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Abstract	
Diffusion MRI (dMRI) has become a crucial imaging technique within the field of neuroscience 

and has an increasing number of clinical applications. Although most studies still focus on the 

brain, there is a growing interest in utilizing dMRI to investigate the healthy or injured spinal cord. 

The past decade has also seen the development of biophysical models that link MR-based 

diffusion measures to underlying microscopic tissue characteristics. Building upon 13 years of 

research and development, we present an open-source, MATLAB-based academic software toolkit 

dubbed ACID: A Comprehensive Toolbox for Image Processing and Modeling of Brain, Spinal Cord, and 

Post-mortem Diffusion MRI Data. ACID is designed to process and model dMRI data of the brain, spinal 

cord, and post-mortem specimens by incorporating state-of-the-art artifact correction tools, diffusion 

and kurtosis tensor imaging, and biophysical models that enable the estimation of microstructural 

properties in white matter. Additionally, the software includes an array of linear and non-linear fitting 

algorithms for accurate diffusion parameter estimation. By adhering to the Brain Imaging Data 

Structure (BIDS) data organization principles, ACID facilitates standardized analysis, ensures 

compatibility with other BIDS-compliant software, and aligns with the growing availability of large 

databases utilizing the BIDS format. Furthermore, ACID seamlessly integrates into the popular 

Statistical Parametric Mapping (SPM) framework, benefitting from a wide range of established 

segmentation, spatial processing, and statistical analysis tools as well as a large and growing number 

of SPM extensions. As such, this comprehensive toolbox covers the entire processing chain from 

raw DICOM data to group-level statistics, all within a single software package. 
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1. Introduction	
Diffusion MRI (dMRI) exploits the self-diffusion of water molecules to produce images that are 

sensitive to tissue microstructure by measuring the diffusion along various spatial directions (Callaghan 

et al., 1988; Le Bihan et al., 1988; Stejskal & Tanner, 1965). dMRI has been applied to study a number 

of phenomena including normal brain development (Dubois et al., 2014; Miller et al., 2002), aging 

(Draganski et al., 2011; Sullivan et al., 2010), training-induced plasticity (Scholz et al., 2009), and 

monitoring progression of and recovery from neurological diseases (Farbota et al., 2012; Meinzer et 

al., 2010). Clinical applications of dMRI include the diagnosis of ischemic stroke (Urbach et al., 2000), 

multiple sclerosis (Horsfield et al., 1996), cancer and metastases (Gerstner and Sorensen, 2011), and 

surgical planning of brain tumors (Chun et al., 2005). Although the vast majority of dMRI applications 

has focused on the brain, there is a growing interest in spinal cord dMRI, as researchers seek sensitive 

and predictive markers of spinal cord white matter damage (Cohen et al., 2017; Martin et al., 2016). 

To fully utilize the sensitivity of dMRI to tissue microstructure, expert knowledge is required to 

minimize artifacts both during acquisition, e.g., by cardiac gating or twice-refocused spin-echo 

sequences, and through dedicated post-processing methods. Commonly used post-processing 

techniques include motion and eddy current correction (Andersson & Sotiropoulos, 2016; Mohammadi 

et al., 2010), susceptibility distortion correction (Gu & Eklund, 2019; Ruthotto et al., 2012), denoising 

(Becker et al., 2014; Veraart et al., 2016), Rician bias correction (Oeschger et al., 2023a; Sijbers et al., 

1998), and robust tensor fitting techniques (Chang et al., 2005; Mohammadi et al., 2013). 

Retrospective artifact correction techniques, along with diffusion signal modeling capabilities, are 

widely available in open-source toolboxes such as FSL-FDT (Smith et al., 2004), DiPY (Garyfallidis et al., 

2014), DESIGNER (Ades-Aron et al., 2018), ExploreDTI (Leemans et al., 2009), MRtrix3 (Tournier et al., 

2019), TORTOISE (Pierpaoli et al., 2010), AFNI-FATCAT (Taylor & Saad, 2013), and others. 

However, currently available toolboxes have one or more shortcomings. The majority of 

toolboxes have been developed for brain dMRI and may not work for spinal cord dMRI, which features 

higher level and different nature of artifacts (Barker, 2001; Stroman et al., 2014), or post-mortem dMRI 

of tissue specimens, which have different and highly varying geometry (see Sébille et al., 2019 for a list 

of post-mortem dMRI studies). Although there are some software options available for processing 

spinal cord images, most notably the Spinal Cord Toolbox (De Leener et al., 2017), these tools lack 

comprehensive artifact correction and biophysical modeling capabilities for estimation of 

microstructural diffusion properties related to microscopic tissue properties. Biophysical modeling 

directly estimates these microstructural properties (e.g., axonal water fraction and orientation 

dispersion) as aggregated measures on voxel-level and thereby offers greater specificity than standard 

diffusion tensor (DTI) or diffusion kurtosis imaging (DKI). Toolboxes dedicated for biophysical modelling 
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of the dMRI signal, such as the NODDI (Zhang et al., 2012) or SMI toolbox (Coelho et al., 2022), typically 

do not include a comprehensive processing pipeline to correct for artifacts in dMRI data. In addition, 

only a few of the aforementioned dMRI toolboxes support the Brain Imaging Data Structure (BIDS, 

Gorgolewski et al., 2016) standard for organizing and annotating raw and processed dMRI data. The 

lack of standardization complicates not only the sharing and aggregation of processed dMRI data but 

also the application of automated image analysis tools designed for big data, such as machine learning 

techniques. Over the past two decades, tens of thousands of dMRI datasets have been made openly 

available in large neuroimaging databases (e.g., HCP (Van Essen et al., 2013) and the UK Biobank 

(Littlejohns et al., 2020)), underscoring the importance of consistent data storage practices. 

Building upon 13 years of research and development, we introduce the open-source MATLAB-

based ACID toolbox: A Comprehensive Toolbox for Image Processing and Modeling of Brain, Spinal 

Cord, and Post-mortem Diffusion MRI Data. ACID was initially developed as a collection of artifact 

correction tools but has now been extended to a comprehensive toolbox for processing and 

modeling of dMRI data. In particular, ACID offers (i) state-of-the-art image processing tools as well 

as (ii) DTI, DKI, and biophysical model parameter estimation methods optimized for brain, spinal cord, 

and post-mortem dMRI data. Additionally, (iii) ACID adheres to the BIDS standard for organizing the 

output, making the processed images compliant with other BIDS software and facilitating data sharing. 

Finally, (iv) ACID is embedded in the Statistical Parametric Mapping (SPM) framework, benefitting from 

its established functions including spatial processing tools and statistical inference schemes. ACID tools 

can be combined with other SPM tools to create pipelines in SPM’s batch processing system, which 

offers an all-in-one software solution from conversion of DICOM data to statistical group analysis. 

Many of the methods used in the ACID toolbox have already been published in the scientific dMRI 

literature (Table 1). In this paper, we detail the design and function of the ACID modules, along with 

guidance on their optimal combination for brain, spinal cord, and post-mortem applications. 
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Table 1. Peer-reviewed methods of the ACID toolbox. 

Method Introduced in 
ECMOCO: Eddy current and motion correction Mohammadi et al., 2010 

HySCO: Susceptibility artifact correction Ruthotto et al., 2012 

msPOAS: Adaptive denoising Becker et al., 2014 

RBC: Rician bias correction Oeschger et al., 2023a 

DTI using robust fitting Mohammadi et al., 2013 

DKI and axisymmetric DKI using NLLS Oeschger et al., 2023a, 2023b 

NODDI-DTI Edwards et al., 2017 

WMTI-Watson Oeschger et al., 2023b 

Reliability masking David et al., 2017 

Abbreviations: DTI, diffusion tensor imaging; DKI, diffusion kurtosis imaging; NLLS, non-linear least squares; NODDI, neurite 
orientation dispersion and density imaging; WMTI, white matter tract integrity.	

2. Methods	

2.1	Installation	and	toolbox	documentation	
The ACID toolbox is an extension of SPM12 that requires existing MATLAB and SPM12 installations. 

The toolbox has been developed and tested with MATLAB versions R2017b to R2023a and SPM12 from 

versions r6906 onwards. It is recommended to use the latest SPM release, which can be downloaded 

from the SPM website1, as developments in ACID are synchronized with those in SPM. 

Information about the toolbox can be found on the main project website2. The source code is 

available on Bitbucket3, where the latest version as well as all previous versions of the toolbox can be 

downloaded. There are three ways to install the toolbox: (i) by cloning the repository (recommended 

for staying up-to-date with the latest release), (ii) by downloading the toolbox as a zip file and placing 

the unzipped directory into the spm12/toolbox directory, or (iii) by downloading the toolbox as a 

zip file and using a redirection script that enables switching between different local versions of ACID. 

The full documentation of the toolbox is available as a Wiki on the git repository4, which provides 

detailed installation instructions, module descriptions, and step-by-step instructions for a typical 

analysis pipeline. 

ACID is free but copyrighted software, distributed under the terms of the GNU General Public 

License as published by the Free Software Foundation (either version 2 of the License or, at your 

option, any later version). Further details on "copyleft" can be found at the GNU website5. It should be 

noted that ACID is supplied as is and no formal support or maintenance is provided. The toolbox was 

 
1 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/ 
2 http://www.diffusiontools.com/ 
3 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri 
4 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri/wiki/Home 
5 http://www.gnu.org/copyleft/ 
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developed for academic research purposes only and comes with no warranty, nor is it intended for 

clinical and diagnostics use. 

  

2.2	Organization	of	the	toolbox	
The ACID modules can be found in the SPM12 Batch Editor by navigating to SPM -> Tools -> 

ACID Toolbox. The toolbox is divided into six modules, as shown in Fig. 1: Startup, Pre-processing, 

Diffusion tensor/kurtosis imaging, Biophysical models, Utilities, and External tools. A brief description 

of each module is provided below. 

Fig. 1. The left panel shows the location of ACID toolbox in the SPM Batch Editor after successful installation (SPM 

-> Tools). The toolbox is organized into six modules, each of which may be further divided into submodules. 

The right panel provides an example of a submodule (Diffusion Tensor Imaging within the Diffusion 

tensor/kurtosis imaging module). Each (sub-) module requires at least one mandatory input, indicated by “X”, as 

well as several optional inputs and parameter settings, which can be adjusted for customization. 

2.3	Startup	
The ACID modules rely on a set of default settings, which were selected to yield reasonable results for 

typical dMRI data. However, adjustments may be necessary depending on the specific dataset (see 

Section 3.2 for recommendations). For convenience, the module’s graphical user interface (GUI) only 

presents the settings that are likely to be modified. Advanced users can access and modify all settings 

through the script config/local/acid_local_defaults.m. To use modified settings, the 

Startup module must be executed with the customized file provided as input; these settings will remain 

in effect even after restarting SPM or MATLAB until new settings are specified. 

ACID requires all input images to be in uncompressed NIfTI format (either NIfTI-1 or NIfTI-2), and 

all dMRI images to be in 4D NIfTI format. Users can convert from DICOM to NIfTI format using SPM’s 

DICOM Import function, which can also export metadata into JSON files if the “Export metadata” 

option is enabled. To bring dMRI data into the required format, the Startup module can be utilized to 

(i) convert a set of 3D NIfTI files into a single 4D NIfTI file, (ii) generate corresponding bval/bvec files 
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from the JSON files (if not already available), (iii) create an additional metadata file containing the most 

commonly reported subject and acquisition parameters (such as TE and TR) to provide a concise 

overview of the dataset, and (iv) set an output directory alternative to the default one. The output 

from Startup (4D NIfTI file and corresponding bval/bvec files) can be automatically passed to 

subsequent processing steps through dependencies. 

2.4	Pre-processing	
In the following sections, we provide a brief description of each artifact correction tool implemented 

in ACID. For specific recommendations regarding different dMRI datasets (brain, spinal cord, post-

mortem/ex vivo), refer to Sections 3.2 and 4.1. 

2.4.1	Eddy	current	and	motion	correction	(ECMOCO)	
ACID uses the eddy current and motion correction (ECMOCO) algorithm (Mohammadi et al., 2010) to 

correct for spatial misalignments that may occur between the dMRI volumes. These misalignments can 

be caused by motion and eddy currents induced by the rapidly varying field of the diffusion-sensitizing 

gradients (Jezzard et al., 1998), which may lead to biased diffusion estimates (Mohammadi et al., 

2013). ECMOCO aligns all source volumes to a target volume using a co-registration algorithm (Friston 

& Ashburner, 1997) implemented in the SPM function spm_coreg. It was previously shown that the 

robustness of registration can be increased by separately registering diffusion-weighted (DW) and non-

diffusion-weighted (b0) volumes to their corresponding target volumes (Mohammadi et al., 2015a). 

ECMOCO features the multi-target registration mode, where source volumes from each diffusion shell 

(b-value) are co-registered to their shell-specific target volume (Fig. A1). ECMOCO rotates the b-vectors 

by the obtained rotational parameters; the rotated b-vectors can be passed on to subsequent 

processing steps. 

In spinal cord dMRI, eddy current and motion correction is more challenging than in brain dMRI 

due to the considerably lower number of voxels and lower signal-to-noise ratio (SNR), particularly in 

volumes with high b-values (>1000 s/mm2) or with diffusion-sensitizing gradients parallel to the spinal 

cord. While movement of the brain can be considered rigid to the first approximation, the spinal cord 

may experience varying degrees of displacement along the rostro-caudal axis caused by factors such 

as breathing, pulsation of the cerebrospinal fluid, or swallowing (Yiannakas et al., 2012). To address 

this, we introduced slice-wise (2D) registration, which independently aligns each slice of the source 

volume to the corresponding slice of the target volume, thereby correcting for non-rigid, slice-

dependent displacements. For more details on ECMOCO, including other recently introduced features 

(initialized registration and exclusion mode), refer to Appendix A. 
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2.4.2	Adaptive	denoising	(msPOAS)	
Multi-shell Position-Orientation Adaptive Smoothing (msPOAS) is an iterative adaptive denoising 

algorithm designed to adaptively reduce noise in dMRI data while preserving tissue boundaries without 

introducing blurring (Becker et al., 2012, 2014; Tabelow et al., 2015). The algorithm adapts to the 

intensity values and their distance in both voxel space and the spherical space of diffusion directions, 

allowing smoothing only within spatially homogeneous areas of the DW images. One of the key 

advantages of msPOAS is its compatibility with all diffusion models as it operates on the raw dMRI 

data. Adjustable parameters include kstar (number of iterations that define the image smoothness), 

lambda (adaptation parameter that defines the strength of edge detection), kappa (initial ratio of the 

amount of smoothing between the local space of neighboring voxels and the spherical space of 

diffusion gradients), and ncoils (parallel imaging factor, i.e., the number of receiver coils that 

contributed to the measured signal). To distinguish random fluctuations from structural differences, 

msPOAS requires an estimate of SNR, or equivalently the noise standard deviation (sigma). A higher 

kstar leads to greater smoothness within homogeneous image regions, while a larger lambda results 

in weaker adaptation and more blurring at tissue edges. The optimal kappa depends on the number 

of directions per shell, while ncoils should be the same as the value used for noise estimation. When 

using msPOAS, we recommend starting with the default parameters and the sigma estimated with the 

Noise estimation utility function (Table 2). In case of insufficient noise reduction, parameters should 

be adjusted according to Appendix C. 

2.4.3	Rician	bias	correction	
The voxel intensities of MRI magnitude images exhibit a Rician distribution in case of a single receiver 

coil (Gudbjartsson & Patz, 1995) and a non-central χ distribution in case of multiple receiver coils (Aja-

Fernández et al., 2014). When fitting diffusion signal models (Section 2.5), this distribution leads to a 

bias, known as the Rician bias, in the estimated tensor (Basser & Pajevic, 2000; Gudbjartsson & Patz, 

1995; Jones & Basser, 2004) and kurtosis parameters (Veraart et al., 2011; Veraart et al., 2013a), such 

as an overestimation of kurtosis. This Rician bias is particularly relevant in low SNR situations (Polzehl 

& Tabelow, 2016). Two approaches of Rician bias correction (RBC) are implemented in ACID. The M2 

approach, introduced in (Miller & Joseph, 1993) and later extended to multi-channel receiver coil 

(André et al., 2014), operates on the dMRI data and uses the second moment of the non-central χ 

distribution of the measured intensities and noise estimates to estimate the true voxel intensities. The 

second approach modifies the parameter estimation by considering the non-central χ distribution to 

account for the Rician bias during model fitting (Oeschger et al., 2023a). Note that the latter approach 

assumes uncorrected data, therefore it must not be combined with the first method and is currently 

only available for non-linear least squares fitting. Both methods require an estimate of the noise 

standard deviation, which can be obtained using the Noise estimation utility function, either by the 
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standard or the repeated measures method (Table 2). While we generally recommend using the 

repeated measures method, it requires the acquisition of several b0 images and is therefore not 

applicable if only a single b0 image is available. In addition, ACID offers the Rician bias simulation utility 

function to determine the optimal RBC method for the dMRI dataset and SNR at hand (Table 2). 

2.4.4	Susceptibility	artifact	correction	(HySCO)	
Hyperelastic Susceptibility Artifact Correction (HySCO) is a technique used to correct for geometric 

distortions caused by susceptibility artifacts (Ruthotto et al., 2012, 2013). These artifacts can occur at 

interfaces between tissues with different magnetic susceptibilities, such as those found near paranasal 

sinuses, temporal bone, and vertebral bodies. To correct for these artifacts, HySCO estimates the bias 

field based on a reversed-gradient spin-echo echo planar imaging (EPI) acquisition scheme. This requires 

the acquisition of at least one image with identical acquisition parameters as the dMRI data but with 

opposite phase-encoding direction. The obtained bias field map is then applied to the entire dMRI data 

to unwarp the geometric distortions. For datasets that include a full blip-reversed acquisition, the 

submodule HySCO: combine blip-up and blip-down images is recommended for a more accurate 

correction of susceptibility artefacts. 

2.5	Diffusion	signal	models	
The dependence of dMRI signal on the direction and strength of diffusion-weighting is commonly 

described by mathematical models. Two of the most widely used models are DTI (Basser et al., 1994) 

and DKI (Hansen et al., 2016; Jensen et al., 2005). 

2.5.1	Diffusion	tensor	imaging	(DTI)	
DTI describes the anisotropic water diffusion in the white matter by a diffusion tensor with six 

independent diffusion parameters. The eigenvalues of the tensor can be used to compute rotationally 

invariant DTI scalar metrics including fractional anisotropy (FA) and mean (MD), axial (AD), and radial 

diffusivities (RD). The interpretation of DTI assumes that the direction of axial diffusivity is aligned with 

the white matter tracts, which may not be the case in complex fiber geometry such as crossing or 

fanning fibers. 

ACID provides four algorithms to obtain the diffusion tensor (see Appendix D for details). 

Ordinary least squares (OLS) fits the tensor model by minimizing the sum of squared model-fit errors, 

while weighted least squares (WLS) minimizes the weighted sum of squared model-fit errors, 

accounting for the distortion of noise distribution in the logarithmized data. Robust fitting is similar to 

WLS but factorizes the weights into three components to account for local and slice-specific artifacts 

as well, while also featuring Tikhonov regularization to handle ill-conditioned weighting matrices 

resulting from a high occurrence of outliers. Robust fitting is designed to downweigh outliers in the 

model fit, which can otherwise introduce a bias in the fitted model parameters (Mohammadi et al., 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.13.562027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/


2013) (Fig. D1). Unlike the linearized models, the non-linear least squared (NLLS) method is based on 

an implementation (Modersitzki, 2009) of the Gauss-Newton algorithm and operates on the non-

logarithmic data, avoiding the distortion of noise distribution. 

2.5.2	Diffusion	kurtosis	imaging	(DKI)	
DKI expands the diffusion tensor model by the kurtosis tensor, a fourth-order tensor with 15 

independent parameters, which captures the effects of non-Gaussian water diffusion. From the 15 

kurtosis parameters, several kurtosis metrics can be estimated including the mean of the kurtosis 

tensor (MW), the axial (AW), and radial kurtosis (RW) (Tabesh et al., 2011), as well as the apparent 

mean (MK), axial (AK), and radial kurtosis (RK) (Fig. 2). These metrics provide additional information 

about tissue complexity beyond what can be captured by tensor metrics alone. DKI requires the 

acquisition of a second diffusion shell with higher b-value (typically between 1000 and 2500 s/mm2). 

ACID also includes the axisymmetric DKI model, a recent modification of DKI which reduces the 

parameter space to 8 independent parameters by imposing the assumption of axisymmetrically 

distributed axons (Hansen et al., 2016). 

Note that the diffusion tensor parameters from DKI might differ from standard DTI parameters. 

In particular, diffusivities (AD, MD, and RD) derived from the DTI model are often underestimated 

compared to those derived from the DKI model (referred to as kurtosis bias) (Edwards et al., 2017). By 

incorporating higher-order moments of the diffusion signal, DKI can address kurtosis bias, resulting in 

more accurate diffusivities (see Appendix F for a comparison of MD derived from DTI and DKI). 

 
Fig. 2. Selected maps derived from diffusion kurtosis imaging (DKI) using an in vivo brain, in vivo spinal cord, and 

post-mortem dMRI dataset (refer to Section 3.2 for details on the dataset). Shown are maps of fractional 
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anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), apparent mean kurtosis (MK), 

apparent axial kurtosis (AK), and apparent radial kurtosis (RK). 

2.6	Biophysical	models	
Biophysical models separate the dMRI signal into distinct signal components from various tissue 

compartments, each with their own underlying assumptions. Biophysical models provide more specific 

and biologically interpretable metrics that are directly linked to tissue microstructure (Jelescu et al., 

2020). The application of biophysical models is often referred to as dMRI-based in vivo histology 

(Mohammadi & Callaghan, 2021; Weiskopf et al., 2021) or microstructural dMRI (Jelescu et al., 2020; 

Novikov, 2021; Novikov et al., 2019). In the following, we briefly describe the two biophysical models 

currently implemented in ACID (WMTI-Watson and NODDI-DTI), while recommendations on their 

usage are provided in Section 4.2.2. Example maps are shown in Fig. 3, and specific values obtained 

from the brain and spinal cord are presented in Appendix H. 

2.6.1	WMTI-Watson	model	
The white matter tract integrity (WMTI)-Watson model as an implementation of the Standard Model 

assumes two non-exchanging water compartments (intra- and extra-axonal tissue water) (Alexander 

et al., 2019; Novikov et al., 2019). The model characterizes the intra-axonal compartment as "sticks" 

of zero radius, with an intra-axonal diffusivity 𝐷! and axonal water fraction 𝑓. Axon alignment (or 

orientation dispersion) is modeled using the Watson distribution parameter 𝜅. The extra-axonal 

space is modeled as a homogenous medium, described by an axisymmetrical diffusion tensor with 

parallel (𝐷",∥) and perpendicular (𝐷",%) extra-axonal diffusivities. The five biophysical parameters 

(𝐷!, 𝑓, 𝜅, 𝐷",∥, 𝐷",%) are derived from the axisymmetric DKI tensor metrics (𝐷∥, 𝐷%, 𝑊∥, 𝑊%, 𝑊) 

according to the formulas described in (Jespersen et al., 2018; Novikov et al., 2018). Being derived 

from the biophysical Standard Model, the estimation of WMTI-Watson biophysical parameters is 

generally degenerate, which leads to two solutions: the plus branch, which assumes 𝐷! > 𝐷",∥, and the 

minus branch, which assumes 𝐷! < 𝐷",∥. We recommend using the plus branch (default in the toolbox), 

as in our experience, and also reported by others (Jelescu et al., 2020; Jespersen et al., 2018), the minus 

branch is the biologically invalid solution. 
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Fig. 3. Maps of biophysical parameters derived from the WMTI-Watson model using an in vivo brain, in vivo spinal 

cord and post-mortem dMRI dataset (refer to Section 3.2 for details on the dataset). Shown are maps of axon 

orientation dispersion (𝜅), axonal water fraction (𝑓), parallel and perpendicular extra-axonal diffusivities (𝐷!,∥ 

and 𝐷!,$), and intra-axonal diffusivity (𝐷%). Note that for the in vivo spinal cord dataset, the maximum b-value 

(b=1500 s/mm2) was too low for accurate estimation of 𝐷!,∥, resulting in voxels with negative values within the 

spinal cord. 

2.6.2	NODDI-DTI	
NODDI-DTI (Edwards et al., 2017) is based on the neurite orientation dispersion and density imaging 

(NODDI) model (Zhang et al., 2012). While NODDI is a three-compartment biophysical model with 

intra- and extra-axonal space, and cerebrospinal fluid compartments, NODDI-DTI assumes that the 

latter compartment can be neglected in normal appearing white matter. It further assumes fixed 

compartmental diffusivities: 𝐷",∥=𝐷!=1.7 μm2/ms and 𝐷",%=(1-𝑓)∙𝐷",∥. NODDI-DTI estimates the 

intra- (𝑓 or 𝑣&') and extra-neurite (1 − 𝑓) signal fraction as well as the Watson distribution parameter 

𝜅 from single-shell data, whereas both NODDI and WMTI-Watson require specific multi-shell dMRI 

data for robust parameter estimation. 
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2.7	Utilities	
ACID offers a variety of utility functions for image manipulation, mask generation, quality assessment, 

and other related tasks (refer to Table 2 for more details). 

Table 2. List of the ACID utility functions. 

FUNCTION DESCRIPTION 

Image cropping Crops images to a smaller size for less storage space and faster processing. Inputs: 
images to crop, new matrix size, and voxel coordinates of the center of cropping. The 
center of cropping can also be selected manually through a pop-up window. Outputs: 
cropped images and the cropping parameters. Cropping is particularly useful for 
spinal cord dMRI, where the spinal cord occupies a small part of the image. When 
using reduced field-of-view sequences, cropping is typically only necessary in the 
frequency-encoding direction. 

Resample to dimension Resamples images to the desired resolution. Inputs: images to be resampled, desired 
resolution, and type of interpolation. Output: resampled images. 

Slice-wise realignment Allows for manual translation and scaling of images along the x and y directions, on 
a slice-by-slice basis, facilitated by intensity contour lines of the source image 
overlaid on the target image. Inputs: a single image to be realigned, target image, 
and other images to which the realignment parameters are applied. Outputs: 
realigned image(s) and the realignment parameters. It is particularly helpful for 
realigning spinal cord images, where residual misalignment is often slice-dependent. 

Make brain mask Creates a binary brain mask by (i) segmenting the brain image into gray matter, white 
matter, and cerebrospinal fluid using SPM12's unified segmentation (Ashburner & 
Friston, 2005), (ii) summing up the resulting probability maps, and (iii) thresholding 
it at a certain value (default: 0.8). Input: brain image. Output: binary brain mask. 

Reliability masking Aims to identify "unreliable" voxels, i.e., voxels irreversibly corrupted by 
artifacts. Reliability masks are generated by thresholding the map of root-mean-
square model-fit error (rms(ε)) (David et al., 2017). Inputs: maps of rms(ε) (output 
by tensor fitting with label: RMS-ERROR) and the desired threshold value. Outputs: 
a binary “reliability mask” that can be used in region-of-interest (ROI)-based 
analyses. The optimal threshold can be determined using the Determine 
threshold submodule. Reliability masking is a supplementary outlier rejection 
technique that can be applied after each model fitting method. It is particularly 
useful in scenarios where many data points are affected by outliers (often the case 
in spinal cord dMRI), which could otherwise lead to unstable tensor fits and 
inaccurate tensor estimates. 

DWI series browser Allows to browse through the slices of the dMRI data for quality assessment. Slices 
with low SNR and/or artifacts can be identified and labeled. The saved labels can be 
used to inform ECMOCO about unreliable slices (see Exclusion mode in Appendix A). 

DWI series movie Allows to simultaneously stream the images of dMRI datasets in a video mode for 
quality assessment. It can be used either to visually assess a single dMRI dataset or 
to compare the images before vs. after a certain processing step (e.g., ECMOCO). 
Inputs: up to three dMRI datasets. Output: a video file containing the image streams. 

Noise estimation Estimates the noise standard deviation (𝜎) in the dMRI data using either the 
standard or the repeated measures method. The standard method uses the formula 

𝜎 ≈ &∑ 𝑆&'&	)	*%+, /(2𝐿𝑛), where 𝑆& is the voxel intensity within a background mask 
defined outside the body, 𝐿 is the number of voxels within the background mask, 
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and 𝑛 is the parallel imaging factor, i.e., the effective number of coil elements that 
contributed to the measured signal (Constantinides et al., 1997). The repeated 

measures method uses the formula: 𝜎 ≈ mean- 3std.7𝑆(𝑖, 𝑘);<, where 𝑆(𝑖, 𝑘) is the 

voxel intensity at voxel 𝑖 in the 𝑘th repeated image (Dietrich et al., 2007). The 
standard deviation and mean operators are performed across the repetitions and 
voxels, respectively. The set of repeated images can be either the non-diffusion-
weighted (b≈0) or strongly diffusion-weighted (the highest b-value) images (see 
Appendix B for recommendations). Inputs: the raw (unprocessed) dMRI dataset, a 
mask (standard method: background mask; repeated measures method: see 
Appendix B), n (for the standard method only), and b-values (for the repeated 
measures method only). Output: a single 𝜎, assuming a homogeneous variance. 
Recommendations for noise mask generation can be found on the wiki page. 

Rician bias simulation Simulates diffusion-weighted MRI signals at specified SNR values in voxels within the 
brain white and gray matter. The simulated signals are corrected using specified 
Rician bias correction (RBC) methods (for details, see Oeschger et al., 2023a). Inputs: 
a voxel (from a list of 27 pre-defined voxels, each with different diffusivities), a list 
of SNR values, and the number of repetitions. Output: a figure displaying the distance 
between the estimated metric and the ground truth value for each RBC method. 

 ROI analysis Calculates the mean values within a specified region of interest (ROI). Inputs: list of 
images for ROI analysis, and various types of ROIs including (i) global ROIs, applied 
on all images in the list, (ii) subject-specific ROIs, applied only on the corresponding 
image, and (iii) reliability masks (see entry Reliability masking). The user has the 
option to specify one or multiple types of ROIs. In the latter case, the function will 
apply the intersection of selected ROIs. The function offers flexibility for a range of 
ROI-based analyses; for example, ROI-based analysis in the native space requires a 
set of subject-specific ROIs, while a single global mask is sufficient in the template 
space (with optional reliability masks in both cases). Output: an array containing the 
mean values per subject, ROI, and (optionally) slice. 

Fusion Merges two images with different field of views (FOV), such as a brain and a spinal 
cord image, into a single combined image. Inputs: two images to be merged and a 
target image (typically a structural image with a larger FOV). Output: a combined 
image, resampled according to the target image. The intensity in overlapping regions 
is the average of the two intensities. Note that before merging the images, they must 
be in the correct spatial position; if needed, image realignment can be performed 
using the SPM Realign or the Slice-wise realignment utility function. 

2.8	External	tools	
ACID provides the option to integrate external tools from other packages, which can be accessed 

directly from the ACID GUI (External tools module), ensuring a seamless integration into ACID pipelines. 

We included the following external tools in the current release, which we considered as particularly 

valuable additions: FSL eddy6 (Andersson & Sotiropoulos, 2016), Koay noise estimation7, and the WMTI 

model (part of the DESIGNER toolbox) (Fieremans et al., 2011). 

 	

 
6 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy 
7 https://github.com/jan-martin-mri/koays-inversion 
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2.9	Output	structure	and	naming	convention	
ACID supports the BIDS standard, while also being compatible with non-BIDS data. Following BIDS 

recommendations, ACID appends a label to the output filename’s desc field, indicating the applied 

processing step (refer to Table 3 for a list of labels used in the modules Pre-processing, Diffusion 

tensor/kurtosis imaging, and Biophysical models). For instance, after applying ECMOCO to 

sub01_dwi.nii, the output file becomes sub01_desc-ECMOCO_dwi.nii. When multiple 

processing steps are involved, the labels are concatenated, as in sub01_desc-ECMOCO-

msPOAS_dwi.nii. Model fitting appends three labels indicating the type of diffusion model, 

algorithm, and parametric map, such as sub01_desc-ECMOCO-POAS-DKI-OLS-FA_dwi.nii. 

For BIDS-compliant input, ACID generates a bval and bvec file after each processing step. ACID stores 

all output in the derivatives folder, with separate subfolders for each module’s output (e.g., 

derivatives/POAS-Run). Even if non-BIDS input is provided, ACID retains the same folder 

structure and naming convention. 

 

Table 3. List of labels in the output filename's desc field within ACID. 

Label Description Label Description 
ECMOCO Eddy Current and Motion Correction V1 1st Eigenvector of the Diffusion Tensor 
msPOAS Multi-shell Position-Orientation Adaptive Smoothing V2 2nd Eigenvector of the Diffusion Tensor 
RBC Rician Bias Correction V3 3rd Eigenvector of the Diffusion Tensor 
HySCO Hyperelastic Susceptibility Artifact Correction DKI Diffusion Kurtosis Imaging 
fmap Off-Resonance Field DKIax Axisymmetric Diffusion Kurtosis Imaging 
COMB-WM Write Combined Weighted Mean MK Mean Kurtosis 
COMB-AM Write Combined Arithmetic Mean AK Apparent Axial Kurtosis 
DTI Diffusion Tensor Imaging RK Apparent Radial Kurtosis 
OLS Ordinary Least Squares MW Mean of the Kurtosis Tensor 
WLS Weighted Least Squares AW Axial Kurtosis 
ROB Robust Tensor Fitting RW Radial Kurtosis 
NLLS Non-linear Least Squares WMTI-W WMTI-Watson 
FA Fractional Anisotropy NODDI-DTI Neurite Orientation Density and Dispersion - 
MD Mean Diffusivity   Diffusion Tensor Imaging 
AD Axial Diffusivity AWF Axon Water Fraction 
RD Radial Diffusivity DA Intra-axonal Diffusivity 
L1 1st Eigenvalue of the Diffusion Tensor DE-PARA Parallel Extra-axonal Diffusivities 
L2 2nd Eigenvalue of the Diffusion Tensor DE-PERP Perpendicular Extra-axonal Diffusivities 
L3 3rd Eigenvalue of the Diffusion Tensor KAPPA Axon/Neurite Orientation Dispersion 

 

2.10	Quality	assessment	
We highly recommended assessing the data quality before and after each processing step. In addition 

to the quality assessment utility functions DWI series browser and DWI series movie (Table 2), multiple 

ACID modules generate diagnostic plots to identify the presence and type of artifacts in the dMRI data. 

Example diagnostic plots are provided in Appendix E. 
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3. Results	

3.1	Pipelines	
ACID is fully integrated into the SPM12 batch system, allowing users to execute its functions 

individually or combined into linear pipelines with multiple steps. Each step can receive the output 

of any of the previous steps via flexible and easy-to-use dependencies. While pipelines are typically 

set up in the SPM Batch Editor, they can also be converted into MATLAB code (SPM batch script) for 

automation and further customization. In addition to its own functions, ACID integrates seamlessly 

with a range of standard SPM features, including segmentation, co-registration, normalization, 

and voxel-based statistical analyses, as well as a growing number of SPM extensions8. For 

instance, ACID can be combined with the hMRI toolbox (Tabelow et al., 2019) for multi-modal analysis 

of dMRI and quantitative MRI data acquired within the same imaging session, all in a single pipeline. 

3.2	Example	applications	
To demonstrate the application of ACID toolbox on different types of dMRI data, here we provide three 

example pipelines for in vivo brain, in vivo spinal cord, and post-mortem dMRI (Fig. 4). Details of these 

three datasets are summarized in Table 4. Note that "blip-up" data were available for all three datasets, 

which refers to the acquisition of either a single b0 volume or all volumes with identical geometry and 

sequence parameters but opposite phase encoding direction. All example pipelines consist of artifact 

correction (ECMOCO, msPOAS, RBC, HySCO) and model fitting steps. While the pipelines for brain, 

spinal cord, and post-mortem dMRI follow similar concepts, recommended settings for each region 

may differ (Table 5). It is important to note that the settings listed in Table 5 serve as initial values for 

typical datasets. The optimal settings for a particular dataset depend on the sequence parameters, the 

subject, and the imaged region. Model fitting may be followed by spatial processing, such as co-

registration to the structural image or normalization to a template, and statistical analysis (e.g., ROI- 

or voxel-based analysis). 

  

 
8 https://www.fil.ion.ucl.ac.uk/spm/ext/ 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.13.562027doi: bioRxiv preprint 

https://www.fil.ion.ucl.ac.uk/spm/ext/
https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/


Table 4. Scan parameters of the in vivo brain, in vivo spinal cord, and post-mortem dMRI datasets used in this 

paper. 

Dataset In vivo brain In vivo spinal cord Post-mortem specimen 

Imaged body part or tissue entire brain (incl. cerebellum) 

of a 34-year-old healthy 

volunteer 

upper cervical cord (appr. 

C1-C4) of a 43-year-old 

healthy volunteer 

post-mortem specimen of the 

temporal lobe from an 

epilepsy patient, embedded 

in phosphate buffered saline 

Scanner 3T Siemens Prisma Fit 3T Siemens Prisma Fit 3T Siemens Prisma Fit 

Receive coils 64-channel Head/Neck 64-channel Head/Neck 16-channel Hand/Wrist 

Sequence 2D single-shot spin-echo EPI 2D single-shot spin-echo 

EPI 

2D single-shot spin-echo EPI 

Volumes and b-values 

[s/mm2] 

30x b=600; 45x b=1100; 60x 

b=2500; 18x b=0 [n=153] 

30x b=500; 30x b=1000; 

30x b=1500; 11x b=0 

[n=101] 

30x b=600; 75x b=1100; 45x 

b=2200; 60x 2500; 60x 

b=5000; 36x b=0 [n=306] 

Cardiac gating - 2 slices per cycle, trigger 

delay of 260 ms 

- 

Slices 100 (interleaved, no gap) 14 (interleaved, no gap)  

Resolution [mm3] 1.7 x 1.7 x 1.7 1.0 x 1.0 x 5.0 0.8 x 0.8 x 0.8 

Field of view [mm3] 204 x 170 x 201 128 x 36 x 70 128 x 48 x 48 

Echo time 75 ms 73 ms 99 ms 

Repetition time 5800 ms pulse-dependent 

(cardiac gated) 

8700 ms 

Parallel imaging 2x (GRAPPA) - - 

Multi-band - - - 

Phase partial Fourier 7/8 - 7/8 

Phase-encoding dir. A-P A-P A-P 

Readout bandwidth  1842 Hz/pixel 1396 Hz/pixel 802 Hz/pixel 

EPI spacing 0.77 ms 0.93 ms 1.37 ms 

EPI factor 120 36 60 

Acquisition time [min:sec] 17:46 06:51 (nominal) 93:10 

Existence of a "blip-up" 

dataset 

One b0 volume with opposite 

phase-encoding direction 

All volumes with opposite 

phase-encoding direction 

All volumes with opposite 

phase-encoding direction 
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Fig. 4. Standard processing pipelines for typical in vivo brain, in vivo spinal cord, and post-mortem dMRI datasets 

(refer to Table 4 for details on the datasets). Although not explicitly shown here, noise estimation should be 

performed on the raw (unprocessed) data, which serves as input for msPOAS, Rician bias correction, and diffusion 

tensor fitting (for fitting methods WLS and robust fitting). However, in case of substantial misalignments across 

volumes, and when using the repeated measures noise estimation method, it might be beneficial to perform this 

step after ECMOCO to prevent an overestimation of noise. For msPOAS, a zoomed-in visual comparison is shown 

between a diffusion-weighted (DW) image before (middle row) and after applying msPOAS (bottom row); the 

msPOAS-corrected image appears less noisy while preserving tissue edges. For HySCO, contour lines of the 

corresponding structural image (displayed as red lines) are overlaid on a zoomed-in DW image both before 

(middle row) and after applying HySCO (bottom row). HySCO improves the alignment between the DW and the 

structural image. Note that HySCO is applied as the final pre-processing step; however, the HySCO field map used 

for “unwrapping” the images is estimated on the ECMOCO-corrected datasets. Rician bias correction (not 

explicitly shown here) should be applied either before (recommended: between msPOAS and HySCO) or during 

model fitting. Diffusion signal models are fitted on the processed dataset; here, we display the maps of fractional 

anisotropy (FA) and mean of the kurtosis tensor (MW) from diffusion kurtosis imaging (DKI). The output from DKI 

can be used to compute biophysical parameters of the white matter; shown here is the map of axon orientation 

dispersion (𝜅) from the WMTI-Watson biophysical model. 

Table 5. Settings of selected modules for in vivo brain, in vivo spinal cord, and post-mortem dMRI datasets. 

Module 
Adjustable 
parameter 

In vivo 
brain dMRI 

In vivo 
spinal cord dMRI 

Post-mortem 
dMRI 

ECMOCO type of registration 
degrees of freedom 

volume-wise 
9 [transl. x, y, z ; 
rotation x, y, z ; 
scaling y; 
shearing x-y, y-z] 

volume- and slice-wise 
volume-wise: 4 
[transl. x, y, z; scaling y] 
slice-wise: 3 per slice 
[transl. x, y; scaling y] 

volume-wise 
4 [transl. y; scaling 
y; shearing x-y, y-z] 

msPOAS kappa automatically 
determined 

increase default for low 
SNR data (e.g., +20%) 

automatically 
determined 

RBC  defaults defaults defaults 

HySCO  defaults defaults defaults 

DTI Fitting algorithm robust fitting or NLLS robust fitting or NLLS NLLS 

DKI/axDKI Fitting algorithm NLLS NLLS NLLS 

NODDI-DTI Fixed diffusivities In vivo parameters In vivo parameters Ex vivo parameters 

WMTI-Watson  defaults defaults defaults 

Notes: In the "degrees of freedom" settings (ECMOCO), x, y, and z represent the frequency-, phase-, and slice-encoding 
directions, respectively. 	
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4. Discussion	
We have developed the ACID toolbox, which extends the capabilities of the SPM framework by 

providing comprehensive artifact correction and model fitting techniques for brain, spinal cord, and 

post-mortem dMRI data. Besides commonly used diffusion signal models such as DTI and DKI, ACID 

also offers biophysical models that provide parameters of white matter tissue microstructure such as 

axonal water fraction and axon orientation dispersion. Being seamlessly integrated into the SPM batch 

system, ACID allows for user-friendly access to SPM's powerful spatial processing tools and statistical 

framework. In addition to offering recommended pipelines for brain, spinal cord, and post-mortem 

dMRI, ACID provides the flexibility for users to create custom pipelines tailored to their specific data. 

Adhering to the BIDS conventions facilitates data sharing, enhances data comprehension for 

investigators, and makes ACID compliant with software requiring BIDS-compliant input (https://bids-

apps.neuroimaging.io). 

4.1	Considerations	for	artifact	corrections	
ACID offers artifact correction steps typically applied on dMRI, including image realignment (ECMOCO), 

denoising (msPOAS), correction for susceptibility-induced geometric distortions (HySCO), and Rician 

bias correction (RBC). Here, we discuss specific considerations regarding their use for various 

applications. 

Correcting for displacements within the dMRI data through image realignment is one of the 

most important but also challenging steps. ECMOCO provides users with the flexibility to choose the 

degrees of freedom for image realignment based on the anticipated type of displacement, but also 

offers a selection of pre-defined degrees of freedom that are optimized for brain, spinal cord, and post-

mortem dMRI. 

In brain dMRI, motion can be approximated as a rigid body displacement with 6 degrees of 

freedom (DOF). Eddy-current spatial displacements, to a first-order approximation, result in translation 

and scaling along y and in-plane and through-plane shearing (assuming y to be the phase-encoding 

direction) (Mohammadi et al., 2010). Since these displacements affect the entire brain similarly, we 

recommend employing a 9-DOF volume-wise (volume to volume) registration with translation and 

rotation along x, y, and z, scaling along y, and shearing in the x-y and y-z planes. First-order 

approximation of eddy-current displacements might not always be sufficient, as dMRI data can also be 

affected by higher-order eddy-current displacements causing non-linear distortions (Andersson & 

Sotiropoulos, 2016; Rohde et al., 2004). For example, in our observations, ECMOCO was not effective 

in removing pronounced eddy-current displacements present in the dMRI data of the Human 

Connectome Project (Van Essen et al., 2012). In such cases, we recommend using FSL eddy, which 

incorporates higher-order correction terms (Andersson & Sotiropoulos, 2016) and can be called 

directly from ACID as an external tool (Section 2.8). 
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In spinal cord dMRI, volume-wise registration has been found to be less effective (Cohen-Adad 

et al., 2009; Mohammadi et al., 2013) due to displacements that vary along the rostro-caudal axis of 

the spinal cord. These displacements appear mostly in the phase-encoding direction and are caused 

by physiological factors such as respiration and cardiac pulsation (Kharbanda et al., 2006; Summers et 

al., 2006). We recommend applying volume-wise registration for rough alignment and correction of 

through-slice displacements, followed by slice-wise (slice to slice) registration for correcting any 

remaining slice-dependent displacement. This combined approach has demonstrated effectiveness in 

realigning not only volumes but also individual slices (Fig. A2), as well as improving the contrast-to-

noise ratio between gray and white matter and reducing test-retest variability in DTI maps of the spinal 

cord (Mohammadi et al., 2013). Eddy-current distortions are typically less severe in the spinal cord 

compared to the brain, because the in-plane field of view is smaller and located near the scanner 

isocenter. This makes the first-order approximation of eddy-current displacements, as supported by 

ECMOCO, generally adequate. We recommend employing a 4-DOF volume-wise registration 

(translation along x, y, z; scaling along y) followed by a 3-DOF slice-wise registration (translation along 

x, y; scaling along y). In datasets with low SNR, slice-wise correction along x can be omitted, given the 

smaller range of movement which makes reliable estimation difficult. We discourage correcting for in-

plane rotation and shearing, as their expected range is very small. The correction for these DOFs might 

introduce spurious displacements during realignment, which we consider to be a greater risk than not 

applying correction at all. Structures surrounding the spinal cord (bones, ligaments, etc.) may move 

independently from the spinal cord, potentially leading to inaccuracies in transformation parameters. 

Moreover, as these structures typically occupy a larger portion of the image, they can dominate the 

estimation of transformation parameters. To address this challenge, ECMOCO provides the option of 

specifying a spinal cord mask to restrict the estimation of transformation parameters to the spinal cord 

only. Any residual misalignments can be manually corrected using the Slice-wise realignment utility 

function (Table 2). 

In post-mortem dMRI, specimen motion is not anticipated if the specimen is appropriately 

fixed, for instance, by using a sample holder or embedding it in agarose. Thus, we recommend 

correcting only for the four first-order eddy-current displacements (y-translation, y-scaling, x-y 

shearing, y-z shearing). The first-order approximation is typically adequate for small specimens where 

eddy-current displacements are not severe. 

In general, the performance of msPOAS and HySCO is largely independent of the anatomical 

features present in the image; therefore, default parameters are expected to work well for both brain, 

spinal cord, and post-mortem dMRI data. It has been noted that HySCO stands out in its ability to 

reduce susceptibility distortions in spinal cord dMRI when compared to other susceptibility distortion 

correction tools such as TOPUP (Snoussi et al., 2021). Nevertheless, the default regularization 
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parameters (alpha "diffusion" and beta "Jacobian" regulator), accessible via the script 

config/local/acid_local_defaults.m, are optimized for the brain and may require 

adjustment for the spinal cord if performance is inadequate. 

Applying HySCO is particularly important for acquisitions with severe susceptibility-related 

distortions, such as multi-band EPI without parallel imaging, and for multi-contrast analyses where 

dMRI data or other quantitative maps are combined with structural reference images, e.g., the dMRI-

based axonal water fraction and magnetization transfer saturation maps in g-ratio mapping 

(Mohammadi & Callaghan, 2021) or multi-contrast MRI in the spinal cord (David et al., 2019). In these 

cases, HySCO improves the overlap between the undistorted structural image and the dMRI data, 

leading to better performance of subsequent co-registration and normalization algorithms. HySCO also 

improves the accuracy of g-ratio mapping; for example, the g-ratio can be significantly biased if 

susceptibility distortions are not adequately corrected (Clark et al., 2021; Mohammadi et al., 2015b). 

4.2	Considerations	for	model	fitting	

4.2.1	Physical	diffusion	models	
At a given b-value, the SNR in spinal cord dMRI is typically lower than in brain dMRI due to (i) the 

smaller cross-sectional area that requires higher in-plane resolution (see Fig. 5A for a size comparison), 

(ii) the high signal attenuation for diffusion-gradient directions parallel to the highly aligned fibers in 

the head-feet direction (Fig. 5B), (iii) the high prevalence of signal outliers caused by cardiac, 

respiratory, and other physiological artifacts, and (iv) the suboptimal coil configuration in the thoracic 

and lumbar regions, which are not covered by the head and neck coil. Lower SNR increases the variance 

of parameter estimates and makes spinal cord dMRI more susceptible to Rician bias. Consequently, 

SNR is often prohibitively low at higher b-values necessary for fitting the kurtosis tensor, making the 

application of DKI in the spinal cord very challenging. 

The application of adaptive denoising (msPOAS) is important as it reduces the variance and 

therefore improves the precision of the tensor and kurtosis parameter estimates (see Appendix G for 

examples). Rician bias correction, whether applied on the raw data or during model fitting, mitigates 

the Rician bias in parameter estimates, resulting in more realistic parameter estimates (see Appendix 

G for examples). A more in-depth analysis of the impact of Rician bias correction on DKI and 

axisymmetric DKI can be found in (Oeschger et al., 2023a). 
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Fig. 5. (A) Illustration of differences in the cross-sectional area between the brain and spinal cord, displaying a 

single axial slice of the mean T2-weighted (b0) image (refer to Table 4 for details on the datasets). (B) Schematic 

visualization of the spinal cord, highlighting the “butterfly-shaped” gray matter, which is located in the middle of 

the spinal cord and contains neuronal cell bodies and loosely aligned fibers, and the surrounding white matter, 

which contains highly aligned fibers. 

Bias in parameters estimates, induced by signal outliers from cardiac, respiratory, and other 

physiological artifacts, can be mitigated by applying robust fitting as a tensor fitting method (Appendix 

D.3). Given the higher occurrence of signal outliers in the spinal cord, robust fitting holds particular 

relevance for spinal cord dMRI. In a previous study, we demonstrated that robust fitting leads to higher 

FA values within the white matter and lower FA values within the gray matter in spinal cord dMRI data, 

resulting in an approximately 8% enhancement in contrast-to-noise ratio (Mohammadi et al., 2013). 

However, it is important to note that robust fitting requires a sufficiently large number of unbiased 

("artifact-free") data points; otherwise, it might fail to detect outliers (Chang et al., 2012). 

One potential limitation of linearized fitting methods is their operation on logarithmically 

transformed signals, where the assumption of Gaussian (or Rician) error distribution may not hold. The 

presence of logarithmically distorted Rician noise distribution not only restricts validity but can also 

impact the accuracy of the parameter estimates (Andersson, 2008; Chang et al., 2005; Koay et al., 

2006), particularly in the low-SNR regime such as in spinal cord dMRI. The WLS and robust fitting 

algorithms incorporate the signal intensity into the weights of the estimator function (Appendix D.2 

and D.3), which was shown to reduce the effect of log-Rician distortion (Salvador et al., 2005). 

Alternatively, the NLLS algorithm (Appendix D.4) can be used, which circumvents the distortion of the 

Rician distribution by operating on the original (non-logarithmic) signals, and is therefore expected to 

yield more accurate parameter estimates, provided that the numerical fitting problem is sufficiently 

well-conditioned. 
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In summary, we recommend using robust fitting for dMRI data with a high level of artifacts 

(frequent outliers), relatively high SNR, and a sufficiently large number of "artifact-free" data points 

(no outliers). NLLS, especially when combined with Rician bias correction, might be more suitable for 

dMRI data with lower SNR, such as those acquired for DKI (see Oeschger et al., 2023a for recommended 

minimum SNR values). 

4.2.2	Biophysical	diffusion	models	
Of the biophysical models implemented in ACID, WMTI-Watson rely on DKI metrics (requiring at least 

two diffusion shells), while NODDI-DTI relies on DTI metrics (requiring a single diffusion shell only). This 

implies that the challenges associated with the estimation of DTI and DKI metrics, as discussed earlier, 

also apply to derived biophysical models. Therefore, accurate and precise estimation of DKI and DTI 

metrics is essential for the successful application of WMTI-Watson and NODDI-DTI, respectively. 

For brain dMRI, the DKI-based WMTI-Watson model is typically favored over NODDI-DTI due to the 

fewer model assumptions, allowing it to better capture diffusion patterns in complex axonal 

configurations within brain white matter. However, complex models are more "data-hungry" and more 

susceptible to noise due to the higher number of fitted parameters, which can lead to poorly 

conditioned optimization problems when the amount and/or the quality of input data are insufficient. 

Therefore, for low-SNR data, the less complex but better-conditioned NODDI-DTI model might be the 

preferred choice. On the other hand, NODDI-DTI assumes fixed intra- and extra-cellular diffusivities 

which are optimized for the brain and might not be valid for the spinal cord. Note that a compromise 

between these two models could be the WMTI model, which is included as an external tool in ACID 

(Section 2.8). WMTI which assumes highly aligned fibers, which holds true in white matter regions with 

high fiber alignment, such as the corpus callosum, but is less appropriate in regions with more complex 

axonal configurations. The challenges of applying appropriate biophysical models in the spinal cord are 

further discussed in Appendix H. 

Post-mortem and ex vivo neuronal tissues exhibit different diffusivities compared to in vivo 

tissues due to various factors, including the effect of fixation, changes in chemical properties, and 

differences in temperature and composition of the embedding fluid. For example, white matter 

diffusivity was reported to reduce by approximately 85% from in vivo to ex vivo conditions, while the  

ratio between gray and white matter diffusivities remain similar at around 2-3 (Roebroeck et al., 2019). 

To accommodate the reduced diffusivities under ex vivo conditions, ACID offers the possibility to adjust 

the compartmental diffusivities, which act as fixed model parameters, within the NODDI-DTI model. 

Such an adjustment is not necessary for WMTI and WMTI-Watson, as their compartmental diffusivities 

are fitted rather than fixed. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.13.562027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/


4.3	Other	considerations	

4.3.1	Integration	with	SPM	modules	
ACID can be easily combined with SPM tools for segmentation, spatial processing, and voxel-based 

analysis of parametric maps. Segmenting the brain or spinal cord is often necessary for co-registration, 

normalization, or tissue specific analyses. In the brain, tissue probability maps of white matter, gray 

matter, and cerebrospinal fluid can be created by unified segmentation, which is the default 

segmentation routine in SPM12 (Ashburner & Friston, 2005). A binary brain mask can be generated 

using the Make brain mask utility function (Table 2). To enable SPM’s unified segmentation in the 

spinal cord, the brain tissue priors need to be substituted with the joint brain and spinal cord tissue 

priors from the probabilistic brain and spinal cord atlas (Blaiotta et al., 2017). However, the atlas only 

covers the upper cervical cord down to C3; for other spinal levels, the user is referred to automatic 

(e.g., deepseg (Perone et al., 2018)) or semi-automatic (e.g. active surface method (Horsfield et al., 

2010)) segmentation techniques. 

Brain dMRI data can be co-registered to the corresponding structural image using spm_coreg. 

For normalizing to the MNI space, we recommend SPM DARTEL (Ashburner, 2007) or Geodesic 

Shooting (Ashburner & Friston, 2011). As SPM registration tools often rely on brain tissue priors, they 

cannot be applied directly on spinal cord dMRI. For such data, we recommend the PAM50 template 

(De Leener et al., 2018) and corresponding normalization tools integrated into the Spinal Cord Toolbox 

(De Leener et al., 2017). 

ACID benefits from SPM’s rich statistical framework for voxel-based analysis. SPM’s second-level 

analysis tool (SPM -> Specify 2nd-level) performs voxel-based statistical tests on the 

parametric maps using t-test, ANOVA, or general linear model. In the SPM -> Results module, 

the framework also offers (i) multiple comparison correction in the form of family-wise error rate and 

false discovery rate, (ii) thresholding the test statistics at cluster- and voxel-level and providing a list of 

significant clusters/voxels, and (iii) various visualization tools for displaying and saving the significant 

clusters. Furthermore, ACID’s ROI analysis utility function (Table 2) can be used to extract mean metrics 

within subject-specific ROIs in the native space or perform atlas-based analysis in the template space. 

For atlas-based analysis in the spinal cord, the user is referred to the PAM50 white and gray matter 

atlas (De Leener et al., 2018). 

While brain and spinal cord images are typically analyzed separately, there are scenarios where 

combining them into a single image can be beneficial. For example, when registering both the brain 

and spinal cord to a brain-spinal cord template, such as the probabilistic atlas of the brain and spinal 

cord, the warping field is often obtained using a structural image with a large field of view covering 

both regions (Fig. 6). To apply this warping field to the brain and spinal cord images, they need to be 
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fused into a single image. ACID provides the Fusion utility function (Table 2) which merges two distinct 

images, acquired with different FOVs and geometric properties, into a unified large-FOV image (Fig. 6). 

Although ACID does not provide tractography or tract-based analysis tools, the output of its 

model fitting methods can be input into tractography tools such as FSL or the SPM12-based Fibertools 

(see ACID Wiki for more details). 

 

Fig. 6. Merging of two fractional anisotropy (FA) maps, covering the brain and cervical cord, respectively, into a 

unified FA map using the Fusion utility function (Table 2). The two images should ideally share an overlapping 

region, but they may have different geometric properties such as resolution and number of slices. In the 

overlapping region, the values are computed as the average of the two underlying images. The merging process 

requires a structural image for reslicing the images. 

4.3.2	Computation	time	
To speed up the processing and analyzing dMRI data, parallel computing is implemented wherever 

possible. This technique can significantly accelerate the most time-consuming ACID modules, such as 

ECMOCO and DTI/DKI fit. Note that parallel computing requires the Parallel Computing Toolbox in 

MATLAB. Table 6 provides the computation times for selected ACID functions on a typical brain and 

spinal cord dMRI dataset. 
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Table 6. Computation times of selected ACID modules on an example in vivo brain and in vivo spinal cord dMRI dataset (refer 

to Table 4 for details on the datasets), when run on a MacBook M1 laptop (4 cores, 16 GB RAM). 

Module In vivo 
Brain dMRI 

In vivo 
spinal cord dMRI 

ECMOCO 38 min 2 min 
msPOAS 7 min 1 min 
HySCO 20 min 1 min 
RBC < 1 min < 1 min 
DKI (using NLLS) 27 min 2 min 
WMTI-Watson 4 min 1 min 

 

4.3.3	Research	applications	
ACID has been used in a variety of clinical and neuroscience research, e.g., in dMRI studies assessing 

cerebral changes in patients with multiple sclerosis (Deppe et al., 2016a, 2016b; Dossi et al., 2018; 

Kugler & Deppe, 2018) and Parkinson’s disease (Szturm et al., 2021), and to assess gliomas (Paschoal 

et al., 2022; Raja et al., 2016). ACID has also been used to investigate spinal cord white matter following 

spinal cord injury (David et al., 2019, 2021, 2022; Grabher et al., 2016; Huber et al., 2018; Seif et al., 

2020; Vallotton et al., 2021). A non-comprehensive list of studies using the ACID toolbox can be found 

on the project website9. Note that certain ACID functions can be applied to MRI data beyond dMRI as 

well; for instance, HySCO has been used to correct brain fMRI data for susceptibility artifacts (De 

Groote et al., 2020). It is important to note that ACID has not been approved for clinical applications 

by any health agency and it comes with no warranty. Therefore, it should not be used for diagnosis in 

clinical settings. 

4.4	Future	directions	
The ACID toolbox is the result of a collaborative effort to extend the SPM ecosystem with state-of-the-

art processing and modelling tools for dMRI data. Our aim is to make the toolbox widely accessible, 

leveraging SPM’s large and vibrant community. Users can submit their questions, bug reports, and 

suggestions via the dedicated mailing list or by opening an issue on the git website. This paper provides 

a snapshot of the toolbox’s current state, with several ongoing developments not covered here. The 

modularity of the toolbox allows for integration of newly developed methods, even when used 

concurrently with old ones. Biophysical modeling is an emerging field, and we expect many 

methodological advancements to occur in the coming years. To stay aligned with this development, 

we aim to continuously incorporate state-of-the art biophysical models into ACID. For ECMOCO, we 

strive to improve robustness by automatically eliminating voxels with weak signals in the optimization 

process. If the proportion of voxels with weak signals exceed a critical level, the entire volume will be 

excluded from estimating the transformation parameters. This feature would offer an unsupervised 

 
9 http://www.diffusiontools.org/sidebar/studies-using-acid.html 
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identification of unreliable volumes, as opposed to the current method of manual labelling of slices 

(see Exclusion mode in Appendix A). 

 

5.	Conclusion	
ACID is an open-source extension to SPM12 that provides a comprehensive framework for processing 

and analyzing brain, spinal cord, and post-mortem dMRI data. The toolbox was developed to meet the 

growing demand for spinal cord dMRI studies and research applying biophysical models. ACID 

leverages the core SPM tools and other SPM extensions, which can be easily integrated into the ACID 

pipeline. 
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Appendix	A.	Details	on	ECMOCO	
ECMOCO consists of four steps (Fig. A1): 

1. The type of the registration (slice-wise or volume-wise) and the degrees of freedom (DOF) for the 

affine transformation are specified by the user. 

2. Shell-specific target volumes are generated, and transformation parameters are obtained between 

all non-diffusion-weighted (b0) volumes and their corresponding targets (Mohammadi et al., 

2015a). The parameter iteration for a given b0 volume can be initialized by the transformation 

parameters of the preceding b0 volume (initialized registration, see details below). Only the DOF 

associated with rigid-body transformation are applied for the b0 volumes, as eddy currents are 

expected to be negligible for b0 volumes due to the absence of diffusion-sensitizing gradients. 

3. Transformation parameters are obtained between all diffusion-weighted (DW) volumes and their 

corresponding targets. The parameter iteration for a given DW volume can be initialized by the 

interpolated transformation parameters (rigid-body parameters only) from the b0 volumes 

(initialized registration, see details below). 

4. The obtained transformation parameters are applied to reslice all volumes. 

 

Fig. A1. Registration scheme for an example dMRI dataset, which consists of two sets of non-diffusion-weighted 

(b0) volumes (𝑛 volumes each) and two sets of diffusion-weighted (DW) volumes (𝑁 volumes each) interspersed 

with each other. The b0 and DW volumes form separate registration groups and are registered to their 

corresponding target volumes. First, the b0 volumes are registered using the rigid-body components of the 

specified degrees of freedom (DOF), followed by the registration of the DW volumes using all specified DOF. The 

parameter iteration for a given b0 or DW can be initialized using previously obtained transformation parameters 

(initialized registration). 
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In addition to slice-wise registration, introduced in Section 2.4.1 and demonstrated in Fig. A2, 

ACID incorporates two additional recent features: initialized registration and exclusion mode. 

Initialized registration is based on the observation that transformation parameters obtained from high-

SNR b0 volumes tend to be more accurate than those obtained from low-SNR DW volumes. With 

initialized registration, the parameter iteration for each b0 volume starts with the transformation 

parameters obtained from the preceding b0 volume. Once all the b0 volumes have been registered, 

their transformation parameters are interpolated to the positions of the DW volumes situated 

between the b0 volumes. Subsequently, the parameter iteration for each DW starts with these 

interpolated values. If interpolation is not feasible (e.g., the DW volume is situated before the first or 

after the last b0 volume), the parameter iteration starts with the parameters obtained from the 

nearest b0 volume. This approach is particularly useful for correcting slow spatial drifts across volumes. 

The exclusion mode is designed to address volumes with very low SNRs, which can make 

obtaining reliable transformation parameters difficult. Volumes that are considered not feasible for 

registration can be identified through visual inspection, e.g., using the DWI series browser utility 

function, and can be inputted into ECMOCO. For these volumes, the rigid-body transformation 

parameters from the preceding non-excluded volume are applied instead. 

 

Fig. A2. Qualitative comparison of different motion correction techniques including no correction, volume-wise 

ECMOCO, and the combination of volume- and slice-wise ECMOCO. The plots show the concatenation of 1D 

cross-sections along the phase-encoding (PE) direction (anterior-posterior), extracted at fixed x- and z-

coordinates from each of the 120 diffusion-weighted (DW) volumes in an in vivo spinal cord dMRI dataset. 

Additionally, zoomed-in views of a subset of DW volumes are provided to facilitate the assessment of 

improvements by ECMOCO. Substantial motion along the y-direction was initially observed, which was notably 

reduced after applying ECMOCO. Importantly, volume-wise ECMOCO did not entirely correct for spatial 

misalignments in all volumes (an example of failed correction is indicated by the red arrow). Conversely, the 

combination of volume- and slice-wise ECMOCO effectively corrected spatial misalignments in all DW volumes. 
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Appendix	B.	Regions	for	repeated	measures	noise	estimation	method	
For optimal denoising (msPOAS, Section 2.4.2) and Rician bias correction (Section 2.4.3), it is crucial to 

accurately estimate the image noise within the appropriate region of interest. Noise measurements 

taken from regions outside the body are often suboptimal due to the lower parallelization factor (g-

factor) at the edge compared to the center of the field of view. Instead, we recommend estimating the 

noise according to two distinct scenarios, with each case using the repeated measures method (see 

Noise estimation in Table 2). In datasets affected by (temporally varying) physiological artifacts, such 

as in in vivo brain and spinal cord datasets, we recommend estimating the noise across images with 

high b-values and within regions where the signal reaches the noise plateau (i.e., within cerebrospinal 

fluid compartments). For automatic ventricle segmentation within the brain, ACID provides a 

segmentation batch located at ACID_TPM/acid-ventricles-batch.m, which utilizes the 

spm_segment function. In datasets not affected by physiological artifacts, such as in post-mortem 

dMRI, we recommend estimating the noise across non-diffusion-weighted (b0) images and within 

either the entire or part of the specimen. Example noise regions are shown in Fig. B1. 

 
Fig. B1. Non-diffusion-weighted (b0) images of the brain, spinal cord, and a post-mortem specimen, with binary 

noise masks outlined in red. For the brain and spinal cord, the noise masks encompass areas containing 

cerebrospinal fluid (CSF), such as the lateral ventricles within the brain and the subarachnoid space within the 

spinal cord. These masks are considered noise masks for high b-values because the CSF signal, having a high 

diffusivity, reaches the noise plateau at these high b-values. For the post-mortem specimen, the noise mask 

encompasses the entire specimen. 
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Appendix	C.	Recommendations	for	adaptive	denoising	(msPOAS)	
If the overall noise reduction is insufficient, kstar can be increased at the cost of longer computation 

time (Tabelow et al., 2015). It is important to note that msPOAS assumes a single global value of sigma, 

which may not always hold. If sigma is correctly estimated, the default lambda value will ensure 

optimal adaptation. Incorrect estimation of sigma can be compensated by the choice of lambda, which 

makes msPOAS robust against misspecification of sigma (Becker et al., 2014). We recommend 

determining kappa automatically based on the number of diffusion directions (Tabelow et al., 2015). 

However, manual adjustment of kappa may be necessary in cases where the SNR is low (e.g., for spinal 

cord dMRI) or if the dataset has more images with high than with low b-values. The effective number 

of coils (ncoils) is 1 when using SENSE1 reconstructions (Polzehl & Tabelow, 2016; Sotiropoulos et al., 

2013), but the correct value is more difficult to determine when using multiple receiver channels for 

acquisition (Aja-Fernández et al., 2014). It is important to use the same ncoils for the estimation of 

sigma and in msPOAS to ensure the same number of degrees of freedom. 

Appendix	D.	Model	fitting	methods	implemented	in	ACID	

Appendix	D.1.	Ordinary	Least	Squares	
Tensor fitting involves solving the linear regression problem 𝒚 = 𝑩𝜶 + 𝜺, where 𝒚 contains the 

logarithmic signals, 𝑩 (b-matrix) contains the gradient directions and strengths, 𝜶 contains the 

elements of the diffusion tensor, and 𝜺 contains the model-fit errors (the difference between the 

actual and fitted signal). The ordinary least squares (OLS) approach employs the estimator function 

𝜌(𝜀() = 𝜀(), where 𝜀(  represents the model-fit error of acquisition 𝑖. The solution is obtained by 

minimizing ∑ 𝜀()( , yielding 𝜶𝒐𝒍𝒔 = (𝑩𝑻𝑩)./𝑩𝑻𝒚. 

Appendix	D.2.	Weighted	Least	Squares	
The weighted least squares (WLS) approach addresses the heteroscedasticity of the logarithmic data 

by assigning individual weights to each image in the form of 𝜔( = 𝑆8(/𝜎(, where 𝑆8(  represents the 

unknown true signal (without noise) and 𝜎(  is the background noise for acquisition 𝑖. The estimator 

function now becomes 𝜌(𝜀() = (𝜔(𝜀()), yielding the solution 𝜶𝒘𝒍𝒔 = (𝑾𝑻𝑩𝑻𝑾𝑩)./𝑾𝑻𝑩𝑻𝑾𝒚, with 

𝑾 being the diagonal matrix of 𝜔(. Note that OLS is a special case of WLS, where 𝜔( = 1 for all 𝑖. A 

practical consideration in obtaining 𝜶𝒘𝒍𝒔 is related to estimating 𝑆8(. One approach is to use the 

measured noisy signal 𝑆(  as an estimate of 𝑆8(. Another approach is to start with the OLS solution and 

use the fitted signal as an estimate of 𝑆8(, which was shown to be more accurate (Veraart et al., 2013b). 
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Appendix	D.3.	Robust	fitting	
The concept behind robust fitting is to assign lower weights to data points with higher model-fit errors 

during the fitting process (Mangin et al., 2002). The robust fitting method implemented in ACID 

(Mohammadi et al., 2013) is based on the “Patching ArTefacts from Cardiac and Head motion” (PATCH) 

technique (Zwiers, 2010). While the form of the estimator function is similar to that of WLS, PATCH 

factorizes the weighting function into a product of dedicated weighting functions. Specifically, 𝜔(  is 

factorized into three components as 𝜔( = 𝜔(/𝜔()𝜔(1, where each component is designed to address 

different types of artifacts: 𝜔(/ and 𝜔() account for regional and slice-wise artifacts, respectively, while 

𝜔(1 is the same as the weight term in WLS. 𝜔(/ and 𝜔() are exponentially decaying functions of 𝜀(: 

𝜔(/ = exp	(− @2!3"
4!
A
)
), 𝜔() = exp	(− @2#3",%&

4#
A
)
), where 𝜀(,56 = ∑ 3"'

√8
8
9:/  is the slice-average model-fit 

error, with 𝑛 being the number of voxels in the slice. 𝐴/ and 𝐴) are model parameters, by default set 

to 0.3 and 0.1, respectively, with higher values resulting in a faster exponential decay. 𝐶/ and 𝐶) are 

estimates of the standard deviation of 𝜀(  and 𝜀(,56, respectively, in the absence of outliers, and are 

computed as 𝐶/ = 1.4826 · median(|𝜀(|), 𝐶) = 1.4826 · median(|𝜀(,56|) (Hampel, 1974; Rousseeuw 

& Croux, 1993). Note that accurate estimation of 𝐶/ and 𝐶) is crucial for effectively downweighing 

outliers. This holds true as long as outliers are sparsely distributed and the median of the model-fit 

errors remains unaffected. However, frequent occurrence of outliers can increase 𝐶, resulting in less 

efficient downweighing of outliers. While OLS and WLS independently fit the tensor in each voxel, 

PATCH makes use of the observation that physiological noise represents a structured, spatially 

correlated noise. To accommodate the anticipated smoothness of 𝐶/, the median operator is spatially 

smoothed using a 2D Gaussian kernel before computing  𝐶/ (Zwiers, 2010). 

As a modification to PATCH, the robust fitting method incorporates Tikhonov regularization to 

handle ill-conditioned weighting matrices resulting from a high occurrence of outliers. This leads to the 

solution 𝜶𝝀 = [𝑾𝑻𝑩𝑻𝑾𝑩+ 𝜆𝑩𝑻𝑩]./𝑾𝑻𝑩𝑻𝑾𝒚, where 𝑾 represents the diagonal matrix of 

factorized weights, and 𝜆 is the Tikhonov regularization factor. 𝜆 must be carefully chosen as a trade-

off since too low values fail to eliminate ill-conditioning, whereas too high values result in bias in the 

estimated parameters. The above equation cannot be solved readily, as 𝑾 is a function of 𝜺, which is 

only available after obtaining the solution. This is addressed by using an iteratively re-weighted least 

squares (IRLS) algorithm. In the first iteration, 𝜔(  is set to 1 for all 𝑖 to obtain the OLS solution 𝜶𝒐𝒍𝒔, and 

to calculate the initial 𝜺. In the second iteration, an updated 𝑾 is computed based on the initial 𝜺, 

which is then used to compute 𝜶𝝀. In each further iteration, 𝜺 from the preceding iteration is used to 

update 𝑾, which is in turn used to compute the updated 𝜶𝝀. This iterative process is repeated until 

convergence or until the predefined number of iterations is exceeded. 
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Fig. D1. Schematic illustration of how robust fitting downweighs outliers in the model fit. The scatter plot displays 

the signal intensities against the angle of the diffusion gradient (bvec) in a particular voxel. The confidence 

interval of the data points is indicated as blue dashed lines. The voxels corresponding to two selected data points, 

one inside (upper arrow) and another far outside the confidence interval ("outlier", lower arrow), are indicated 

by green crosshairs in the axial slices on the right. During the model fit, a linear curve is fitted on the logarithmic 

signal intensities. The presence of outlier data points leads to a biased model fit (red dashed line) and hence to 

biased tensor estimates when using ordinary least squares (OLS) model fitting. In contrast, robust fitting 

downweighs the influence of outliers, leading to a more robust model fit (yellow dashed line). 

Appendix	D.4.	Non-linear	least	squares	
The non-linear least squares (NLLS) method solves the optimization problem 𝜶𝒏𝒍𝒍𝒔 =

argmin
𝜶

V W𝑆>,?(@@@@⃗ − 𝑓(𝛼)Y
)

(
, where 𝑓 represents the signal model (DTI or DKI), 𝛼 the model 

parameters (elements of the diffusion and/or kurtosis tensors), and 𝑆>,?(@@@@⃗  the measured signal 

intensities for a specific diffusion weighting 𝑏 and diffusion gradient direction 𝑔B\\\⃗ . The NLLS optimization 

problem is solved with a Gauss-Newton algorithm. 
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Appendix	E.	Example	diagnostic	plots	

 
Fig. E1. Diagnostic plots, optionally generated by ECMOCO, displaying the transformation parameters for all 

volumes (in the case of volume-wise registration) or slices (in the case of slice-wise registration). In volume-wise 

registration, demonstrated here with an in vivo brain dMRI dataset, two figures are created to plot the 

transformation parameters associated with motion (A) and eddy-current-related displacements (B). In slice-wise 

registration, shown here with an in vivo spinal cord dMRI dataset, a single figure is created to plot the 

transformation parameters with separate subfigures for each estimated degree of freedom (B). Excessive 

displacements in volumes/slices indicate either extreme movements, eddy-current artifacts, or a failed 

estimation of transformation parameters. 
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Fig. E2. Diagnostic plots, optionally generated by the Diffusion tensor/kurtosis imaging module, displaying the 

average (logarithmic) model-fit error within the provided mask of the region of interest for each volume and 

slice, demonstrated here with an in vivo spinal cord dataset and a spinal cord mask. Volumes/slices with high 

model-fit error (outliers) indicate a significant number of corrupted volumes (e.g., due to misregistration, 

physiological, or other artifacts) or an inadequate model for capturing the underlying complexity of diffusion. 

Here, periodically occurring pairs of volumes with high model-fit errors are the result of an inadequate model fit 

due to the low signal-to-noise ratio caused by the diffusion-sensitizing gradient aligned parallel to the spinal cord 

(A). Also notice that model-fit error is the highest within slice 2, which could be due to more physiological artifacts 

in that location. For an even more precise diagnosis of signal outliers, the voxel-wise root-mean-square of the 

model-fit error map (suffix: RMSE-LOG_map.nii) or the 4D model-fit error map (suffix: ERROR-LOG_map.nii) can 

be visually inspected to help identify individual outlier voxels or data points, respectively.  
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Appendix	F.	Kurtosis	bias	

 
Fig. F1. Kurtosis bias in the mean diffusivity (MD) maps in an in vivo brain and in vivo spinal cord dataset (refer 

to Table 4 for details on the datasets). This bias, shown in the right column, refers to the difference in the 

estimated diffusivity values when using the lower diffusion shells only (MD/01, tensor model, left column) or 

both the lower and higher diffusion shells (MD/21, kurtosis model, middle column). On average, the kurtosis bias 

was 12% and 54% within the brain white matter and spinal cord, respectively. 
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Appendix	G.	Effect	of	artifact	correction	on	diffusion	kurtosis	
estimates	

 

Fig. G1. Comparison between maps of fractional anisotropy (FA), axial diffusivity (AD), mean of the kurtosis 

tensor (MW), axial kurtosis (AW), and radial kurtosis (RW) with and without applying adaptive denoising 

(msPOAS). The msPOAS-corrected maps appear less noisy while preserving tissue edges. 
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Fig. G2. The influence of Rician bias correction (RBC) on maps of biophysical parameter estimates, derived from 

the NODDI-DTI and WMTI-Watson model, including axon orientation dispersion (κ), in an in vivo brain and spinal 

cord dataset (refer to Table 4 for details on the datasets). These maps were computed without (left column) and 

with (middle column) RBC; their voxel-wise difference, known as the Rician bias, is shown in the right column. 

RBC slightly decreased the mean of the kurtosis tensor both in the brain and spinal cord, which resulted in an 

increase in κ. The estimation of AWF was not feasible using the NODDI-DTI model, as the DTI-derived MD values 

fell below the range in which the NODDI-DTI model provides a valid representation (Equation (4) in Edwards et 

al., 2017). This could be attributed to either the underestimation of MD due to the kurtosis bias (Appendix F), or 

the invalidity of fixed compartmental diffusivities in the NODDI-DTI model. 
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Appendix	H.	Biophysical	parameters	in	the	brain	and	spinal	cord	

 

Fig. H1. Bar plots displaying the neurite orientation dispersion (κ) and axonal water fraction (AWF) within the five 

central slices of the corpus callosum and the lateral corticospinal tracts in the spinal cord. The corpus callosum 

was manually segmented, while the lateral corticospinal tracts were segmented using the PAM50 spinal cord 

white matter atlas. The red horizontal lines represent literature values. Orientation dispersion index values 

reported in the literature were converted to κ as per Equation (1) in (Mollink et al., 2017). Within the corpus 

callosum, the κ values were (mean ± std) 10.8 ± 10.3 and 8.1 ± 5.1 when derived from the NODDI-DTI (single 

shell) and WMTI-Watson model (two shells), respectively, which fall within the range of literature values 

obtained post-mortem using polarized light imaging (Mollink et al., 2017). The AWF values derived from NODDI-

DTI (0.40 ± 0.25) and WMTI-Watson model (0.47 ± 0.13) were also similar to literature values obtained using 

WMTI (Margoni et al., 2019). Within the lateral corticospinal tracts, the κ values derived from NODDI-DTI were 

notably lower than those derived from WMTI-Watson (2.0 ± 0.3 vs. 4.79 ± 1.22) and were in agreement with 

literature values obtained post-mortem by NODDI (Grussu et al., 2017). The AWF values were 0.82 ± 0.04 when 

derived from the WMTI-Watson model, which were substantially higher than literature values obtained using 

AxCaliber diffusion data (Duval et al., 2015). The estimation of AWF was not feasible using the NODDI-DTI model, 

as the DTI-derived MD values fell below the range in which the NODDI-DTI model provides a valid representation 

(see Equation (4) in Edwards et al., 2017). This could be attributed to either the underestimation of MD due to 

the kurtosis bias (Appendix F), or the invalidity of fixed compartmental diffusivities in the NODDI-DTI model. 
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