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Abstract 24 

Land ecosystems are important sources and sinks of atmospheric components. In turn, 25 

air pollutants affect the exchange rates of carbon and water fluxes between ecosystems 26 

and atmosphere. However, these biogeochemical processes are usually not well 27 

presented in the Earth system models, limiting the explorations of interactions between 28 

land ecosystems and air pollutants from the regional to global scales. Here, we develop 29 

and validate the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) 30 

by upgrading the Yale Interactive terrestrial Biosphere model with process-based water 31 

cycles, fire emissions, wetland methane (CH4) emissions, and the trait-based ozone (O3) 32 

damages. Within the iMAPLE, soil moisture and temperature are dynamically 33 

calculated based on the water and energy balance in soil layers. Fire emissions are 34 

dependent on dryness, lightning, population, and fuel load. Wetland CH4 is produced 35 

but consumed through oxidation, ebullition, diffusion, and plant-mediated transport. 36 

The trait-based scheme unifies O3 sensitivity of different plant functional types (PFTs) 37 

with the leaf mass per area. Validations show correlation coefficients (R) of 0.59-0.86 38 

for gross primary productivity (GPP) and 0.57-0.84 for evapotranspiration (ET) across 39 

the six PFTs at 201 flux tower sites, and yield an average R of 0.68 for CH4 emissions 40 

at 44 sites. Simulated soil moisture and temperature match reanalysis data with the high 41 

R above 0.86 and low normalized mean biases (NMB) within 7%, leading to reasonable 42 

simulations of global GPP (R=0.92, NMB=1.3%) and ET (R=0.93, NMB=-10.4%) 43 

against satellite-based observations for 2001-2013. The model predicts an annual global 44 

area burned of 507.1 Mha, close to the observations of 475.4 Mha with a spatial R of 45 

0.66 for 1997-2016. The wetland CH4 emissions are estimated to be 153.45 Tg [CH4] 46 

yr-1 during 2000-2014, close to the multi-model mean of 148 Tg [CH4] yr-1. The model 47 

also shows reasonable responses of GPP and ET to the changes in diffuse radiation, and 48 

yields a mean O3 damage of 2.9% to global GPP. The iMAPLE provides an advanced 49 

tool for studying the interactions between land ecosystem and air pollutants.  50 

 51 

Keywords: carbon fluxes, water cycle, fire emissions, methane emissions, ozone 52 

damage, diffuse radiation.   53 
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1. Introduction 54 

As an important component on the Earth, land ecosystems regulate global carbon and 55 

water cycles. Every year, the ecosystem assimilates ~120 Pg (1 Pg = 1015 g) carbon 56 

from atmosphere through vegetation photosynthesis (Beer et al., 2010). However, most 57 

of these carbon uptake returns to atmosphere due to plant and soil respirations (Sitch et 58 

al., 2015), as well as other perturbations such as biomass burning and biogenic 59 

emissions (Carslaw et al., 2010; van der Werf et al., 2010), leading to a net carbon sink 60 

of only ~2 Pg C yr-1 (Friedlingstein et al., 2022). Meanwhile, land ecosystems affect 61 

atmospheric moisture and soil wetness through both physical (e.g., evaporation and 62 

runoff) and physiological (e.g., leaf transpiration and root hydrological uptake) 63 

processes. Observations show that transpiration accounts for 80%-90% of the terrestrial 64 

evapotranspiration (ET) (Jasechko et al., 2013) and makes significant contributions to 65 

land precipitation especially over the tropical forests (Spracklen et al., 2012).  66 

 67 

Different approaches have been applied to depict the spatiotemporal variations of 68 

ecosystem processes. The eddy covariance technique provides direct measurements of 69 

land carbon and water fluxes (Jung et al., 2011). However, the limited number and 70 

uneven distribution of ground sites results in large uncertainties in the upscaling of site-71 

level fluxes to the global scale (Jung et al., 2020b). Satellite retrieval provides a unique 72 

tool for the continuous representations of land fluxes in both space and time (Worden 73 

et al., 2021). However, most of the ecosystem variables (e.g., gross primary productivity, 74 

GPP) can only be derived using available signals from remote sensing through 75 

empirical relationships (Madani et al., 2017). As a comparison, process-based models 76 

build physical parameterizations based on field and/or laboratory experiments and 77 

validate against the available in situ and satellite-based observations (Niu et al., 2011; 78 

Castillo et al., 2012). These models can be further applied at different spatial (from site 79 

to global) and temporal (from days to centuries) scales to identify the main drivers of 80 

the changes in carbon and water fluxes (Sitch et al., 2015). For example, a total of 17 81 

vegetation models were validated and combined to predict the land carbon fluxes in the 82 
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past century (Friedlingstein et al., 2022); the ensemble mean of these models revealed 83 

a steadily increasing land carbon sink from 1960 with the dominant contribution by 84 

CO2 fertilization. 85 

 86 

While many studies quantified the ecosystem responses to the effects of CO2, climate, 87 

and human activities (Piao et al., 2009; Sitch et al., 2015), few have explored the 88 

interactions between air pollution and land ecosystems. Such biogeochemical processes 89 

become increasingly important in the Anthropocene period with significant changes in 90 

atmospheric compositions. For example, observations found that nitrogen and 91 

phosphorus constrain the CO2 fertilization efficiency of global vegetation (Terrer et al., 92 

2019), but such limiting effect is ignored or underestimated in most of the current 93 

models (Wang et al., 2020). Tropospheric ozone (O3) damages plant photosynthesis and 94 

stomatal conductance, inhibiting carbon assimilation and the ET from the land surface 95 

(Sitch et al., 2007; Lombardozzi et al., 2015). Atmospheric aerosols can enhance 96 

photosynthesis through diffuse fertilization effects (Mercado et al., 2009) but 97 

meanwhile decrease photosynthesis by reducing precipitation (Yue et al., 2017). In turn, 98 

ecosystems act as both the sources and sinks of atmospheric components. Biomass 99 

burning emits a large amount of carbon dioxide, trace gases, and particulate matters, 100 

further influencing air quality (Chen et al., 2021), ecosystem functions (Yue and Unger, 101 

2018), and global climate (Tian et al., 2022). Biogenic volatile organic compounds 102 

(BVOCs) are important precursors for both surface O3 and secondary organic aerosols 103 

(Wu et al., 2020), which can feed back to affect biogenic emissions (Yuan et al., 2016) 104 

and carbon assimilations (Rap et al., 2018). Wetland methane (CH4) emissions account 105 

for the dominant fraction of natural sources of CH4, and are projected to increase under 106 

the global warming scenarios (Zhang et al., 2017; Rosentreter et al., 2021). On the other 107 

hand, stomatal uptake dominates the dry deposition of air pollutants over the vegetated 108 

land (Lin et al., 2020). Meanwhile, ET from forest results in the increase of water vapor 109 

in atmosphere (Spracklen et al., 2012), affecting the consequent rainfall and wet 110 

deposition of particles.  111 
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 112 

Currently, numerical models are in general developed separately for atmospheric 113 

chemistry and ecosystem processes. The chemical transport models are usually driven 114 

with prescribed emissions of biomass burning (Warneke et al., 2023) and wetland 115 

methane (Heimann et al., 2020), while the ecosystem models often ignore the 116 

biogeochemical impacts of O3 and aerosols (Friedlingstein et al., 2022). In an earlier 117 

study, we developed and validated the Yale Interactive terrestrial Biosphere (YIBs) 118 

model version 1.0 with the special focus on the interactions between atmospheric 119 

chemistry and land ecosystems (Yue and Unger, 2015). Thereafter, the YIBs model has 120 

been used offline to assess the O3 vegetation damage (Yue et al., 2016), aerosol diffuse 121 

fertilization (Yue and Unger, 2017), BVOCs emissions (Cao et al., 2021a), as well as 122 

coupled to other models to investigate the carbon-chemistry-climate interactions (Lei 123 

et al., 2020; Gong et al., 2021). The YIBs model has joined the multi-model 124 

intercomparison project of TRENDY since the year 2020 and showed reasonable 125 

performance in the simulation of carbon fluxes (Friedlingstein et al., 2020). However, 126 

the YIBs model failed to predict the typical hydrological variables such as ET and 127 

runoff due to the missing of carbon-water coupling modules. Furthermore, the model 128 

did not consider the nutrient limitation on plant photosynthesis and ignored some key 129 

exchange fluxes between land and atmosphere.  130 

 131 

In this study, we develop the interactive Model for Air Pollution and Land Ecosystems 132 

(iMAPLE) by coupling the process-based water cycle module from Noah-MP (Niu et 133 

al., 2011) to the carbon cycle in the YIBs (Figure 1). In addition, we update the original 134 

YIBs model with some major advances in the biogeochemical processes including 135 

dynamic fire emissions, wetland CH4 emissions, nutrient limitations on photosynthesis, 136 

and the trait-based O3 vegetation damage. The detailed descriptions of these updates 137 

are presented in the next section. The iMAPLE is fully validated against available 138 

measurements in Section 3. The last section will summarize the model performance and 139 

rethink the prospective directions for future development.  140 
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 141 

2. Models and data 142 

2.1 Main features of YIBs model 143 

The YIBs model is a process-based vegetation model predicting land carbon fluxes with 144 

dynamic changes in tree height, leaf area index, and carbon pools (Yue and Unger, 2015, 145 

thereafter YU2015). A total of nine plant functional types (PFTs) are considered 146 

including evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), 147 

deciduous broadleaf forest (DBF), tundra, shrubland, C3/C4 grassland, and C3/C4 148 

cropland. Leaf photosynthesis is calculated using the well-established Michaelis-149 

Menten enzyme-kinetics scheme (Farquhar et al., 1980) and is coupled to stomatal 150 

conductance with the modulations of air humidity and CO2 concentrations (Ball et al., 151 

1987). The model applies a two-leaf approach to distinguish the irradiating states for 152 

sunlit and shading leaves and adopts an adaptive stratification for the radiative transfer 153 

processes within canopy layers (Spitters, 1986). The gross carbon assimilation is further 154 

regulated by the optimized plant phenology, which is mainly dependent on temperature 155 

and light for deciduous trees (Yue et al., 2015) but temperature and/or moisture for 156 

shrubland and grassland (YU2015). The assimilated carbon is allocated among leaf, 157 

stem, and root to support autotrophic respiration and development, the latter of which 158 

is used to update plant height and leaf area (Cox, 2001). The input of litterfall triggers 159 

the carbon transition among 12 soil carbon pools and determines the magnitude of 160 

heterotrophic respiration with the joint effects of soil temperature, moisture, and texture 161 

(Schaefer et al., 2008). The net carbon uptake is then calculated by subtracting 162 

ecosystem respiration (plant and soil) and environmental perturbations (reforestation or 163 

deforestation) from the gross carbon assimilation (Yue et al., 2021). The YIBs model 164 

reasonably reproduces the observed spatiotemporal patterns of global carbon fluxes and 165 

makes contributions to the Global Carbon Project with the long-term simulations of 166 

land carbon sink in the past century (Friedlingstein et al., 2020). The model specifically 167 

considers air pollution impacts on land ecosystems (Figure 1), such as the ozone 168 

vegetation damage (Yue and Unger, 2014) and aerosol diffuse fertilization effect (Yue 169 
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and Unger, 2017). The YIBs implements two different schemes for BVOCs emissions 170 

(Figure 1), including the Model of Emissions of Gases and Aerosols from Nature 171 

(MEGAN, Guenther et al., 2012) and the photosynthesis-dependent (PS_BVOC) 172 

scheme (Unger et al., 2013).  173 

 174 

2.2 New processes in iMAPLE model 175 

2.2.1 Process-based water cycles 176 

We implement the hydrological module from Noah-MP into the iMAPLE model (Niu 177 

et al., 2011). The water budget closure is achieved by constructing water-balance 178 

equations among precipitation (𝑃 , Kg m-2 s-1), evapotranspiration (𝐸𝑇 , Kg m-2 s-1), 179 

runoff, and terrestrial water storage change (∆𝑇𝑊𝑆) on each grid cell as follows: 180 

𝑃 = 𝐸𝑇 + 𝑟𝑢𝑛𝑜𝑓𝑓 + ∆𝑇𝑊𝑆                                                                (1) 181 

Here, hourly P from MERRA-2 reanalyses is used as the input. 182 

 183 

We then divide ET into three portions including plant transpiration (𝑇𝑅𝐴 ), canopy 184 

evaporation (𝐸𝐶𝐴𝑁) and ground evaporation (𝐸𝐺𝑅𝑂):  185 

𝐸𝑇 = 𝑇𝑅𝐴 + 𝐸𝐶𝐴𝑁 + 𝐸𝐺𝑅𝑂                                                           (2) 186 

For vegetated grids, TRA is calculated as follows: 187 

𝑇𝑅𝐴 =
𝜌௔௜௥ ∙ 𝐶𝑃௔௜௥ ∙ 𝐶௧௥௔ ∙ (𝑒௦௔௧ − 𝑒௖௔)

𝑃𝐶
                                                       (3) 188 

where 𝜌௔௜௥   is air density, 𝐶𝑃௔௜௥  is heat capacity of dry air, and 𝑃𝐶  is the 189 

psychrometric constant. 𝑒௦௔௧ is the saturated vapor pressure at the leaf temperature, 190 

𝑒௖௔ is the vapor pressure of the canopy air and 𝐶௧௥௔ is leaf transpiration conductance, 191 

which is calculated based on the Ball-Berry scheme of stomatal resistance (Yue and 192 

Unger, 2015). 193 

 194 

Runoff includes surface (𝑅௦௥௙) and subsurface (𝑅௦௨௕) components: 195 

𝑟𝑢𝑛𝑜𝑓𝑓 = 𝑅௦௥௙ + 𝑅௦௨௕                                                                 (4) 196 

The surface runoff is calculated as follows: 197 

𝑅௦௥௙ = 𝑄௦௢௜௟,௦௥௙ − 𝑄௦௢௜௟,௜௡                                                             (5) 198 
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where 𝑄௦௢௜௟,௦௥௙  is the incident water in the soil surface and is the sum of the 199 

precipitation, snowmelt and dewfall. Here, we assume independent and exponential 200 

distributions of infiltration capacity and precipitation in each grid cell when considering 201 

soil infiltration processes and 𝑄௦௢௜௟,௜௡  is the infiltration into the soil, following the 202 

approach by Schaake et al. (1996). We assume free drainage processes in the soil 203 

column bottom, thus the 𝑅௦௨௕ is calculated as follows: 204 

𝑅௦௨௕ = 𝛼௦௟௢௣௘ ∙ 𝐾ସ                                                                       (6) 205 

where 𝛼௦௟௢௣௘ = 0.1 is the terrain slope index. 𝐾ସ is the hydraulic conductivity in the 206 

bottom soil layer from soil parameterizes used in Clapp and Hornberger (1978). 207 

 208 

Terrestrial water storage (TWS) is the sum of groundwater storage (𝑊௚௪), soil water 209 

content (𝑊௦௢௜௟) and snow water equivalent (𝑊௦௡௢௪): 210 

𝑇𝑊𝑆 = 𝑊௚௪ + 𝑊௦௡௢௪ + ෍ 𝑊௦௢௜௟

ேೞ೚೔೗

௜ୀଵ

                                                        (7) 211 

Here, the soil module includes four layers (𝑁௦௢௜௟ = 4) and 𝑊௦  is calculated by the 212 

volumetric water content (𝑊௜) as follows:  213 

𝑊௦ = 𝜌௪௔௧ ∙ 𝑊௜ ∙ ∆𝑍௜     𝑓𝑜𝑟  𝑖 = 1, 2, 3, 4                     (8) 214 

where water density (𝜌௪௔௧) = 1000 kg m-3, and ∆𝑍௜ = 0.1, 0.3, 0.6 and 1m, respectively. 215 

Hourly 𝑊௜  depends on variations of soil water diffusion ( 𝐷 ) and hydraulic 216 

conductivity (𝐾) as follows:  217 

డௐ

డ௧
=

డ

డ௭
ቀ𝐷

డௐ

డ௭
ቁ +

డ௄

డ௭
                                (9) 218 

Here, 𝐾 and 𝐷 are calculated following the parameterizations of Clapp-Hornberger 219 

curves (Clapp and Hornberger, 1978):  220 

௄

௄ೞೌ೟
= (

ௐ

ௐೞೌ೟
)ଶ௕ାଷ                               (10) 221 

𝐷 = 𝐾 ∙
డఝ

డௐ
                                  (11) 222 

ఝ

ఝೞೌ೟
= (

ௐ

ௐೞೌ೟
)ି௕                                 (12) 223 

where 𝜑௦௔௧ , 𝑊௦௔௧  and 𝐾௦௔௧  are saturated soil capillary potential, volumetric 224 

water content and hydraulic conductivity. Exponent 𝑏  is an empirical constant 225 
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depending on soil types. Soil moisture is calculated as the ratio of 𝑊௦ to 𝑊௦௔௧. 226 

 227 

Soil temperature (𝑇௦) is calculated through physical processes as follows: 228 

డ ೞ்

డ௧
=

ଵ

஼

డ

డ௭
ቀ𝐾்

డ ೞ்

డ௭
ቁ                                  (13) 229 

Here 𝐾் is soil specific heat capacity: 230 

𝐾் = 𝐾௘ ∙ ൫𝐾௦ − 𝐾ௗ௥௬൯ + 𝐾ௗ௥௬                            (14) 231 

where 𝐾௘, 𝐾௦ and 𝐾ௗ௥௬ are Kersten values as a function of soil wetness, saturated 232 

soil heat conductivity and that under dry air conditions (Niu et al., 2011). C in Equation 233 

(13) is the specific heat 234 

      𝐶 = 𝑊௟௜௣ ∙ 𝐶௟௜௣ + 𝑊௜௖௘ ∙ 𝐶௜௖௘ + (1 − 𝑊௦௔௧) ∙ 𝐶௦௔௧ + (𝑊௦௔௧ − 𝑊) ∙ 𝐶௔௜௥     (15) 235 

Here, 𝑊௟௜௣ , 𝐶௟௜௣  and 𝑊௜௖௘ , 𝐶௜௖௘  indicate water content and heat capacity on soil 236 

water and ice. 𝐶௦௔௧ and 𝐶௔௜௥ are saturated and air heat capacity, which are empirical 237 

constants (Niu et al., 2011). 238 

 239 

2.2.2 Dynamic fire emissions 240 

We implement the active global fire parameterizations from Pechony and Shindell 241 

(2009) and Li et al. (2012) to the iMAPLE model. The fire emissions are determined 242 

by several key factors such as fuel flammability, natural ignitions, human activities, and 243 

fire spread. The fire count Nfire depends on flammability (Flam), fire ignition (including 244 

both natural ignition rate IN and anthropogenic ignition rate IA) and anthropogenic 245 

suppression (FNS): 246 

                      𝑁௙௜௥௘ = 𝐹𝑙𝑎𝑚 × (𝐼ே + 𝐼஺) × 𝐹ேௌ                   (16) 247 

Flam is a unitless metric representing conditions conducive to fire occurrence. It is 248 

parameterized as a function of vapor pressure deficit (VPD), precipitation (Prec), and 249 

leaf area index (LAI):  250 

                     𝐹𝑙𝑎𝑚 = 𝑉𝑃𝐷 × 𝑒ିଶ×௉௥௘௖ × 𝐿𝐴𝐼                  (17) 251 

IN depends on the cloud-to-ground lightning and IA can be expressed as: 252 

                       𝐼஺ = 0.03 × 𝑃𝐷 × 𝑘(𝑃𝐷)                      (18) 253 

where PD is population density. The empirical function of k(PD) = 6.8 × PD−0.6 stands 254 
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for ignition potentials by human activity. The fraction of non-suppressed fires FNS is 255 

derived as: 256 

                      𝐹ேௌ = 0.05 + 0.95 × 𝑒ି଴.଴ହ×௉஽                  (19) 257 

 258 

The burned area of a single fire (BAsingle) is typically taken to be elliptical in shape 259 

associated with near-surface wind speed (U) and relative humidity (RH):  260 

                        𝐵𝐴௦௜௡௚௟௘ =
గ×௎௉మ

ସ×௅஻
× (1 +

ଵ

ு஻
)ଶ                 (20) 261 

where LB and HB are length-to-breadth ratio and head-to-back ratio, respectively:  262 

                        𝐿𝐵 = 1 + 10 × (1 − 𝑒ି଴.଴଺×௎)                 (21) 263 

                        𝐻𝐵 =
௅஻ା(௅஻మିଵ)బ.ఱ

௅஻ି(௅஻మିଵ)బ.ఱ
                            (22) 264 

The rate of fire spread (UP) is computed as: 265 

                     𝑈𝑃 = 𝑈𝑃௠௔௫  ×  𝑓ோு × 𝑓ఏ  ×  𝐺(𝑊)                (23) 266 

Here, UPmax is the maximum fire spread rate depending on PFTs, 𝑓஘ is set to 0.5 and 267 

fRH is calculated as: 268 

               𝑓ோு = ൞

          0,                                   𝑅𝐻 ≤ 𝑅𝐻௟௢௪

 
ோுೠ೛ିோு

ோுೠ೛ିோு೗೚ೢ
,   𝑅𝐻௟௢௪ < 𝑅𝐻 < 𝑅𝐻௨௣  

         1,                                   𝑅𝐻 ≥ 𝑅𝐻௨௣

                 (24) 269 

In this study, we set RHlow =30 % and RHup =70 %. G(W) is the limit of the fire spread: 270 

                         𝐺(𝑊) =
௅஻

ଵା
భ

ಹಳ

                               (25) 271 

 272 

Finally, the burned aera (BA) is represented as: 273 

                         𝐵𝐴 =  𝐵𝐴௦௜௡௚௟௘ × 𝑁௙௜௥௘                       (26) 274 

The fire-emitted trace gases and aerosols (Emis) are calculated as:  275 

                           𝐸𝑚𝑖𝑠 = 𝐵𝐴 × 𝐸𝐹                        (27) 276 

where EF is the emission factors for different species (such as black carbon and organic 277 

carbon aerosols).  278 

 279 

2.2.3 Wetland methane emissions 280 

We implement the process-based wetland CH4 emissions into the iMAPLE model. For 281 
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each soil layer, the flux of CH4 (𝐹஼ுర
) is calculated as the difference between production 282 

(𝑃஼ுర
) and consumptions, which include oxidation (𝑂஼ுర

), ebullition (𝐸஼ுర
), diffusion 283 

(𝐷஼ுర
), and plant-mediated transport through aerenchyma (𝐴஼ுర

) as follows: 284 

                𝐹஼ுర
= 𝑃஼ுర

− 𝑂஼ுర
− 𝐸஼ுర

− 𝐷஼ுర
− 𝐴஼ுర

                (28) 285 

The net methane emission to the atmosphere is the sum of ebullition, diffusion and 286 

aerenchyma transport from the top soil layer. 287 

 288 

The production of CH4 in soil depends on the quantity of carbon substrate and 289 

environmental conditions including soil temperature Ts, pH, and wetland inundation 290 

fraction fwetland as follows: 291 

                     𝑃஼ுర
= 𝑅௛𝑟𝑓 ௦𝑓௣ு𝑓௪௘௧௟௔௡ௗ                       (29) 292 

where 𝑅௛ is the heterotrophic respiration estimated at the grid cell (𝑚𝑜𝑙 𝐶 𝑚ିଶ 𝑠ିଵ). 293 

𝑟 represents the release ratio of methane and carbon dioxide (Wania et al., 2010). We 294 

determine the dependence on Ts and soil pH in iMAPLE based on the parameterizations 295 

from the TRIPLEX-GHG model (Zhu et al., 2014). For the temperature-dependence, 296 

the 𝑄ଵ଴ relationships are applied as follows: 297 

                       𝑄ଵ଴ = 𝑟௕𝑄௕

೅ೞష೅್ೌೞ೐
భబ                            (30) 298 

Here rb is set to 3.0 and Qb is 1.33 with a base temperature (Tbase) of 25ºC (Zhu et al., 299 

2014; Paudel et al., 2016). The inundation fraction of wetland at each cell describes the 300 

proportion of anaerobic conditions (Zhang et al., 2021). We ignore the impact of redox 301 

potential (Eh) because global observations are not available and the Eh-related 302 

processes are poorly characterized in current models (Wania et al., 2010).  303 

 304 

The oxidation of CH4 is a series of aerobic activities related to temperature and CH4 305 

concentrations: 306 

                        𝑂஼ுర
= [𝐶𝐻ସ]𝑓 ௦𝑓஼ுర

                        (31) 307 

where [𝐶𝐻ସ] is the methane amount in each soil layer (𝑔𝐶𝑚ିଶ𝑙𝑎𝑦𝑒𝑟ିଵ). fCH4 is the  308 

CH4 concentration factor representing a Michaelis-Menten kinetic relationship: 309 

                         𝑓஼ுସ =
[஼ுర]

[஼ுర]ା௄಴ಹ
                          (32) 310 
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where KCH4 = 5 𝜇𝑚𝑜𝑙 𝐿ିଵ is the half-saturation coefficient with respect to CH4 (Walter 311 

and Heimann, 2000). For temperature-dependence of oxidation, the Q10 relationship 312 

with rb = 2.0, Qb =1.9, and Tbase= 12ºC is adopted (Zhu et al., 2014; Paudel et al., 2016). 313 

 314 

The diffusion of CH4 follows the Fick’s law with dependence on CH4 concentrations 315 

and the molecular diffusion coefficients of CH4 in the air (𝐷௔= 0.2 𝑐𝑚ଶ𝑠ିଵ) and water 316 

(𝐷௪ = 0.00002 𝑐𝑚ଶ𝑠ିଵ) respectively (Walter and Heimann, 2000). For each soil layer 317 

i, the diffusion coefficient Di can be calculated as follows : 318 

𝐷௜ = 𝐷௔ × ൫𝑅௦௔௡ௗ × 0.45 + 𝑅௦௜௟௧ × 0.2 + 𝑅௖௟௔௬ × 0.14൯ × 𝑓௧௢௥௧ × 𝑆௣௢௥௢ × (1 −319 

𝑊𝐹𝑃𝑆௜) + 𝐷௪ × 𝑊𝐹𝑃𝑆௜                                              (33) 320 

where 𝑅௦௔௡ௗ , 𝑅௦௜௟௧ , 𝑅௖௟௔௬  is the relative content of sand, silt, and clay in the soil, 321 

𝑓௧௢௥௧ = 0.66 is tortuosity coefficient, Sporo is soil porosity, and 𝑊𝐹𝑃𝑆 represents the 322 

pore space full of water (Zhuang et al., 2004).  323 

 324 

The ebullition of CH4 occurs when CH4 concentration is above the threshold of 0.5 325 

𝑚𝑜𝑙 𝐶𝐻ସ𝑚ିଷ (Walter et al., 2001). Since the process of ebullition occurs in a very short 326 

time, the bubbles will generate at once and all the flux will be released to atmosphere 327 

if the concentration reaches the threshold. The plant-mediated transport of CH4 through 328 

aerenchyma is dependent on the concentration gradient of CH4 and the plant-related 329 

factors (Zhu et al., 2014).  330 

 331 

2.2.4 The down regulation on photosynthesis 332 

We implement the down regulation parameterization from Arora et al. (2009) to indicate 333 

the nutrient limitations on leaf photosynthesis. A down-regulating factor ε is calculated 334 

as a function of CO2 concentrations (C) as follows: 335 

                    𝜀(𝐶) =
ଵାఊ೒೏୪୬ (஼/஼బ)

ଵାఊ೒୪୬ (஼/஼బ)
                            (34) 336 

where C0 is a reference CO2 concentration set to 288 ppm. The values of γgd = 0.42 and 337 

γg=0.90 are derived from multiple measurements to constrain the CO2 fertilization. 338 

Then the down-regulated photosynthesis is calculated by scaling the original value with 339 
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the factor of ε.  340 

 341 

2.2.5 Trait-based O3 vegetation damaging scheme 342 

The YIBs model considers O3 vegetation damage using the flux-based scheme proposed 343 

by Sitch et al. (2007) (thereafter S2007), which determines the damaging ratio F of 344 

plant photosynthesis as follows: 345 

                    𝐹 = 𝑎௉ி் × 𝑚𝑎𝑥{𝑓ைଷ − 𝑡௉ி் , 0}                  (35) 346 

Here, the 𝑓ைଷ denotes O3 stomatal flux (nmol m-2 s-1) defined as: 347 

                    𝑓ைଷ =
[ைయ]

௥ା൤
ೖೀయ

೒೛×(భషಷ)
൨
                              (36) 348 

where [𝑂ଷ] represents the O3 concentrations at the reference level (nmol m-3). r is the 349 

sum of boundary and aerodynamic resistance between leaf surface and reference level 350 

(s m-1). 𝑔௣ is the potential stomatal conductance for H2O (m s-1). 𝑘ைଷ = 1.67 is a 351 

conversion factor of leaf resistance for O3 to that for water vapor. The level of O3 352 

damage is then determined by the PFT-specific sensitivity aPFT and threshold tPFT, 353 

which are different among PFTs.  354 

 355 

In iMAPLE, we implement the trait-based O3 vegetation damaging scheme to unify the 356 

inter-PFT sensitivities (Ma et al., 2023):  357 

                         𝑎௉ி் =  
௔

௅ெ஺
                              (37) 358 

Here, a unified plant sensitivity a (nmol-1 g s) is scaled by leaf mass per area (LMA, g 359 

m-2) to derive the sensitivity of a specific PFT (aPFT). Accordingly, the damaging 360 

fraction F is modified as follows: 361 

                    𝐹 = 𝑎 × 𝑚𝑎𝑥 ቄ
௙ೀయ

௅ெ஺
− 𝑡, 0ቅ                       (38) 362 

Here t (nmol g⁻¹ s⁻¹) is a unified flux threshold for O3 vegetation damage. The updated 363 

scheme considers the dilution effects of O3 dose through leaf cross-section by 364 

incorporating LMA. Plants with high LMA (e.g., ENF and EBF) usually have low 365 

sensitivities, and those with low LMA (e.g., DBF and crops) are more sensitive to O3 366 

damages. The unified sensitivity a is set to 3.5 nmol-1 g s and threshold t is set to 0.019 367 
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nmol g⁻¹ s⁻¹ by calibrating simulated F values with literature-based measurements (Ma 368 

et al., 2023). 369 

 370 

2.3 Design of simulations 371 

We perform four sensitivity experiments with the iMAPLE model. The baseline (BASE) 372 

simulation considers the two-way coupling between carbon and water cycles, so that 373 

the prognostic soil meteorology drives canopy photosynthesis and evapotranspiration. 374 

A sensitivity run named BASE_NW is set up by turning off the water cycle in the 375 

iMAPLE model. In this simulation, the soil moisture and soil temperature are adopted 376 

from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 377 

(MERRA-2) reanalyses (Gelaro et al., 2017). The third and fourth runs turn on the O3 378 

vegetation damage effect using either the LMA-based scheme (O3LMA) or the S2007 379 

scheme (O3S2007). For all simulations, the iMAPLE model is driven with the hourly 380 

surface meteorology at a spatial resolution of 1º×1º from the MERRA-2 reanalyses, 381 

including surface air temperature, air pressure, specific humidity, wind speed, 382 

precipitation, snowfall, shortwave and longwave radiation. We run the model for the 383 

period of 1980-2021 using the initial conditions of the equilibrium soil carbon pool, 384 

tree height, and water fluxes from a spin-up run of 200 years.  385 

 386 

The iMAPLE model is driven with observed CO2 concentrations from Mauna Loa 387 

(Keeling et al., 1976) and the land cover fraction of nine PFTs derived by combining 388 

satellite retrievals from both Moderate Resolution Imaging Spectroradiometer (MODIS) 389 

(Hansen et al., 2003) and Advanced Very High Resolution Radiometer (AVHRR) 390 

(Defries et al., 2000). For fire emissions, we use Gridded Population of the World 391 

version 4 (https://sedac.ciesin.columbia.edu/data/collection/gpw-v4) to calculate 392 

human ignition and suppression. The lighting ignition is calculated using the flash rate 393 

from Very High Resolution Gridded Lightning Climatology Data Collection Version 1 394 

(https://ghrc.nsstc.nasa.gov/uso/ds_details/collections/lisvhrcC.html). For wetland 395 

CH4 emissions, we use the 2000-2020 global dataset of Wetland Area and Dynamics 396 
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for Methane Modeling (WAD2M) derived from static datasets and remote sensing 397 

(Zhang et al., 2021), global soil pH from Hengl et al. (2017), and gridded soil texture 398 

from Scholes et al. (2011). For the LMA-based O3 damage scheme, we use gridded 399 

LMA derived from the trait-level dataset of TRY (Kattge et al., 2011) using the random 400 

forest model (Moreno-Martínez et al., 2018).  401 

 402 

2.4 Data for validations 403 

We use observational datasets to validate the biogeochemical processes and related 404 

variables simulated by the iMAPLE model. For simulated carbon and water fluxes, site-405 

level observations are collected from the 201 sites at the FLUXNET network (Table 406 

S1). We also use the global gridded observations of GPP from the satellite retrievals 407 

including the solar-induced chlorophyll fluorescence (SIF) product GOSIF (Li and 408 

Xiao, 2019) and the Global land surface satellite (GLASS) product (Yuan et al., 2010). 409 

The global observations of ET are adopted from the benchmark product of FLUXCOM 410 

(Jung et al., 2020a) and the satellite-based GLASS product. For the dynamic fire 411 

module, we use monthly observed area burned from the Global Fire Emission Database 412 

version 4.1 with small fires (GFED4.1s) during 1997-2016 (van der Werf et al., 2010; 413 

Randerson et al., 2012). For methane emissions, we use site-level measurements of CH4 414 

fluxes from the FLUXNET-CH4 network (Delwiche et al., 2021). We exclude the 415 

monthly records with missing data at more than half of the days and calculate the long-416 

term mean fluxes for the seasonal cycle. In total, we select 44 sites with at least six 417 

months of data available for the validations (Table S2). We also use the anthropogenic 418 

sources of CH4 from the archive of Coupled Model Intercomparison Project phase 6 419 

(CMIP6, https://esgf-node.llnl.gov/projects/input4mips/). 420 

 421 

3. Model evaluations 422 

3.1 Site-level evaluations 423 

We compare the simulated carbon and water fluxes to in situ measurements at 201 424 

FLUXNET sites (Figure 2). Among these sites, 95 are tree species with the major PFT 425 
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of ENF and 106 are non-tree species with the maximum number for shrubland. Most 426 

(71%) of sites are located at the middle latitudes (30º-60ºN) of the Northern Hemisphere 427 

(NH), especially in the U.S. and Europe. Compared to the earlier evaluations in 428 

YU2015, we have much more sites in the tropics (22 in this study vs. 5 in YU2015), 429 

Asia (20 in this study vs. 1 in YU2015), and Southern Hemisphere (28 in this study vs. 430 

7 in YU2015) in this study.  431 

 432 

Simulated GPP shows correlation coefficients (R) of 0.59-0.86 for the six main PFTs 433 

with varied sample numbers (Figure 3). The highest R is achieved for ENF, though the 434 

model underestimates the mean GPP magnitude by 20.62% for this species. On average, 435 

simulated GPP is lower than observations for most PFTs. Compared to the YIBs model, 436 

iMAPLE with coupled water cycle improves the GPP simulations for ENF and 437 

grassland but worsens the predictions for other species. The main cause of such deficit 438 

is the application of MERRA-2 reanalyses in the iMAPLE simulations instead of the 439 

site-level meteorology used in the YU2015. The biases in the meteorological input may 440 

cause uncertainties in the simulation of GPP fluxes (Ma et al., 2021). Furthermore, the 441 

increase of site number and record length may decrease the R to some extent.  442 

 443 

Simulated ET matches observations with correlation coefficients of 0.57-0.84 at the 444 

FLUXNET sites (Figure 4). Relatively better performance is achieved for ENF (R=0.83) 445 

and grassland (R=0.84), for which the model yields good predictions of GPP as well. 446 

In contrast, low correlations and high biases are predicted for shrubland and cropland. 447 

For the shrubland sites, different land types (e.g., closed shrublands, permanent 448 

wetlands, and woody savannas) share the same parameters in the iMAPLE model, 449 

resulting in the biases in depicting the site-specific carbon and water fluxes. For 450 

cropland, the prognostic phenology of grass species is applied in the model due to the 451 

missing of plantation information for individual sites. Even with these deficits, the 452 

iMAPLE model in general captures the spatiotemporal variations of GPP and ET at 453 

most sites. 454 
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 455 

We further compare the simulated wetland CH4 fluxes with observations at the 456 

FLUXNET-CH4 sites. Similar to the carbon flux sites, most of these CH4 flux sites are 457 

located in the NH (Figure 5a). However, different from the carbon fluxes which usually 458 

range from 0 to 15 g C m-2 day-1, the CH4 fluxes show a wide range across several 459 

orders of magnitude from 10-2 to 103 g [CH4] m-2 yr-1 (Figure 5b). Such a large contrast 460 

requires a more realistic configuration of model parameters to distinguish the large 461 

gradient among sites. For example, US-Tw1 and US-Twt are two nearby sites within a 462 

distance of 1 km. However, average CH4 flux shows a difference of 3.7 times with 66.31 463 

g[CH4] m-2 yr-1 in US-Tw1 and 18.16 g[CH4] m-2 yr-1 in US-Tw4 during 2011-2017. In 464 

the model, these two sites share the same land surface properties because they are 465 

located on the same grid. On average, simulated CH4 fluxes are correlated with 466 

observations at a moderate R of 0.68 and a normalized mean bias (NMB) of -28%.  467 

 468 

3.2 Grid-level evaluations 469 

The coupling of Noah-MP module enables the dynamic prediction of soil parameters 470 

by the iMAPLE model. We compare the simulated soil moisture and soil temperature 471 

with MERRA-2 reanalyses (Figure 6). Both simulations (Figure 6a) and observations 472 

(Figure 6b) show low soil moisture over arid and semi-arid regions with the minimum 473 

in North Africa. The model also captures the high soil moisture in tropical rainforest. 474 

However, the prediction underestimates soil moisture in boreal regions in NH (Figure 475 

6c). On the global scale, simulated soil moisture matches observations with a high R of 476 

0.86 and a low NMB of -6.9%. These statistical metrics are further improved for the 477 

simulated soil temperature with the R of 0.99 and NMB of 0.5% against observations 478 

(Figure 6f). The simulation reproduces the observed spatial pattern with a uniform 479 

warming bias.  480 

 481 

Driven with the prognostic soil moisture and temperature, the iMAPLE model predicts 482 

reasonable land carbon and water fluxes (Figure 7). Simulated GPP (Figure 7a) 483 
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reproduces observed patterns (Figure 7b) with high values in the tropical rainforest, 484 

moderate values in the boreal forests, and low values in the arid regions. The predicted 485 

GPP is higher than observations over the tropical rainforest (Figure 7c). However, such 486 

overestimation may instead be an indicator of biases in the ensemble observations, 487 

which are derived from the empirical models instead of direct measurements (Running 488 

et al., 2004; Yuan et al., 2010). Our site-level evaluations show that iMAPLE predicts 489 

reasonable GPP values at the EBF sites (Figure 3). Despite this inconsistency, the model 490 

yields a high R of 0.92 and a small NMB of 1.3% for GPP against observations on the 491 

global scale (Figure 7c). Simulated ET (Figure 7d) matches the observations (Figure 7e) 492 

with high values in the tropical rainforest and secondary high values in the boreal forest. 493 

In general, the prediction is lower than observations except for the eastern U.S. and 494 

eastern China (Figure 7f). On average, the iMAPLE model shows the R of 0.93 and 495 

NMB of -10.4% in the simulation of ET compared to the ensemble of observations.  496 

 497 

We further compare the simulated GPP with or without dynamic water cycle (Figure 8). 498 

Relative to the simulations driven with MERRA-2 soil moisture and temperature, the 499 

iMAPLE model coupled with Noah-MP water module predicts very similar GPP over 500 

the hotspot regions such as tropical rainforest and boreal forest (Figure 8a). However, 501 

the coupled model predicts lower GPP for grassland in the tropics (e.g., South America 502 

and central Africa) but higher GPP in arid regions (e.g., South Africa and Australia). 503 

Since the baseline GPP is very low in arid regions, the relative changes are even larger 504 

than 100% over those areas. These GPP differences are mainly driven by the changes 505 

in soil moisture, which increases over the arid regions with the dynamic water cycle 506 

(Figure 6c). The reduction of soil moisture in the high latitudes of NH shows limited 507 

impacts on the predicted GPP, likely because the boreal ecosystem is more dependent 508 

on temperature than moisture (Beer et al., 2010).   509 

 510 

3.3 Ecosystem perturbations to air pollution 511 

Within the iMAPLE framework, the land ecosystem perturbs atmospheric components 512 
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through the emissions from biomass burning, wetland CH4, and BVOCs. We compare 513 

the simulated burned fraction with observations from GFED4.1s (Figure 9). The largest 514 

burned fraction is predicted over the Sahel region and countries of Angola and Zambia, 515 

surrounding the low center of Congo rainforest. Moderate burnings could be found in 516 

northern Australia and eastern South America. Most of these hotspots are located on the 517 

grassland and shrubland in the tropics, where the high temperature and limited rainfall 518 

promotes regional fire activities. The model reasonably captures the observed fire 519 

pattern with a spatial correlation of 0.66 and NMB of 6.05% (Figure 9c), though the 520 

model overestimates the area burned in South Africa. The predicted fire area is used to 521 

derive biomass burning emissions of air pollutants (e.g., carbon monoxide, nitrogen 522 

oxides, black carbon, organic carbon, sulfur dioxide) with the specific emission factors 523 

(Tian et al., 2023).   524 

 525 

The wetland emissions of CH4 show hotspots over tropical rainforests (Figure 10a), 526 

where the dense soil carbon provides abundant substrates for emissions and the warm 527 

climate promotes the emission rates. The secondary hotspots are located at the boreal 528 

regions in the NH. This spatial pattern is very similar to the map of wetland CH4 529 

emissions predicted by an ensemble of 13 biogeochemical models (Saunois et al., 2020). 530 

On the global scale, the total wetland emission is 153.45 Tg [CH4] yr-1 during 2000-531 

2014, close to the average of 148±25 Tg [CH4] yr-1 for 2000-2017 estimated by the 532 

multiple models. As a comparison, anthropogenic source of CH4 show the high amount 533 

in China and India due to the large emissions from fossil fuels and agriculture (Figure 534 

10b). On the global scale, the wetland emissions are equivalent to 45.3% of the total 535 

anthropogenic emissions.   536 

 537 

Isoprene emissions from the two schemes in the iMAPLE model show similar spatial 538 

distributions with the hotspots over tropical rainforest (Figure 11), where the warm 539 

climate and abundant light are favorable for the biogenic emissions. Compared to the 540 

MEGAN scheme, the PS_BVOC scheme yields higher emissions in the tropical 541 
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rainforest and boreal forest, but lower emissions for the shrubland and grassland in 542 

semiarid regions (Figure 11c). Such differences are attributed to the varied processes as 543 

well we the emission factors. Our earlier study showed that PS_BVOC scheme predicts 544 

stronger trends in isoprene emissions than MEGAN (Cao et al., 2021a), because the 545 

former considers both CO2 fertilization and inhibition effects while the latter considers 546 

only the inhibition effects. On the global scale, isoprene emissions are 550 Tg yr-1 with 547 

PS_BVOC (Figure 11a) and 611 Tg yr-1 with MEGAN (Figure 11b). These amounts are 548 

higher than the ensemble mean of 448 Tg yr-1 from the CMIP6 models (Cao et al., 549 

2021b), but in general within the range of 412-601 Tg yr-1 as summarized by Carslaw 550 

et al. (2010).  551 

 552 

3.4. Air pollution impacts on ecosystem fluxes 553 

We assess the damaging effects of surface O3 to GPP with two schemes (Figure 12). 554 

Simulated GPP losses show similar patterns with high damages in eastern U.S., western 555 

Europe, and eastern China, where surface O3 level is high due to the anthropogenic 556 

emissions. Limited GPP damages are predicted in the tropics though with abundant 557 

forest coverage due to the low level of O3 pollution. Compared to the S2007 scheme, 558 

predicted GPP loss is further alleviated in tropical rainforest with the LMA-based 559 

scheme, because the latter scheme determines lower O3 sensitivity for evergreen trees 560 

due to their higher content of chemical resistance with the larger LMA value (Ma et al., 561 

2023). On the global scale, the average GPP loss is -2.9% with the LMA scheme and -562 

3.2% with the S2007 scheme. Such damage to GPP is weaker than the estimate of -4.8% 563 

in Ma et al. (2023) because of the differences in O3 concentrations, vegetation types, 564 

and photosynthetic parameters.  565 

 566 

Atmospheric aerosols cause perturbations to both direct and diffuse radiation, which 567 

have different efficiencies in enhancing plant photosynthesis. Here, we separate the 568 

diffuse (diffuse fraction > 0.75) and direct (diffuse fraction < 0.25) components of solar 569 

radiation, and aggregate the GPP and ET fluxes for different radiation periods at certain 570 
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intervals (Figure 13). At the six selected sites, observed GPP is higher and grows faster 571 

with more diffusive light than that under the direct light conditions (Figure 13a-13f). 572 

Simulations in general reproduce such feature with the comparable variability. In the 573 

earlier study, simulated diffuse fertilization efficiency for GPP (changes of GPP per unit 574 

diffuse radiation) was well validated against observations at more than 20 sites (Yue 575 

and Unger, 2018). Such amelioration of GPP suggests that moderate aerosol loading is 576 

beneficial for ecosystem carbon uptake (Yue and Unger, 2017). However, the dense 577 

aerosol loading may instead weaken plant photosynthesis due to the large reduction in 578 

direct radiation .  579 

 580 

We further evaluate the ET responses to diffuse and direct radiation from the iMAPLE 581 

model (Figure 13g-13l). Although ET is slightly higher at the diffusive condition, the 582 

growth rates are weaker than that of GPP. The main cause of such difference is related 583 

to the varied light dependence of ET components, which consist of canopy evaporation 584 

and transpiration. Transpiration is tightly coupled with photosynthesis and will increase 585 

by diffuse radiation at a similar rate. However, evaporation is more dependent on light 586 

quantity which will decrease with the extinction of aerosols. As a result, the weakened 587 

evaporation in part offsets the increased transpiration, leading to the smaller growth rate 588 

of ET than the responses of photosynthesis and the consequent enhancement in water 589 

use efficiency (Wang et al., 2023). The iMAPLE model reasonably captures the lower 590 

growth rates of ET than GPP in response to diffuse radiation at the selected sites.  591 

 592 

 593 

4. Conclusions and discussion 594 

We develop the iMAPLE model by coupling Noah-MP water module with YIBs 595 

vegetation model. Validations show that iMAPLE predicts reasonable distribution of 596 

soil moisture and soil temperature. Driven with these prognostic soil conditions and 597 

meteorology from reanalyses, the model reasonably reproduces the observed 598 

spatiotemporal variations of both GPP and ET fluxes at 201 sites and on the global scale. 599 
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We further update the biogeochemical processes in iMAPLE to extend the model’s 600 

capability in quantifying interactions between air pollution and land ecosystems. The 601 

model reasonably predicts wetland CH4 emissions at 44 sites and yields the similar 602 

global map of CH4 emissions compared to an ensemble of 13 biogeochemical models. 603 

In addition, predicted biomass burning and biogenic emissions are consistent with 604 

either satellite retrievals or results from other models. We assess the impacts of surface 605 

O3 and aerosols on ecosystem fluxes. The LMA-based scheme links the O3 sensitivity 606 

with vegetation LMA and predicts a global map of GPP loss that is consistent with the 607 

traditional scheme using the PFT-specific sensitivity. The updated scheme effectively 608 

reduces modeling uncertainties by decreasing the number of parameters for O3 609 

sensitivity and provides an option to apply the advanced LMA map from remote sensing. 610 

The model also reproduces the observed responses of GPP and ET to diffuse radiation 611 

with a lower growth rate for ET than GPP.  612 

 613 

There are several limitations in the current version of iMAPLE model. First, it does not 614 

include the dynamic nutrient cycle. Although we implement the down regulation from 615 

Arora et al. (2009) to constrain CO2 fertilization, this limitation is dependent only on 616 

the ambient CO2 concentrations and could not represent the heterogeneous distribution 617 

of nutrients. As a result, the model could not reveal the biogeochemical effects of 618 

nitrogen and phosphorus deposition on land ecosystems. Second, the feedback of fire 619 

activities to ecosystems is ignored. The iMAPLE considers the impacts of fuel load on 620 

area burned at each modeling time step. However, these fire perturbations do not in turn 621 

change the vegetation distribution and composition. The vegetation model does not 622 

consider the competition among PFTs, so that fire perturbations are not allowed to 623 

change vegetation coverage. As a result, the interactions between fire and ecosystems 624 

are underestimated in the current model framework. Third, iMAPLE does not consider 625 

the dynamic changes in wetland area for CH4 emissions. Although the Noah-MP 626 

module predicts runoff and underground water, the changes of hydrological cycles are 627 

not connected with wetland aera in the model. Instead, a prescribed wetland dataset is 628 
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applied to reduce the possible uncertainties but meanwhile refrain the explorations of 629 

CH4 changes in the historical and future periods. These limitations will be the focuses 630 

of model development in the next step.  631 

 632 

The iMAPLE model inherits the good capability of the original YIBs model in the 633 

simulations of carbon cycle. Furthermore, the iMAPLE upgrades the YIBs model with 634 

carbon-water coupling and more biogeochemical processes. With the iMAPLE model, 635 

we could assess the changes of carbon and water fluxes, as well as their coupling, in 636 

response to environmental perturbations (e.g., climate change, air pollution, land cover 637 

change). Meanwhile, by coupling the iMAPLE with climate and/or chemical models, 638 

we could further quantify the changes of meteorology and atmospheric components in 639 

response to the biogeochemical and biogeophysical processes. For example, Lei et al. 640 

(2022) revealed the strong vegetation feedback to global surface O3 during the drought 641 

periods using the YIBs model coupled to a chemical transport model. Xie et al. (2019) 642 

found a significant increase in atmospheric CO2 concentrations due to O3-induced 643 

vegetation damage using the YIBs model coupled with a regional climate-chemistry 644 

model. Gong et al. (2021) estimated a surface warming in polluted regions due to the 645 

ozone-vegetation feedback using the YIBs model coupled with a global climate-646 

chemistry model. These studies indicate that the iMAPLE model could be used either 647 

offline or online with other models to explore the interactions among climate, chemistry, 648 

and ecosystems.  649 
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 1063 

 1064 

 1065 

Figure 1 The illustration of biogeochemical processes in the iMAPLE version 1.0 1066 

model. The carbon cycle is connected with water cycle, wildfire emissions, biogenic 1067 

volatile organic compounds (BVOCs) emissions, wetland methane emissions, and is 1068 

affected by air pollutants including aerosols and ozone. The bold arrows indicate the 1069 

directions of fluxes and air pollutants. The thin arrows indicate the influential pathways 1070 

among different components. The dependences on key parameters are shown for some 1071 

processes. Red fonts indicate new or updated processes in iMAPLE relative to the YIBs 1072 

model. For detailed parameterizations please refer to section 2.2.  1073 
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 1077 
Figure 2 Spatial distributions of 201 sites from global FLUXNET network. The colors indicate 1078 

various plant functional types (PFTs) including evergreen broadleaf forest (EBF, 13 sites), evergreen 1079 

needleleaf forest (ENF, 57 sites), deciduous broadleaf forest (DBF, 25 sites), Shrub (52 sites), Grass 1080 

(37 sites), and Crop (17 sites). The black triangles indicate sites with at least one-year observations 1081 

of diffuse radiation.  1082 
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 1085 

Figure 3 Comparisons between observed and simulated monthly GPP from 201 FLUXNET sites. 1086 

Each point indicates the average value of one month at a site. The red line represents linear 1087 

regression between observations and simulations. The correlation coefficient (R), normalized mean 1088 

bias and numbers of points/months (N) are shown on each panel. The comparisons are grouped into 1089 

six PFTs including EBF, ENF, DBF, Shrub, Grass, and Crop. The unit is g C m-2 day-1. 1090 
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 1092 

Figure 4 The same as Figure 3 but for ET. The unit is mm month-1. 1093 
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 1096 
Figure 5 Spatial distribution of global FLUXNET-CH4 sites and comparisons between observed 1097 

and simulated monthly methane flux. Filled triangles indicate sites with at least six months 1098 

observations of wetland CH4 fluxes. Each point represents average value of monthly methane 1099 

emission at one site. The correlation coefficient (R), normalized mean bias and numbers of 1100 

points/months (N) are shown on the right panel. The unit is g [CH4] m-2 yr-1.  1101 
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 1103 

Figure 6 Comparisons of simulated (a) soil moisture (m3 m-3) and (d) soil temperature (K) from the 1104 

iMAPLE model with (b, e) the MERRA-2 reanalyses. Both simulations and observations are 1105 

averaged for the period of 1980-2020. The spatial difference, correlation coefficient (R), normalized 1106 

mean bias (NMB) between simulations and observations and numbers of points (N) are shown on 1107 

(c) and (f), respectively.  1108 
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 1112 

Figure 7 Comparisons of simulated (a) gross primary productivity (GPP, g C m-2 day-1) and (d) 1113 

evapotranspiration (ET, mm month-1) with ensemble products from (b, e) observations. Simulated 1114 

GPP and ET are performed by iMAPLE driven with meteorology from MERRA-2 reanalysis during 1115 

2001-2013. Ensemble GPP products are from the average values of SIF-based GOSIF and satellite-1116 

based GLASS GPP products. Ensemble ET products include FLUXCOM and GLASS products 1117 

during 2001-2013. The spatial difference, correlation coefficient (R), normalized mean bias (NMB) 1118 

between simulations and observations and numbers of points (N) are shown on (c) and (f). Only 1119 

land grids with vegetation are shown on each panel, and their area-weighed values are shown in 1120 

titles.  1121 
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 1123 

Figure 8 Absolute (g C m-2 day-1) and relative (%) differences of global GPP between simulations 1124 

with and without two-way carbon-water coupling processes. Simulation results are averaged for the 1125 

period of 1980-2020.  1126 
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 1128 

Figure 9 Comparisons of global burned fraction (%) between (a) simulations and (b) observations. 1129 

Simulations are performed using iMAPLE and observations are from GFED V4.1 fire emissions 1130 

products. Both simulations and observations are averaged for the 1997-2016 period. The global total 1131 

area burned are shown on (a) and (b). The spatial difference, correlation coefficient (R), and 1132 

normalized mean biases between simulations and observations are shown on (c).  1133 
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 1135 

Figure 10 Global CH4 emissions (g [CH4] m-2 yr-1) from (a) wetland and (b) anthropogenic sources. 1136 

Anthropogenic sources include energy, agriculture, industrial, residential, shipping, solvent and 1137 

transportation. The global total emissions are shown on each panel. Both the wetland and other 1138 

emissions are averaged for 2000-2014. 1139 

  1140 

https://doi.org/10.5194/gmd-2023-144
Preprint. Discussion started: 19 October 2023
c© Author(s) 2023. CC BY 4.0 License.



44 

 

 1141 
Figure 11 Global isoprene emissions (mg C m-2 day-1) from (a) MEGAN, (b) PS_BVOC schemes 1142 

and (c) their differences. The global total emissions are shown on each panel.  1143 
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 1145 

Figure 12 Percentage changes of global GPP caused by ozone damage effects. The ozone damage 1146 

schemes include (a) trait leaf mass per area (LMA)-based, (b) S2007 plant ozone sensitivity and (c) 1147 

their differences.  1148 

 1149 
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 1152 

Figure 13 Observed and simulated responses of site-level (a-f) GPP and (g-l) ET to diffuse and 1153 

direct radiation at the FLUXNET sites. Photosynthetically active radiation (PAR) reaching the 1154 

surface are divided into diffuse (diffuse fraction > 0.75) and direct (diffuse fraction < 0.25) radiation 1155 

at six FLUXNET sites with more than 10 years of observations. Observations (simulations) are 1156 

grouped over PAR bins of 40 W m-2 with errorbars (shadings) indicating standard deviations of GPP 1157 

and ET for each bin. The red (blue) and magenta (green) represent observed and simulated responses 1158 

of GPP and ET to diffuse (direct) radiation. Units of GPP and ET are g C m-2 day-1 and mm hr-1, 1159 

respectively.  1160 
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