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Abstract 28 

Diffusion MRI (dMRI) has become a crucial imaging technique in the field of neuroscience, with a 29 

growing number of clinical applications. Although most studies still focus on the brain, there is a 30 

growing interest in utilizing dMRI to investigate the healthy or injured spinal cord. The past 31 

decade has also seen the development of biophysical models that link MR-based diffusion 32 

measures to underlying microscopic tissue characteristics, which necessitates validation through 33 

ex vivo dMRI measurements. Building upon 13 years of research and development, we present 34 

an open-source, MATLAB-based academic software toolkit dubbed ACID: A Comprehensive Toolbox 35 

for Image Processing and Modeling of Brain, Spinal Cord, and Ex Vivo Diffusion MRI Data. ACID is an 36 

extension to the Statistical Parametric Mapping (SPM) software, designed to process and model 37 

dMRI data of the brain, spinal cord, and ex vivo specimens by incorporating state-of-the-art artifact 38 

correction tools, diffusion and kurtosis tensor imaging, and biophysical models that enable the 39 

estimation of microstructural properties in white matter. Additionally, the software includes an array 40 

of linear and non-linear fitting algorithms for accurate diffusion parameter estimation. By adhering to 41 

the Brain Imaging Data Structure (BIDS) data organization principles, ACID facilitates standardized 42 

analysis, ensures compatibility with other BIDS-compliant software, and aligns with the growing 43 

availability of large databases utilizing the BIDS format. Furthermore, being integrated into the 44 

popular SPM framework, ACID benefits from a wide range of segmentation, spatial processing, and 45 

statistical analysis tools as well as a large and growing number of SPM extensions. As such, this 46 

comprehensive toolbox covers the entire processing chain from raw DICOM data to group-level 47 

statistics, all within a single software package.48 
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1. Introduction 49 

Diffusion MRI (dMRI) exploits the self-diffusion of water molecules to produce images that are 50 

sensitive to tissue microstructure by measuring the diffusion along various spatial directions  51 

(Callaghan et al., 1988; Le Bihan et al., 1988; Stejskal & Tanner, 1965). dMRI has been applied to 52 

study a number of phenomena including normal brain development (Dubois et al., 2014; Miller et al., 53 

2002), aging (Draganski et al., 2011; Sullivan et al., 2010), training-induced plasticity (Scholz et al., 54 

2009), and monitoring progression of and recovery from neurological diseases (Farbota et al., 2012; 55 

Meinzer et al., 2010). Clinical applications of dMRI include the diagnosis of ischemic stroke (Urbach et 56 

al., 2000), multiple sclerosis (Horsfield et al., 1996), cancer and metastases (Gerstner and Sorensen, 57 

2011), and surgical planning of brain tumors (Chun et al., 2005). Although the vast majority of dMRI 58 

applications has focused on the brain, there is a growing interest in spinal cord dMRI, as researchers 59 

seek sensitive and predictive markers of spinal cord white matter damage (Cohen et al., 2017; Martin 60 

et al., 2016). Furthermore, an increasing number of studies utilize dMRI on ex vivo specimens for 61 

comparative analysis with other imaging modalities, such as electron microscopy (Barazany et al., 62 

2009; Kelm et al., 2016; Papazoglou et al., 2023). 63 

To fully utilize the sensitivity of dMRI to tissue microstructure, expert knowledge is required to 64 

minimize artifacts both during acquisition, e.g., by cardiac gating or twice-refocused spin-echo 65 

sequences, and through dedicated retrospective correction methods. Commonly used retrospective 66 

correction techniques include motion and eddy current correction (J. L. R. Andersson & Sotiropoulos, 67 

2016; Mohammadi et al., 2010), susceptibility distortion correction (Gu & Eklund, 2019; Ruthotto et 68 

al., 2012), denoising (Becker et al., 2014; Veraart et al., 2016), Rician bias correction (Oeschger et al., 69 

2023a; Sijbers et al., 1998), and robust tensor fitting techniques (Chang et al., 2005; Mohammadi et 70 

al., 2013). Retrospective artifact correction techniques, along with diffusion signal modeling 71 

capabilities, are widely available in open-source toolboxes such as FSL-FDT (Smith et al., 2004), DiPY 72 

(Garyfallidis et al., 2014), DESIGNER (Ades-Aron et al., 2018), ExploreDTI (Leemans et al., 2009), 73 

MRtrix3 (Tournier et al., 2019), TORTOISE (Pierpaoli et al., 2010), AFNI-FATCAT (Taylor & Saad, 2013), 74 

and others. 75 

While the majority of toolboxes have been designed for brain dMRI, ACID has introduced 76 

several features and utilities that make it particularly suitable for spinal cord and ex vivo dMRI as 77 

well. Specifically, ACID addresses the higher level and different nature of artifacts in spinal cord dMRI 78 

(Barker, 2001; Stroman et al., 2014), and the highly variable geometry and diffusion properties in ex 79 

vivo dMRI (see Sébille et al., 2019 for a list of ex vivo/post-mortem dMRI studies). Although there are 80 

some software options available for processing spinal cord images, most notably the Spinal Cord 81 

Toolbox (De Leener et al., 2017), these tools lack comprehensive artifact correction and biophysical 82 

modeling capabilities for estimation of dMRI-based metrics related to microscopic tissue properties. 83 
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Biophysical modeling estimates microstructural properties, such as axonal water fraction and 84 

orientation dispersion, as aggregated measures on the voxel level, providing greater specificity than 85 

standard diffusion tensor (DTI) or diffusion kurtosis imaging (DKI). Toolboxes dedicated for 86 

biophysical modelling of the dMRI signal, such as the NODDI (Zhang et al., 2012) or SMI toolbox 87 

(Coelho et al., 2022), typically do not include a comprehensive processing pipeline to correct for 88 

artifacts in dMRI data. In addition, to date, only a few of the dMRI toolboxes support the Brain 89 

Imaging Data Structure (BIDS, Gorgolewski et al., 2016) standard for organizing and annotating raw 90 

and processed dMRI data. The lack of standardization complicates not only the sharing and 91 

aggregation of processed dMRI data but also the application of automated image analysis tools 92 

designed for big data, such as machine learning techniques. Over the past two decades, tens of 93 

thousands of dMRI datasets have been made openly available in large neuroimaging databases (e.g., 94 

HCP (Van Essen et al., 2013) and the UK Biobank (Littlejohns et al., 2020)), underscoring the 95 

importance of consistent data storage practices. 96 

Building upon 13 years of research and development, we introduce an open-source MATLAB-97 

based extension to the Statistical Parametric Mapping (SPM) software, the ACID toolbox: A 98 

Comprehensive Toolbox for Image Processing and Modeling of Brain, Spinal Cord, and Ex Vivo 99 

Diffusion MRI Data. ACID was initially developed as a collection of artifact correction tools but has 100 

now been extended to a comprehensive toolbox for processing and modeling of dMRI data. In 101 

particular, ACID offers (i) state-of-the-art image processing tools as well as (ii) DTI, DKI, and white 102 

matter biophysical model parameter estimation methods optimized for brain, spinal cord, and ex 103 

vivo dMRI data. Additionally, (iii) ACID adheres to the BIDS standard for organizing the output, 104 

making the processed images compliant with other BIDS software and facilitating data sharing. 105 

Finally, (iv) ACID is embedded in the SPM framework to benefit from its established functions 106 

including spatial processing tools and statistical inference schemes. ACID tools can be combined with 107 

other SPM functions to create pipelines in SPM batch system, which offers an all-in-one software 108 

solution from conversion of DICOM data to statistical group analysis. ACID also benefits from a large 109 

and growing number of SPM extensions. For example, ACID can be combined with the SPM12-based 110 

hMRI toolbox (Tabelow et al., 2019) to perform multi-contrast analysis of dMRI and other 111 

quantitative MRI data, such as relaxation rates, acquired from the same subject, all within a single 112 

pipeline. Many of the methods used in the ACID toolbox have already been published in the scientific 113 

dMRI literature (Table 1). In this paper, we detail the design and function of the ACID modules and 114 

provide guidance on their optimal combination for brain, spinal cord, and ex vivo applications. 115 
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Table 1. Peer-reviewed methods used in the ACID toolbox. 116 

Method Publication 

ECMOCO: Eddy current and motion 

correction 

Mohammadi et al., 2010; Mohammadi, Freund, et al., 2013; 

Mohammadi, Tabelow, et al., 2015 

HySCO: Susceptibility artifact correction Macdonald & Ruthotto, 2018; Ruthotto et al., 2012, 2013 

HySCO: Combine blip-up and blip-down Clark et al., 2021 

msPOAS: Adaptive denoising Becker et al., 2014; Tabelow et al., 2015 

RBC: Rician bias correction Oeschger et al., 2023a 

DTI using robust fitting Mohammadi, Freund, et al., 2013 

DKI and axisymmetric DKI using NLLS Oeschger et al., 2023a, 2023b 

NODDI-DTI Edwards et al., 2017 

WMTI-Watson Oeschger et al., 2023b* 

Reliability masking David et al., 2017 

DKI, diffusion kurtosis imaging; DTI, diffusion tensor imaging; NLLS, non-linear least squares; NODDI, neurite orientation 117 

dispersion and density imaging; WMTI, white matter tract integrity. *The ACID implementation is based on the method 118 

introduced by Jespersen et al., 2018. 119 

2. Methods 120 

2.1 Overview 121 

The ACID toolbox is a comprehensive toolbox for processing and analyzing dMRI data, built upon the 122 

following four pillars: (1) pre-processing of dMRI data (Pre-processing module), (2) physical models of 123 

the diffusion signal (Diffusion tensor/kurtosis imaging module), (3) white matter biophysical models 124 

of the diffusion signal (Biophysical models module), and (4) additional features referred to as Utilities. 125 

The Pre-processing module consists of state-of-the-art methods for retrospective correction of the 126 

dMRI data. The Diffusion tensor/kurtosis imaging module contains tensor and kurtosis models that 127 

can be applied to dMRI data from various tissues or samples, including gray and white matter, as well 128 

as diffusion phantoms (Woletz et al., 2024). In contrast, the Biophysical models module can only be 129 

applied to samples that fall within their validity ranges (see Section 4.2.2). The Utilities module 130 

contains various useful tools, including masking and noise estimation. The ACID toolbox follows the 131 

BIDS convention and enables the seamless integration of external tools into its processing pipeline in 132 

a modular fashion (External tools module). More details about the implementation and organization 133 

of ACID are provided in Appendix A. 134 

2.2 Pre-processing 135 

In this chapter, we provide brief descriptions of each artifact correction tool currently implemented 136 

in ACID. For detailed recommendations on various dMRI datasets (in vivo brain, in vivo spinal cord, ex 137 

vivo/post-mortem), refer to Sections 3.2 and 4.1, as well as Table 5. 138 
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2.2.1 Eddy current and motion correction (ECMOCO) 139 

ACID uses the eddy current and motion correction (ECMOCO) algorithm (Mohammadi et al., 2010) to 140 

correct for spatial misalignments that may occur between dMRI volumes. These misalignments can 141 

be caused by motion and eddy currents induced by the rapidly varying field of the diffusion-142 

sensitizing gradients (Jezzard et al., 1998), which may lead to biased diffusion estimates 143 

(Mohammadi et al., 2013). ECMOCO aligns all source volumes to a target volume using a co-144 

registration algorithm with an affine transformation (Friston & Ashburner, 1997) implemented in the 145 

SPM function spm_coreg. It was previously shown that the robustness of registration can be 146 

increased by separately registering diffusion-weighted (DW) and non-diffusion-weighted (b0) 147 

volumes to their corresponding target volumes (Mohammadi et al., 2015a). ECMOCO features the 148 

multi-target registration mode, where source volumes from each diffusion shell (b-value) are co-149 

registered to their shell-specific target volume (Fig. B1). ECMOCO rotates the b-vectors by the 150 

obtained rotational parameters; the rotated b-vectors can be passed on to subsequent processing 151 

steps. Of note, the affine transformation of ECMOCO can only correct for first-order eddy-current 152 

displacements. The advantages and disadvantages of ECMOCO compared to other established tools, 153 

such as FSL eddy, are discussed in Section 4.1. 154 

In spinal cord dMRI, eddy current and motion correction is more challenging than in brain 155 

dMRI due to the considerably lower number of voxels and lower signal-to-noise ratio (SNR), 156 

particularly in volumes with high b-values (>1000 s/mm
2
) or with diffusion-sensitizing gradients 157 

parallel to the spinal cord. While movement of the brain can be considered approximately rigid, the 158 

spinal cord may experience varying degrees of displacement along the rostro-caudal axis caused by 159 

factors such as breathing, pulsation of the cerebrospinal fluid, or swallowing (Yiannakas et al., 2012). 160 

To address this, we introduced slice-wise (2D) registration, which independently aligns each slice of 161 

the source volume to the corresponding slice of the target volume, thereby correcting for non-rigid, 162 

slice-dependent displacements (Mohammadi, Freund, et al., 2013). For more details on ECMOCO, 163 

including other recently introduced features (initialized registration and exclusion mode), refer to 164 

Appendix B. 165 

2.2.2 Adaptive denoising (msPOAS) 166 

The Multi-shell Position-Orientation Adaptive Smoothing (msPOAS) is an iterative adaptive denoising 167 

algorithm designed to adaptively reduce noise-induced variance in dMRI data while preserving tissue 168 

boundaries, as illustrated in Fig. 3 (Becker et al., 2012, 2014; Tabelow et al., 2015). The algorithm 169 

adapts to the intensity values and their distance in both voxel space and the spherical space of 170 

diffusion directions, allowing smoothing only within spatially homogeneous areas of the DW images. 171 

One of the key advantages of msPOAS is its compatibility with all diffusion models as it operates on 172 

the raw dMRI data. Adjustable parameters include kstar (number of iterations that define the image 173 
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smoothness), lambda (adaptation parameter that defines the strength of edge detection), kappa 174 

(initial ratio of the amount of smoothing between the local space of neighboring voxels and the 175 

spherical space of diffusion gradients), ncoils (i.e., the effective number of receiver coils that 176 

contributed to the measured signal). To distinguish random fluctuations from structural differences, 177 

msPOAS requires an estimate of SNR, or equivalently the noise standard deviation (sigma). A higher 178 

kstar leads to greater smoothness within homogeneous image regions, while a larger lambda results 179 

in weaker adaptation and more blurring at tissue edges. The optimal kappa depends on the number 180 

of directions per shell, while ncoils should be the same as the value used for noise estimation. When 181 

using msPOAS, we recommend starting with the default parameters and the sigma estimated with 182 

the Noise estimation utility function (Table 2). In case of insufficient noise reduction, parameters 183 

should be adjusted according to Appendix D. 184 

2.2.3 Rician bias correction 185 

The voxel intensities of MRI magnitude images exhibit a Rician distribution in case of a single receiver 186 

coil (Gudbjartsson & Patz, 1995) and a non-central χ distribution in case of multiple receiver coils 187 

(Aja-Fernández et al., 2014). When fitting diffusion signal models (Section 2.3), this distribution leads 188 

to a bias, known as the Rician bias, in the estimated tensor (Basser & Pajevic, 2000; Gudbjartsson & 189 

Patz, 1995; Jones & Basser, 2004) and kurtosis parameters (Veraart et al., 2011; Veraart et al., 190 

2013a), as well as in biophysical parameter estimates (M. Andersson et al., 2022; Fan et al., 2020; 191 

Howard et al., 2022). This Rician bias is particularly relevant in low SNR situations (Polzehl & Tabelow, 192 

2016). Two approaches of Rician bias correction (RBC) are implemented in ACID. The M2 approach, 193 

introduced in Miller & Joseph, 1993 and later extended to multi-channel receiver coil (André et al., 194 

2014), operates on the dMRI data and uses the second moment of the non-central χ distribution of 195 

the measured intensities and noise estimates to estimate the true voxel intensities. The second 196 

approach modifies the parameter estimation by considering the non-central χ distribution to account 197 

for the Rician bias during model fitting (Oeschger et al., 2023a). Note that the latter approach 198 

assumes uncorrected data, therefore it must not be combined with the first method and is currently 199 

only available for non-linear least squares fitting. Both methods require an estimate of the noise 200 

standard deviation, which can be obtained using either the standard or the repeated measures 201 

method within the Noise estimation utility function (Table 2). Details on noise estimation are 202 

available in Appendix C. In addition, ACID offers the Rician bias simulation utility function to 203 

determine the optimal RBC method for the dMRI dataset and SNR at hand (Table 2). An example of 204 

how RBC influences the estimation of biophysical parameters is illustrated in Fig. F1. 205 

2.2.4 Susceptibility artifact correction (HySCO) 206 

Hyperelastic Susceptibility Artifact Correction (HySCO) is a technique used to correct for geometric 207 

distortions caused by susceptibility artifacts (Ruthotto et al., 2012, 2013). These artifacts can occur at 208 
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interfaces between tissues with different magnetic susceptibilities, such as those found near 209 

paranasal sinuses, temporal bone, and vertebral bodies. To correct for these artifacts, HySCO 210 

estimates the bias field based on a reversed-gradient spin-echo echo planar imaging (EPI) acquisition 211 

scheme. This requires the acquisition of at least one image with identical acquisition parameters as 212 

the dMRI data but with reversed phase-encoding direction, also referred to as "blip-up" or "blip-213 

down" acquisitions. The bias field map, estimated from the blip-up and blip-down images, is applied 214 

to the entire dMRI data to unwarp the geometric distortions (see Fig. 3 for examples). For datasets 215 

that include full blip-reversed acquisition, i.e., each image was acquired with two phase-encoding 216 

directions (blip-up and blip-down), the reverse phase-encoded images can be combined using the 217 

submodule HySCO: combine blip-up and blip-down images. 218 

2.3 Diffusion signal models 219 

The dependence of dMRI signal on the direction and strength of diffusion-weighting is commonly 220 

described by mathematical models. Two of the most widely used models are DTI (Basser et al., 1994) 221 

and DKI (Hansen et al., 2016; Jensen et al., 2005). 222 

2.3.1 Diffusion tensor imaging (DTI) 223 

DTI describes the anisotropic water diffusion in the white matter by a diffusion tensor with six 224 

independent diffusion parameters. The eigenvalues of the tensor can be used to compute 225 

rotationally invariant DTI scalar metrics including fractional anisotropy (FA) and mean (MD), axial 226 

(AD), and radial diffusivities (RD). The interpretation of DTI assumes that the direction of axial 227 

diffusivity is aligned with the white matter tracts, which may not be the case in complex fiber 228 

geometry such as crossing or fanning fibers. 229 

ACID provides four algorithms to obtain the diffusion tensor (see Appendix E for details). 230 

Ordinary least squares (OLS) fits the tensor model by minimizing the sum of squared model-fit errors, 231 

while weighted least squares (WLS) minimizes the weighted sum of squared model-fit errors, 232 

accounting for the distortion of noise distribution in the linearized (logarithmic) data. Robust fitting is 233 

similar to WLS but factorizes the weights into three components to account for local and slice-234 

specific artifacts as well, while also featuring Tikhonov regularization to handle ill-conditioned 235 

weighting matrices resulting from a high occurrence of outliers. Robust fitting is designed to 236 

downweight outliers in the model fit, which can otherwise introduce a bias in the fitted model 237 

parameters (Mohammadi et al., 2013) (Fig. E1). Unlike the linearized models, the non-linear least 238 

squared (NLLS) method is based on an implementation (Modersitzki, 2009) of the Gauss-Newton 239 

algorithm and operates on the non-logarithmic data, avoiding the distortion of noise distribution. 240 
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2.3.2 Diffusion kurtosis imaging (DKI) 241 

DKI expands the diffusion tensor model by the kurtosis tensor, a fourth-order tensor with 15 242 

independent parameters, which captures the effects of non-Gaussian water diffusion. From the 15 243 

kurtosis parameters, several kurtosis metrics can be estimated including the mean (MK), axial (AK), 244 

and radial kurtosis (RK), as well as the mean (MW), axial (AW), and radial (RW) kurtosis tensor 245 

(Tabesh et al., 2011) (Fig. 1). These metrics provide additional information about tissue complexity 246 

beyond what can be captured by diffusion tensor metrics alone. DKI requires the acquisition of a 247 

second diffusion shell with higher b-value (typically between 2000 and 2500 s/mm
2
). ACID also 248 

includes the axisymmetric DKI model, a recent modification of DKI which reduces the parameter 249 

space to 8 independent parameters by imposing the assumption of axisymmetrically distributed 250 

axons (Hansen et al., 2016). Currently, ACID offers the OLS and NLLS algorithms for fitting the kurtosis 251 

tensor, and the NLLS algorithm for fitting the axisymmetric kurtosis tensor. Note that the diffusion 252 

tensor parameters from DKI might differ from standard DTI parameters. In particular, diffusivities 253 

(AD, MD, and RD) derived from the DTI model are often underestimated compared to those derived 254 

from the DKI model (referred to as kurtosis bias) (Edwards et al., 2017). By incorporating higher-255 

order moments of the diffusion signal, DKI can address kurtosis bias, resulting in more accurate 256 

diffusivity estimates (see Fig. S3 in the Supplementary material for a comparison of MD derived from 257 

DTI and DKI). 258 

 259 

Fig. 1. Selected maps derived from diffusion kurtosis imaging (DKI) using an in vivo brain, in vivo spinal cord, and ex vivo 260 

dMRI dataset (refer to Table 4 for details on the dataset). Shown are maps of fractional anisotropy (FA), mean diffusivity 261 

(MD), axial diffusivity (AD), radial diffusivity (RD), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK). 262 
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2.4 Biophysical models 263 

Biophysical models separate the dMRI signal into distinct signal components from various tissue 264 

compartments, each with their own underlying assumptions. Biophysical models provide more 265 

specific and biologically interpretable metrics that are linked to tissue microstructure (Jelescu et al., 266 

2020). The application of biophysical models is often referred to as dMRI-based in vivo histology 267 

(Mohammadi & Callaghan, 2021; Weiskopf et al., 2021) or microstructural dMRI (Jelescu et al., 2020; 268 

Novikov, 2021; Novikov et al., 2019). In the following, we briefly describe the two white matter 269 

biophysical models currently implemented in ACID (WMTI-Watson and NODDI-DTI), while 270 

recommendations on their usage are provided in Section 4.2.2. Example maps are shown in Fig. 2, 271 

and specific values obtained from the brain and spinal cord are presented and discussed in Fig. S5 272 

(Supplementary material). 273 

2.4.1 WMTI-Watson model 274 

The white matter tract integrity (WMTI)-Watson model as an implementation of the Standard Model 275 

assumes two non-exchanging water compartments (intra- and extra-axonal tissue water) (Alexander 276 

et al., 2019; Novikov et al., 2019). The model characterizes the intra-axonal compartment as 277 

"sticks" of zero radius, with an intra-axonal diffusivity ��  and axonal water fraction �. Axonal 278 

alignment is characterized by the Watson concentration parameter �, where higher values 279 

indicate higher axonal alignment, and the orientation dispersion index (ODI), where higher 280 

values indicate lower alignment. While � and ODI are mathematically related (Mollink et al., 281 

2017), ACID outputs both for convenience. The extra-axonal space is modeled as a homogenous 282 

medium, described by an axisymmetrical diffusion tensor with parallel (��,�) and perpendicular 283 

(��,�) extra-axonal diffusivities. The five biophysical parameters (�� , �, �, ��,�, ��,�) are derived 284 

from the axisymmetric DKI tensor metrics (AD, RD, MW, AW, RW) according to the formulas 285 

described in (Jespersen et al., 2018; Novikov et al., 2018). Being derived from the biophysical 286 

Standard Model, the estimation of WMTI-Watson biophysical parameters is generally degenerate, 287 

which leads to two solutions: the plus branch, which assumes ��  > ��,�, and the minus branch, 288 

which assumes ��  < ��,� (Novikov et al., 2018). We recommend using the plus branch (default in 289 

the toolbox), as in our experience, and also reported by others (Jelescu et al., 2020; Jespersen et al., 290 

2018), the minus branch is the biologically invalid solution. 291 
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 292 

Fig. 2. Maps of biophysical parameters derived from the WMTI-Watson model using an in vivo brain, in vivo 293 

spinal cord and ex vivo dMRI dataset (refer to Table 4 for details on the dataset). Shown are maps of Watson 294 

concentration parameter ( ), axonal water fraction ( ), parallel and perpendicular extra-axonal diffusivities 295 

(  and ), and intra-axonal diffusivity ( ). Note that for the in vivo spinal cord dataset, the maximum b-296 

value (b=1500 s/mm
2
) was probably too low for an accurate estimation of , resulting in voxels with negative 297 

(hence unphysical) values within the spinal cord. Since WMTI-Watson is a white matter biophysical model, the 298 

parameter maps were masked for the white matter in the brain dataset. For the spinal cord and ex vivo 299 

specimen, we refrained from masking for the white matter due to the difficulty of obtaining an accurate white 300 

matter mask. 301 

2.4.2 NODDI-DTI 302 

NODDI-DTI (Edwards et al., 2017) is based on the neurite orientation dispersion and density imaging 303 

(NODDI) model (Zhang et al., 2012). While NODDI is a three-compartment biophysical model with 304 

intra- and extra-axonal space, and cerebrospinal fluid compartments, NODDI-DTI assumes that the 305 

latter compartment can be neglected in normal appearing white matter. NODDI-DTI further assumes 306 

a fixed diffusivity of the intra-neurite compartment ( ). In our implementation, users can either 307 

choose from two fixed values tailored for in vivo ( =1.7∙10
-3

 mm
2
/s) and ex vivo ( =0.6∙10

-3
 308 

mm
2
/s) datasets, or select their own value. NODDI-DTI estimates the intra-neurite (here: ) and 309 

extra-neurite ( ) signal fraction, as well as the Watson concentration parameter  and the 310 
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orientation dispersion index (ODI), from the FA and MD maps. While WMTI-Watson requires 311 

specific multi-shell dMRI data for robust parameter estimation, NODDI-DTI parameters can also be 312 

obtained from single-shell DTI acquisitions. 313 

2.5 Utilities 314 

ACID utilizes SPM’s utility functions, available under SPM -> Util in the SPM12 Batch Editor, for 315 

handling and manipulating NIfTI images. These functions include mathematical operations on single 316 

or multiple images, reorienting images, and concatenating 3D volumes and separating 4D volumes. 317 

Additionally, ACID provides its own set of utility functions for image manipulation, mask generation, 318 

quality assessment, and other related tasks (refer to Table 2 for more details).Table 2. List of the ACID 319 

utility functions. 320 

FUNCTION DESCRIPTION 

Cropping Crops images to a smaller size for less storage space and faster processing.  

Input: image(s) to crop, new matrix size, and voxel coordinates of the center of 

cropping. The center of cropping can also be selected manually through a pop-up 

window.  

Output: cropped image(s) and the cropping parameters.  

Application: typically in spinal cord dMRI, where the spinal cord occupies a small 

portion of the image. 

Resampling Resamples images to the desired resolution.  

Input: image(s) to be resampled, desired resolution, and type of interpolation (as 

defined in spm_slice_vol). Available types of interpolation: nearest neighbor, 

trilinear, higher-order Lagrange polynomial (2 to 127), and different orders of sinc 

interpolation (-1 to -127); default: -7, i.e., 7
th

-order sinc interpolation. 

Output: resampled image(s). 

Application: for example, when performing voxel-wise arithmetic between two or 

more images with different resolutions (e.g., g-ratio mapping). 

Slice-wise realignment Enables manual translation and scaling of images along the x and y dimensions on a 

slice-by-slice basis, facilitated by intensity contour lines of the source image 

superimposed on the target image.  

Input: image to be realigned, target image, and other images to which the 

realignment parameters are applied.  

Output: realigned image(s) and the realignment parameters.  

Application: useful for realigning spinal cord images, where residual misalignments 

are often slice-dependent. 

Fusion Merges two images with different field of views (FOV), such as a brain and a spinal 

cord image, into a single combined image (Fig. 5).  

Inputs: two images to be merged and a target image (typically a structural image 

with a larger FOV). 

Output: a combined image, resampled onto to the target image. The voxel intensity 

values in overlapping regions are the average of the intensity values in both 

images. Note that before merging the images, they must be in the correct spatial 

position; if necessary, image realignment can be performed using the SPM Realign 

or the Slice-wise realignment utility function. 

Application: useful for merging a brain and a spinal cord image into a single image 
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before applying a warping field obtained from a large-FOV structural image. 

Create brain mask Creates a binary brain mask by (i) segmenting the brain image into gray matter, 

white matter, and cerebrospinal fluid using SPM12's unified segmentation tool 

(Ashburner & Friston, 2005), (ii) summing up the resulting probability maps, and 

(iii) thresholding it at a certain value (accessible through the script 

acid_local_defaults.m; default: 0.8). 

Input: a single brain image or tissue probability maps for gray mater, white matter, 

and cerebrospinal fluid, and optionally a dMRI dataset to be masked.  

Output: binary brain mask and optionally a masked dMRI dataset. 

Application: to restrict the estimation of DTI, DKI, and biophysical parameters to 

the brain for increased speed and efficiency. 

Reliability masking Aims to identify "unreliable" voxels, i.e., voxels irreversibly corrupted by 

artifacts. Reliability masks are generated by thresholding the root-mean-square 

model-fit error (rms(ε)) map (David et al., 2017).  

Input: rms(ε) maps (output by tensor fitting methods with label: RMS-ERROR) and 

the desired threshold value. The optimal threshold can be determined using the 

Determine threshold submodule. 

Output: a binary reliability mask. 

Application: Reliability masks can serve as binary masks in region-of-interest-

based analyses. In principle, reliability masking as an outlier rejection technique is 

applicable after each model fitting method. It is particularly useful in situations 

where many data points are affected by outliers (often the case in spinal cord 

dMRI), which could otherwise lead to unstable tensor fits and inaccurate tensor 

estimates (see David et al., 2017 for examples). 

DWI series browser Enables browsing through the slices of the dMRI data for quality assessment. Slices 

with low SNR and/or artifacts can be identified and labeled. 

Input: the dMRI dataset, b-values, and b-vectors. 

Output: list of labeled slices. 

Application: The saved labels can be used to inform ECMOCO about unreliable 

slices (see Exclusion mode in Appendix B). 

DWI series movie Enables simultaneous streaming of images from multiple dMRI datasets in video 

mode for quality assessment. 

Input: a reference image and up to three dMRI datasets. 

Output: a video file containing the image streams. 

Application: useful for visual assessment of a single dMRI dataset or for comparing 

images before and after a specific processing step (e.g., ECMOCO). 

Noise estimation Estimates the noise standard deviation (�) in the dMRI data using either the 

standard or the repeated measures method. The standard method uses the 

formula � � �∑ �
�
�

� � ���� /�2	
�, where �� is the voxel intensity within a 

background mask defined outside the body, 	 is the number of voxels within the 

background mask, and 
 is the effective number of coil elements that contributed 

to the measured signal (Constantinides et al., 1997). The repeated measures 

method uses the formula: � � mean� 	
 ��
 �std�����, ����, where ���, �� is the 

voxel intensity at voxel � in the �th repeated image (Dietrich et al., 2007). The 

standard deviation and mean operators are performed across the repetitions and 

voxels, respectively. The set of repeated images can be either the non-diffusion-

weighted (b≈0) or strongly diffusion-weighted (the highest b-value) images (see 

Appendix C for recommendations). 

Input: the raw (unprocessed) dMRI dataset, a mask (standard method: background 

mask; repeated measures method: see Appendix C), n (for the standard method 
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only), and b-values (for the repeated measures method only). 

Output: a single � (assuming a homogeneous variance). 

Application: � serves as input for msPOAS, Rician bias correction, and diffusion 

tensor imaging (for fitting methods WLS and robust fitting). 

Rician bias simulation Simulates diffusion-weighted MRI signals at specified SNR values in voxels within 

the brain white and gray matter. The simulated signals are corrected using the 

specified Rician bias correction (RBC) methods (for details, see Oeschger et al., 

2023a).  

Input: a voxel from a list of 27 pre-defined voxels, each with different diffusion and 

kurtosis tensor metrics
1
 (for details, see Oeschger et al., 2023a), a list of SNR 

values, and the number of noise samples. 

Output: a figure showing the distance between the estimated metric and the 

ground truth value for each RBC method. 

Application: useful for computing the required SNR for DTI, DKI, and biophysical 

parameter estimation. 

 ROI analysis Calculates the mean value within a specified region of interest (ROI). 

Input: list of images and various types of ROIs including (i) global ROIs, applied to all 

images in the list, (ii) subject-specific ROIs, applied only to the corresponding 

image, and (iii) subject-specific reliability masks, again applied only to the 

corresponding image (see Reliability masking). 

Output: an array containing the mean values within the specified ROIs per subject, 

ROI, and (optionally) slice. When multiple types of ROIs are specified, their 

intersection is applied. 

Application: the function offers flexibility for a range of ROI-based analyses; for 

example, ROI-based analysis in the native space requires a set of subject-specific 

ROIs, while a single global mask is sufficient in the template space (with optional 

reliability masks in both cases). An example application including reliability masks 

can be found in David et al., 2017. 

2.6 External tools 321 

ACID provides the option to integrate external tools from other packages, which can be accessed 322 

directly from the ACID graphical user interface (GUI) (External tools module), ensuring a seamless 323 

integration into ACID pipelines. We included the following external tools in the current release: (i) FSL 324 

eddy2 (J. L. R. Andersson & Sotiropoulos, 2016); (ii) FSL topup3 (Smith et al., 2004); (iii) dwidenoise4 325 

(based on the Marchenko-Pastur principal component analysis (MP-PCA), part of the MRtrix toolbox) 326 

(Veraart et al., 2016); (iv) denoising5 (based on the local principal component analysis (LPCA), part of 327 

the DWI Denoising Software) (Manjón et al., 2013); (v) Koay's noise estimation6; (vi) mrdegibbs7 for 328 

Gibbs ringing removal, part of the MRtrix toolbox (Kellner et al., 2016); and (vii) the WMTI model 329 

                                                           
1
 https://github.com/quantitative-mri-and-in-vivo-

histology/axisymmetric_dki_with_rician_bias_correction_simulation_study 
2
 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy 

3
 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup 

4
 https://mrtrix.readthedocs.io/en/dev/dwi_preprocessing/denoising.html 

5
 https://sites.google.com/site/pierrickcoupe/softwares/denoising/dwi-denoising/dwi-denoising-software 

6
 https://github.com/jan-martin-mri/koays-inversion 

7
 https://mrtrix.readthedocs.io/en/dev/reference/commands/mrdegibbs.html 
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(part of the DESIGNER toolbox) (Fieremans et al., 2011). ACID also allows expert users to incorporate 330 

their own external tools into the toolbox, using the aforementioned examples as a template. 331 

2.7 Output structure and BIDS naming convention 332 

ACID supports the BIDS standard, while also being compatible with non-BIDS data. Following BIDS 333 

recommendations, ACID appends a label to the output filename’s desc field, which indicates the 334 

applied processing step (refer to Table 3 for a list of labels used in the modules Pre-processing, 335 

Diffusion tensor/kurtosis imaging, and Biophysical models). For instance, after applying ECMOCO to 336 

sub01_dwi.nii, the output file becomes sub01_desc-ECMOCO_dwi.nii. When multiple 337 

processing steps are involved, the labels are concatenated, as in sub01_desc-ECMOCO-338 

msPOAS_dwi.nii. Model fitting appends three labels indicating the type of diffusion model, 339 

algorithm, and parametric map, such as sub01_desc-ECMOCO-POAS-DKI-OLS-FA_dwi.nii. 340 

For BIDS-compliant input, ACID generates a bval and bvec file after each processing step. ACID stores 341 

all output in the derivatives folder, with separate subfolders for each module’s output (e.g., 342 

derivatives/POAS-Run). ACID retains the same folder structure and naming convention even 343 

when non-BIDS input is provided.  344 
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Table 3. List of labels in the output filename's desc field (not comprehensive). 345 

Label Description Label Description 

ECMOCO Eddy Current and Motion Correction V1 1st Eigenvector of the Diffusion Tensor 

msPOAS Multi-shell Position-Orientation Adaptive Smoothing V2 2nd Eigenvector of the Diffusion Tensor 

RBC Rician Bias Correction V3 3rd Eigenvector of the Diffusion Tensor 

HySCO Hyperelastic Susceptibility Artifact Correction DKI Diffusion Kurtosis Imaging 

fmap Off-Resonance Field DKIax Axisymmetric Diffusion Kurtosis Imaging 

COMB-WM Write Combined Weighted Mean MK Mean Kurtosis 

COMB-AM Write Combined Arithmetic Mean AK Axial Kurtosis 

DTI Diffusion Tensor Imaging RK Radial Kurtosis 

OLS Ordinary Least Squares MW Mean Kurtosis Tensor 

WLS Weighted Least Squares AW Axial Kurtosis Tensor 

ROB Robust Tensor Fitting RW Radial Kurtosis Tensor 

NLLS Non-linear Least Squares WMTI-W WMTI-Watson 

FA Fractional Anisotropy NODDI-DTI Neurite Orientation Density and Dispersion - 

MD Mean Diffusivity   Diffusion Tensor Imaging 

AD Axial Diffusivity AWF Axon Water Fraction 

RD Radial Diffusivity DA Intra-axonal Diffusivity 

L1 1st Eigenvalue of the Diffusion Tensor DE-PARA Parallel Extra-axonal Diffusivity 

L2 2nd Eigenvalue of the Diffusion Tensor DE-PERP Perpendicular Extra-axonal Diffusivity 

L3 3rd Eigenvalue of the Diffusion Tensor KAPPA Watson Concentration Parameter 

  ODI Orientation Dispersion Index 

 346 

3. Results 347 

3.1 Pipelines 348 

ACID is fully integrated into the SPM12 batch system, allowing users to execute its functions 349 

individually or combined into linear pipelines with multiple steps. Each step can receive the output 350 

of any of the previous steps via flexible and easy-to-use dependencies. While pipelines are typically 351 

set up in the SPM batch system, they can also be converted into MATLAB code (SPM batch script) for 352 

automation and further customization. In addition to its own functions, ACID integrates seamlessly 353 

with a range of standard SPM features, including segmentation, co-registration (based on 354 

affine transformation), spatial normalization (including non-linear registration), and voxel-355 

based statistical analyses, as well as a growing number of SPM extensions
8
. For example, 356 

combining ACID with the hMRI toolbox enables multi-contrast analysis of dMRI and other 357 

quantitative MRI data, such as relaxation rates (Tabelow et al., 2019). 358 

3.2 Example applications 359 

To demonstrate the application of ACID toolbox on different types of dMRI data, here we provide 360 

three example pipelines for in vivo brain, in vivo spinal cord, and ex vivo dMRI (Fig. 3). Details of 361 

these three datasets are summarized in Table 4. The gradient schemes used for all datasets were 362 

                                                           
8
 https://www.fil.ion.ucl.ac.uk/spm/ext/ 
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based on the configurations proposed by (Caruyer et al., 2013), available online9. The design of the 363 

sampling schemes followed a uniform coverage on a sphere. Note that data with reverse phase-364 

encoding direction were available for all three datasets, which refers to the acquisition of either a 365 

single b0 volume or all volumes with identical geometry and sequence parameters but opposite 366 

phase encoding direction. All example pipelines consist of artifact correction (ECMOCO, msPOAS, 367 

RBC, HySCO) and model fitting steps. While Gibbs ringing removal is often part of dMRI processing 368 

pipelines (Ades-Aron et al., 2018; Kellner et al., 2016; Tournier et al., 2019) and is also available in 369 

ACID as an external tool, we refrained from including it in the example pipelines because the 370 

interaction between denoising and the interpolation associated with Gibbs ringing removal is not 371 

well characterized yet. We emphasize that these example pipelines might not be optimal for all 372 

cases; users might find that another combination of pre-processing steps, which might also include 373 

Gibbs ringing removal, works even better for their data. 374 

While the pipelines for in vivo brain, in vivo spinal cord, and ex vivo dMRI follow similar 375 

concepts, recommended settings for each region may differ (Table 5). It is important to note that the 376 

settings listed in Table 5 serve as initial values for typical datasets. The optimal settings for a 377 

particular dataset depend on the sequence parameters, the subject, and the imaged region. Model 378 

fitting may be followed by spatial processing, such as co-registration to the structural image or 379 

spatial normalization to a template in a standard space (e.g. MNI152 space), and statistical analysis 380 

(e.g., ROI- or voxel-based analysis).  381 

                                                           
9
 http://www.emmanuelcaruyer.com/q-space-sampling.php 
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Table 4. Scan parameters of the in vivo brain, in vivo spinal cord, and ex vivo dMRI datasets used in this paper. 382 

Dataset In vivo brain In vivo spinal cord Ex vivo specimen 

Imaged body part or tissue entire brain (incl. cerebellum) 

of a 34-year-old healthy 

volunteer 

upper cervical cord (appr. C1-

C4) of a 43-year-old healthy 

volunteer 

ex vivo specimen of the 

temporal lobe from a 46-year-

old patient diagnosed with 

drug-resistant temporal lobe 

epilepsy; specimen embedded 

in glucose for 2h and fixed with 

4% paraformaldehyde for 12h 

before measurement 

Scanner 3T Siemens Prisma Fit 3T Siemens Prisma Fit 3T Siemens Prisma Fit 

Receive coils 64-channel Head/Neck 64-channel Head/Neck 16-channel Hand/Wrist 

Sequence 2D single-shot spin-echo EPI 2D single-shot spin-echo EPI pulse gradient spin echo 

Volumes and b-values 

[s/mm
2
] (number of 

gradient directions) 

b=0 (18); b=600 (30); 

b=1100 (45); b=2500 (60) 

b=0 (11); b=500 (30); 

b=1000 (30); b=1500 (30) 

b=0 (36); b=550 (30); 

b=1100 (75); b=2200 (45); 

b=2500 (60); b=5000 (60) 

Cardiac gating - 2 slices per cardiac cycle, 

trigger delay of 260 ms 

- 

Number of slices 100 (interleaved, no gap) 14 (interleaved, no gap) 160 

Resolution [mm
3
] 1.7 x 1.7 x 1.7 1.0 x 1.0 x 5.0 0.8 x 0.8 x 0.8 

Field of view [mm
3
] 204 x 170 x 201 128 x 36 x 70 128 x 48 x 48 

Echo time 75 ms 73 ms 99 ms 

Repetition time 5800 ms pulse-dependent 

(cardiac gated) 

8700 ms 

Parallel imaging 2x (GRAPPA) - - 

Multi-band imaging - - - 

Phase partial Fourier 7/8 - 7/8 

Phase-encoding dir. A-P A-P A-P 

Readout bandwidth  1842 Hz/pixel 1396 Hz/pixel 802 Hz/pixel 

EPI spacing 0.77 ms 0.93 ms 1.37 ms 

EPI factor 120 36 60 

Acquisition time [min:sec] 17:46 06:51 (nominal) 93:10 

Additional data with 

reversed phase-encoding 

direction 

a single b0 volume acquired 

with reversed phase-

encoding direction 

full blip-reversed acquisition 

(reversed phase-encoding 

available for each volume) 

full blip-reversed acquisition 

(reversed phase-encoding 

available for each volume) 
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Fig. 3. Standard processing pipelines for typical (A) in vivo brain, (B) in vivo spinal cord, and (C) ex vivo dMRI 384 

datasets (refer to Table 4 for details on the datasets and Table 5 for details on the pipeline settings). Example 385 

batches for each types of dMRI data are stored in the Example_Batches folder of the toolbox. The positions of 386 

the displayed slices of the dMRI data are indicated in purple on the corresponding structural images. For the ex 387 

vivo specimen (C), the brain region from which the sample was extracted is highlighted in an orange box. 388 

Although not explicitly shown here, noise estimation should be performed on the unprocessed data (see 389 

Appendix C), which serves as input for msPOAS, Rician bias correction, and diffusion tensor fitting (for fitting 390 

methods WLS and robust fitting). However, in case of substantial misalignments across volumes, and when 391 

using the repeated measures noise estimation method, it might be beneficial to perform this step after 392 

ECMOCO to prevent an overestimation of noise. For msPOAS, a zoomed-in visual comparison is shown 393 

between a diffusion-weighted (DW) image before (middle row) and after applying msPOAS (bottom row); the 394 

msPOAS-corrected image appears less noisy while preserving tissue edges. For HySCO, contour lines of the 395 

corresponding structural image (displayed as red lines) are overlaid on a zoomed-in DW image both before 396 

(middle row) and after applying HySCO (bottom row). HySCO improves the alignment between the DW and the 397 

structural image. For the in vivo brain dMRI dataset (A), an inferior slice is shown that presents high 398 

susceptibility-related distortions, making the effect of HySCO more visible. For the ex vivo dMRI dataset (C), the 399 

effect of HySCO is shown in a slice (illustrated in yellow) orthogonal to the original one (illustrated in purple) to 400 

better visualize susceptibility-related distortions and their correction. Note that HySCO is applied as the final 401 

pre-processing step, i.e., after applying msPOAS; however, the HySCO field map used for "unwrapping" the 402 

diffusion-weighted images is estimated on the ECMOCO-corrected datasets, i.e., before applying msPOAS. 403 

Rician bias correction (not explicitly shown here) should be applied either before (recommended: between 404 

msPOAS and HySCO, using the RBC module) or during model fitting (using the Rician bias correction option in 405 

NLLS). Diffusion signal models are fitted on the processed dataset; here, we display the maps of fractional 406 

anisotropy (FA) and mean kurtosis tensor (MW) from diffusion kurtosis imaging (DKI). The output from DKI can 407 

be used to compute biophysical parameters of the white matter; shown here is the map of Watson 408 

concentration parameter (�) from the WMTI-Watson biophysical model. Note that for the in vivo brain dMRI 409 

dataset, the inferior slice displayed contains relatively little white matter; hence, we refrained from using a 410 

white matter mask. The less smooth appearance of the � map is due to the low values in the gray matter. 411 
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Table 5. Settings of selected modules for in vivo brain, in vivo spinal cord, and ex vivo dMRI datasets. 412 

Module 
Adjustable 

parameter 

In vivo 

brain dMRI 

In vivo 

spinal cord dMRI 

Ex vivo 

dMRI 

ECMOCO type of registration 

degrees of freedom 

 

 

 

mask 

volume-wise 

9 [transl. x, y, z ; 

rotation x, y, z ; 

scaling y; 

shearing x-y, y-z] 

- 

volume- and slice-wise 

volume-wise: 4 

[transl. x, y, z; scaling y] 

slice-wise: 3 per slice 

[transl. x, y; scaling y] 

mask around the spinal 

cord 

volume-wise 

4 [transl. y; scaling 

y; shearing x-y, y-z] 

 

 

- 

msPOAS kappa automatically 

determined 

increase default for low 

SNR data (e.g., +20%) 

automatically 

determined 

RBC  defaults defaults defaults 

HySCO  defaults defaults defaults 

DTI Fitting algorithm robust fitting or NLLS robust fitting or NLLS NLLS 

DKI/axDKI Fitting algorithm NLLS NLLS NLLS 

NODDI-DTI Fixed diffusivities In vivo parameters In vivo parameters Ex vivo parameters 

WMTI-Watson  defaults defaults defaults 

In the "degrees of freedom" settings (ECMOCO), x, y, and z represent the frequency-, phase-, and slice-encoding directions, 413 

respectively.  414 
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4. Discussion 415 

We have developed the ACID toolbox, which extends the capabilities of the SPM framework by 416 

providing comprehensive pre-processing and model fitting techniques for in vivo brain, spinal cord, 417 

and ex vivo dMRI data. Besides commonly used diffusion signal models such as DTI and DKI, ACID also 418 

offers biophysical models that provide parameters of white matter tissue microstructure such as 419 

axonal water fraction and axon orientation dispersion. Being seamlessly integrated into the SPM 420 

batch system, ACID allows for user-friendly access to SPM's powerful spatial processing tools and 421 

statistical framework. In addition to offering recommended pipelines for in vivo brain, spinal cord, 422 

and ex vivo dMRI, ACID provides the flexibility for users to create customized pipelines tailored to 423 

their specific data. Adhering to the BIDS conventions facilitates data sharing, enhances data 424 

comprehension for investigators, and makes ACID compliant with software requiring BIDS input 425 

(https://bids-apps.neuroimaging.io). 426 

4.1 Pre-processing dMRI data 427 

ACID offers artifact correction steps typically applied to dMRI data, including image realignment 428 

(ECMOCO), adaptive denoising (msPOAS), Rician bias correction (RBC), and correction for 429 

susceptibility-induced geometric distortions (HySCO). Here, we discuss specific considerations 430 

regarding their use for various applications. 431 

Correcting for displacements within the dMRI data through image realignment is one of the 432 

most important but also challenging tasks. ECMOCO provides users with the flexibility to choose the 433 

degrees of freedom for image realignment based on the anticipated type of displacement, but also 434 

offers a selection of pre-defined degrees of freedom that are optimized for brain, spinal cord, and ex 435 

vivo dMRI. 436 

In brain dMRI, motion can be approximated as a rigid body displacement with 6 degrees of 437 

freedom (DOF). Eddy-current spatial displacements, to a first-order approximation, result in 438 

translation and scaling along the phase-encoding direction (typically, the y-axis), and in-plane and 439 

through-plane shearing (Mohammadi et al., 2010). Since these displacements affect the entire brain, 440 

we recommend employing a 9-DOF volume-wise (volume to volume) registration with translation 441 

and rotation along x, y, and z, scaling along y, and shearing in the x-y and y-z plane. First-order 442 

approximation of eddy-current displacements might not always be sufficient, as dMRI data can also 443 

be affected by higher-order eddy-current field inhomogeneities causing non-linear distortions (J. L. R. 444 

Andersson & Sotiropoulos, 2016; Rohde et al., 2004). For example, in our observations, ECMOCO was 445 

not effective in removing pronounced eddy-current displacements present in the dMRI data of the 446 

Human Connectome Project (Van Essen et al., 2012). In such cases, we recommend using FSL eddy, 447 

which incorporates higher-order eddy-current correction terms (J. L. R. Andersson & Sotiropoulos, 448 

2016) and can be called directly from ACID as an external tool (Section 2.6). In cases where ECMOCO 449 
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is sufficient, an advantage of ECMOCO is that its performance is largely independent of the number 450 

of diffusion directions, whereas FSL eddy requires a minimum number of diffusion directions for 451 

good performance (see FSL website10 for recommendations). 452 

In spinal cord dMRI, volume-wise registration has been found to be less effective (Cohen-453 

Adad et al., 2009; Mohammadi et al., 2013) due to displacements that vary along the rostro-caudal 454 

axis of the spinal cord. These displacements appear mostly in the phase-encoding direction and are 455 

caused by physiological factors such as respiration and cardiac pulsation (Kharbanda et al., 2006; 456 

Summers et al., 2006). We recommend applying volume-wise registration for rough alignment and 457 

correction of through-slice displacements, followed by slice-wise (slice to slice) registration for 458 

correcting any remaining slice-dependent displacement. This combined approach has demonstrated 459 

effectiveness in realigning not only volumes but also individual slices (Fig. B2), as well as improving 460 

the contrast-to-noise ratio between gray and white matter and reducing test-retest variability in DTI 461 

maps of the spinal cord (Mohammadi et al., 2013). Eddy-current distortions are typically less severe 462 

in the spinal cord compared to the brain, because the in-plane field of view is smaller and located 463 

near the scanner isocenter. This makes the first-order approximation of eddy-current displacements, 464 

as supported by ECMOCO, generally adequate. We recommend employing a 4-DOF volume-wise 465 

registration (translation along x, y, z; scaling along y) followed by a 3-DOF slice-wise registration 466 

(translation along x, y; scaling along y). In datasets with low SNR, slice-wise correction along x can be 467 

omitted, given the smaller range of movement which makes reliable estimation difficult. We advise 468 

against correcting for in-plane rotation and shearing, as their expected range is very small. Correction 469 

for these DOFs might introduce spurious displacements during realignment, a risk we consider 470 

greater than not applying correction at all. 471 

Structures surrounding the spinal cord (bones, ligaments, etc.) may move independently 472 

from the spinal cord, potentially leading to inaccuracies in transformation parameters. Moreover, as 473 

these structures typically occupy a larger portion of the image, they can dominate the estimation of 474 

transformation parameters. To address this challenge, ECMOCO provides the option of specifying a 475 

spinal cord mask to restrict the estimation of transformation parameters to the spinal cord and its 476 

immediate surroundings (Fig. 3). Any residual misalignments can be manually corrected using the 477 

Slice-wise realignment utility function (Table 2). 478 

In ex vivo dMRI, specimen motion is not anticipated if the specimen is appropriately fixed, for 479 

instance, by using a sample holder or embedding it in agarose. Thus, we recommend correcting only 480 

for the four first-order eddy-current displacements (y-translation, y-scaling, x-y shearing, y-z 481 

shearing). The first-order approximation is typically adequate for small specimens where eddy-482 

current displacements are not severe. 483 

                                                           
10

 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy 
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In general, the performance of msPOAS and HySCO is largely independent of the anatomical 484 

features present in the image; therefore, default parameters are expected to work well for in vivo 485 

brain, spinal cord, and ex vivo dMRI data. Nevertheless, the default regularization parameters for 486 

HySCO (alpha "diffusion" and beta "Jacobian" regulator), accessible through the script 487 

config/local/acid_local_defaults.m, are optimized for the brain and may require 488 

adjustment for the spinal cord if performance is inadequate. 489 

Applying HySCO is particularly important for acquisitions with severe susceptibility-related 490 

distortions, such as multi-band EPI without parallel imaging, and for multi-contrast analyses where 491 

dMRI data or other quantitative maps are combined with structural reference images, e.g., the dMRI-492 

based axonal water fraction and magnetization transfer saturation maps in g-ratio mapping 493 

(Mohammadi & Callaghan, 2021) or multi-contrast MRI in the spinal cord (David et al., 2019). In 494 

these cases, HySCO improves the overlap between the undistorted structural image and the dMRI 495 

data, improving the performance of subsequent co-registration and spatial normalization algorithms. 496 

HySCO has also been shown to improve the accuracy of g-ratio mapping (Clark et al., 2021; 497 

Mohammadi et al., 2015b). While HySCO is far more efficient than FSL topup in terms of computation 498 

time (Macdonald & Ruthotto, 2018), it does not integrate movement and susceptibility artifact 499 

correction into a single model. To mitigate the effects of subject movement, we propose acquiring 500 

images with reversed phase-encoding direction (the blip-up and blip-down images) in close 501 

succession. 502 

The application of adaptive denoising (msPOAS) is important as it reduces the variance and 503 

therefore improves the precision of the tensor and kurtosis parameter estimates (see Fig. S4 for an 504 

example illustrating the effect of msPOAS on DKI parameters, and refer to Becker et al., (2014) for 505 

more examples and details). For high-SNR data, denoising might not be advantageous; instead, 506 

denoising methods could even introduce additional error (see analysis in Appendix G). For low-SNR 507 

data, Rician bias correction (RBC), either applied to the dMRI data or during model fitting, must be 508 

performed in addition to msPOAS to mitigate the Rician bias in parameter estimates (see Appendix F 509 

for an example). An in-depth analysis of the impact of Rician bias correction on DKI and axisymmetric 510 

DKI can be found in Oeschger et al., 2023a. 511 

4.2 Model fitting on dMRI data 512 

4.2.1 Physical diffusion models 513 

At a given b-value, the SNR in spinal cord dMRI is typically lower than in brain dMRI due to (i) the 514 

smaller cross-sectional area that requires higher in-plane resolution (see Fig. 4A for a size 515 

comparison), (ii) the high signal attenuation for diffusion-gradient directions parallel to the highly 516 

aligned fibers in the head-feet direction (Fig. 4B), and (iii) the suboptimal coil configuration in the 517 

thoracic and lumbar regions, which are not covered by the head and neck coil. Lower SNR increases 518 
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the variance of parameter estimates and makes spinal cord dMRI more susceptible to Rician bias. 519 

Consequently, SNR is often prohibitively low at higher b-values necessary for fitting the kurtosis 520 

tensor, making the application of DKI in the spinal cord very challenging. 521 

 522 

Fig. 4. (A) Illustration of differences in the cross-sectional area between the brain and spinal cord, displaying a 523 

single axial slice of the mean T2-weighted (b0) image (refer to Table 4 for details on the datasets). (B) 524 

Schematic visualization of the spinal cord, highlighting the "butterfly-shaped" gray matter, which is located in 525 

the middle of the spinal cord and contains neuronal cell bodies and loosely aligned fibers, and the surrounding 526 

white matter, which contains highly aligned fibers. 527 

The bias in parameters estimates induced by signal outliers from cardiac, respiratory, and 528 

other physiological artifacts (Mohammadi, Hutton, et al., 2013) can be mitigated by applying robust 529 

fitting as a tensor fitting method (Appendix E.3). Given the higher occurrence of signal outliers in the 530 

spinal cord, robust fitting holds particular relevance for spinal cord dMRI. In a previous study, we 531 

demonstrated that robust fitting leads to higher FA values within the white matter and lower FA 532 

values within the gray matter in spinal cord dMRI data, resulting in an approximately 8% 533 

enhancement in contrast-to-noise ratio (Mohammadi, Freund, et al., 2013). While robust fitting 534 

demonstrated high resistance to contamination (presence of outliers) compared to OLS and NLLS 535 

estimations, it is important to note that robust fitting requires a sufficiently large number of artifact-536 

free data points. Simulations suggested that robust tensor estimates begin to break down when the 537 

frequencies of moderately intense cardiac pulsation artifacts exceed 27–30% (Zwiers, 2010; Fig. 5). 538 

One potential limitation of linearized fitting methods is their operation on logarithmically 539 

transformed signals, where the assumption of Gaussian (or Rician) error distribution may not hold. 540 

The presence of logarithmically distorted Rician noise distribution not only restricts validity but can 541 

also impact the accuracy of the parameter estimates (J. L. R. Andersson, 2008; Chang et al., 2005; 542 

Koay et al., 2006), particularly in the low-SNR regime such as in spinal cord dMRI. The WLS and 543 

robust fitting algorithms incorporate the signal intensity into the weights of the estimator function 544 
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(Appendix E.2 and E.3), which was shown to reduce the effect of log-Rician distortion (Salvador et al., 545 

2005). Alternatively, the NLLS algorithm (Appendix E.4) can be used, which circumvents the 546 

distortion of the Rician distribution by operating on the original (non-logarithmic) signals, and is 547 

therefore expected to yield more accurate parameter estimates, provided that the numerical fitting 548 

problem is sufficiently well-conditioned. 549 

In summary, for data with relatively high SNR and a frequent occurrence of outliers, we 550 

recommend using robust fitting to mitigate the influence of outliers. NLLS, particularly when 551 

combined with Rician bias correction, may be more suitable for dMRI data with lower SNR, which is 552 

often encountered in acquisitions for DKI (refer to Oeschger et al., 2023a for recommended 553 

minimum SNR values and the Rician bias simulation utility function in Table 2 for simulating the 554 

Rician bias on dMRI data with a given SNR). Low-SNR data with a frequent occurrence of outliers 555 

pose challenges for model fitting, where a combination of msPOAS with RBC might reach their limits. 556 

In such cases, reliability masking can assist in identifying and excluding corrupted, thus unreliable, 557 

voxels from the parameter maps (David et al., 2017). 558 

4.2.2 Biophysical diffusion models 559 

Of the biophysical models implemented in ACID, WMTI-Watson relies on DKI metrics (requiring at 560 

least two diffusion shells), while NODDI-DTI relies on DTI metrics (requiring a single diffusion shell 561 

only). This implies that the challenges associated with the estimation of DTI and DKI metrics, as 562 

discussed earlier, also apply to derived biophysical models. Accurate and precise estimation of DKI 563 

and DTI metrics is essential for the successful application of WMTI-Watson and NODDI-DTI, 564 

respectively. 565 

In general, we recommend the DKI-based WMTI-Watson model over NODDI-DTI due to the 566 

fewer model assumptions, allowing it to better capture diffusion patterns in complex axonal 567 

configurations within the brain white matter. This aligns with the results from our example multi-568 

shell brain dMRI dataset, where WMTI-Watson yielded more accurate estimates of κ and AWF 569 

compared to NODDI-DTI (Fig. S5). For a more in-depth comparison of biophysically-derived values 570 

with histological values, refer to Papazoglou et al., 2023. 571 

On the other hand, complex models are more "data-hungry" and more susceptible to noise 572 

due to the higher number of fitted parameters, which can lead to poorly conditioned optimization 573 

problems when the amount and/or the quality of input data are insufficient. Therefore, for low-SNR 574 

data, as is often the case in spinal cord dMRI, the less complex but better-conditioned NODDI-DTI 575 

model might be the preferred choice. The low b-values often used in spinal cord could also lead to 576 

inadequate parameter estimation when using the WMTI-Watson model. Indeed, NODDI-DTI yielded 577 

a more accurate estimation of κ in the example spinal cord dMRI dataset, whereas WMTI-Watson 578 

highly overestimated it (Fig. S5). A drawback of the NODDI-DTI model in the spinal cord is its 579 
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assumption of fixed intra- and extra-cellular diffusivities, which were optimized for the brain and 580 

might not be valid for the spinal cord. Both low SNR (Veraart et al., 2011) and kurtosis bias (Edwards 581 

et al., 2017) can lead to an underestimation of MD. The lower SNR can also lead to an 582 

underestimation of MD due to kurtosis bias (Fig. S3), impacting the model parameter estimation 583 

when MD falls outside the range where the NODDI-DTI model provides a valid representation (refer 584 

to Equation (4) in Edwards et al., 2017). This was evident in the estimation of AWF, which proved 585 

unfeasible in the spinal cord dataset (see Figs. F1 and S5). We anticipate that future improvements in 586 

acquisition methods will enhance the SNR in spinal cord dMRI, enabling the acquisition of higher b-587 

values, which would alleviate many of the above-mentioned drawbacks. 588 

A compromise between these two models could be the WMTI model, which is included as an 589 

external tool in ACID (Section 2.6). WMTI assumes highly aligned fibers, which holds true in white 590 

matter regions with high fiber alignment, such as the corpus callosum or the spinal cord white 591 

matter, but is less appropriate in regions with more complex axonal configurations, such as parts of 592 

the superior longitudinal fasciculus. 593 

Ex vivo neuronal tissues exhibit different diffusivities compared to in vivo tissues due to 594 

various factors, including the effect of fixation, changes in chemical properties, and differences in 595 

temperature and composition of the embedding fluid. For example, white matter diffusivity was 596 

reported to reduce by approximately 85% from in vivo to ex vivo conditions, while the ratio between 597 

gray and white matter diffusivities remains similar, around 2-3 (Roebroeck et al., 2019). To 598 

accommodate the reduced diffusivities under ex vivo conditions, ACID offers the option to utilize 599 

compartmental diffusivities tailored for ex vivo datasets within the NODDI-DTI model. Such an 600 

adjustment is not necessary for WMTI and WMTI-Watson, as their compartmental diffusivities are 601 

fitted rather than fixed. 602 

We emphasize that NODDI-DTI, WMTI, and WMTI-Watson have been developed to 603 

characterize diffusion in the white matter. Recently, several efforts have been made to extend 604 

biophysical models to the gray matter (Jelescu et al., 2020). Notable examples include the SANDI 605 

(Palombo et al., 2020) and NEXI (Jelescu et al., 2022) biophysical models. However, these models 606 

thus far, no study using these protocols on a clinical MRI system has been published. 607 

4.3 Studies quantitatively evaluating the performance of ACID pipelines 608 

Here, we briefly summarize and discuss the studies that quantitatively evaluated the performance of 609 

ACID tools individually or in comparison with other tools. 610 

4.3.1 Evaluating pre-processing pipelines 611 

In a previous study, we assessed the performance of ECMOCO as well as the combination of 612 

ECMOCO and msPOAS in simulated high- and low-SNR multi-shell brain dMRI datasets with added 613 

motion and eddy current artifacts (i.e., perturbed data) (Mohammadi, Tabelow, et al., 2015). We 614 
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found that the performance of ECMOCO in correcting the perturbed volumes was dependent on SNR, 615 

with the number of incorrectly registered volumes increasing at lower SNR (SNR < 16). However, the 616 

combined application of msPOAS and ECMOCO effectively reduced the number of incorrectly 617 

registered volumes even at low SNR (Mohammadi, Tabelow, et al., 2015; Fig. 3). Additionally, 618 

correcting the perturbed volumes with ECMOCO and msPOAS yielded FA maps closer to the “ground 619 

truth”, i.e., the FA map computed on the unperturbed data (Mohammadi, Tabelow, et al., 2015; Fig. 620 

5). In another study utilizing clinical spinal cord dMRI data, we evaluated the impact of ECMOCO on 621 

the group differences observed in FA between patients with degenerative cervical myelopathy and 622 

healthy controls (David et al., 2017; Fig. 7). Our analysis revealed that ECMOCO had only a minimal 623 

effect on the two-sample t-score computed between the FA values of the two groups. 624 

We also tested the effects of different denoising methods (msPOAS, LPCA, and MP-PCA) on the 625 

accuracy of DKI metrics, with the details and results described in Appendix G. In short, we found that 626 

denoising (using any of the three methods) is beneficial only in the low-SNR domain (below an SNR of 627 

approximately 30). In high-SNR data, denoising did not lead to further improvements with MP-PCA 628 

and even introduced additional errors with msPOAS and LPCA. In terms of susceptibility artifacts, we 629 

previously found in a brain dMRI dataset that FSL topup was more efficient in correcting 630 

susceptibility-related distortions than HySCO, even when including a motion correction step between 631 

the reverse phase-encoded (blip-up and blip-down) images before running HySCO (Clark et al., 2021; 632 

Fig. 3). This is potentially because the HySCO pipeline involved multiple interpolation steps, 633 

introducing additional blurring effects, while FSL topup incorporates motion and susceptibility 634 

distortion correction within the same model. The same study found that combining reverse phase-635 

encoded images using the "weighted average" method (HySCO: combine blip-up and blip-down 636 

images module), as opposed to the "arithmetic average" method, reduces image blurring in the 637 

corrected brain dMRI data and achieves greater overlap between the dMRI data and the 638 

corresponding structural image. In fact, when using the "weighted average" method, HySCO 639 

performed comparably to FSL topup and even outperformed it in regions suffering from high levels of 640 

distortion (Clark et al., 2021; Fig. 5). In spinal cord dMRI, a previous study found that HySCO is 641 

comparable to other distortion correction tools such as FSL topup (Schilling et al., 2024). 642 

4.3.2 Evaluating diffusion signal models 643 

In brain dMRI datasets, we found that robust tensor fitting can reduce the effect of signal outliers 644 

due to motion, eddy current artifacts, incorrectly registered volumes (Mohammadi, Tabelow, et al., 645 

2015; Fig. 5C-D), or physiological noise (Mohammadi, Hutton, et al., 2013; Fig. 9). In spinal cord dMRI, 646 

we quantified the performance of robust fitting and showed that it can reduce the bias in FA, 647 

especially at tissue boundaries (Mohammadi, Freund, et al., 2013; Fig. 7). On the other hand, robust 648 

fitting had only a minor effect on group differences in FA between patients with degenerative 649 
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cervical myelopathy and healthy controls, regardless whether using the ACID implementation of 650 

robust fitting or using RESTORE (part of the CAMINO toolbox, Chang et al., 2012) (David et al., 2017; 651 

Fig. 7). However, within the same study, we also found that supplementing the pipeline with 652 

reliability masking to exclude outlier voxels (Section 2.5) considerably increased the statistical 653 

differences between patients and controls (David et al., 2017; Fig. 7)). 654 

4.4 Applications 655 

For all applications, it is highly recommended to assess the data quality before and after each 656 

processing step. In addition to the quality assessment utility functions DWI series browser and DWI 657 

series movie (Table 2), multiple ACID modules generate diagnostic plots to identify the presence and 658 

type of artifacts in the dMRI data. Example diagnostic plots are provided in Figs. S1-S2. 659 

4.4.1 Integration with SPM modules 660 

ACID can be readily combined with SPM tools for segmentation, spatial processing, and voxel-based 661 

analysis of parametric maps. Segmenting the brain or spinal cord is often necessary for co-662 

registration, spatial normalization, or tissue-specific analyses. In the brain, tissue probability maps of 663 

white matter, gray matter, and cerebrospinal fluid can be created by unified segmentation, the 664 

default segmentation routine in SPM12 (Ashburner & Friston, 2005). These tissue probability maps 665 

can also be used to create a binary brain mask using the Create brain mask utility function (Table 2). 666 

To enable SPM’s unified segmentation in the spinal cord, the brain tissue priors need to be 667 

substituted with the joint brain and spinal cord tissue priors from the probabilistic brain and spinal 668 

cord atlas (Blaiotta et al., 2017). However, this atlas only covers the upper cervical cord down to C3; 669 

for other spinal levels, the user is referred to automatic (e.g., deepseg (Perone et al., 2018)) or semi-670 

automatic (e.g., active surface method (Horsfield et al., 2010)) segmentation techniques. 671 

Brain dMRI data can be co-registered to the corresponding structural image using spm_coreg. 672 

For non-linear spatial registration to the MNI space, we recommend SPM DARTEL (Ashburner, 2007) 673 

or Geodesic Shooting (Ashburner & Friston, 2011). As SPM registration tools often rely on brain 674 

tissue priors, they cannot be applied directly on spinal cord dMRI. For the spinal cord, we 675 

recommend utilizing the PAM50 template (De Leener et al., 2018) and the corresponding 676 

normalization tools integrated into the Spinal Cord Toolbox (De Leener et al., 2017). 677 

While brain and spinal cord images are typically analyzed separately, there are scenarios 678 

where combining them into a single image can be beneficial. For example, when registering the brain 679 

and spinal cord image to a joint brain-spinal cord template, such as the probabilistic atlas of the brain 680 

and spinal cord (Blaiotta et al., 2017), the warping field is often obtained using a structural image 681 

with a large field of view (FOV) covering both regions (Fig. 5). To apply this warping field to the brain 682 

and spinal cord images, they need to be fused into a single image. ACID provides the Fusion utility 683 
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function (Table 2) which merges two distinct images, acquired with different FOV and geometric 684 

properties, into a unified large-FOV image (Fig. 5). 685 

ACID benefits from SPM’s rich statistical framework for voxel-based analysis. SPM’s second-686 

level analysis tool (SPM -> Specify 2nd-level) performs voxel-based statistical tests on the 687 

parametric maps using t-test, ANOVA, or general linear model. In the SPM -> Results module, 688 

the framework also offers (i) multiple comparison correction in the form of family-wise error rate and 689 

false discovery rate, (ii) thresholding the test statistics at cluster- and voxel-level and providing a list 690 

of significant clusters/voxels, and (iii) various visualization tools for displaying and saving the 691 

significant clusters. Furthermore, ACID’s ROI analysis utility function (Table 2) can be used to extract 692 

mean metrics within subject-specific ROIs in the native space or perform atlas-based analysis in the 693 

template space. For atlas-based analysis in the spinal cord, the user is referred to the PAM50 white 694 

and gray matter atlas
 
(De Leener et al., 2018). 695 

Although ACID does not provide tractography or tract-based analysis tools, the output of its 696 

model fitting methods can be input into tractography tools such as FSL or the SPM12-based 697 

Fibertools toolbox (see Wiki
11

 on the git repository for more details). 698 

 699 

Fig. 5. Merging of two fractional anisotropy (FA) maps, covering the brain and cervical cord, respectively, into a 700 

unified FA map using the Fusion utility function (Table 2). The two images should ideally share an overlapping 701 

region, but they may have different geometric properties such as resolution and number of slices. In the 702 

overlapping region, the voxel intensity values are computed as the average of the intensity values from the two 703 

                                                           
11

https://bitbucket org/siawoosh/acid-artefact-correction-in-diffusion-mri/wiki/Home

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2024. ; https://doi.org/10.1101/2023.10.13.562027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/


images. The merging process requires a structural image as the registration target. The combined FA map is 704 

resampled onto the higher-resolution structural image, resulting in a smoother appearance. 705 

4.4.2 Computation time 706 

To speed up the processing and analysis of dMRI data, parallel computing is implemented wherever 707 

applicable. This technique can substantially accelerate the most time-consuming ACID modules, 708 

including ECMOCO and DTI/DKI fit. Note that parallel computing requires the Parallel Computing 709 

Toolbox in MATLAB. Table 6 provides the computation times for selected ACID functions on a typical 710 

brain and spinal cord dMRI dataset. 711 

Table 6. Computation times of selected ACID modules on an example in vivo brain and in vivo spinal cord dMRI dataset 712 

(refer to Table 4 for details on the datasets), when run on a MacBook M1 laptop (4 cores, 16 GB RAM). 713 

Module 
In vivo 

brain dMRI 

In vivo 

spinal cord dMRI 

ECMOCO 9 min 2 min 
msPOAS    92 min 1 min 

RBC   < 1 min        < 1 min 
HySCO 2 min 1 min 

DKI (using NLLS) 4 min 2 min 
WMTI-Watson   < 1 min 1 min 

4.4.3 Research applications 714 

ACID has been used in a variety of clinical and neuroscience research, e.g., in dMRI studies assessing 715 

cerebral changes in patients with multiple sclerosis (Deppe et al., 2016a, 2016b; Dossi et al., 2018; 716 

Kugler & Deppe, 2018) and Parkinson’s disease (Szturm et al., 2021), and to assess gliomas (Paschoal 717 

et al., 2022; Raja et al., 2016). We have also used ACID to investigate spinal cord white matter 718 

following spinal cord injury (Büeler et al., 2024; David et al., 2019, 2021, 2022; Grabher et al., 2016; 719 

Huber et al., 2018; Seif et al., 2020; Vallotton et al., 2021). A non-comprehensive list of studies using 720 

the ACID toolbox can be found on the project website12. Note that certain ACID functions can be 721 

applied to MRI data beyond dMRI as well; for instance, HySCO has been used to correct brain fMRI 722 

data for susceptibility artifacts (De Groote et al., 2020). It is important to note that ACID has not been 723 

approved for clinical applications by any health agency and it comes with no warranty. Therefore, it 724 

should not be used for diagnosis in clinical settings. 725 

4.5 Limitations and future directions 726 

Comparing the tools within the ACID toolbox with alternative implementations in other software 727 

presents challenges because their performance depends on the specific dMRI data and the chosen 728 

parameter settings from a potentially large parameter space, which necessitates a systematic 729 

exploration of the parameter space. In addition, the evaluation of entire processing pipelines would 730 
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drastically increase the number of parameters to test. While we have outlined the comparisons 731 

conducted so far in Section 4.3, we assert that a thorough quantitative comparison between 732 

toolboxes warrants a dedicated future study. In general, we encourage users to undertake such 733 

comparisons on their own datasets. 734 

  The ACID toolbox is the result of a collaborative effort to extend the SPM ecosystem with state-of-735 

the-art processing and modeling tools for dMRI data. Our aim is to make the toolbox widely 736 

accessible, leveraging SPM’s large and vibrant community. Users can submit their questions, bug 737 

reports, and suggestions via the dedicated mailing list or by opening an issue on the git website. This 738 

paper offers an overview of the current state of the toolbox, with several ongoing developments not 739 

covered here. The modularity of the toolbox allows for integration of newly developed methods, 740 

even when used concurrently with old ones. Biophysical modeling is an emerging field, and we 741 

expect many methodological advancements to occur in the coming years. To align with this ongoing 742 

development, our goal is to consistently integrate state-of-the art biophysical models into ACID. We 743 

also plan to add the Rician maximum likelihood estimator (Sijbers et al., 1998) as an alternative to 744 

the existing quasi-likelihood estimators (Polzehl & Tabelow, 2016). 745 

5. Conclusion 746 

ACID is an open-source extension to SPM12 that provides a comprehensive framework for processing 747 

and analyzing in vivo brain, spinal cord, and ex vivo dMRI data. The toolbox was developed to meet 748 

the increasing demand for studies involving spinal cord dMRI, research employing biophysical 749 

models, and validation studies utilizing ex vivo dMRI. ACID leverages the core SPM tools and other 750 

SPM extensions, which can be easily integrated into the ACID pipeline. 751 

 752 

Ethics statement 753 

Three dMRI datasets from previous studies were re-used in this paper. These studies complied with 754 

the principles of the Declaration of Helsinki and were approved by the local ethics committee 755 

(Ärztekammer Hamburg). The whole-brain dataset was measured in vivo (ethics approval number: 756 

PV5600). The dataset of the temporal lobe specimen was acquired ex vivo (PV5034). The spinal cord 757 

dataset was measured in vivo (PV5141). 758 

Data and Code Availability 759 

The source code of ACID is freely available at https://bitbucket.org/siawoosh/acid-artefact-760 

correction-in-diffusion-mri/src/master/. The authors will make the raw data used for the 761 

visualizations in this article available in an associate publication. 762 

 763 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2024. ; https://doi.org/10.1101/2023.10.13.562027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/


Author Contributions 764 

Gergely David: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, 765 

Resources, Software, Visualization, Writing – original draft, Writing – review & editing 766 

Björn Fricke: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, 767 

Software, Validation, Visualization, Writing – original draft, Writing – review & editing 768 

Jan Malte Oeschger: Formal analysis, Methodology, Software, Writing – original draft, Writing – 769 

review & editing 770 

Lars Ruthotto: Methodology, Software, Writing – review & editing 771 

Francisco Javier Fritz: Data curation, Resources 772 

Ora Ohana: Data curation, Resources´ 773 

Laurin Mordhorst: Software 774 

Thomas Sauvigny: Data curation, Resources 775 

Patrick Freund: Conceptualization, Project administration, Writing – review & editing 776 

Karsten Tabelow: Conceptualization, Investigation, Methodology, Project administration, Software, 777 

Writing – review & editing 778 

Siawoosh Mohammadi: Conceptualization, Formal analysis, Funding acquisition, Investigation, 779 

Methodology, Project administration, Resources, Software, Supervision, Writing – original draft, 780 

Writing – review & editing 781 

Declaration of Competing Interest 782 

The authors declare no competing interests. 783 

Acknowledgments 784 

This work was supported by the German Research Foundation (DFG Priority Program 2041 785 

"Computational Connectomics" (MO 2397/5-1, MO 2397/5-2)), the Emmy Noether Stipend (MO 786 

2397/4-1 and 2397/4-2), the BMBF (01EW1711A and B) in the framework of ERA-NET NEURON, 787 

and the ERC (Acronym: MRStain, Grant agreement ID: 101089218, DOI: 10.3030/101089218). 788 

Views and opinions expressed are however those of the authors only and do not necessarily 789 

reflect those of the European Union or the European Research Council Executive Agency. 790 

Neither the European Union nor the granting authority can be held responsible for them. L.R. is 791 

supported in part by NSF awards (DMS 1751636 and DMS 2038118). P.F. is funded by an SNF 792 

Eccellenza Professorial Fellowship grant (PCEFP3_181362/1).   793 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2024. ; https://doi.org/10.1101/2023.10.13.562027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/


Appendix A. Implementation and organization 794 

Appendix A.1. Installation and toolbox documentation 795 

The ACID toolbox is an extension of SPM12 that requires existing MATLAB and SPM12 installations. 796 

To run the toolbox without a Matlab license, ACID is also available as a compiled standalone version 797 

which only requires MATLAB Runtime (David et al., 2024). The toolbox has been developed and 798 

tested with MATLAB versions R2017b to R2024a, and SPM12 from versions r6906 onwards. It is 799 

recommended to use the latest SPM release, which can be downloaded from the SPM website13, as 800 

developments in ACID are synchronized with those in SPM. 801 

Information about the toolbox can be found on the main project website14. The source code 802 

is available on Bitbucket15, where the latest version as well as all previous versions of the toolbox can 803 

be downloaded. There are four ways to install the toolbox: (i) by cloning the repository 804 

(recommended for staying up-to-date with the latest release), (ii) by downloading the toolbox as a 805 

zip file and placing the unzipped directory into the spm12/toolbox directory, (iii) by downloading 806 

the toolbox as a zip file and using a redirection script that enables switching between different local 807 

versions of ACID, or (iv) by downloading the compiled standalone version. The full documentation of 808 

the toolbox is available as a Wiki on the git repository16, which provides detailed installation 809 

instructions, module descriptions, and step-by-step instructions for typical analysis pipelines. 810 

ACID is free but copyrighted software, distributed under the terms of the GNU General Public 811 

License as published by the Free Software Foundation (either version 2 of the License or, at your 812 

option, any later version). Further details on "copyleft" can be found at the GNU website17. It should 813 

be noted that ACID is supplied as is and no formal support or maintenance is provided. The toolbox 814 

was developed for academic research purposes only and comes with no warranty, nor is it intended 815 

for clinical and diagnostics use. 816 

Appendix A.2. Organization of the toolbox 817 

The ACID modules can be found in the SPM12 Batch Editor by navigating to SPM -> Tools -> 818 

ACID Toolbox. The toolbox is divided into six modules, as shown in Fig. A1: Startup, Pre-819 

processing, Diffusion tensor/kurtosis imaging, Biophysical models, Utilities, and External tools. 820 
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 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/ 
14

 http://www.diffusiontools.com/ 
15

 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri 
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 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri/wiki/Home 
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821 
Fig. A1. The left panel shows the location of ACID toolbox in the SPM Batch Editor after successful installation 822 

(SPM -> Tools). The toolbox is organized into six modules, each of which may be further divided into 823 

submodules. The right panel provides an example of a submodule (Diffusion Tensor Imaging within the 824 

Diffusion tensor/kurtosis imaging module). Each (sub-) module requires at least one mandatory input, indicated 825 

by "X", as well as several optional inputs and parameter settings, which can be adjusted for customization. 826 

Recommended settings for typical in vivo brain, in vivo spinal cord, and ex vivo dMRI datasets are presented in 827 

Table 5. 828 

Appendix A.3. Startup 829 

The ACID modules rely on a set of default settings, which were selected to yield reasonable results 830 

for typical dMRI data. However, adjustments may be necessary depending on the specific dataset 831 

(see Section 3.2 for recommendations). For convenience, the module’s graphical user interface (GUI) 832 

only presents the settings that are likely to be modified. Advanced users can access and modify all 833 

settings through the script config/local/acid_local_defaults.m. To use modified 834 

settings, the Startup module must be executed with the customized file provided as input; these 835 

settings will remain in effect even after restarting SPM or MATLAB until new settings are specified. 836 

ACID requires all input images to be in NIfTI format (either NIfTI-1 or NIfTI-2), with dMRI data 837 

required to be in 4D NIfTI format. ACID also supports compressed NIfTI images with the extension 838 

.nii.gz and outputs compressed images for compressed input and uncompressed images for 839 

uncompressed input. Users can convert from DICOM to NIfTI format using SPM’s DICOM Import 840 

function, which can also export metadata into JSON files if the “Export metadata” option is enabled. 841 

To bring dMRI data into the required format, the Startup module can be utilized to (i) convert a set of 842 

3D NIfTI files into a single 4D NIfTI file, (ii) generate corresponding bval/bvec files from the JSON files 843 

(if not already available), (iii) create an additional metadata file containing the most commonly 844 

reported subject and acquisition parameters (such as TE and TR) to provide a concise overview of the 845 

dataset, and (iv) set an output directory alternative to the default one. The output from Startup can 846 

be automatically passed to subsequent processing steps through dependencies. 847 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2024. ; https://doi.org/10.1101/2023.10.13.562027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/


Appendix B. Details on ECMOCO 848 

ECMOCO consists of four steps (Fig. B1): 849 

1. The type of registration (slice-wise or volume-wise) and the degrees of freedom (DOF) for the 850 

affine transformation are specified by the user. 851 

2. Shell-specific target volumes are generated, and transformation parameters are obtained 852 

between all non-diffusion-weighted (b0) volumes and their corresponding target. The parameter 853 

iteration for a given b0 volume can be initialized by the transformation parameters of the 854 

preceding b0 volume (initialized registration, see details below). Only the DOF associated with 855 

rigid-body transformation are estimated for b0 volumes, as eddy currents are expected to be 856 

negligible in b0 volumes due to the absence of diffusion-sensitizing gradients. 857 

3. Transformation parameters are obtained between all diffusion-weighted (DW) volumes and their 858 

corresponding target. The parameter iteration for a given DW volume can be initialized by the 859 

interpolated transformation parameters from the b0 volumes (initialized registration, see details 860 

below). 861 

4. The obtained transformation parameters are applied to reslice all volumes. 862 

 863 

Fig. B1. Registration scheme for an example dMRI dataset, which consists of two sets of non-diffusion-864 

weighted (b0) volumes (  volumes each) and two sets of diffusion-weighted (DW) volumes (  volumes each) 865 

interspersed with each other. The b0 and DW volumes form separate registration groups and are registered to 866 

their corresponding target volumes. First, the b0 volumes are registered using the rigid-body components of 867 

the specified degrees of freedom (DOF), followed by the registration of the DW volumes using all specified 868 

DOF. The parameter iteration for a given b0 or DW can be initialized using previously obtained transformation 869 

parameters (initialized registration). 870 
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In addition to slice-wise registration, introduced in Section 2.2.1 and demonstrated in Fig. B2, 871 

ACID incorporates two additional recent features: initialized registration and exclusion mode. 872 

Initialized registration is based on the observation that transformation parameters obtained from 873 

high-SNR b0 volumes tend to be more accurate than those obtained from low-SNR DW volumes. 874 

With initialized registration, the parameter iteration for each b0 volume starts with the 875 

transformation parameters obtained from the preceding b0 volume. Once all the b0 volumes have 876 

been registered, their rigid-body transformation parameters are interpolated to the positions of the 877 

DW volumes situated between the b0 volumes. Subsequently, the parameter iteration for each DW 878 

starts with these interpolated values. If interpolation is not feasible (e.g., the DW volume is situated 879 

before the first or after the last b0 volume), the parameter iteration starts with the parameters 880 

obtained from the nearest b0 volume. This approach is particularly useful for correcting slow spatial 881 

drifts across volumes. 882 

The exclusion mode is designed to address volumes with very low SNRs, which can make 883 

obtaining reliable transformation parameters difficult. Volumes that are considered not feasible for 884 

registration can be identified through visual inspection, e.g., using the DWI series browser utility 885 

function, and can be input into ECMOCO. For these volumes, the rigid-body transformation 886 

parameters from the preceding non-excluded volume are applied instead. 887 

 888 

Fig. B2. Qualitative comparison of different motion correction techniques including no correction, volume-wise 889 

ECMOCO, and the combination of volume- and slice-wise ECMOCO. The plots show the concatenation of 1D 890 

cross-sections along the phase-encoding (PE) direction (anterior-posterior), extracted at fixed x- and z-891 

coordinates from each of the 120 diffusion-weighted (DW) volumes in an in vivo spinal cord dMRI dataset. 892 

Additionally, zoomed-in views of a subset of DW volumes are provided to facilitate the assessment of 893 

improvements by ECMOCO. Substantial motion along the y-direction was initially observed, which was notably 894 

reduced after applying ECMOCO. Importantly, volume-wise ECMOCO did not entirely correct for spatial 895 

misalignments in all volumes (an example of failed correction is indicated by the red arrow). Conversely, the 896 

combination of volume- and slice-wise ECMOCO effectively corrected spatial misalignments in all DW volumes. 897 
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Appendix C. Regions for noise estimation 898 

For optimal denoising (msPOAS, Section 2.2.2) and Rician bias correction (Section 2.2.3), it is crucial 899 

to accurately estimate the image noise within the appropriate region of interest. Noise 900 

measurements taken from regions outside the body are often suboptimal due to the lower 901 

parallelization factor (g-factor) at the edge compared to the center of the field of view. Instead, we 902 

recommend estimating the noise by considering two distinct scenarios, employing the repeated 903 

measures method in each case (see Noise estimation in Table 2). In datasets affected by (temporally 904 

varying) physiological artifacts, such as in in vivo brain and spinal cord datasets, we recommend 905 

estimating the noise across images with high b-values and within regions where the signal reaches 906 

the noise plateau (i.e., within cerebrospinal fluid compartments). For automatic ventricle 907 

segmentation within the brain, ACID provides an example segmentation batch located at 908 

ACID_TPM/acid-ventricles-batch.m, which utilizes the spm_segment function. In datasets 909 

unaffected by physiological artifacts, such as in ex vivo dMRI, we recommend estimating the noise 910 

across non-diffusion-weighted (b0) images within either the entire specimen or a specific part. The 911 

latter recommendation, however, requires repeated measurements of b0 images. Example noise 912 

regions are shown in Fig. C1. 913 
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 914 

Fig. C1. Definition of noise regions of interest (ROI) for the repeated measures noise estimation method (see Noise 915 

estimation in Table 2). Binary noise ROIs are outlined in red. For in vivo brain and spinal cord dMRI, we recommend creating 916 

a noise ROI within the cerebrospinal fluid (CSF), such as the lateral ventricles in the brain and the subarachnoid space in the 917 

spinal cord, on the b0 images. Subsequently, we recommend estimating the noise on the images with the highest b-value 918 

(ideally above 1500 s/mm
2
) within the CSF mask. For ex vivo dMRI, the noise ROI is recommended to encompass the 919 

specimen itself, but noise estimation should be applied only on the b0 images. Since ex vivo dMRI is not affected by 920 

physiological artifacts, signal variations across the b0 images are considered noise.  921 
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Appendix D. Recommendations for adaptive denoising (msPOAS) 922 

If the overall noise reduction is insufficient, kstar can be increased at the cost of longer computation 923 

time (Tabelow et al., 2015). It is important to note that msPOAS assumes a single global value of 924 

sigma, which may not always hold. If sigma is correctly estimated, the default lambda value will 925 

ensure optimal adaptation. Incorrect estimation of sigma can be compensated by the choice of 926 

lambda, which makes msPOAS robust against misspecification of sigma (Becker et al., 2014). We 927 

recommend determining kappa automatically based on the number of diffusion directions (Tabelow 928 

et al., 2015). However, manual adjustment of kappa may be necessary in cases where the SNR is low 929 

(e.g., for spinal cord dMRI) or if the dataset has more images with high b-values than with low b-930 

values. The effective number of coils (ncoils) is 1 when using SENSE1 reconstructions (Polzehl & 931 

Tabelow, 2016; Sotiropoulos et al., 2013), but the correct value is more difficult to determine when 932 

using multiple receiver channels (Aja-Fernández et al., 2014). It is important to use the same ncoils 933 

for the estimation of sigma and in msPOAS to ensure the same number of degrees of freedom. 934 

Appendix E. Model fitting methods implemented in ACID 935 

Appendix E.1. Ordinary Least Squares 936 

Tensor fitting involves solving the linear regression problem � � �� � �, where � contains the 937 

logarithmic signals, � (b-matrix) contains the gradient directions and strengths, � contains the 938 

elements of the diffusion tensor, and � contains the model-fit errors (the difference between the 939 

actual and fitted signal). The ordinary least squares (OLS) approach employs the estimator function 940 

��	�
 � 	��, where 	� represents the model-fit error of acquisition �. The solution is obtained by 941 

minimizing ∑ 	��� , yielding ���� � ����
�����. 942 

Appendix E.2. Weighted Least Squares 943 

The weighted least squares (WLS) approach addresses the heteroscedasticity of the logarithmic data 944 

by assigning individual weights to each image in the form of 
� � ���/�� , where ���  represents the 945 

unknown true signal (without noise) and ��  is the background noise for acquisition �. The estimator 946 

function now becomes ��	�
 � �
�	�
�, yielding the solution �	�� � �������
��������, with 947 

� being the diagonal matrix of 
� . Note that OLS is a special case of WLS, where 
� � 1 for all �. A 948 

practical consideration in obtaining �	�� is related to estimating ���. One approach is to use the 949 

measured noisy signal �� as an estimate of ���. Another approach is to start with the OLS solution and 950 

use the fitted signal as an estimate of ���, which was shown to be more accurate (Veraart et al., 951 

2013b). 952 
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Appendix E.3. Robust fitting 953 

The concept behind robust fitting is to assign lower weights to data points with higher model-fit 954 

errors during the fitting process (Mangin et al., 2002). The robust fitting method implemented in 955 

ACID is based on the “Patching ArTefacts from Cardiac and Head motion” (PATCH) technique 956 

introduced by Zwiers, 2010. While the form of the estimator function is similar to that of WLS, PATCH 957 

factorizes the weighting function 
�  into three components as 
� � 
��
��
�
, where each 958 

component is designed to address different types of artifacts: 
�� and 
�� account for regional and 959 

slice-wise artifacts, respectively, while 
�
 is identical to the weight term in WLS. 
�� and 
�� are 960 

exponentially decaying functions of 	�: 
�� � exp �� �����

�

�
�


, 
�� � exp �� �����,��


�
�
�


, where 961 

	�,�� � ∑ ���

√�
�
���  is the slice-average model-fit error, with � being the number of voxels within the 962 

slice. �� and �� are model parameters, by default set to 0.3 and 0.1, respectively, with higher values 963 

resulting in a faster exponential decay. �� and �� are estimates of the standard deviation of 	� and 964 

	�,�� , respectively, in the absence of outliers, and are computed as �� � 1.4826 # median�|	�|
 and 965 

�� � 1.4826 # median�|	�,��|
 (Hampel, 1974; Rousseeuw & Croux, 1993). Note that accurate 966 

estimation of �� and �� is crucial for effectively downweighting outliers. This holds true as long as 967 

outliers are sparsely distributed and the median of the model-fit errors remains unaffected. 968 

However, a frequent occurrence of outliers can increase �, leading to a less effective downweighing 969 

of outliers. 970 

While OLS and WLS independently fit the tensor in each voxel, PATCH makes use of the observation 971 

that physiological noise represents a structured, spatially correlated noise. To accommodate the 972 

anticipated smoothness of ��, the median operator is spatially smoothed using a 2D Gaussian kernel 973 

before computing  �� (Zwiers, 2010). 974 

As a modification to PATCH, the robust fitting method incorporates Tikhonov regularization 975 

to handle ill-conditioned weighting matrices resulting from a high occurrence of outliers. This leads 976 

to the solution �� � *������ � +���,��������, where � represents the diagonal matrix of 977 

factorized weights, and + is the Tikhonov regularization factor. Notably, in the two extreme cases, 978 

the Tikhonov solution either becomes �	��� (albeit with a different �) (+ � 0) or converges to ���� 979 

(+ . ∞). The above equation cannot be solved readily, as � is a function of �, which is only available 980 

after obtaining the solution. This is addressed by using an iteratively re-weighted least squares (IRLS) 981 

algorithm. In the first iteration, 
�  is set to 1 for all � to obtain the OLS solution ���� and the initial �. 982 

In the second iteration, an updated � is computed based on the initial �, which is then used to 983 

compute ��. In each further iteration, � from the preceding iteration is used to update �, which is in 984 

turn used to compute the updated ��. This iterative process is repeated until convergence or until 985 

the predefined number of iterations is exceeded. 986 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2024. ; https://doi.org/10.1101/2023.10.13.562027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/


 987 

Fig. E1. Schematic illustration of how robust fitting downweighs outliers in the model fit. The scatter plot shows 988 

the logarithm of diffusion-weighted voxel intensities against the squared cosine of the angle  between the 989 

diffusion gradient direction (bvec) and the direction of the first eigenvector in a corpus callosum voxel (see blue 990 

crosshairs for location). Blue crosses in the scatter plot indicate data points not affected by artifacts ("No 991 

outliers"), while cyan crosses indicate data points affected by strong artifacts ("Outliers"). Outliers were 992 

generated by removing the center of the k-space of the original image to illustrate the effect of strong motion 993 

artifacts. Two example images corresponding to a non-artifactual ("No outlier", top image) and an artifactual 994 

data point ("Outlier", bottom image) are shown on the right. During the model fit, a linear curve is fitted to the 995 

logarithmic voxel intensities. The presence of outlier data points leads to a biased model fit (red line) and 996 

consequently biased tensor estimates when using ordinary least squares (OLS) model fitting. In contrast, robust 997 

fitting downweighs the influence of outliers, leading to a more accurate model fit (orange line) which is closer 998 

to the ground truth (green line) obtained by an OLS fit to the non-artifactual data points (blue crosses) only. 999 

Appendix E.4. Non-linear least squares 1000 

The non-linear least squares (NLLS) method solves the optimization problem 1001 

, where  represents the signal model (DTI or DKI),  the model 1002 

parameters (elements of the diffusion and/or kurtosis tensors), and  the measured signal 1003 

intensities for a specific diffusion weighting  and diffusion gradient direction . The NLLS 1004 

optimization problem is solved using a Gauss-Newton algorithm.  1005 
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Appendix F. Effect of Rician bias correction on biophysical parameter 1006 

estimates 1007 

Here, we demonstrate the influence of Rician bias correction on the estimation of Watson 1008 

concentration parameter (κ) and axonal water fraction (AWF) (Fig. F1). These biophysical parameters 1009 

were estimated on the fully processed dataset using either the NODDI-DTI model applied on a single 1010 

(lower b-value) shell or the WMTI-Watson model applied on two shells. For an in-depth analysis of 1011 

the impact of Rician bias correction on DKI and axisymmetric DKI, refer to Oeschger et al., 2023a. 1012 

 1013 

Fig. F1. The impact of Rician bias correction (RBC) on maps of biophysical parameter estimates, derived from 1014 

the NODDI-DTI and WMTI-Watson models, including Watson concentration parameter ( ) and axonal water 1015 

fraction (AWF), in an in vivo brain and spinal cord dataset (refer to Table 4 for details on the datasets). Being 1016 

derived from white matter biophysical models, the parameter maps were masked for the white matter in the 1017 

brain dataset. For the spinal cord and ex vivo specimen, we refrained from masking due to the difficulty of 1018 

obtaining an accurate white matter mask. These maps were computed both without (left column) and with 1019 

(middle column) RBC; their voxel-wise difference, referred to as the Rician bias, is shown in the right column. 1020 

RBC slightly decreased the mean of the kurtosis tensor in both the brain and spinal cord, which resulted in an 1021 

increase in . The estimation of AWF using the NODDI-DTI model was not feasible, as the mean diffusivity (MD) 1022 

values derived from DTI fell below the range where the NODDI-DTI model provides a valid representation (refer 1023 

to Equation (4) in Edwards et al., 2017). This discrepancy could be attributed to either the underestimation of 1024 

MD due to kurtosis bias (Fig S3) or the invalidity of fixed compartmental diffusivities in the NODDI-DTI model1025
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Appendix G. Evaluating denoising methods 1026 

Several denoising methods have been developed, including the Multi-Shell Position-Orientation 1027 

Adaptive Smoothing (msPOAS, Section 2.2.2) (Becker et al., 2014), as well as methods based on local 1028 

principal component analysis (LPCA) (Manjón et al., 2013) and Marchenko-Pastur principal 1029 

component analysis (MP-PCA) (Veraart et al., 2016). Here, we evaluated these three denoising 1030 

methods using a simulated dMRI dataset of the human brain. Specifically, we fitted the kurtosis 1031 

model to an in vivo brain dMRI dataset (refer to Table 4 for details on the dataset) and considered 1032 

the fitted dMRI signal as the "noise-free" ground truth. Then, we added varying amounts of noise to 1033 

the ground truth, drawn from a circularly-symmetric complex normal distribution �0(0, ��) with 1034 

� � ��
���

, using the same set of SNR values (SNR=5, 15, 30, 39, 52, 100) as in our previous study 1035 

(Oeschger et al., 2023b). The code for the simulation is available online18. For each SNR, the kurtosis 1036 

model was fitted to the noisy magnitude dMRI data, both before (No denoising) and after denoising 1037 

(msPOAS, LPCA, MP-PCA), using the non-linear least squares (NLLS) algorithm implemented in ACID. 1038 

Slices of axial diffusivity (AD), radial diffusivity (RD), mean kurtosis tensor (MW), axial kurtosis tensor 1039 

(AW), and radial kurtosis tensor (RW) maps obtained from the dMRI data with the lowest SNR 1040 

(SNR=5) are shown in Fig. G1. The kurtosis model was also fitted to the noise-free dMRI data for 1041 

comparison (Ground truth, Fig. G1). Deviations from the ground truth were quantified by computing 1042 

the normalized root-mean-square error (NRMSE) between the obtained DKI metrics and the ground 1043 

truth across white matter voxels for one noise realization (Fig. G2). The white matter mask applied is 1044 

overlaid on the ground truth DKI metric maps in Fig. G1. 1045 

In general, denoising methods proved beneficial in reducing NRMSE from the ground truth 1046 

compared to the "no denoising" scenario in the low-SNR domain, although not consistently across all 1047 

DKI metrics. Specifically, denoising reduced NRMSE for RD and RW below an SNR of 15, and for AW 1048 

below an SNR of 30. However, it did not reduce NRMSE for AD, and the trend was not clear for MW. 1049 

At higher SNRs (above 30-40), denoising increased NRMSE for all DKI metrics compared to the non-1050 

denoised data, except for the MP-PCA denoising method, which yielded results comparable to the 1051 

non-denoised scenario. The relative difference between the maps generated using denoising and 1052 

those generated without denoising is shown in Fig. G3. These results suggest that denoising (using 1053 

any of the three methods) is beneficial for increasing the similarity to ground truth DKI metrics only 1054 

in the low-SNR domain. In the high-SNR domain, denoising either does not lead to further 1055 

improvements (MP-PCA) or even introduces additional errors (msPOAS and LPCA). 1056 

1057 

                                                           
18

 https://github.com/quantitative-mri-and-in-vivo-histology/esmrmb2024 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2024. ; https://doi.org/10.1101/2023.10.13.562027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/


 1058 

Fig. G1. Qualitative illustration of the effect of denoising on maps derived from diffusion kurtosis imaging (DKI). 1059 

Shown are maps of axial diffusivity (AD), radial diffusivity (AR), mean kurtosis tensor (MW), axial kurtosis tensor 1060 

(AW), and radial kurtosis tensor (MW). The maps were obtained by fitting the kurtosis model to simulated 1061 

noisy dMRI data (signal + noise) with a signal-to-noise ratio (SNR) of 5, both before (No denoising) and after 1062 

employing different denoising methods (msPOAS, LPCA, MP-PCA). The DKI metric maps obtained from the 1063 

simulated noise-free dMRI data (signal only) are also shown for comparison (Ground truth). The white matter 1064 

mask used for calculating the normalized root-mean-square error (NRMSE) between the obtained DKI metrics 1065 

and the ground truth is overlaid as a red segmentation line on the Ground truth maps. 1066 
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 1067 
Fig. G2. Quantitative illustration of the effect of denoising on maps derived from diffusion kurtosis imaging 1068 

(DKI) (one noise realization). The plots show the normalized root-mean-square error (NRMSE) between (i) DKI 1069 

metrics obtained from simulated noisy dMRI data (signal + noise) with varying signal-to-noise ratios (SNR), both 1070 

before (no denoising) and after employing different denoising methods (msPOAS, LPCA, MP-PCA), and (ii) DKI 1071 

metrics obtained from noise-free dMRI data (signal only). NRMSE was computed across white matter voxels 1072 

(see Fig. G1 for the white matter mask) for the following DKI metrics: axial diffusivity (AD), radial diffusivity 1073 

(RD), mean kurtosis tensor (MW), axial kurtosis tensor (AW), and radial kurtosis tensor (RW). Denoising 1074 

methods reduced NRMSE from the ground truth compared to the "no denoising" scenario only in the low-SNR 1075 

domain, although not consistently for all DKI metrics. At high SNRs (above 30-40), denoising increased NRMSE 1076 

for all DKI metrics, except for the MP-PCA method, which yielded results comparable to the "no denoising" 1077 

scenario. 1078 
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 1079 

Fig. G3. Quantitative illustration of the effect of denoising on maps derived from diffusion kurtosis imaging 1080 

(DKI). The plots show the relative difference in DKI metrics obtained from simulated noisy dMRI data with 1081 

varying signal-to-noise ratios (SNR) after employing different denoising methods (msPOAS, LPCA, MP-PCA) to 1082 

those obtained without denoising (one noise realization). The relative difference was computed across white 1083 

matter voxels (see Fig. G1 for the white matter mask) for the following DKI metrics: axial diffusivity (AD), radial 1084 

diffusivity (RD), mean kurtosis tensor (MW), axial kurtosis tensor (AW), and radial kurtosis tensor (RW). 1085 

Denoising introduced substantial improvements in the investigated DKI metrics only in the low-SNR domain, 1086 

although not consistently across all DKI metrics. When using msPOAS and LPCA, the relative differences were 1087 

greater compared to using MP-PCA, with msPOAS introducing the highest bias. At high SNRs (above 30-40), the 1088 

relative difference to the "no denoising" scenario was negligible for MP-PCA.  1089 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2024. ; https://doi.org/10.1101/2023.10.13.562027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/


Supplementary material 1090 

 1091 

Fig. S1. Diagnostic plots, optionally generated by ECMOCO, displaying the transformation parameters for all 1092 

volumes (in the case of volume-wise registration) or slices (in the case of slice-wise registration). In volume-1093 

wise registration, demonstrated here with an in vivo brain dMRI dataset, two figures are created to plot the 1094 

transformation parameters associated with motion (A) and eddy-current-related displacements (B). In slice-1095 

wise registration, shown here with an in vivo spinal cord dMRI dataset, a single figure is created to plot the 1096 

transformation parameters with separate subfigures for each estimated degree of freedom (C). Excessive 1097 

displacements in volumes/slices indicate either extreme movements, eddy-current artifacts, or a failed 1098 

estimation of transformation parameters. 1099 
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 1101 

Fig. S2. Diagnostic plots, optionally generated by the Diffusion tensor/kurtosis imaging module, displaying the 1102 

average (logarithmic) model-fit error within the provided region of interest for each volume and slice, 1103 

demonstrated here with an in vivo spinal cord dataset and a spinal cord mask. Volumes/slices with high model-1104 

fit error (outliers) indicate a high number of corrupted volumes (e.g., due to misregistration, physiological, or 1105 

other artifacts) or an inadequate model for capturing the underlying complexity of diffusion. Here, periodically 1106 

occurring pairs of volumes with high model-fit errors result from an inadequate model fit due to the low signal-1107 

to-noise ratio caused by the diffusion-sensitizing gradient aligned parallel to the spinal cord (A). Also, notice 1108 

that the model-fit error is highest within slice 2, which could be attributed to the presence of physiological 1109 

artifacts in that location. For an even more precise diagnosis of signal outliers, the voxel-wise root-mean-1110 

square of the model-fit error map (suffix: RMSE-LOG_map.nii) or the 4D model-fit error map (suffix: ERROR-1111 

LOG_map.nii) can be visually inspected to help identify individual outlier voxels or data points. 1112 
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 1114 
Fig. S3. Kurtosis bias in the mean diffusivity (MD) maps in an in vivo brain and in vivo spinal cord dataset (refer 1115 

to Table 4 for details on the datasets). This bias, shown in the right column, refers to the difference in the 1116 

estimated diffusivity values when using the lower diffusion shells only ( , tensor model, left column) or 1117 

both the lower and higher diffusion shells ( , kurtosis model, middle column). On average, the kurtosis 1118 

bias was 12% and 54% within the brain white matter and the whole spinal cord, respectively. 1119 
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 1121 

Fig. S4. Comparison between maps of fractional anisotropy (FA), axial diffusivity (AD), mean kurtosis tensor 1122 

(MW), axial kurtosis tensor (AW), and radial kurtosis tensor (RW) with and without applying adaptive denoising 1123 

(msPOAS). The msPOAS-corrected maps appear less noisy while preserving tissue edges. 1124 
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 1126 

Fig. S5. Bar plots displaying the Watson concentration parameter (κ) and axonal water fraction (AWF) within 1127 

the five central slices of the corpus callosum and the lateral corticospinal tracts in the spinal cord (refer to 1128 

Table 4 for details on the datasets). The corpus callosum was manually segmented, while the lateral 1129 

corticospinal tracts were segmented using the PAM50 spinal cord white matter atlas. The ROI of an example 1130 

slice is shown on the left side for each parameter. Red horizontal lines represent literature values obtained by 1131 

histology, while the red dotted line represents a literature value obtained in the brain, given the absence of a 1132 

corresponding value in the spinal cord. Orientation dispersion index values reported in the literature were 1133 

converted to κ using Equation (1) in Mollink et al., 2017. Within the corpus callosum, κ values were (mean ± 1134 

std) 10.82 ± 10.31 and 8.14 ± 5.13 when derived from the NODDI-DTI (single shell) and WMTI-Watson model 1135 

(two shells), respectively. These values fall within the range of literature values obtained post-mortem using 1136 

polarized light imaging (Mollink et al., 2017). AWF values derived from NODDI-DTI (0.40 ± 0.24) and WMTI-1137 

Watson model (0.47 ± 0.13) were similar to literature values obtained using electron microscopy in a 1138 

cynomolgus macaque (Stikov et al., 2015). Within the lateral corticospinal tracts, κ values derived from NODDI-1139 

DTI were notably lower than those derived from WMTI-Watson (2.53 ± 0.19 vs. 6.04 ± 1.84) and were 1140 

consistent with literature values obtained in a post-mortem specimen (Grussu et al., 2017). AWF values derived 1141 

from the WMTI-Watson model in the spinal cord were substantially higher (0.81 ± 0.03) compared to a 1142 

literature value obtained in the brain (red dotted line). The estimation of AWF was not feasible using the 1143 

NODDI-DTI model, as DTI-derived mean diffusivity (MD) values fell below the range where the NODDI-DTI 1144 

model provides a valid representation (refer to Equation (4) in Edwards et al., 2017). This discrepancy could be 1145 

attributed to either the underestimation of MD due to kurtosis bias (Fig. S3) or the invalidity of fixed 1146 

compartmental diffusivities in the NODDI-DTI model. These results indicate that WMTI-Watson yields more 1147 

accurate estimation of κ and AWF for the brain, while NODDI-DTI yields a more accurate estimation of κ for the 1148 

spinal cord. This could be a consequence of non-optimal b-values for kurtosis estimation in the spinal cord. 1149 
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