exploits the property to be verified dur-
ing the verification process.Our procedure can be used to find
misclassified examples or to verify a system that the given
RNN controls, and we call the approach property directed
verification.

Property-directed verification. Let us give a glimpse of our
method.We consider an RNN R as a binary classifier of finite
sequences over a finite alphabet Σ . In other words, R rep-
resents the set of strings that are classified as positive. We
denote this set by L(R) and call it the language of R. Note
that L(R) ⊆ Σ∗. We would like to know whether R is com-
patiblewith a given specification A, written R |� A. Here,we
assume that A is given as a (deterministic) finite automaton.
Finite automata are algorithmically feasible, albeit having
a reasonable expressive power: many abstract specification
languages such as temporal logics or regular expressions can
be compiled into finite automata [18].
But what does R |� A actually mean? In fact, there are

various options. If A provides a complete characterization
of the sequences that are to be classified as positive, then
|� refers to language equivalence, i.e., L(R) = L(A). Note
that this would imply that L(R) is supposed to be a regular
language,whichmay rarely be the case in practice.Therefore,
we will focus on checking inclusion L(R) ⊆ L(A), which is
more versatile as we explain next.
Suppose N is a finite automaton representing a negative

specification, i.e., R must classify words in L(N ) as nega-
tive at any cost. In other words, R does not produce false
positives. This amounts to checking that L(R) ⊆ L(N )
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where N is the “complement automaton” of N . For instance,
assume that R is supposed to recognize valid XML doc-
uments over a finite predefined set of tags. Seen as a set
of strings, this is not a regular language. However, we
can still check whether L(R) only contains words where
every opening tag <tag-name> is eventually followed by
a closing tag </tag-name> (while the number of opening
and the number of closing tags may differ). As negative
specification, we can then take an automaton N accept-
ing the corresponding regular set of strings. For example,
<book><author></author><author></book> ∈ L(N ),
since the second occurrence of <author> is not followed
by some </author> anymore. On the other hand, we have
<book><author><author></author></book> ∈ L(N )
because <book> and <author> are always eventually fol-
lowed by their closing counterpart.
Symmetrically, suppose P is a finite automaton represent-

ing a positive specification so that we can find false negative
classifications: If P represents the words that R must classify
as positive, we would like to know whether L(P) ⊆ L(R).
Our procedure can be run using the complement of P as
specification and inverting the outputs of R, i.e., we check,
equivalently, L(R) ⊆ L(P).
An important instance of this setting is adversarial

robustness certification, which measures a neural network’s
resilience against adversarial examples. Given a (regular) set
of words L classified as positive by the given RNN, the RNN
is robust wrt. L if slight modifications in a word from L do
not alter the RNN’s judgment. This notion actually relies on a
distance function. Then, P is the set of words whose distance
to a word in L is bounded by a predefined threshold, which is
regular for several popular distances such as theHamming or
Levenshtein distance. Similarly, we can also check whether
the neighborhood of a regular set of words preserves a neg-
ative classification.
In all these cases, we are faced with the question of

whether the language of an RNN R is contained in the (reg-
ular) language of a finite automaton A. Our approach to
this problem relies on black-box checking [41], which has
been designed as a combination of model checking and test-
ing in order to verify finite-state systems and is based on
Angluin’s L∗ learning algorithm [4]. L∗ produces a sequence
of hypothesis automata based on queries to R. Every such
hypothesis H may already share some structural properties
with R. So, instead of checking conformance of H with R,
it is worthwhile to first check L(H) ⊆ L(A) using classical
model-checking algorithms. If the answer is affirmative, we
apply statistical model checking to check L(R) ⊆ L(H) to
confirm the result. Otherwise, a counterexample is exploited
to refineH, starting a new cycle in L∗. Just like in black-box
checking, our experimental results suggest that the process of
interweaving automata learning andmodel checking is bene-
ficial in the verification of RNNs and offers advantages over

more obvious approaches such as (pure) statistical model
checking or running automata extraction and model check-
ing in sequence. A further key advantage of our approach is
that, unlike in statistical model checking, we often find a fam-
ily of counterexamples, in terms of loops in the hypothesis
automaton, which testify conceptual problems of the given
RNN.
Note that, though we only cover the case of binary clas-

sifiers, our framework is in principle applicable to multiple
labels using one-vs-all classification.
RelatedWork.Mayr andYovine describe an adaptation of the
PAC variant of Angluin’s L* algorithm that can be applied to
neural networks [36]. As L* is not guaranteed to terminate
when facing non-regular languages, the authors impose a
bound on the number of states of the hypotheses and on the
length of thewords formembership queries. In [34,37],Mayr
et al. propose on-the-fly property checking where one learns
an automaton approximating the intersection of the RNN
language and the complement of the property to be verified.
Like the RNN, the property is considered as a black box, only
decidability of the word problem is required. Therefore, the
approach is suitable for non-regular specifications.
Weiss et al. introduce a different technique to extract finite

automata from RNNs [47]. It also relies on Angluin’s L* but,
moreover, uses an orthogonal abstraction of the given RNN
to perform equivalence checks between them.
The paper [3] studies formal verification of systemswhere

an RNN-based agent interacts with a linearly definable envi-
ronment. The verification procedure proceeds by a reduction
to feed-forward neural networks (FFNNs). It is complete and
fully automatic. This is at the expense of the expressive power
of the specification language, which is restricted to properties
that only depend on bounded prefixes of the system’s execu-
tions. In our approach, we do not restrict the kind of regular
property to verify. Thework [24] also reduces the verification
of RNNs to FFNN verification. To do so, the authors calcu-
late inductive invariants, thereby avoiding a blowup in the
network size. The effectiveness of their approach is demon-
strated on audio signal systems. Like in [3], a time interval
is imposed in which a given property is verified.
For adversarial robustness certification, Ryou et al. [43]

compute a convex relaxation of the nonlinear operations
found in the recurrent cells for certifying the robustness of
RNNs. The authors show the effectiveness of their approach
in speech recognition. Besides,MARBLE [16] builds a prob-
abilisticmodel to quantize the robustness ofRNNs.However,
these approaches are white-box based and demand the full
structure and information of neural networks. Instead, our
approach is based on learning with black-box checking.
Elboher et al. present a counter-example guided verifica-

tion framework whose workflow shares similarities with our
property-guided verification [17]. However, their approach
addresses FFNNs rather than RNNs. For recent progress in
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the area of safety and robustness verification of deep neural
networks, see [29].

Outline. In Sect. 2, we recall basic notions such as RNNs and
finite automata. Section 3 describes two basic algorithms for
the verificationofRNNs, beforewepresent property-directed
verification in Sect. 4. How to handle adversarial robustness
certification is discussed in Sect. 5. The experimental evalu-
ation and a thorough discussion can be found in Sect. 6. This
paper extends [28] by amore comprehensive introduction and
overview to verification of neural networks, by more elabo-
rated explanations, full proofs of all theorems and lemmas
and by using an A*-based heuristics for equivalence checks
as well as an enriched evaluation.

2 Preliminaries

In this section, we provide definitions of basic concepts such
as languages, recurrent neural networks, finite automata, and
Angluin’s L* algorithm.

Words and Languages. Let Σ be an alphabet, i.e., a non-
empty finite set, whose elements are called letters. A (finite)
word w over Σ is a sequence a1 . . . an of letters ai ∈ Σ .
The length of w is defined as |w| = n. The unique word of
length 0 is called the empty word and denoted by λ. We let
Σ∗ refer to the set of all words over Σ . Any set L ⊆ Σ∗
is called a language (over Σ). Its complement is L = {w ∈
Σ∗ | w /∈ L}. For two languages L1, L2 ⊆ Σ∗, we let
L1 \ L2 = L1 ∩ L2. The symmetric difference of L1 and L2
is defined as L1 ⊕ L2 = (L1 \ L2) ∪ (L2 \ L1).
Probability Distributions. In order to sample words over
Σ , we assume a probability distribution (pa)a∈Σ on Σ (by
default, we pick the uniformdistribution) and a “termination”
probability p ∈ (0, 1]. Together, they determine a natural
probability distribution on Σ∗ given, for w = a1 . . . an ∈
Σ∗, by Pr(w) = pa1 · . . . · pan · (1 − p)n · p. Accord-
ing to the geometric distribution, the expected length of a
word is (1/p) − 1, with a variance of (1 − p)/p2. Let
0 < ε < 1 be an error parameter and L1, L2 ⊆ Σ∗ be
languages. We call L1 ε-approximately correct wrt. L2 if
Pr(L1 \ L2) =�w∈L1\L2 Pr(w) < ε.
Finite Automata andRecurrent Neural Networks.Weemploy
two kinds of language acceptors: finite automata and recur-
rent neural networks.
Recurrent neural networks (RNNs) are a generic term for

artificial neural networks that process sequential data. They
are particularly suitable for classifying sequences of varying
length, which is essential in domains such as natural lan-
guage processing (NLP) or time-series prediction. For the
purposes of this paper, we follow recent literature on extract-

ing surrogatemodels fromRNNs [8,35–37,48] andmake two
assumptions on RNNs:

1. We assume that the inputs to an RNN are a finite set of
symbols. While usually the symbols are vectors in one-
hot encoding,we abstract away fromsuch implementation
details and simply rely on a finite alphabet Σ .

2. We assume that the RNNs are a binary (or a one-vs-all)
classifier.

One typical application of RNNs with such assumptions is
sentimental analysis [33] where the task is to predict whether
a text (e.g., a movie review) expresses positive or negative
opinion.
The above assumptions, mathematically speaking, render

an RNN R to be an effective function R : Σ∗ → {0, 1}
with a language defined as L(R) = {w ∈ Σ∗ | R(w) = 1}.
Its complement R is defined by R(w) = 1 − R(w) for all
w ∈ Σ∗. There are several ways to effectively represent R.
Among the most popular architectures are (simple) Elman
RNNs, long short-term memory (LSTM) [19], and GRUs
[13]. Their expressive power depends on the exact architec-
ture, but generally goes beyond the power of finite automata,
i.e., the class of regular languages.
A deterministic finite automaton (DFA) over Σ is a tuple

A = (Q, δ, q0, F)where Q is a finite set of states, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states, and δ : Q ×
Σ → Q is the transition function. We assume familiarity
with basic automata theory and leave it at mentioning that
the language L(A) of A is defined as the set of words from
Σ∗ that δ guides into a final state when starting in q0. That
is, for the complement DFA A = (Q, δ, q0, Q \ F), we get
L(A) = L(A) = Σ∗ \ L(A). It is well known that high-level
specifications such as LTL formulas over finite words [18]
or regular expressions can be compiled into corresponding
DFAs.
We sometimes use RNNs and DFAs synonymously for

their respective languages. For example, we say that R is
ε-approximately correct wrt. A if L(R) is ε-approximately
correct wrt. L(A).
Angluin’s Algorithm. Angluin introduced L∗, a classical
instance of a learning algorithm in the presence of a min-
imally adequate teacher (MAT) [4]. We do not detail the
algorithm here but only define the interfaces that we need to
embed L∗ into our framework. Given any regular language
L ⊆ Σ∗, the algorithmL∗ eventually outputs the uniquemin-
imal DFA H such that L(H) = L . The crux is that, while
Σ is given, L is a priori unknown and can only be accessed
through membership queries (MQ) and equivalence queries
(EQ):

(MQ) w
?∈ L for a given word w ∈ Σ∗. Thus, the answer is

either yes or no.

123



Analysis of recurrent neural networks 345

(EQ) L(H) ?= L for a given DFA H. Again, the answer is
either yes or no. If the answer is no, one also gets a
counterexample word from the symmetric difference
L(H)⊕ L .

Essentially, L∗ asks MQs until it considers that it has a con-
sistent dataset to come up with a hypothesis DFA H, which
then undergoes an EQ. If the latter succeeds, then the algo-
rithm stops. Otherwise, the counterexample and possibly
more membership queries are used to refine the hypothe-
sis. The algorithm provides the following guarantee: If MQs
and EQs are answered according to a given regular language
L ⊆ Σ∗, then the algorithm eventually outputs, after poly-
nomially1 many steps, the unique minimal DFAH such that
L(H) = L .

3 Verification approaches

Beforewe present (in Sect. 4) ourmethod of verifyingRNNs,
we here describe two simple approaches. The experiments
will later compare all three algorithmswrt. their performance.

Statistical model checking (SMC).One obvious approach for
checking whether the RNN under test R satisfies a given
specification A, i.e., to check whether L(R) ⊆ L(A), is by
a form of random testing. The idea is to generate a finite
test suite T ⊂ Σ∗ and to check, for each w ∈ T , whether
for w ∈ L(R) also w ∈ L(A) holds. If not, each such w is
a counterexample. On the other hand, if none of the words
turns out to be a counterexample, the property holds on R
with a certain error probability. The algorithm is sketched as
Algorithm 1.
Note that the test suite is sampled according to a proba-

bility distribution on Σ∗. Recall that our choice depends on
two parameters: a probability distribution on Σ and a “ter-
mination” probability, both are described in Sect. 2.

Algorithm 1: SMC
Input: RNN R, DFA A, ε, γ ∈ (0, 1)

1 for i = 1, . . . , log(2/γ )/(2ε2) do
2 w← sampleWord()
3 if w ∈ L(R) \ L(A) then
4 return “Counterexample w”
5

6 end
7 return “Property satisfied”

1 In the index of the right congruence associated with L and in the size
of the longest counterexample obtained as a reply to an EQ.

Algorithm 2: AAMC
Input: RNN R and DFA A

1 AR ← Approximation(R)
2 if ∃w ∈ L(AR) \ L(A) then
3 return “Counterexample w”
4 else return “Property satisfied”

Algorithm 3: PDV
Input: RNN R, DFA A, ε, γ ∈ (0, 1)

1 Initialize L∗

2 while true do
3 H← hypothesis provided by L∗
4 Check L(H) ⊆ L(A)
5 if L(H) ⊆ L(A) then
6 Check L(R) ⊆ L(H) using Alg. 1
7 if L(R) ⊆ L(H) then
8 return “Property satisfied”
9 else Feed counterexample to L∗
10 else
11 Let w ∈ L(H) \ L(A)
12 if w ∈ L(R) then
13 return “Counterexample w”
14 else Feed counterexample w to L∗
15 end
16 end

Theorem 1 (Correctness of SMC) If Algorithm 1, with
ε, γ ∈ (0, 1), terminates with “Counterexample w”, then
w is mistakenly classified by R as positive. If it terminates
with “Property satisfied”, then R is ε-approximately correct
wrt. A with probability at least 1− γ .
Proof If the algorithm terminates with “Counterexamplew”,
we havew ∈ L(R) \ L(A). Thus,w is mistakenly classified.
Using the samplingdescribed inSect. 2, denote by p̂ the prob-
ability to pick w ∈ Σ∗ such that w ∈ L(R) and w /∈ L(A).
Taking n = log(2/ε)/(2γ 2) random samples where m of
them are counter examples, by Hoeffding’s inequality bound
[20] we get that P( p̂ /∈ [mn − ε, mn + ε]) < γ. Therefore,
if Algorithm 1 terminates without finding any counterexam-
ples we get that R is ε-approximately correct wrt. A with
probability at least 1− γ . �
While the approachworks in principle, it has several draw-

backs for its practical application. The size of the test suite
may be quite huge and it may take a while both finding a
counterexample or proving correctness.
Moreover, the correctness result and the algorithm assume

that the words to be tested are chosen according to a random
distribution that somehow also has to take into account the
RNN as well as the property automaton.
It has been reported that this method does not work well

in practice [47] and our experiments support these findings.
Automaton Abstraction and Model Checking (AAMC). As
model checking is mainly working for finite-state systems, a
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straightforward idea would be to (a) approximate the RNN
R by a finite automaton AR such that L(R) ≈ L(AR) and
(b) to check whether L(AR) ⊆ L(A) using model checking.
The algorithmic schema is depicted in Algorithm 2.
Here, we can instantiate Approximation() by the DFA-

extraction algorithms from [36] or [47]. In fact, for approxi-
mating an RNN by a finite-state system, several approaches
have been studied in the literature, which can be, roughly,
divided into twoapproaches: (a)abstraction and (b)automata
learning. In the first approach, the state space of the
RNN is mapped to equivalence classes according to cer-
tain predicates. The second approach uses automata-learning
techniques such as Angluin’s L∗. The approach [47] is an
intertwined version combining both ideas.
Therefore, there are different instances ofAAMC, varying

in the approximation approach. Note that, for verification as
language inclusion, as considered here, it actually suffices to
learn an over-approximation AR such that L(R) ⊆ L(AR).
While the approach seems promising at first hand, its cor-

rectness has two glitches. First, the result “Property satisfied”
depends on the quality of the approximation. Second, any
returned counterexample w may be spurious: w is a coun-
terexample with respect to AR satisfying A but may not be
a counterexample for R satisfying A. If w ∈ L(R), then
it is indeed a counterexample, but if not, it is spurious—an
indication that the approximation needs to be refined. If the
automaton is obtained using abstraction techniques (such as
predicate abstraction) that guarantee over-approximations,
well-known principles like CEGAR [14] may be used to
refine it. In the automata-learning setting, w may be used as
a counterexample for the learning algorithm to improve the
approximation. Repeating the latter idea suggests an inter-
play between automata learning and verification—and this
is the idea that we follow in the next section. However, rather
than starting from some approximation with a certain quality
that is later refined according to the RNN and the property,
we perform a direct, property-directed approach.

4 Property-directed verification of RNNs

We are now ready to present our algorithm for property-
directed verification (PDV). The underlying idea is to replace
the EQ inAngluin’s L∗ algorithmwith a combination of clas-
sical model checking and statistical model checking, which
are used as an alternative to EQs. This approach, which we
call property-directed verification of RNNs, is outlined as
Algorithm 3 and works as follows.
After initialization of L∗ and the corresponding data struc-

ture, L∗ automatically generates and asks MQs to the given
RNN R until it comes up with a first hypothesis DFA H
(Line 3). In particular, the language L(H) is consistent with
the MQs asked so far.

At an early stage of the algorithm, H is generally small.
However, it already shares some characteristics with R. So
it is worth checking, using standard automata algorithms,
whether there is no mismatch yet between H and A, i.e.,
whether L(H) ⊆ L(A) holds (Line 4). Because otherwise
(Line 10), a counterexample word w ∈ L(H) \ L(A) is
already a candidate for being a misclassified input for R.
If indeed w ∈ L(R), w is mistakenly considered positive by
R so that R violates the specification A. The algorithm then
outputs “Counterexamplew” (Line 13). If, on the other hand,
R happens to agree with A on a negative classification of w,
then there is a mismatch between R and the hypothesis H
(Line 14). In that case, w is fed back to L∗ to refineH.
Now, let us consider the case that L(H) ⊆ L(A) holds

(Line 5). If, in addition, we can establish L(R) ⊆ L(H),
we conclude that L(R) ⊆ L(A) and output “Property satis-
fied” (Line 8). This inclusion test (Line 6) relies on statistical
model checking using given parameters ε, γ > 0 (cf. Algo-
rithm 1). If the test passes, we have some statistical guarantee
of correctness of R (cf. Theorem 1). Otherwise, we obtain a
word w ∈ L(R) \ L(H) witnessing a discrepancy between
R andH that will be exploited to refineH (Line 9).
Overall, in the event that the algorithm terminates, we

have the following theorem that assures the soundness of a
returned counterexample and provides the statistical guaran-
tees on the property satisfaction, depending on the result of
the algorithm:

Theorem 2 (Correctness of PDV) Suppose Algorithm 3 ter-
minates, using SMC for inclusion checking with parameters
ε and γ . If it outputs “Counterexample w”, then w is mis-
takenly classified by R as positive. If it outputs “Property
satisfied”, then R is ε-approximately correct wrt. A with
probability at least 1− γ .

Proof Suppose the algorithm outputs “Counterexample w”
inLine 13.Due toLines 11 and12,wehavew ∈ L(R)\L(A).
Thus, w is a counterexample.
Suppose the algorithm outputs “Property satisfied” in

Line 8. By Lines 6 and 7, R is ε-approximately correct wrt.H
with probability at least 1−γ . That is, P(L(R)\ L(H)) < ε
with high probability. Moreover, by Line 4, L(H) ⊆ L(A).
This implies that L(R) \ L(A) ⊆ L(R) \ L(H) and, there-
fore, P(L(R) \ L(A)) ≤ P(L(R) \ L(H)). We deduce that
R is ε-approximately correct wrt. A with probability at least
1− γ . �

Although we cannot hope that Algorithm 3 will always
terminate, we demonstrate empirically that it is an effective
way for the verification of RNNs.
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5 Adversarial robustness certification

Ourmethod can especially be used for adversarial robustness
certification, which is parameterized by a distance func-
tion dist : Σ∗ × Σ∗ → [0,∞] satisfying, for all words
w1, w2, w3 ∈ Σ∗: (1) dist(w1, w2) = 0 iff w1 = w2,
(2) dist(w1, w2) = dist(w2, w1), and (3) dist(w1, w3) ≤
dist(w1, w2)+dist(w2, w3). Popular distance functions are
Hamming distance and Levenshtein distance. The Hamming
distance between w1, w2 ∈ Σ∗ is the number of positions in
whichw1 differs fromw2, provided |w1| = |w2| (otherwise,
the distance is∞). The Levenshtein distance (edit distance)
between w1 and w2 is the minimal number of operations
among substitution, insertion, and deletion that are required
to transform w1 into w2. For L ⊆ Σ∗ and r ∈ N, we let
Nr (L) = {w� ∈ Σ∗ | dist(w,w�) ≤ r for some w ∈ L}
be the r -neighborhood of L . If L is regular and dist is the
Hamming or Levenshtein distance, thenNr (L) is regular (for
efficient constructions of Levenshtein automata when L is a
singleton, see [44]).
Let R be an RNN, L ⊆ Σ∗ be a regular language such

that L ⊆ L(R), r ∈ N, and 0 < ε < 1. We call R ε-
adversarially robust (wrt. L and r ) if Pr(Nr (L)\L(R)) < ε.
Accordingly, everyword fromNr (L)\L(R) is anadversarial
example. Thus, checking adversarial robustness amounts to
checking the inclusion L(R) ⊆ Nr (L) through one of the
above-mentioned algorithms.
Note that, even when L is a finite set, Nr (L) can be too

large for exhaustive exploration so that PDV, in combination
with SMC, is particularly promising, as we demonstrate in
our experimental evaluation.
From the definitions and Theorem 2, we get:

Lemma 1 Suppose Algorithm 3, for input R and a DFA A
recognizing Nr (L), terminates, using SMC for inclusion
checking with parameters ε and γ . If it outputs “Counterex-
ample w,” then w is an adversarial example. Otherwise, R
is ε-adversarially robust (wrt. L and r) with probability at
least 1− γ .

Similarly, we can handle the case where L ∩ L(R) = ∅.
Then, R is ε-adversarially robust if Pr(L(R)∩Nr (L)) < ε,
and every word in L(R)∩Nr (L) is an adversarial example.
Overall, this case amounts to checking L(R) ⊆ Nr (L).

6 Experimental evaluation

We now present an experimental evaluation of the three algo-
rithms SMC, AAMC, and PDV, and provide a comparison
of their performance on LSTM networks [19] (a variant of
RNNs using LSTM units). The algorithms have been imple-

mented2 in Python 3.6 using PyTorch 19.09 and Numpy
library. The experiments of adversarial robustness certifica-
tion were run on Macbook Pro 13 with the macOS. The
other experiments were run on NVIDIA DGX-2 with an
Ubuntu OS.

Optimization For Equivalence Queries. In [36], the authors
implement AAMC but with an optimization that was origi-
nally shown in [4]. This optimization concerns the number of
samples required for checking the equivalence between the
hypothesis and the taught language. This number depends
on ε, γ and the number of previous equivalence queries n

and is calculated by 1
ε

�
log 1

γ
+ log(2)(n + 1)

�
. We adopt

this optimization in AAMC and PDV as well (Algorithm 2
in Line 1 and Algorithm 3 in Line 6).

6.1 Evaluation on randomly generated DFAs

Synthetic Benchmarks.To compare the algorithms,we imple-
mented the following procedure, which generates a random
DFA Arand, an RNN R that learned L(Arand), and a finite set
of specification DFAs: (1) choose a random DFA Arand =
(Q, δ, q0, F), with |Q| ≤ 30, over an alphabet Σ with
|Σ | = 5; (2) randomly sample words from Σ∗ as described
in Sect. 2 in order to create a training set and a test set; (3)
train anRNN Rwith hidden dimension 20|Q| and 1+|Q|/10
layers—if the accuracy of R on the training set is larger than
95%, continue, otherwise restart the procedure; (4) choose
randomly up to five sets Fi ⊆ Q \ F to define specification
DFAs Ai = (Q, δ, q0, F ∪ Fi ). Using this procedure, we
created 30 DFAs/RNNs and 138 specifications.

Experimental Results. Given an RNN R and a specification
DFA A, we checked whether R satisfies A using Algo-
rithms1–3, i.e., SMC,AAMC, andPDV,with ε, γ = 5·10−4.
Table 1 summarizes the executions of the three algorithms

on our 138 random instances. The columns of the table are
as follows: (1) Avg time was counted in seconds and all the
algorithms were timed out after 10min; (2) Avg len is the
average length of the found counterexamples (if one was
found); (iii) #Mistakes is the number of random instances
for which a mistake was found; (iv) Avg MQs is the average
number of membership queries asked to the RNN.
Note that not only is PDV faster and findsmore errors than

AAMC, the average number of states of the final DFA is also
much smaller: 26 states with PDV and 319 with AAMC.
Furthermore, it asked more than 10 times less MQs to the
RNN. Comparing PDV to SMC, it is 4.5 times faster and
the average length of counterexamples it found is 10 times
smaller, even though with a little fewer mistakes discovered.

2 Available at https://github.com/LeaRNNify/Property-directed-
verification.
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Table 1 Comparison of verification algorithms

Type Avg time(s) Avg len #Mistakes Avg MQs

SMC 92 111 122 286063

AAMC 444 7 30 3701916

PDV 21 11 109 28318

6.2 Comparing equivalence queries

The PDV algorithm heavily depends on the procedure for
checking the language inclusion L(R) ⊆ L(H) between
the hypothesized DFA H and the RNN model R. Check-
ing whether L(R) is included in L(H), however, is generally
computationally infeasible, and thus, we resort to statistical
model-checking that ensures PAC guarantees.
In statistical model-checking, one of the crucial steps is

the technique used for random sampling of words from Σ∗.
Thus, to determine how random sampling affects statistical
model-checking, we investigate three different natural sam-
pling techniques. We discuss them below.

1. Random: The first technique is to randomly sample words
based on the natural probability distribution onΣ∗ intro-
duced in Sect. 2.

2. DFA-based: The second technique exploits the hypoth-
esis DFA H for random generation of words. To this
end, we rely on the work by Bernardi and Giménez [11]
who provide a linear algorithm for sampling words from
DFAs.Webuilt on top of their algorithm to generatewords
both accepted and rejected by H. As a heuristic, in our
implementation, we incorporate modifications to reduce
the chances of sampling the same word multiple times.

3. RNN-based: The third technique exploits the RNN R for
the random sampling of words. To this end, we rely on
a technique similar to the one used by Barbot et al. [9].
The technique, in essence, is an A∗ exploration in the
rooted directed tree of all wordsΣ∗, where each vertex is
a word w ∈ Σ∗ and its children are wa for a ∈ Σ . The
exploration is guided by a scoring function f : Σ∗ → R

that indicates how likely a word is to be accepted by the
RNN. For our experiments, we define the scoring function
to be as follows:

f (w) = 1

|valR(w)− 0.5|

where valR(w) is a value assigned by an RNN R to a word
w for determining its acceptance. Precisely, the RNN R
accepts w if and only if valR(w) > 0.5. The scoring
function f , defined above, prefers words w for which
valR(w) is close to 0.5, since they can lead to words that
can be accepted.

Table 2 Comparison of different equivalence queries (EQs) for PDV

EQ type Avg time (s) Mistakes Avg MQs

Random 89 94 14647.2

DFA-based 37.6 109 12857.4

RNN-based 176.6 30 34259.6

To compare the performances, we run PDVusing all of the
sampling techniques on the synthetic benchmarks introduced
in Sect. 6.1. Table 2 summarizes the comparison results of the
sampling techniques.We compare them based on the average
runtime of inclusion checks, the number of mistakes found,
and the number of membership queries (MQs) required. The
comparison was run on a machine with an Intel Core i7 pro-
cessor (using up to 1.80 Ghz), with 24GB of RAM. The
timeout for each run was set to be 300s.
From the above table, we observe that the sampling tech-

nique DFA-based performs the best in terms of the runtime,
the number of mistakes identified and the number of MQs
required. The sampling technique Random, on the other
hand, spends more resources to find mistakes since it sam-
ples words simply based on a probability distribution. The
RNN-based performs worst in our experiments because the
function f , as we defined, does not direct the search toward
appropriate words that could be potential mistakes. A better
choice of function f , and consequently, a better understand-
ing of the RNN R can improve this sampling technique.
In summary, we conclude that the random sampling tech-

nique for inclusion checks in PDV can greatly affect the
search for mistakes in an RNN.

Faulty Flows. One of the advantages of extracting DFAs in
order to detect mistakes in a given RNN is the possibility to
find not only one mistake but a “faulty flow.” For example,
Fig. 1 shows one hypothesis DFA extracted with PDV, based
on which we found a mistake in the corresponding RNN.
The counterexample we found was abcee. One can see that
the word abce is a loop in the DFA. Hence, we can suspect
that this could be a “faulty flow.” Checking the words wn =
(abce)ne for n ∈ {1, . . . , 100}, we observed that, for any
n ∈ {1, . . . , 100}, the wordwn was in the RNN language but
not in the specification.
To automate the reasoning above, we did the following:

Given an RNN R, a specification A, the extracted DFA H,
and the counterexample w: (1) build the cross product DFA
H × A; (2) for every prefix w1 of the counterexample w =
w1w2, denote by sw1 the state to which the prefix w1 leads
in H × A—for any loop � starting from sw1 , check if wn =
w1�

nw2 is a counterexample for n ∈ {1, . . . , 100}; (3) if wn
is a counterexample for more than 20 times, declare a “faulty
flow.” Using this procedure, we managed to find faulty flows
in 81/109 of the counterexamples that were found by PDV.
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Fig. 2 Comparison of three algorithms on the regular languages

0 1

2 3 4

e

a, c
b, d

a

b, c, d, e
e

b, c, d

a

b

a, c, d, e

a, c

b, d, e

Fig. 1 Faulty flow in DFA extracted through PDV

6.3 Adversarial robustness certification

We also examined PDV for adversarial robustness certifi-
cation, following the ideas explained in Sect. 5, both on
synthetic and real-world examples.

Synthetic Benchmarks. For a given DFA (representing one
of the languages described below), we randomly sampled
words from Σ∗ by using the DFA and created a training set
and a test set. For RNN training, we proceeded like in step (3)
for the benchmarks in Sect. 6.1. Moreover, for certification,
we randomly sampled 100 positive words and 100 negative

words from the test set. For a given word w, we then let
L = {w} and considered Nr (L) where r = 1, . . . , 5.
Given an RNN R, we checked whether R satisfies adver-

sarial robustness using the certification methods PDV, SMC,
and neighborhood-automata generation SMC (NAG-SMC),
with ε, γ = 0.01. In SMC, we randomly modified the input
wordwithin a certain distance to generate words in the neigh-
borhood. In NAG-SMC, on the other hand, we first generated
a neighborhood automaton of the input word, and sampled
words that are accepted by the automaton. Here, we followed
the algorithm by Bernardi and Giménez [11], who introduce
a method for generating a uniformly random word of length
n in a given regular language with mean time bit-complexity
O(n).
Figure 2, which is a set of scatter plots, shows the results of

the average time of executing the algorithms on the languages
that we describe below. The x-axis and y-axis are both time
in seconds, and each data point represents one adversarial
robustness certification procedure. The length of words is
from 50 to 500 and follows the normal distribution.

Simple Regular Languages. As a sanity check of our
approach,we considered the following two regular languages
and distance functions:
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Fig. 3 Automaton for ABP

– L1 = ((a+b)(a+b))∗ (also calledmodulo-2 language)
with Hamming distance;

– L2 = c(a + b)∗c with distance function dist such that
dist(w1, w2) is the Hamming distance if w1, w2 ∈ L2
and |w1| = |w2|, and dist(w1, w2) = ∞ otherwise.

The size of the Hamming neighborhood will exponentially
grow with the distance.
The accuracies of the trained RNNs reached 100%.

All three approaches successfully reported “adversarially
robust” for the certified RNNs.
The first two diagrams on the first row of Fig. 2 compare

the runtimes of PDV and SMC on the two regular-language
datasets, resp., whereas the first two diagrams on the sec-
ond row compare the runtimes of PDV and NAG-SMC. We
make two main observations. First, on average, the running
time of PDV (avg. 15.70 s) is faster than SMC (avg. 24.04 s)
and NAG-SMC (avg. 32.5 s), which shows clearly that com-
bining symbolically checking robustness on the extracted
model and statistical approximation checking is more effi-
cient than pure statistical approaches. Second, although SMC
and NAG-SMC are able to certify short words (whose length
is smaller than 30) faster, when the length of words is greater,
they have to spend more time (which is more than 60s)
for certification. This is because, for short words, statisti-
cal approaches can easily explore the whole neighborhood,
but when the neighborhood becomes larger and larger, this
becomes infeasible.
The first two diagrams on the third row of Fig. 2 com-

pare the running time of SMC and NAG-SMC, respectively.
In general, SMC is faster than NAG-SMC. This is mainly
because, for sampling randomwords from the neighborhood,
using the algorithm proposed by Bernardi et al. [11] is slower
than combining the random.choice function in the Python
library and the corresponding modification.
Real-World Dataset.We used two real-world examples con-
sidered by Mayr and Yovine [36]. The first one is the
alternating-bit protocol (ABP) shown in Fig. 3. However,
we add a special letter dummy in the alphabet and a self-
loop transition labeled with dummy on every state. In the
figure, for readability, we replace the letter dummy using let-

ter d. The second example is a variant of an example from an
e-commerce website [38], shown in Fig. 4. There are seven
letters in the original automaton. Similarly, we also add letter
dummy in the alphabet and also, in the self-loop transitions
in every state (represented using d in the figure). In both
the examples, we use the number of insertions of the letter
dummy as the distance function.
The accuracies of the trained RNNs also reach 100%. For

certification, the three approaches can certify the adversarial
robustness for the RNNs as well.
The last two diagrams on the first (resp. second) row of

Fig. 2 compare the runtime of PDV and SMC (resp. PDV
and NAG-SMC) on the ABP and the E-commerce dataset.
The data points in the first and second row have a vertical
shape. The reason is that the running time of PDV is usually
relatively stable (10–20s), while the running time of SMC
and NAG-SMC increases linearly with the word length.
The last two diagrams on the third row of Fig. 2 com-

pare the runtimes of SMC and NAG-SMC on the two
datasets. Here, the data points have a diagonal shape, but for
NAG-SMC, when the word length is long (more than 300), it
usually spends more time than SMC. This is mainly because
it is inefficient to construct the neighborhood automaton and
sample random words from the neighborhood.

6.4 RNNs identifying contact sequences

Contact tracing [27] has proven to be increasingly effective
in curbing the spread of infectious diseases. In particular,
analyzing contact sequences—sequences of individuals who
have been in close contact in a certain order—can be cru-
cial in identifying individuals who might be at risk during an
epidemic. We, thus, look at RNNs which can potentially aid
contact tracing by identifying possible contact sequences.
However, in order to deploy such RNNs in practice, one
would require them to be verified adequately. One does not
want to alert individuals unnecessarily even if they are safe
or overlook individuals who could be at risk.
In a real-world setting, onewouldobtain contact sequences

fromcontact-tracing information available from, for instance,
contact-tracing apps. However, such data is often difficult to
procure due to privacy issues. Thus, in order to mimic a real-
life scenario, we use data available from www.sociopatterns.
org, which contains information about interaction of humans
in public places (hospitals, schools, etc.) presented as tem-
poral networks.
Formally, a temporal network G = (V , E) [21] is a graph

structure consisting of a set of vertices V and a set of labeled
edges E , where the labels represent the timestamp during
which the edge was active. Figure 5 is a simple temporal
network, which can be perceived as contact graph of four
workers in an office where edge labels represent the time of
meeting between them. A time-respecting path π ∈ V ∗—a
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Fig. 4 Automaton for e-commerce example

sequence of vertices such that there exists a sequence of edges
with increasing time labels—depicts a contact sequence in
such a network. In the above example, CDAB is a time-
respecting path while ABCD is not.

Benchmarks. For our experiment, given a temporal network
G, we generated an RNN R recognizing contact sequences
as follows:

1. We created training and test data for the RNN by gener-
ating (1) valid time-respecting paths (of lengths between
5 and 15) using labeled edges from G, and (2) invalid
time-respecting paths, by considering a valid path and
randomly introducing breaks in the path. The number of
time-respecting paths in the training set is twice the size
of the number of labeled edges in G, while the test set is
one-fifth the size of the training set.

2. We trained RNN R with hidden dimension |V | (minimum
100) as well as �2+ |V |/100� layers on the training data.
We considered only those RNNs that could be trained
within 5h with high accuracy (avg. 99%) on the test data.

3. We used a DFA that accepts all possible paths (disregard-
ing the time labels) in the network as the specification,
which would allow us to check whether the RNN learned
unwanted edges between vertices.

Using this process, from the seven temporal networks, we
generated seven RNNs and seven specification DFAs. We
ran SMC, PDV, and AAMC on the generated RNNs, using
the same parameters as used for the random instances.

Results. Table 3 notes the length of counterexample, the
extracted DFA size (only for PDV and AAMC), and the
running time of the algorithms. We make three main obser-
vations. First, the counterexamples obtained by PDV and

Fig. 5 Temporal network for contact between 4 people

AAMC (avg. length 2) are much more succinct than those
by SMC (avg. length 13.1). Small counterexamples help
in identifying the underlying error in the RNN, while long
and random counterexamples provide much less insight. For
example, from the counterexamples obtained from PDV and
AAMC, we learned that the RNN overlooked certain edges
or identified wrong edges. This result highlights the demerit
of SMC, which has also been observed by [47]. Second, the
running time of SMC and PDV (avg. 0.48 s and 0.41 s) is
comparable, while that of AAMC is prohibitively large (avg.
655.68 s), indicating that model checking on small and rough
abstractions of the RNN produces superior results. Third, the
extracted DFA size, in case of AAMC (avg. size 124.14), is
always larger compared to PDV (avg. size 2), indicating that
RNNs are quite difficult to be approximated by small DFAs
and this slows down the model-checking process as well.
Again, our experiments confirm that PDV produces succinct
counterexamples reasonably fast.

7 Conclusion

We proposed property-directed verification (PDV) as a new
verificationmethod for formally verifyingRNNswith respect
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Table 3 Results of
model-checking algorithm on
RNN identifying contact
sequences

Case Alg. Counter-example len. Extracted DFA size Time (s)

Across SMC 3 0.3

Kenyan AAMC 2 328 624.76

Household PDV 2 2 0.22

Workplace SMC 2 0.23

AAMC 2 111 604.99

PDV 2 2 0.77

Highschool 2011 SMC 5 0.33

AAMC 2 91 627.30

PDV 2 2 0.19

Hospital SMC 7 0.24

AAMC 2 36 614.76

PDV 2 2 0.006

Case Alg. Counter-example len. Extracted DFA size Time (s)

Within SMC 2 0.28

Kenyan AAMC 2 178 620.30

Household PDV 2 2 0.27

Conference SMC 71 1.51

AAMC 2 38 876.19

PDV 2 2 0.33

Workplace 2015 SMC 3 0.48

AAMC 2 87 621.44

PDV 2 2 1.11

to regular specifications, with adversarial robustness certifi-
cation as one important application. It is straightforward to
extend our ideas to the setting of Moore/Mealy machines
supporting the setting of richer classes of RNN classifiers,
but this is left as part of future work.
Recurrent neural networks have also often been employed

for language processing. (Controlled) natural languages
often have a context free nature and a context-free gram-
mar might be the right object of study rather than finite
automata. The work by Barbot et al. [8] presents an approach
where instead of a finite automaton, a context-free grammar
is learned as a surrogate model.
As future work, we plan to extend the PDV algorithm

for the formal verification of RNN-based agent environ-
ment systems, and to compare it with the existing results
[2,3]. Moreover, in the this paper, we define RNNs over a
finite alphabet, while several applications of RNN, including
speech [32] and hand-writing recognition [10], require defin-
ing them over an infinite (or very large) alphabet. To handle
such RNNs, we plan to explore the possibility of using reg-
ister automata that can classify data words over potentially
infinite data domains as surrogate models [12,15,22].
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