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The scaling of acceleration statistics in turbulence is examined by combining data from the literature
with new data from well-resolved direct numerical simulations of isotropic turbulence, significantly
extending the Reynolds number range. The acceleration variance at higher Reynolds numbers departs from
previous predictions based on multifractal models, which characterize Lagrangian intermittency as an
extension of Eulerian intermittency. The disagreement is even more prominent for higher-order moments of
the acceleration. Instead, starting from a known exact relation, we relate the scaling of acceleration variance
to that of Eulerian fourth-order velocity gradient and velocity increment statistics. This prediction is in
excellent agreement with the variance data. Our Letter highlights the need for models that consider
Lagrangian intermittency independent of the Eulerian counterpart.
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Introduction.—The acceleration of a fluid element in a
turbulent flow, given by the Lagrangian derivative of the
velocity, resulting from the balance of forces acting on it,
is arguably the simplest descriptor of its motion. This is
directly reflected in the Navier-Stokes equations:

a ¼ Du=Dt ¼ −∇pþ ν∇2uþ f ; ð1Þ
where, u is the divergence-free velocity (∇ · u ¼ 0), p the
kinematic pressure, ν is the kinematic viscosity, and f is a
forcing term. Besides its fundamental role in the study of
turbulence [1–4], understanding the statistics of acceler-
ation is of paramount importance for a diverse range of
applications constructed around stochastic modeling of
transport phenomena in turbulence [5–8]. The application
of Kolmogorov’s 1941 phenomenology implies that the
variance (and higher-order moments) of any acceleration
component a can be solely described by the mean-dis-
sipation rate hϵi and ν [9–11]:

ha2i ¼ 1

3
hjaj2i ¼ a0hϵi3=2ν−1=2; ð2Þ

where a0 is thought to be a universal constant.
However, extensive numerical and experimental work

has shown that a0 increases with Reynolds number

[12–20]. Thus, obtaining data on a0 and modeling its Rλ

variation has been a topic of considerable interest. While
several theoretical works have focused on acceleration
statistics [21–24], the most notable procedure, whose
validity should not be taken for granted, stems from the
multifractal model [25–27], which quantifies acceleration
intermittency (and, in general, the intermittency of other
Lagrangian quantities) by adapting to the Lagrangian
viewpoint the well-known Eulerian framework, based
either on the energy dissipation rate [28] or velocity
increments [29]. A key result from this consideration is
that a0 ∼ Rχ

λ , χ ≈ 0.135, where Rλ is the Taylor-scale
Reynolds number. While data from direct numerical
simulations (DNS) and experiments do not directly display
this power law, it was nevertheless presumed to be
asymptotically correct at very large Rλ, and an empirical
interpolation formula [16,19],

a0 ≃
c1R

χ
λ

ð1þ c2=R
1þχ
λ Þ ; ð3Þ

with χ ¼ 0.135, c1 ¼ 1.9, and c2 ¼ 85, was suggested to
fit the data, showing reasonable success [16]. An alternative
scaling: a0 ∼ R0.25

λ was proposed by Hill [21], which was
indistinguishable from Eq. (3) at low Rλ [16,20]; we discuss
the veracity of this proposal later.
In this Letter, we revisit the scaling of acceleration

variance (and higher-order moments) by presenting new
DNS data at higher Rλ. The new variance data agrees with
previous lower Rλ data, where the Rλ range overlaps, but
increasing deviations from Eq. (3) occur at higher Rλ.
Results for high-order moments show even stronger
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deviations from previous predictions. Further analysis
shows that the extension of Eulerian multifractal models
to the Lagrangian viewpoint is the source of this discrep-
ancy. We develop a statistical model that shows excellent
agreement with variance data at high Rλ, and also provide
an updated interpolation fit to include low Rλ data.
Direct numerical simulations.—The DNS data used here

correspond to the canonical setup of forced stationary
isotropic turbulence in a periodic domain [30], allowing
the use of highly accurate Fourier pseudospectral methods
[31]. The novelty is that we have simultaneously achieved
very high Reynolds number and the necessary grid reso-
lution to accurately resolve the small scales [32,33]. The
data correspond to the same Taylor-scale Reynolds number
Rλ range of 140–1300 attained in recent studies [34–37],
which have adequately established convergence with res-
pect to resolution and statistical sampling. The grid
resolution is as high as kmaxηK ≈ 6, which is substantially
higher than kmaxηK ≈ 1–2, used in previous acceleration
studies [16,19,20]; kmax ¼

ffiffiffi
2

p
N=3 is themaximum resolved

wave number on a N3 grid and ηK ¼ ν3=4hϵi−1=4 is the
Kolmogorov length scale. This improved small-scale reso-
lution is especially necessary for capturing higher-order
statistics of acceleration, since acceleration is even more
intermittent than spatial velocity gradients [12,19].
Acceleration variance.—Figure 1 shows the compilation

of data from various sources including data from both DNS
[19,20,38] and bias-corrected experiments [39]. We have
also included DNS data obtained directly from Lagrangian
trajectories of fluid particles [40–42], which give identical
results for acceleration variance [43]. As evident, while
Eq. (3) works for the previous range of Rλ, it does not fit
the new data. In fact, a R0.25

λ scaling is more appropriate at
higher Rλ, and as discussed later, the failure of multifractal
models in fitting higher-order moments is even more

conspicuous. To gain clarity on this point, it is useful to
discuss the multifractal models first.
Acceleration scaling from multifractals.—The key idea

in multifractal approaches is to quantify the intermittency
of acceleration in terms of the intermittency of Eulerian
velocity gradients or dissipation rate. Assuming a simple
phenomenological equivalence between temporal and spa-
tial derivatives, acceleration can be written in terms of
dissipation rate and viscosity as a ∼ ϵ3=4ν−1=4. Thus, the
moments of acceleration are obtained as

hapi ∼ hϵ3p=4iν−p=4: ð4Þ

Alternatively,

hapi=hapKi ∼ hϵ3p=4i=hϵi3p=4; ð5Þ

where aK ¼ hϵi3=4ν−1=4, i.e., acceleration based on
Kolmogorov variables. Since Eulerian intermittency dic-
tates that hϵqi ≠ hϵiq for any q ≠ 1 [28,29], the key
assumption in its extension to Lagrangian intermittency
is that the pth moment of acceleration scales as the
ð3p=4Þth moment of ϵ [25,27]. The scaling of hϵqi=hϵiq
can be obtained by several approaches, all leading to
similar results. We briefly summarize a few approaches
below, with additional details in the Supplemental
Material [44].
The most direct approach is to use the multifractality of

dissipation rate [25,45]. Within the multifractal framework,
a scale-averaged dissipation ϵr, over scale r, is assumed to
be Hölder continuous: ϵr=hϵi ∼ ðr=LÞα−1, where α is the
local Hölder exponent, with a corresponding multifractal
spectrum FðαÞ and L is the large-scale length. Note, the 1D
spectrum fðαÞ is more common in the literature [45], which
is simply: fðαÞ ¼ FðαÞ − 2. Now, ϵr reduces to the true
dissipation for a viscous cutoff defined as r ≃ ðν3=ϵrÞ1=4 or
equivalently, r=L ≃ Re−3=ð3þαÞ. Here, Re ¼ u0L=ν, u0

being the large-scale velocity; we also use Re ∼ R2
λ and

hϵi ∼ u03=L from dissipation anomaly [46].
The above framework leads to the result:

hϵqi=hϵiq ∼ R
τq
λ ; τq ¼ sup

α

6½qð1 − αÞ − 3þ FðαÞ�
3þ α

:

ð6Þ

An approximation for FðαÞ, such as the p-model [45,47],
can be used to obtain τq. The pth moment of acceleration
can then be simply obtained as [48]

hapi=apK ∼ R
ζp
λ ; with ζp ¼ τ3p=4: ð7Þ

Instead of dissipation, one can also start by taking the
velocity increment δur over scale r to be Hölder continu-
ous: δur=u0 ∼ ðr=LÞh, where h is the local Hölder exponent
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FIG. 1. Normalized acceleration variance a0 ¼ ha2i=
ðhϵi3=2ν−1=2Þ as a function of Rλ. The data can be prescribed
by a simple R0.25

λ power law at high Rλ, in contrast to the
previously proposed empirical fit given by Eq. (3).
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and DðhÞ is the corresponding multifractal spectrum. A
scale-dependent dissipation rate ϵr can then be defined as
ϵr ∼ ðδurÞ3=r, which reduces to the true dissipation for the
viscous cutoff defined by the condition δurr=ν ≃ 1. This
framework leads to the same result as in Eq. (6), corre-
sponding to α ¼ 3h and FðαÞ ¼ DðhÞ. A well-known
approximation for DðhÞ is given by the She-Lévêque
model [49]. Finally, we can also use the Kolmogorov
(1962) log-normal model [50], which gives τq ¼
3μqðq − 1Þ=4, even though it is untenable for large q
[29]. Here, μ is the intermittency exponent, with experi-
ments and DNS suggesting μ ≈ 0.25 [51,52].
The scaling of acceleration moments obtained from

these three approaches and also from DNS data is listed
in Table I, up to sixth-order. All approaches give essentially
the same result for the acceleration variance, with the
exponent of about 0.135 used in Eq. (3). However, the
high-Rλ DNS data clearly do not conform to any of the
power laws shown in Table I. The results for normalized

fourth- and sixth-order moments, also plotted in Fig. 2,
clearly show that the power laws increasingly differ from
multifractal predictions.
As noted earlier, the use of multifractals is primarily

motivated by Eq. (4). To get better insight, in Fig. 3(a), we
plot a0 and hϵ3=2i=hϵi3=2 versus Rλ. While the latter shows a
clear R0.14

λ scaling as anticipated from multifractals (and
also the log-normal model), the former shows a steeper
scaling of R0.25

λ . An even more general and direct test is
presented in Fig. 3(b), by checking the validity of Eq. (4)
for different p values. The data clearly suggest that the
acceleration intermittency, being stronger, cannot be
described by extending the Eulerian intermittency of the
dissipation rate. In fact, a similar observation has been
made for Lagrangian velocity structure functions, where
extensions of the p-model and the She-Lévêque model
severely underpredict their intermittency (i.e., overpredict
the inertial-range exponents) [53].
It is worth considering if one might describe the scaling

of acceleration moments in terms of enstrophyΩ ¼ jωj2 (ω
being the vorticity), instead of dissipation. This change
addresses the likelihood that acceleration is influenced
more by transverse velocity gradients than by longitudinal
ones [54,55]. In isotropic turbulence hΩi ¼ hϵi=ν, but
the higher moments differ, enstrophy being more
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FIG. 2. Normalized fourth-order (top) and sixth-order (bottom)
moments of acceleration as a function of Rλ.

TABLE I. Scaling exponents ζ for Rλ scaling of acceleration
moments Ma ∼ Rζ

λ , as predicted from intermittency models,
compared with current DNS results (see Figs. 1 and 2).

Ma p-model She-Lévêque K62 log-normal DNS result

ha2i=a2K 0.135 0.140 0.140 0.25
ha4i=a4K 0.943 1.00 1.13 1.60
ha6i=a6K 2.06 2.30 2.95 3.95

ha4i=ha2i2 0.673 0.720 0.850 1.10
ha6i=ha2i3 1.66 1.88 2.53 3.20
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FIG. 3. (a) Scaling of a0, hϵ3=2i, and hΩ3=2i. For clarity, data for
ϵ and Ω are shifted up by factors of 2 and 1.5, respectively.
(b) Scaling of pth moments of acceleration normalized by
moments of ϵ3p=4 (filled symbols) and Ω3p=4 (open symbols).
For clarity, data for p ¼ 1–5 are respectively shifted by factors of
1, 0.75, 0.5, 0.25, 0.12 for ϵ and 0.94, 1.01, 1.2, 1.35, 1.6 for Ω.
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intermittent [32,56]. The resulting modification to Eq. (4) is
hapi∼hΩ3p=4ν2p=4. However, as tested in Figs. 3(a) and (b),
the differences arise only for large p; even then, it is not
sufficient to explain the stronger intermittency of accel-
eration (also see Supplemental Material [44]).
Acceleration variance from fourth-order structure

function.—A statistical model for acceleration variance is
now obtained using a methodology similar to that proposed
by [21], but differing in some crucial aspects. From Eq. (1),
acceleration variance can be obtained directly as [57]

hjaj2i ¼ hj∇pj2i þ ν2hj∇2uj2i: ð8Þ

The viscous contribution is known to be small and can be
ignored [13]. An exact relation for variance of pressure
gradient is also known [58,59]:

hj∇pj2i ¼
Z
r
r−3½D1111ðrÞ þDααααðrÞ − 6D11ββðrÞ�dr;

ð9Þ

where the Ds are the fourth-order longitudinal, transverse,
and mixed structure functions, in order. The above results
can be rewritten as [21]

hjaj2i ≃ 4Hχ

Z
r
r−3D1111ðrÞdr; ð10Þ

where Hχ is a constant defined by Eqs. (8), (9). At
sufficiently high Rλ (≳200), DNS data [13,20] confirm
that Hχ ≈ 0.65 (also see Supplemental Material [44]). We
can normalize both sides by Kolmogorov scales to write

a0 ≃
4Hχ

3

Z
r

�
r
ηK

�
−3D1111ðrÞ

u4K
d

�
r
ηK

�
: ð11Þ

Assuming standard scaling regimes [29], we can write

D1111ðrÞ
u4K

¼

8>><
>>:

F
225

ð r
ηK
Þ4 r < l;

C4ð r
ηK
Þξ4 l < r < L;

C r > L;

ð12Þ

where F is the flatness of ∂u=∂x, ξ4 is the inertial-range
exponent, and C4, C are constants that depend on Rλ; l is a
crossover scale between the viscous and inertial range and
is determined by matching the two regimes as

ðF=225Þðl=ηKÞ4 ¼ C4ðl=ηKÞξ4 : ð13Þ

Now, taking

F ∼ Rα
λ ; C4 ∼ Rβ

λ ; ð14Þ

we have

l=ηK ∼ Rðβ−αÞ=ð4−ξ4Þ
λ : ð15Þ

Finally, from piecewise integration of Eq. (11), it can be
shown that (see Supplemental Material [44] for intermedi-
ate steps):

a0 ∼ Fðl=ηKÞ2: ð16Þ

Substituting the Rλ dependencies, we get

a0 ∼ Rð2α−αξ4þ2βÞ=ð4−ξ4Þ
λ : ð17Þ

The values of α, β, and ξ4 are in principle obtainable
from Eulerian intermittency models. The exponent α
simply corresponds to τ2 in Eq. (6), since F ∼ hϵ2i=hϵi2.
Multifractal and log-normal models predict α ¼ τ2 ≈ 0.38.
The DNS data for F are shown in Fig. 4(a), giving
α ≈ 0.387, in excellent agreement with the prediction,
and also with previous experimental and DNS results in
literature [18,20].

102 103
5

10

15

100 101 102 103 104

10-2

100

102

102 103
12

14

16

18

20

FIG. 4. (a) Flatness of longitudinal velocity gradient as a
function of Rλ. (b) Fourth-order structure function compensated
by its inertial-range scaling. The inset shows the variation of
coefficient C4 in Eq. (12) as a function of Rλ.
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On the other hand, intermittency models predict ξ4 ≈
1.28 [49]. Our DNS shows ξ4 ≈ 1.3, which is well within
statistical error bounds. Finally, the prediction for β from
multifractal model is β ≈ ð4 − 3ξ4Þ=2, which reduces
to β ≈ μ=3 for log-normal model; both predictions give
β ≈ 0.08 (also see Supplemental Material [44]). Figure 4(b)
shows the normalized fourth-order structure function from
our DNS data, using ξ4 ≈ 1.3. Note, as expected, the
inertial-range increases with Rλ. The inset of the bottom
panel shows C4, giving β ≈ 0.2. This observed β is
substantially larger than 0.08 anticipated from multifractal
and log-normal models.
The use of α ¼ 0.387, β ¼ 0.2, and ξ4 ¼ 1.3 in Eq. (17)

leads to

a0 ∼ Rχ
λ ; χ ¼ ζ2 ≈ 0.25; ð18Þ

which is in excellent agreement with the high-Rλ data
shown in Figs. 1 and 3(a). The exponent 0.25 is virtually
insensitive to a small variation in ξ4, but is significantly
impacted by the choice of β ¼ 0.2 (instead of 0.08).
Moreover, the use of β ≈ 0.08 in Eq. (17) gives
a0 ∼ R0.15

λ , which is essentially the same as the exponent
0.14 obtained earlier in Table I. This shows the robustness
of piecewise integration leading to the result in Eq. (17) and
also suggests that the discrepancy from multifractal pre-
diction is due to the exponent β (and hence the proportion-
ality constant C4). In this regard, the role of β needs to be
further explored, especially in relation to the inadequacy
of Eq. (4).
We note that the exponent 0.25 was also suggested by

Hill [21]. However, Hill arrived at this result by deriving
that a0 ∼ F0.79 and F ∼ R0.31

λ based on [60]; evidently, the
current data do not agree with both of these results. It
appears that the two errors fortuitously cancelled out each
other to give the 0.25 exponent. Finally, we point out that
the exponent 0.25 describes the data for Rλ ≳ 200. To
describe the data at lower Rλ, an empirical interpolation
formula in the spirit of Eq. (3) can be devised with
χ ¼ 0.25. Least-square fit gives c1 ≈ 0.89, c2 ≈ 40 (also
see Supplemental Material [44]).
Conclusions.—The moments of Lagrangian acceleration

are known to deviate from classical K41 phenomenology
due to intermittency. Attempts were made to quantify these
deviations by extending the Eulerian multifractal models to
the Lagrangian viewpoint and devising an ad hoc inter-
polation formula to agree with available data from DNS and
experiments. The first contribution of this article is to
present new, very well resolved DNS data on Lagrangian
acceleration at higher Rλ, and show that they disagree with
the results from multifractal models, and the interpolation
formula. The disagreement gets increasingly stronger with
the moment order. As a second contribution, the article
devises a statistical model that is able to correctly capture
the scaling of acceleration variance. While this framework

does not seem amenable for generalization to higher-order
moments, our results show that the intermittency of
Lagrangian quantities remains an open problem, even more
compellingly than before.
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