
PHYSICAL REVIEW E 108, 035307 (2023)

Efficient generation of random rotation matrices in four dimensions

Jakob Tómas Bullerjahn ,1,*,† Balázs Fábián ,1,*,‡ and Gerhard Hummer 1,2

1Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
2Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany

(Received 23 May 2023; accepted 24 July 2023; published 19 September 2023)

Four-dimensional (4D) rotations have applications in the fields of robotics, computer vision, and rigid-body
mechanics. In the latter, they can be used to transform between equimomental systems of point masses. Here we
provide an efficient algorithm to generate random 4D rotation matrices covering an arbitrary, predefined range
of rotation angles. These matrices can be combined with Monte Carlo methods for the efficient sampling of the
SO(4) group of 4D rotations. The matrices are unbiased and constructed such that repeated rotations result in
uniform sampling over SO(4). The algorithm can be used to optimize the mass partitioning in coarse-grained
simulation models of molecules involving coupled constraints for stable time integration.

DOI: 10.1103/PhysRevE.108.035307

I. INTRODUCTION

Four-dimensional (4D) rotations appear in a wide range
of problems, from theoretical physics to robotics. They de-
fine the symmetries of two-body motions with inverse-square
forces, such as the Kepler problem and the hydrogen atom
[1]. Rotations in 4D have been used to model electromag-
netic wave propagation for coherent optical communication
[2], in algorithms for signal processing [3], and to construct
equimomental systems of point masses for rigid bodies [4],
i.e., systems of mass points with preserved total mass, center
of mass, and inertia tensor. They can also be used to formulate
various problems in robotics and computer vision, such as
hand-eye calibration problems [5] and point-set registration
[6]. The group SO(4) of 4D rotations can be represented in
terms of 4 × 4 orthogonal matrices with determinant 1. A
rotation in 4D can be regarded as two distinct rotations in a
pair of orthogonal planes [7] or, equivalently, two orthogonal
three-dimensional (3D) rotations, because a rotation angle
and a normal vector to a plane form an element of SO(3).
This is reflected by the fact that SO(4) is a double cover of
SO(3) × SO(3) [7]. Most 4D rotations are so-called double
rotations, where the two rotation angles, α and β, have dis-
tinct values, but isoclinic (α = β) and simple rotations (either
α = 0 or β = 0) can also occur.

There are multiple ways to generate random 4D rotation
matrices. For instance, the Cayley transform

R4 = (I4 − S4)(I4 + S4)−1

*These authors contributed equally to this work.
†jakob.bullerjahn@biophys.mpg.de
‡balazs.fabian@biophys.mpg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

turns any skew-symmetric 4 × 4 matrix S4 = −S�
4 into an

element of SO(4), where � indicates the transpose and I4 is
the identity matrix. However, in order to generate uniformly
distributed rotation matrices, the matrix elements of S4 have to
be distributed according to a generalization of the multivariate
t distribution [8]. Alternatively, one can make use of the QR
decomposition [9] or Householder transformations [10] to
generate uniformly distributed elements of SO(n) for n � 2.

While the above-mentioned methods can be used to effi-
ciently generate uniformly distributed SO(4) elements, their
main drawback is the fact that they do not give practitioners
full control over the matrix-generation process. In particular,
none of these methods can be used to exclusively produce
small-angle rotations in random orthogonal two-dimensional
subspaces. Instead, numerically expensive decomposition
schemes have to be used to explicitly check the size of the
rotation angles and then either accept or reject the proposed
matrix. Small-angle matrices are a prerequisite to perform ran-
dom walks in 4D rotation space with small steps for efficient
Monte Carlo sampling, which are, e.g., needed to search for
optimal equimomental systems of certain molecular structures
to stabilize the numerics in coarse-grained molecular dynam-
ics simulations [11]. Possible starting points could be quater-
nions, i.e., a 4-tuple describing 3D rotations in terms of an an-
gle and an axis of rotation, because the product of two distinct
quaternions results in a 4D rotation matrix [7,12]. Similarly,
it might be tempting to consider Cayley factorization of 4D
rotations into a pair of left- and right-isoclinic 4D rotation
matrices [13,14]. However, for the resulting rotations to be
small, said pairs of quaternions or rotation matrices cannot be
chosen arbitrarily, but have to satisfy additional constraints.

Here, we introduce a geometrically appealing way of con-
structing rotation matrices for simple, double, and isoclinic
rotations in 4D with arbitrary rotation angles. The method
exploits the fact that any 4D rotation matrix can be written
as the matrix exponential of a skew-symmetric matrix, which
can then be decomposed into a sum of two orthogonal skew-
symmetric matrices, A and B, weighted by the rotation angles
α and β [15].

2470-0045/2023/108(3)/035307(9) 035307-1 Published by the American Physical Society

https://orcid.org/0000-0002-2459-219X
https://orcid.org/0000-0002-6881-716X
https://orcid.org/0000-0001-7768-746X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.035307&domain=pdf&date_stamp=2023-09-19
https://doi.org/10.1103/PhysRevE.108.035307
https://creativecommons.org/licenses/by/4.0/

BULLERJAHN, FÁBIÁN, AND HUMMER PHYSICAL REVIEW E 108, 035307 (2023)

The paper is structured as follows. In Sec. II, the above-
mentioned decomposition scheme is briefly reviewed in 3D
and 4D, after which we proceed to solve the inverse problem
of generating the matrices A and B. We also explore the
nontrivial distributions of 4D rotation angles and show that
α and β can essentially be sampled from arbitrary distribu-
tions in the small-angle limit. Section III presents an efficient
algorithm (in the sense that it requires only a minimal number
of pseudorandom numbers) to construct random, small-angle,
4 × 4 rotation matrices suitable to be used in Markov-chain
Monte Carlo sampling schemes. The algorithm is verified
in Sec. IV via numerical tests and Sec. V discusses the use
of 4D rotation matrices to transform between equimomental
systems. A summary of our results can be found in Sec. VI,
followed by Appendixes that contain various technical details
and derivations.

II. THEORY

In principle, it is possible to construct a random small-
angle 4D rotation matrix R4 by combining a double rotation
matrix

R′
4(α, β) =

⎛
⎜⎜⎝

cos(α) sin(α) 0 0
− sin(α) cos(α) 0 0

0 0 cos(β) sin(β)
0 0 − sin(β) cos(β)

⎞
⎟⎟⎠,

with an arbitrary element Q4 of the orthonormal group O(4)
as follows:

R4(α, β � 1) = Q4R′
4(α, β)Q�

4 . (1)

While the planes of rotation are well defined for R′
4 (the

matrix describes rotations in the xy and zw planes), the matrix
product in Eq. (1) ensures that the planes of rotation for R4

are random.
The downside of Eq. (1) is its computational inefficiency.

In a costly process, Q4 could be generated by Gram-Schmidt
orthogonalization of four 4D vectors. More efficiently, soft-
ware packages like SCIPY [16] make use of an algorithm,
which requires nine pseudorandom numbers [10] to generate
4D rotation matrices, and Eq. (1) requires two additional
degrees of freedom for the rotation angles. However, the di-
mension of SO(4) is 6 [7], so there is definitely room for
further improvement, noting that producing quality random
numbers is computationally costly.

In the remainder of this section, we discuss and develop
the theoretical premise for an efficient algorithm to generate
small-angle 4D rotations. In Sec. IV A, we show that our
algorithm outcompetes Eq. (1) in runtime performance, which
makes it more viable for applications involving Monte Carlo
methods.

A. Matrix decomposition for skew symmetric matrices

A 3 × 3 matrix R3, representing 3D rotations about the
unit vector �u = (−s23, s13,−s12)�, |�u| = 1, can be expressed
in terms of the exponential of a skew-symmetric matrix

S3 =
⎛
⎝ 0 s12 s13

−s12 0 s23

−s13 −s23 0

⎞
⎠

via the Rodrigues rotation formula

R3(γ) = eγ S3 = I3 + sin(γ)S3 + [1 − cos(γ)]S2
3.

Here, γ denotes the angle of rotation and I3 is the identity ma-
trix. Due to the Cayley-Hamilton theorem and the constraint
on the norm of the vector �u, the matrix S3 satisfies the property
S3

3 = −S3.
The eigenvalues of skew-symmetric matrices can either be

complex conjugate pairs or zero; hence their rank is always
even. Therefore, in 3D, the infinitesimal generator S3 of a
rotation has rank 2 and is singular, i.e., det(S3) = 0. Let
λ1,2 = ±iθ and λ3 = 0 be the eigenvalues of S3 with corre-
sponding eigenvectors �s1, �s2 ∈ C3 and �s3 ∈ R3, where �s1 and
�s2 form a complex conjugate vector pair. The matrix R3 then
possesses the same eigenvectors as S3 with eigenvalues eλn

for n = 1, 2, 3. The rank deficiency of S3 expresses the fact
that rotations in 3D involve a plane and a unique orthogonal
direction along which no rotation takes place, namely the axis
of rotation. The nonzero elements of S3 represent rotations
in the corresponding planes, e.g., the element s12 produces
rotation in the xy plane. The plane of rotation can be readily
expressed as the span of

�v1 = 1√
2

Re(�s1 + �s2), �v2 = 1√
2

Im(�s1 − �s2),

where Re(·) and Im(·) denote the real and imaginary parts
of their arguments, respectively. Setting �v3 = �s3 gives an or-
thonormal set of vectors in R3 that satisfy �vi · �v j = δi j for
i, j = 1, 2, 3.

These connections between matrix representations and the
geometric meaning of both S3 and R3 also translate to 4D
rotations, where any rotation matrix satisfies R4 = eS4 for a
skew-symmetric matrix

S4 =

⎛
⎜⎜⎝

0 s12 s13 s14

−s12 0 s23 s24

−s13 −s23 0 s34

−s14 −s24 −s34 0

⎞
⎟⎟⎠.

The matrix S4 can be uniquely decomposed as [15]

S4 = αA + βB (2)

for α, β � 0, α �= β, with two rank-2 skew symmetric matri-
ces A and B, which satisfy

A3 = −A, B3 = −B, AB = BA = 0. (3)

For simple rotations, where one of the angles α, β vanishes,
S4 also has rank 2, but in general it has full rank. The corre-
sponding Rodrigues rotation formula reads [15]

R4(α, β) = eS4 = I4 + sin(α)A + [1 − cos(α)]A2

+ sin(β)B + [1 − cos(β)]B2. (4)

Reference [15] introduces an algorithm to calculate the angles
α and β, as well as the matrices A and B, from a given skew-
symmetric matrix S4. In what follows, we consider the inverse
problem of constructing a pair of matrices A and B that satisfy
Eq. (3), which then allows us to use Eq. (4) to generate random
4D rotation matrices for small-angle rotations. Our results can
be used to efficiently perform a random walk in 4D rotation

035307-2

EFFICIENT GENERATION OF RANDOM ROTATION … PHYSICAL REVIEW E 108, 035307 (2023)

space, as is required, e.g., for the generation of equimomental
systems of point masses [4,11].

B. Constructing the matrix A

Motivated by the fact that a 4D rotation can be represented
by a pair of 3D rotations, we consider two three-dimensional
vectors, �a1 and �a2, which should satisfy the relation

(�a1 · �a2)2 = det(A)

for the skew-symmetric matrix

A =

⎛
⎜⎜⎝

0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

⎞
⎟⎟⎠.

There are multiple but equivalent ways of associating the
elements of �a1 and �a2 with the matrix elements ai j . Here, we
choose �a1 analogous to the vector �u in the three-dimensional
case, which uniquely determines �a2 and we get

�a1 =
⎛
⎝−a23

a13

−a12

⎞
⎠, �a2 =

⎛
⎝a14

a24

a34

⎞
⎠. (5)

Analogous to the 3D case, ai j represents rotation in the i j
plane and the dot product of �a1 and �a2 combines elements
representing orthogonal planes. Furthermore, one can show
that A3 = −A holds whenever �a1 and �a2 satisfy

�a1 · �a2 = 0, �a1 · �a1 + �a2 · �a2 = 1. (6)

Requiring �a1 and �a2 to be perpendicular ensures that A is a
rank-2 matrix, i.e., a simple rotation involving a single plane
of rotation. The second requirement of �a1 and �a2 forming a
six-dimensional unit vector (�a�

1 , �a�
2)� ensures the decompo-

sition of S4 according to Eq. (2), as we shall see in Sec. II C.
Naively, one could think that the construction of A requires

six numbers, i.e., one for every element above the diagonal,
but it turns out that only four are needed. As discussed in Ap-
pendix A, this is because we can always choose an arbitrary,
auxiliary unit vector �a∗

1 from the elements of the 2-sphere,
which are fully determined by the polar and azimuthal an-
gles. This accounts for two degrees of freedom. We can then
identify two vectors perpendicular to �a∗

1 that span a plane, in
which a second auxiliary unit vector �a∗

2 is then constructed
with an additional degree of freedom. Finally, a fourth degree
of freedom R serves as the “mixing ratio” between �a∗

1 and �a∗
2,

which results in two vectors �a1 = �a∗
1

√
R and �a2 = �a∗

2

√
1 − R

that satisfy the constraints in Eq. (6) and define a matrix A
according to Eq. (5).

C. Constructing the matrix B from a known matrix A

Generating a 4D rotation requires, in general, six pieces of
information [7]. We have already shown that four numbers are
needed to construct the rank-2 matrix A of a simple rotation
and the decomposition of Eq. (2) contains two independent
angles, so the matrix B must already be encoded in A. In
fact, the two matrices share the same four unique eigenvectors,
which, analogous to the 3D case, can be used to construct an
orthonormal set of vectors that span two orthogonal planes of

rotation. The matrix A describes rotations in one plane and B
in the other and the eigenvalues of A and B determine which
plane is associated with which matrix.

In what follows, we shall clarify how the above-mentioned
relations between the two matrices can be used to construct
B from a given A, such that their linear combination [Eq. (2)]
gives rise to a rotation matrix according to Eq. (4). To this end,
let us consider a skew-symmetric matrix

B =

⎛
⎜⎜⎝

0 b12 b13 b14

−b12 0 b23 b24

−b13 −b23 0 b34

−b14 −b24 −b34 0

⎞
⎟⎟⎠

that satisfies the property B3 = −B. According to Sec. II B,
there exist two vectors

�b1 =
⎛
⎝−b23

b13

−b12

⎞
⎠, �b2 =

⎛
⎝b14

b24

b34

⎞
⎠,

for which

�b1 · �b2 = 0, �b1 · �b1 + �b2 · �b2 = 1 (7)

must hold for B to have rank 2. However, �b1 and �b2 cannot
be chosen independently of �a1 and �a2, because of the third
condition in Eq. (3). Under the constraints of Eqs. (6) and (7),
the resulting equations can be solved to give

b12 = ∓a34, b13 = ±a24, b14 = ∓a23,

b23 = ∓a14, b24 = ±a13, b34 = ∓a12,

or, equivalently,

�b1 = ±�a2, �b2 = ±�a1.

Note that choosing the top or bottom sign corresponds to
choosing between B and B� = −B, which boils down to a
positive or negative rotation in the angle β. We can therefore,
without loss of generality, fix the signs of the elements of B
and allow β to take both positive and negative values.

D. Sampling the angles α and β

For a random rotation R3(γ) in 3D, the rotation angle γ ∈
[0, 2π) is far from being uniformly distributed. Instead, one
has γ ∼ [1 − cos(γ)]/2π [17], where the notation z ∼ p(z)
implies that z is distributed according to p(z). In the 4D case,
the angles α, β ∈ [0, 2π) entering Eq. (2) follow the joint
probability distribution function (PDF) [17]

p(α, β) = [cos(α) − cos(β)]2

4π2
(8)

and are therefore not independent, i.e., p(α, β) �= p(α) p(β).
However, with the help of the auxiliary variables u and v,
satisfying α = u + v and β = v − u, one can uncouple the
angles of rotation. This variable substitution decomposes
p(α, β) into a product of independent and identical dis-
tributions for u, v ∈ [0, 2π] with the functional form (see
Appendix B)

p(z) = sin(z)2

π
. (9)

035307-3

BULLERJAHN, FÁBIÁN, AND HUMMER PHYSICAL REVIEW E 108, 035307 (2023)

In principle, it is possible to expand the corresponding cu-
mulative distribution function (CDF) in the limit of z � 1 and
sample small-angle values for α and β using inverse transform
sampling, as demonstrated in Appendix B. However, it turns
out that the properties of a large-scale rotation generated by
multiple, consecutive, small-angle rotations are mostly unaf-
fected by the small-angle distributions of α and β. In fact,
for the large-scale rotations to be uniformly distributed over
SO(4), one only has to ensure that (i) sufficiently many small-
angle rotations are used to cover all of the 3-sphere and (ii) the
small-angle rotations are reversible. The latter requirement is
automatically fulfilled when the vectors �a1 and �a2 are sampled
from a uniform distribution on the 2-sphere, because then
every 4D rotation (characterized by two orthogonal planes
associated with �a1 and �a2) is as probable as its counter rotation
(given by −�a1 and −�a2). We can therefore choose arbitrary
distributions to sample small-angle values for α and β.

III. EFFICIENT ALGORITHM FOR THE GENERATION OF
SMALL-ANGLE 4D ROTATION MATRICES

We are now ready to formulate an algorithm to generate
random, small-angle, 4D rotation matrices, which can be used
in Markov-chain Monte Carlo sampling schemes to explore
the space of 4D rotations. In Sec. II D, we already mentioned
that the distributions, from which small-angle values of α and
β are drawn, can be chosen arbitrarily. Here we will thus
make use of uniformly distributed pseudorandom numbers
to minimize computational costs. One way of generating the
random vectors �a∗

i=1,2 needed to construct the matrices A and
B would be to apply a random SO(3) element to a pair of
orthogonal vectors, e.g., (1, 0, 0)� and (0, 1, 0)�. However,
the efficiency of such a construction scheme would largely
depend on the method used to generate the SO(3) elements.

Instead, we rely on the following algorithm, which is ef-
ficient in the sense that it only requires a total of six random
numbers [corresponding to the dimension of SO(4)].

(1) Generate two uniformly distributed random numbers,
R1 ∼ U[−1,1] and R2 ∼ U[0,2π], where U[s,t] indicates a contin-
uous uniform distribution on the interval [s, t]. The auxiliary
unit vector �a∗

1 is then given by (see Appendix A)

�a∗
1 =

⎛
⎜⎜⎜⎜⎝

√
1 − R2

1 cos(R2)√
1 − R2

1 sin(R2)

R1

⎞
⎟⎟⎟⎟⎠.

(2) Generate an additional random number R3 ∼ U[0,2π].
The auxiliary unit vector

�a∗
2 =

⎛
⎜⎜⎜⎝

R1 cos(R2) cos(R3) + sin(R2) sin(R3)

R1 sin(R2) cos(R3) − cos(R2) sin(R3)

−
√

1 − R2
1 cos(R3)

⎞
⎟⎟⎟⎠

is then perpendicular to �a∗
1 (see Appendix A). Note that if

random number generation is fast compared to the evaluation
of trigonometric functions, one can obtain the sine and cosine
of R2 and R3 by drawing two points on a unit circle instead.

(3) Generate a fourth random number R4 ∼ U[0,1], which
defines the “mixing ratio” between the auxiliary vectors, i.e.,

�a1 = �a∗
1

√
R4, �a2 = �a∗

2

√
1 − R4.

(4) Generate two additional random numbers, R5, R6 ∼
U[0,1], and set

α = εR5, β = εR6,

for ε � 1.
(5) Compute the rotation matrix

R4 = eS4 =

⎛
⎜⎜⎝

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r34 r44

⎞
⎟⎟⎠

associated with S4 = αA + βB via the Rodrigues formula
[Eq. (4)]. This corresponds to the following elementwise
calculations:

r11 = (
a2

1,y + a2
1,z + a2

2,x

)

 + cos(β),

r12 = h12
 − a1,z sin(α) − a2,z sin(β),

r21 = h21
 + a1,z sin(α) + a2,z sin(β),

r22 = cos(α) − (
a2

1,y + a2
2,x + a2

2,z

)

,

r13 = h13
 + a1,y sin(α) + a2,y sin(β),

r31 = h31
 − a1,y sin(α) − a2,y sin(β),

r23 = h23
 − a1,x sin(α) − a2,x sin(β),

r32 = h32
 + a1,x sin(α) + a2,x sin(β),

r33 = cos(α) − (
a2

1,z + a2
2,x + a2

2,y

)

,

r14 = h14
 + a2,x sin(α) + a1,x sin(β),

r41 = h41
 − a2,x sin(α) − a1,x sin(β),

r24 = h24
 + a2,y sin(α) + a1,y sin(β),

r42 = h42
 − a2,y sin(α) − a1,y sin(β),

r34 = h34
 + a2,z sin(α) + a1,z sin(β),

r43 = h43
 − a2,z sin(α) − a1,z sin(β),

r44 = (
a2

2,x + a2
2,y + a2

2,z

)

 + cos(β),

where �ai = (ai,x, ai,y, ai,z)�,
 = cos(α) − cos(β), and

h12 = h21 = a2,xa2,y − a1,xa1,y,

h13 = h31 = a2,xa2,z − a1,xa1,z,

h23 = h32 = a2,ya2,z − a1,ya1,z,

h14 = h41 = a1,za2,y − a1,ya2,z,

h24 = h42 = a1,xa2,z − a1,za2,x,

h34 = h43 = a1,ya2,x − a1,xa2,y.

A possible way of speeding up the algorithm is to
solely rely on simple rotations. With β = 0, sin(β) = 0, and
cos(β) = 1, one less random number is required in step (4)
and the expressions for ri j in step (5) get simplified.

The algorithm can also be used to generate uniformly dis-
tributed SO(4) elements by replacing the fourth step with the
following (see Appendix B).

035307-4

EFFICIENT GENERATION OF RANDOM ROTATION … PHYSICAL REVIEW E 108, 035307 (2023)

TABLE I. Runtimes of the different algorithms to generate SO(4)
rotation matrices in numerical tests.

Algorithm Angles Median runtime

Sec. III α, β ∼ p(α, β) 2.332 µs
Sec. III α, β ∼ U[0,ε] 207.980 ns
Sec. III α ∼ U[0,ε], β = 0 182.310 ns
Eq. (1) α, β ∼ U[0,ε] 1.618 µs

(4) Generate two additional random numbers, R5, R6 ∼
U[0,1], and find the root of

f (zi) = 2zi − sin(2zi) − 8πRi

for z5 = u and z6 = v. The angles of rotation are then given
by

α = u + v, β = v − u.

IV. TESTING THE ALGORITHM

It is straightforward to numerically verify that the matrices
generated by the algorithm proposed in Sec. III satisfy

R4R�
4 = I4, det(R4) = 1,

and are therefore elements of SO(4). In this section, we com-
pare its runtime performance to Eq. (1) and verify that the
subsequent application of multiple small-angle rotations gives
rise to a uniformly distributed large-scale rotation.

A. Runtime performance

The algorithms in Eq. (1) and Sec. III were both imple-
mented in Julia [18] and timed using the @benchmark macro
provided by the BenchmarkTools.jl package [19]. To generate
the random O(4) elements Q4 entering Eq. (1), we translated
a Python implementation [20] of an algorithm used to gener-
ate SO(4) elements [10] into efficient JULIA code. We tested
both small-angle sampling and sampling of the joint angle
distribution p(α, β) [Eq. (8)]. The runtime measurements of
each algorithm were performed using an installation of JULIA

v.1.8.0 on a machine with a 1.2 GHz Quad-Core Intel Core i7
processor.

Our results are collected in Table I. Using the algorithm of
Sec. III to generate small-angle double rotations is an order of
magnitude faster than Eq. (1) and only marginally slower than
restricting oneself to simple rotations with β = 0.

B. Asymptotic uniformity

If the rotation angles α and β are randomly drawn from
their joint PDF [Eq. (8)], we can verify whether the resulting
random 4D rotation matrices are uniformly distributed. This
can be realized, e.g., by generating a set of random matrices
{R(k)

4 }K
k=1 using the algorithm in Sec. III with a modified fourth

step and inspecting the distribution of random points

�t ′
k = R(k)

4 �t (10)

that emerges when the matrices are used to rotate a fixed unit
4-vector �t . For small-valued rotation angles, multiple rotations

FIG. 1. Distributions of hyperspherical angles corresponding to a
uniform distribution on S3. A set {�t ′

k}K
k=1, K = 105, of random points

on the unit 3-sphere were generated by repeatedly applying N = 105

random, small-angle (ε = 0.05) rotation matrices to a fixed 4-vector
�t = (0, 0, 0, 1)�. The numerical data (histograms) nicely reproduce
the angle distributions (a) p(θ) = sin(θ)/2, (b) p(ϕ) = 1/2π , and
(c) p(ψ) = 2 sin(ψ)2/2, which one expects to find if the points �t ′

k

uniformly cover the surface of the 3-sphere.

are needed to compose a large-scale rotation, so Eq. (10) has
to be replaced with

�t ′
k = R(1,k)

4 R(2,k)
4 . . . R(N,k)

4 �t . (11)

In hyperspherical coordinates, we have (see Appendix C)

�t ′
k =

⎛
⎜⎜⎝

sin(ψk) sin(θk) cos(ϕk)
sin(ψk) sin(θk) sin(ϕk)

sin(ψk) cos(θk)
cos(ψk)

⎞
⎟⎟⎠

because |�t | = 1, so verifying whether the points �t ′
k are

uniformly distributed on S3 amounts to comparing the

035307-5

BULLERJAHN, FÁBIÁN, AND HUMMER PHYSICAL REVIEW E 108, 035307 (2023)

distributions of {θk}K
k=1, {ϕk}K

k=1, and {ψk}K
k=1 to

p(θ) = sin(θ)

2
, p(ϕ) = 1

2π
, p(ψ) = 2 sin(ψ)2

π
. (12)

In Fig. 1, the hyperspherical coordinates of K = 105 ran-
dom points, generated via Eq. (11) with N = 105 and ε =
0.05, are collected into histograms and displayed next to the
theoretical predictions of Eq. (12). Visually, the numerical
data nicely agree with the analytic PDFs. The comparison can
also be made quantitative with the help of the Kolmogorov-
Smirnov (KS) test, which considers the differences

δ
(k)
+ = k/K − P(zk),

δ
(k)
− = P(zk) − (k − 1)/K

between the empirical distribution function and the CDF P(z)
of the variable z ∈ {θ, ϕ,ψ}. The KS statistic

Sz =
√

K max
1�k�K

(δ(k)
+ , δ

(k)
−) (13)

gives a measure for how likely it is that the sample {zk}K
k=1 was

drawn from the PDF p(z). For the distributions in Fig. 1, we
have

P(θ) = sin(θ/2)2, P(ϕ) = ϕ/2π,

P(ψ) = [ψ − sin(ψ) cos(ψ)]/π,

and the corresponding KS statistics evaluate to Sθ ≈ 0.90,
Sϕ ≈ 0.91, and Sψ ≈ 1.04. The largest KS statistic has an

associated p value of 0.23, so we can be quite confident in
our assumption that the cumulative rotation of N = 105 small-
angle rotation matrices results in a uniformly distributed 4D
rotation.

Figure 2 investigates how many small-angle rotation matri-
ces N are actually needed to construct a uniformly distributed
SO(4) element. We thereby considered 100 sets of points
{�t ′

k}K
k=1 with K = 1000 and for each set we evaluated the

KS statistic [Eq. (13)] for the hyperspherical coordinates θ ,
ϕ, and ψ . For ε = 0.05 [Fig. 2(a)], which was also used to
generate the data in Fig. 1, we find that approximately 10 000
small-angle matrices will guarantee a uniform distribution,
whereas for ε = 0.5 [Fig. 2(b)] only around 100 matrices are
needed. When used with Monte Carlo methods, the parameter
ε can therefore be seen as a magnitude for the step size, which
can be tuned, e.g., to optimize the fraction of accepted moves.

V. APPLICATION TO EQUIMOMENTAL SYSTEMS

Based on Newton’s equations of motion, two systems of
point masses are dynamically equivalent (or equimomental)
if the total mass M = ∑

i mi of both systems and the cor-
responding center-of-mass vectors �rcom = (xcom, ycom, zcom)�
and inertia tensors I are identical. Reference [4] introduces a
general framework for the generation of such equimomental
systems. The central quantity of interest in this formalism is
the pseudoinertia matrix

� =

⎛
⎜⎜⎝

1
2 (−Ixx + Iyy + Izz) −Ixy −Ixz Mxcom

−Ixy
1
2 (Ixx − Iyy + Izz) −Iyz Mycom

−Ixz −Iyz
1
2 (Ixx + Iyy − Izz) Mzcom

Mxcom Mycom Mzcom M

⎞
⎟⎟⎠, (14)

which encodes the elements Ii j of the inertia tensor I and the
total mass M (diagonal blocks), as well as the center-of-mass
vector �rcom scaled by M (off-diagonal blocks). The matrix �

can be readily constructed from exterior products as follows:

� =
N∑

i=1

mi �pi �p�
i , (15)

where N denotes the number of point masses and �pi =
(pi,x, pi,y, pi,z, 1)� is a homogeneous extended position vec-
tor. Without loss of generality, the � matrix can be
diagonalized by a suitable element G of the special Euclidean
group SE(3), i.e.,

�′ = G�G�. (16)

Diagonalization by G amounts to a combined translation and
rotation that sets �rcom → �0 and orients the system of point
masses in the principal frame. From here onwards, let us
therefore assume that � is diagonal. Defining the diagonal
matrix D = (M−1�)1/2 = diag(a, b, c, 1) and the homoge-
neous extended position vectors �qi that satisfy �pi = D�qi leads

to a convenient decomposition of �, namely

� =
N∑

i=1

mi �pi �p�
i =

N∑
i=1

miD�qi �q�
i D� = MDD�. (17)

In the last step, we made use of the identity

N∑
i=1

mi �qi �q�
i = MI4, (18)

which follows from the fact that DD� = M−1� must hold,
by construction. Now, the structure of � makes it invariant to
arbitrary 4D rotations of the �qi vectors, as seen by

� = MDD� = MDR4R�
4 D�

=
N∑

i=1

miDR4 �qi �q�
i R�

4 D�,
(19)

which allows us to transform between equimomental sys-
tems using elements of SO(4). Equation (19) implies that
the rotation matrix R4 shifts the homogeneous extended
positions �pi and redistributes mi of the point masses

035307-6

EFFICIENT GENERATION OF RANDOM ROTATION … PHYSICAL REVIEW E 108, 035307 (2023)

FIG. 2. Distributions of KS statistics S = max(Sθ ,Sϕ,Sψ) de-
pending on the number of matrices N behind the cumulative rotation.
For each S a corresponding p value can be calculated and the dashed
lines mark p = 0.01. We can therefore claim with confidence that
the collective rotation of N small-angle rotation matrices generates
uniformly distributed SO(4) elements if the corresponding S distri-
bution mostly lies below the dashed line, where p > 0.01. (a) For
ε = 0.05, tens of thousands of small-angle rotation matrices are
needed, whereas (b) ε = 0.5 only requires N ≈ 100.

as follows:

�pi → �p ′
i = �wi/wi,4, mi → m′

i = miw
2
i,4,

where the scaling via the fourth element of �wi =
DR4 �qi ensures that �p ′

i is a proper homogeneous extended
vector.

Reference [11] provides a particular application of the
above framework to coarse-grained molecular dynamics sim-
ulations of cholesterol. The coarse-grained representation of
cholesterol [21] in the Martini 2 force field [22] contains
coupled triangular constraints that require exceedingly strict
settings of the LINCS constraint-solving algorithm [23] to
converge. By constructing particle arrangements equimomen-
tal to the constrained scaffold of cholesterol via small-angle
4D rotations generated by the algorithm of Sec. III, it was
possible to speed up convergence of the LINCS algorithm
without affecting the original parametrization of the force
field.

VI. CONCLUSIONS

In this paper, we have presented a geometrically appealing
way to construct a 4D rotation matrix from two orthogonal
3D vectors and two angles of rotation (Sec. II). The explicit
control of the angle variables gives us an advantage over
established methods for the generation of SO(4) elements,
which we exploited to formulate an algorithm to exclusively
generate small-angle rotation matrices in four dimensions
(Sec. III). We also demonstrated (Sec. IV B) that the repeated
application of multiple consecutive small-angle rotations,
generated by our proposed algorithm, results in uniform sam-
pling of 4D rotations, as required for an unbiased algorithm.

The algorithm is efficient in the sense that it only requires
the minimal six pseudorandom numbers, is an order of mag-
nitude faster than alternative schemes (Sec. IV A), and can be
used in combination with Monte Carlo methods to solve op-
timization problems involving 4D rotations in physics [4] and
engineering [5]. A practical example is the optimization of
the constrained scaffold of a coarse-grained cholesterol model
[11] (Sec. V), which is used in combination with the Martini
force field in molecular dynamics simulations of biological
systems.

ACKNOWLEDGMENTS

We thank Professor Emeritus Dr. A. J. Hanson and Dr. A.
Szabo for discussions. This research was supported by the
Max Planck Society. B.F. thanks the Alexander von Humboldt
Foundation for funding.

APPENDIX A: GENERATING UNIFORMLY
DISTRIBUTED POINTS ON A 3D SPHERE

In spherical coordinates only two angles, θ ∈ [0, π] and
ϕ ∈ [0, 2π), are needed to define a point on the unit sphere
S2 = {�r ∈ R3 | ‖�r‖ = 1}. The position of the point is given by⎛

⎝x
y
z

⎞
⎠ =

⎛
⎝sin(θ) cos(ϕ)

sin(θ) sin(ϕ)
cos(θ)

⎞
⎠ (A1)

in Cartesian coordinates. Many algorithms exist to generate
uniformly distributed points on S2. Here, we essentially draw
random values for θ and ϕ from the appropriate distributions.

A uniform distribution on S2 is given in spherical co-
ordinates by p(θ, φ) = sin(θ)/4π , which implies that the
azimuthal angle ϕ is uniformly distributed on the interval
[0, 2π], i.e., ϕ ∼ U[0,2π]. The polar angle θ is distributed
according to p(θ) = sin(θ)/2, so in order to draw from this
distribution, we employ inverse transform sampling and con-
struct θ ∼ p(θ) from a uniformly distributed random number
R ∈ [0, 1] as follows:

θ = arccos(1 − 2R).

Note that for R ∼ U[0,1] we have 1 − 2R ∼ U[−1,1], so

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎜⎜⎝

√
1 − R2

1 cos(R2)√
1 − R2

1 sin(R2)

R1

⎞
⎟⎟⎠, (A2)

035307-7

BULLERJAHN, FÁBIÁN, AND HUMMER PHYSICAL REVIEW E 108, 035307 (2023)

with R1 ∼ U[−1,1] and R2 ∼ U[0,2π], uniformly distributed on
S2. Here, we exploited the fact that sin [arccos(x)] = √

1 − x2

must hold for −1 � x � 1.
If Eq. (A2) is used as a proxy for the auxiliary vector �a∗

1,
then there are infinitely many candidates for �a∗

2 lying in a
plane spanned by the orthonormal vectors⎛

⎝x′
y′
z′

⎞
⎠ =

⎛
⎝cos(θ) cos(ϕ)

cos(θ) sin(ϕ)
− sin(θ)

⎞
⎠,

⎛
⎝x′′

y′′
z′′

⎞
⎠ =

⎛
⎝ sin(ϕ)

− cos(ϕ)
0

⎞
⎠.

We can randomly choose a candidate of unit length from said
plane with a random rotation, giving

�a∗
2 = cos(R3)

⎛
⎝x′

y′
z′

⎞
⎠ + sin(R3)

⎛
⎝x′′

y′′
z′′

⎞
⎠

for R3 ∼ U[0,2π].

APPENDIX B: SAMPLING SMALL ROTATION ANGLES

Equation (8) in the main text can be rewritten as
follows [17]:

p(α, β) = 1

π2
sin

(
α + β

2

)2

sin

(
α − β

2

)2

,

which invites the coordinate substitutions u = (α − β)/2 and
v = (α + β)/2 to uncouple the variables. Both u and v are
then distributed according to Eq. (9) in the main text. We
can expand the diamond-shaped domain of (u, v) = [(α −
β)/2, (α + β)/2], which emerges for α, β ∈ [0, 2π], to the
square [−π, π] × [0, 2π] or, equivalently, [0, 2π] × [0, 2π].

The CDF of Eq. (9) is given by

P(z) = 2z − sin(2z)

4π

for z ∈ [0, 2π] and can be used to generate random values
for u and v via inverse transform sampling, which amounts
to solving

P(z) = Rz (B1)

for z ∈ {u, v} and a set of random uniformly distributed num-
bers Rz = Ru, Rv ∼ U[0,1]. In the small-angle limit, Eq. (B1)

reduces to

ε3Rz = z3

3π
+ O(z4)

for ε � 1, which gives rise to the following random angles of
rotations:

α = ε
(
R1/3

u + R1/3
v

)
, β = ε

(
R1/3

v − R1/3
u

)
.

However, as discussed in Sec. II D and demonstrated on ex-
plicit examples in Sec. IV, the distributions behind α and β do
not affect the properties of the large-scale rotations resulting
from multiple, consecutive, small-angle rotations.

APPENDIX C: HYPERSPHERICAL COORDINATES

While spherical coordinates are ideal for systems in R3

with rotation symmetries, they can also be generalized to
so-called hyperspherical coordinates in higher dimensions. In
4D, an angle coordinate ψ ∈ [0, 2π] is added to the spherical
coordinates r, θ , and ϕ, such that the Cartesian coordinates of
a 4-vector are given by

⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

r sin(ψ) sin(θ) cos(ϕ)
r sin(ψ) sin(θ) sin(ϕ)

r sin(ψ) cos(θ)
r cos(ψ)

⎞
⎟⎟⎠.

Conversely, one can calculate r, θ , ϕ, and ψ from a given
4-vector (x, y, z,w)� as follows:

r =
√

x2 + y2 + z2 + w2,

ψ = arccos(w/r),

θ = arccos(z/
√

r2 − w2),

ϕ =
{

arccos(x/
√

r2 − w2 − z2), y � 0,

2π − arccos(x/
√

r2 − w2 − z2), y < 0.

Note that, in this paper, we only consider 4-vectors of unit
length, so r ≡ 1.

[1] M. Karlsson, Four-dimensional rotations in coherent optical
communications, J. Light. Technol. 32, 1246 (2014).

[2] D. Oliver, The Shaggy Steed of Physics (Springer-Verlag, New
York, 2004).

[3] A. Borowicz, On using quaternionic rotations for indpen-
dent component analysis, in Proceedings of the 2018 Signal
Processing: Algorithms, Architectures, Arrangements, and
Applications (SPA), Poznan, Poland (IEEE, Piscataway, NJ,
2018), pp. 114–119.

[4] L. P. Laus and J. M. Selig, Rigid body dynamics using
equimomental systems of point-masses, Acta Mech. 231, 221
(2020).

[5] J. Wu, Y. Sun, M. Wang, and M. Liu, Hand-eye calibration: 4-D
procrustes analysis approach, IEEE Trans. Instrum. Meas. 69,
2966 (2020).

[6] S. Sarabandi and F. Thomas, Approximating displacements in
R3 by rotations in R4 and its application to pointcloud registra-
tion, IEEE Trans. Robot. 38, 2652 (2022).

[7] P. Lounesto, Clifford Algebras and Spinors (Cambridge
University Press, Cambridge, UK, 2001).

[8] C. A. León, J.-C. Massé, and L.-P. Rivest, A statistical model
for random rotations, J. Multivariate Anal. 97, 412 (2006).

[9] F. Mezzadri, How to generate random matrices from the classi-
cal compact groups, Not. Am. Math. Soc. 54, 592 (2007).

[10] G. W. Stewart, The efficient generation of random orthogonal
matrices with an application to condition estimators, SIAM J.
Numer. Anal. 17, 403 (1980).

[11] B. Fábián, S. Thallmair, and G. Hummer, Optimal bond-
constraint topology for molecular dynamics simulations of
cholesterol, J. Chem. Theory Comput. 19, 1592 (2023).

035307-8

https://doi.org/10.1109/JLT.2014.2301878
http://dx.doi.org/10.23919/SPA.2018.8563269
https://doi.org/10.1007/s00707-019-02543-3
https://doi.org/10.1109/TIM.2019.2930710
https://doi.org/10.1109/TRO.2021.3128328
https://doi.org/10.1016/j.jmva.2005.03.009
https://doi.org/10.1137/0717034
https://doi.org/10.1021/acs.jctc.2c01032

EFFICIENT GENERATION OF RANDOM ROTATION … PHYSICAL REVIEW E 108, 035307 (2023)

[12] A. J. Hanson, Visualizing Quaternions (Morgan Kaufmann
Publishers, Burlington, MA, 2006).

[13] A. Perez-Gracia and F. Thomas, On Cayley’s factorization of
4D rotations and applications, Adv. Appl. Clifford Algebras 27,
523 (2017).

[14] S. Sarabandi, A. Perez-Gracia, and F. Thomas, On Cayley’s
factorization with an application to the orthonormalization of
noisy rotation matrices, Adv. Appl. Clifford Algebras 29, 49
(2019).

[15] M. Erdoǧdu and M. Özdemir, Simple, double and isoclinic
rotations with a viable algorithm, Math. Sci. Appl. E-Notes 8,
11 (2020).

[16] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,
J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J.
Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,
E. Larson, C. J. Carey et al., SciPy 1.0: Fundamental algo-
rithms for scientific computing in Python, Nat. Methods 17, 261
(2020).

[17] H. Rummler, On the distribution of rotation angles: How great
is the mean rotation angle of a random rotation? Math. Intell.
24, 6 (2002).

[18] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia:
A fresh approach to numerical computing, SIAM Rev. 59, 65
(2017).

[19] https://github.com/JuliaCI/BenchmarkTools.jl.
[20] See https://github.com/scipy/scipy/blob/v1.4.1/scipy/stats/

_multivariate.py for the original code.
[21] M. N. Melo, H. I. Ingólfsson, and S. J. Marrink, Parameters for

Martini sterols and hopanoids based on a virtual-site descrip-
tion, J. Chem. Phys. 143, 243152 (2015).

[22] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman,
and A. H. de Vries, The MARTINI force field: Coarse grained
model for biomolecular simulations, J. Phys. Chem. B 111,
7812 (2007).

[23] B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije,
LINCS: A linear constraint solver for molecular simulations,
J. Comput. Chem. 18, 1463 (1997).

035307-9

https://doi.org/10.1007/s00006-016-0683-9
https://doi.org/10.1007/s00006-019-0965-0
https://doi.org/10.36753/mathenot.642208
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/BF03025318
https://doi.org/10.1137/141000671
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/scipy/scipy/blob/v1.4.1/scipy/stats/_multivariate.py
https://doi.org/10.1063/1.4937783
https://doi.org/10.1021/jp071097f
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

